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Compositional Timing-Aware Semantics
for Synchronous Programming
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* University of Bamberg, Germany. T University of Edinburgh, United Kingdom. ¥ University of Auckland, New Zealand.

Abstract—In this paper we propose a WCRT analysis techni-
que for synchronous programs, executed as sequential or multi-
threaded code, based on formal power series in min-max-plus
algebra. The algebraic model constitutes the first fully declarative
timing-aware semantics of synchronous programs with arbitrary
hierarchical control-flow structure. Under signal abstraction this
model permits efficient compositional WCRT analyses based
on structural boxes as the unit of composition. The algebraic
model leads to a sound methodology to deal with the state space
explosion arising from tick alignment of parallel composition by
reduction to the maximum weighted clique problem.

Index Terms—Algebra, Timing, Systems Modeling Language

I. INTRODUCTION

The synchronous paradigm [1] is ideal for designing safety
critical systems in aviation, automotive and industrial automa-
tion. Synchronous languages offer a simple mechanism, based
on a logical global clock, for thread synchronisation. This
removes the inter-leavings and associated non-determinism of
asynchronous composition, resulting in a framework that is
more amenable for static analysis for functional correctness.
The issue of timing correctness is at the heart of many real-
time safety critical systems and is the topic of our interest.

Timing correctness of synchronous programs is closely
intertwined with the synchrony hypothesis, which asserts that
the synchronous program operates infinitely fast relative to
its environment. Practical implementations validate this by
ensuring that inputs from the environment never happen at a
rate that is faster than the worst case reaction time (WCRT) of
any synchronous reaction (tick). Compared to the problem of
worst case execution time (WCET) [2] of sequential programs,
WCRT analysis has received much less attention. What is
the difference? WCET asks for the worst-case execution time
over all initial memories of a code that is executed once.
WCRT analyses a step function that is started in a fixed initial
memory but iterated over many clock ticks. The worst-case is
taken over all reachable memories. Because of the reachability
aspect, WCRT produces tighter results than WCET. Despite
this difference, there exist combined WCET/WCRT methods
for parallel synchronous systems. For instance, the WCET
of [3] is developed for parallel multicore applications and
improves on precision by incorporating a WCRT for analyzing
the synchronization time between cores and [4] investigates
the response time of synchronous data flow programs mapped
to many-core processor. However, interest in WCRT alone
has been growing, with many recent attempts that primarily
explore the trade-off between precision and analysis time:

(1) Maximum thread cost [5], [6]: These approaches
compute the maximum tick lengths for every thread (termed
their local ticks) and then the sum of these maximum local
ticks to determine the WCRT. These, while being the most
efficient, produce large overestimates.

(2) Implicit path enumeration [7], [8]: These approaches
rely on integer linear programming (ILP) to model the con-
straints of a control flow graph and are inspired by ILP-based
techniques for WCET analysis of sequential programs [2].
Hence, they convert the concurrent control flow of the synchro-
nous program into its sequential equivalent before applying the
ILP formulation. They can be used for pruning infeasible paths
to obtain precise WCRT yet have a higher complexity (NP
hard) compared to the polynomial complexity of the previous
approach (1). We call this ILP, (ILP sequential).

(3) State exploration [9], [10]: These approaches work on
the concurrent control flow to compute the worst case tick
length by examining all possible thread-valid inter-leavings.
These approaches compute precise WCRT at the expense
of exponential worst case complexity. A recent paper [11]
compares model checking [12], reachability [9], and ILP; [7].
This shows that reachability works best in practice compared
to the other techniques for large state space (above 10° states).

(4) Iterative tightening [11], [13]: Wang et al. [11] no-
ticed that there is a trade-off between approach (1) and
the approaches based on path enumeration approach (2) or
state exploration approach (3). They developed an iterative
refinement approach called ILP- (ILP concurrent), by the
creation of two different ILP models on the concurrent control
flow graph. The first is used to compute an over-approximation
of the maximum cost of local ticks and uses a second ILP
model to check if the over-approximation is infeasible (i.e.,
ticks do not align during execution). They iteratively refine this
until the most precise value is computed. They have shown that
ILPo performs the best among known approaches for large
benchmarks. Independently from this, a strategy for iterative
tightening has been proposed by Raymond et al. [13] for ILP;.
They employ flow facts or infeasibility properties (verified
as invariants using a model-checker) at the high-level source
language (Lustre) to derive low-level path constraints on the
scheduled sequential program to guide the ILP solver towards
tighter WCRT values.

A unifying approach that would make it possible to in-
tegrate these various techniques systematically has recently
been proposed based on formal power series in min-max-plus



algebra [14]. This paper further investigates these algebraic
techniques and makes the following contributions:

« This is the first fully functional and time-aware semantics
for SP (Sec. IV). It models arbitrary hierarchical, se-
quential and parallel program structure as well as signals.
Existing modelling techniques only treat the flat parallel
composition of sequential automata, e.g., [14], or are fully
structural but do not have signals, e.g., [15].

o For signal-abstracted WCRT we present the first fully
modular modelling approach, which can be directly im-
plemented to generate a practical WCRT analysis algo-
rithm. Our modelling is based on boxes as the unit of
composition (Sec. V). This leads to a methodological
improvement of [15]. Further, our modelling fits with the
definition of timing compositionality proposed in [16].

o By exploring algebraic properties of the new approach
(clock decomposition) we show how to deal with the
state space explosion arising from parallel composition,
called the tick alignment problem (TAP). We show how
to reduce TAP to the maximum weighted clique problem
(MWCP) which can be solved using standard algorithms.
We present experimental evidence that this results in
improved performance (Secs. VI and VII).

II. TIMED CONCURRENT CONTROL FLOW GRAPH

The proposed WCRT approach is applied to PRET-C and
its intermediate format Timed Concurrent Control Flow Graph
(TCCFG) [12]. A TCCFG has the following types of nodes:
conventional start, end, computation and condition nodes, with
additional abort-start and abort-end nodes for preemption,
fork and join nodes for concurrency, and EOT nodes for the
pauses (i.e., state boundaries). This TCCFG captures all the
information required in the WCRT analysis including the high-
level control flow and the timing information back-annotated
from the underlying hardware. Fig. 1 shows a TCCFG where
each node B is annotated with an execution cost wert(B) in
processor clock cycles. In our case, these costs are derived
using the technique presented in [17]. The WCRT problem
for a TCCFG is to compute the maximal duration of any tick
under the operational semantics of PRET-C [12] assuming
each node B takes exactly wert(B) units of time to complete.
Concurrency is implemented by (statically scheduled) multi-
threading as in [12]. This means that the WCRT of a parallel
composition is the sum of the WCRT of its threads rather than
their maximum. The timing of EOT nodes are delays added
in the tick in which the EOT is reached. The timing costs of
all other nodes count for the tick in which the node is exited.

Table I shows the execution traces of the running example
for the first ticks. In these traces, we assume the preemption is
false unless stated otherwise in the event column. Threads in
a PRET-C program execute in a static order, from left to right
in the TCCFG. A thread only switches to the next one when
it reaches an EOT node. The tick count advances when all the
active threads have reached their respective EOT nodes.

The program execution begins from the start node B1, and
reaches the abort-start node B2 which spawns two threads:

Start / End

Abort end

Abort start

Fork

Join

EOT
Computation

Condition

oUNp OO @

Fig. 1. Timed concurrent control flow graph (TCCFG), adapted from [11].
Tick count Execution path Events during that tick
1 Bl — B2 — B3 — B4 — B5 Entering abort
2 B3 — B4 — B6 — B7 — B9 Forking T1 and T2
3 B3 — B4 — B8 — B10 — Bl11 T1 terminates
4a B3 — B4 — B12 — BI3 — Bl4 — BI5 T2 terminates, joining
4b B3 — Bl4 — B15 Preemption
5 B16 — B17 Program finishes

TABLE I
Tick SNAPSHOTS OF THE TCCFG EXAMPLE OF FIG. 1.

CheckA for checking the abort condition, and the abort body
ABody. This is a strong abort since the CheckA thread has a
higher priority (i.e., to the left of) than ABody thread. At the
end of tick 1, CheckA and ABody pause at their EOT nodes
B4 and B5 respectively. In tick 2, the execution resumes from
these EOT nodes. The thread ABody spawns T1 and T2 using
the fork node B6 and suspends itself. In tick 3, T1 terminates
as it reaches the join node B13, and T2 pauses at the EOT
in Bl1. In tick 4, we present two scenarios. If preemption
does not take place (tick 4a), T2 terminates and activates B13
and the program pauses at BI5. If preemption takes place
(tick 4b), CheckA reaches the abort-end node B14, preempting
all threads in the abort body, and the program pauses at B15.
In either case, the program finishes in tick 5 at node B17.

Computing the WCRT from a TCCFG is to find the longest
possible execution time for a tick. For example, for the TCCFG
in Fig. 1, by looking at the six execution traces in Table I, the
longest tick is tick 3, which has an execution cost of 100.



III. MIN-MAX-PLUS FORMAL POWER SERIES

The max-plus structure is (Nog, @, ®, 0, 1) where Ny, =gf
NU{—00, +00}, @ stands for the maximum and © for addition
on N,. Both operators are commutative, associative and have
neutral elements 0 =4 —oco and 1 =4 0, respectively, i.e., TP
0 =z and  ®1 = z. The constant 0 is absorbing for ©,
ie, ©0 =00©ax = 0. In particular, —co ® 400 = —o00.
Addition ® distributes over max @, ie., z® (y ®z) = x +
max(y, z) = max(x +y,x + 2) = (x ©y) & (x ® y). This
induces on N, a (commutative, idempotent) semi-ring. The
notation ® and @ highlights the multiplicative and additive
nature, respectively, of the operators. As usual, x ® y is also
written x y. Ny, is not only a semi-ring but also a complete
lattice with the natural ordering <. Meet is z Ay = min(z,y)
and join is z Vy = max(x,y) = x @ y. Further, —oo and 400
are the minimal and maximal elements. We can get least and
greatest solutions of fixed-point equations by taking infinite
join \/ and meet A, respectively.

A comprehensive study of the theory of max-plus algebra,
and its generalisation the dioids, can be found in [18]. The
important role of this structure for solving path problems is
highlighted e.g. in [19]. What is rarely exploited, however, is
the fact that the lattice structure of this algebra also supports
logical reasoning, built around the min operation. The logical
view is natural for our application where the values in N,
represent stabilisation times and measure the presence or
absence of signals during a tick. The bottom element 0 = —oco
indicates that a signal is absent, i.e., is never going to become
active. Logically, this corresponds to falsity, usually written L.
A signal with an upper bound stabilisation time of +oco
on the other hand is known to become present eventually.
This is weak logical truth, written T. All other stabilisation
values d € N codify bounded presence which are forms of
truth stronger than T. On these multi-valued forms of truth
(aka “presence’) the minimum operation A acts like logical
conjunction while the maximum @ is logical disjunction V.
The behaviour of T = 400 and L = —oo = 0 with respect
to A and V follows the classical Boolean truth tables. For
synchronous programs, negation is important to model data-
dependent branching, priorities and (if needed) preemption. It
is defined as -z =T if x = L and -z = L if z > 0.

A (max-plus) formal power series, fps, is an w-sequence

A:@aiXi =a®ar X Par X2 Pag X3 @))
i>0

with a; € N, and where exponentiation is repeated multi-
plication, i.e., X° = 1 and X**! = X X* = X ® X*. An
fps stores an infinite sequence of numbers ag, a1, as,as, ... as
the scalar coefficients of the base polynomials X*. An fps A
may model the time cost a; for a thread A to complete each
tick ¢ or to reach a given state A. If a; = O then this means
that thread A is not executed during the tick ¢ and thus not
contributing to the tick cost, or that a state A is not reachable
during this tick. This contrasts with a; = 1 which means A
is executed during tick ¢ but with zero cost, or that the state
A is active at the beginning of the tick. If a; > 0 then thread

A is executed taking at most a; time to finish tick 4, or state
A is reached within a;-time during the selected tick. We can
evaluate A with X = 1, written A[1], and obtain the worst-
case time across all ticks. Note that an fps A could also be
used to model a signal. Then, a; = 0 is equivalent to the signal
being absent in tick ¢. Otherwise, a; = 1 implies s is present
from the beginning of the tick, while a; > 0 would mean that
A becomes present during tick ¢ with a maximal delay of a;.

Let Noo[X] denote the set of fps over N,. For a com-
prehensive discussion of formal power series in max-plus
algebra the reader is referred to [18]. Constants d € N, are
naturally viewed as scalar fps d = d ® 0X ® 0X%2 @ ---.
If we want d to be repeated indefinitely, we have to write
d¥ =d®dX ©dX?---. For finite state systems the fps will
all be ultimately periodic. For compactness of notation we will
write, e.g., A = 0:2:(1:4)% for the periodic sequence satisfying
A=092X ® X?’Band B=1d4X & X?B.

The operations ¢ and ® are lifted naturally to power series.
If B=@,.,b: X", then A® B is the tick-wise max A® B =
@D,-0(a; ®b;)X* and A||B the tick-wise lifting of © given
by A|B = @,>,(a; ® b;)X". This series A|B executes A
and B synchronously, adding the tick costs to account for the
interleaving at the level of the instantaneous transitions (multi-
threaded semantics). Sequential composition is (essentially)
captured by comvolution A © B = @50 D=, 14, ©
bi,)X*. A special case is scalar multiplication (addition in
N)d®A=@,.,d®a;X". Scalar multiplication ©, parallel
composition || and conjunction A are distributive over @. Since
we want to express logical conditions on signals we also
lift the logical operations to fps. Disjunction V is identical
to @, conjunction A A B = @,5(a; A b;)X" and negation
-A = @,>, a;X". Convolution ®, parallel composition ||
and conjunction A are distributive over .

IV. ALGEBRAIC MODELLING OF TCCFGs

This section extends the results of [14] to model arbitrary
hierarchical sequential-parallel control-flow. We call all primi-
tive elements of a TCCFG, particularly signals and transitions,
the controls. For instance, the controls in Fig. 1 are C' €
{B1,B2,...,B17,5,T,t1,t2,t3}. The logical behaviour, or
clock, of C is an fps with coefficients L = —oco or T = 400
indicating the ticks in which C is activated, starting at B1 in
tick 1. We identify a control with its clock, which is obtained
from other controls’ clocks by recursion backwards along the
structure of the TCCFG.

The generic specification method will be clear by applying
it to the TCCFG of Fig. 1. Since B1 is the start node active
only in tick 1, we have B1 = T. The abort node B2 is reached
instantaneously in the same tick in which B1 is active. Thus,

B2=DBl=T. )

The conditional node B3 in CheckA can be reached from B2
in the same tick or from B4 with one tick delay. Node B4 is
activated in the same tick as B3 provided signal S is false. If



B3 is reached and S is true then ¢; is activated. This gives

B3=B2VXB4 B4=-SAB3 t1=SAB3 (3

which completely describes the logical behaviour of checkA.
In ABody the node B5 is activated from B2 unconditionally
and instantaneously and B6 is reached one tick after B5 but
only if the abort transition ¢; is not taken, i.e.,

B5 = B2 B6 = —t; A XB5. G))

The node B6 activates the start nodes of both threads T1 and
T2 for which we get the recursive equation system

BT = B6 B9 =B6V (-T AB12)  (5)
B12=—t; AXB11 Bll = B10 (6)
B10 = —t; A X B9 B8 = —t; A XBT (7)

ty = B8 ts =T A B12. (8)

Note that the non-abortion condition —¢; needs only to be
added to the exits of EOT nodes B5, B7, B9 and B11 since
the strong abort is checked in ABody at the start of each
tick. Next, we specify the activation of the join node B13.
This happens if one of the threads T1 and T2 reaches its
termination transition and the other has reached it in the same
tick or earlier. To express this we need a latching operator on
clocks. Define the clock sync(C) to start with L and switch
to T in the first tick in which C becomes T. This leads to
the recursive clauses sync(L @ XC) = 1 & Xsync(C) and
sync(T & XC) = T¥. The join then is

B13 = (sync(t2) Ats) V (t2 Async(ts)). )
Finally, we complete the algebraic specification of the main
thread TO with the equations

B14 =t, v B13
B16 = XB15

B15 = B14
B17 = B16.

(10)
(11

To sum up, equations (2)—(11) describe the exact logical
semantics of all controls of main thread TO in Fig. 1. It is
timing-ignorant but fully parametric in environment signals.
Note that this algebraic specification method is completely
uniform and generalises to arbitrary TCCFGs.

To illustrate the fps logical semantics consider the scenario
4b of Tab. I, where signal S becomes present for good
in tick 4, ie, S = X3T¥ = 1:1:1:T%. Since B3 =
TVXB4=TVX(-SAB3) = TVX(~(L:L: 1:T¥)AB3) =
TVX(T:T:T:L% A B3), it follows that B3 = T:T:T:T:1%
and t; = (L:L:1:T¥) A B3 = L:1:1:T:1% by (3). This
means B3 remains active for 4 ticks until in the 4th tick
the abort transition ¢; occurs. Hence, B6 = —t; A XT =
(T:T:T:LTYYAXT = L:T:1¥ by (2) and (4). Evaluating
(5)-(8) we further derive to = —t; A X B6 which gives

TT:T:L:TY AL LTl = 1:1:T: 1%
1:1:T%.

ty =
sync(t2)

Further, —t; A =t;X = L:T:T:1:1:T* and X2B6 =
L:l:1:T: 1% Hence, ~t; A —t; X A X?B6 = 1“. Thus,
B12 = —t; A-t;X AX?B9
= —t; At X AX?3(B6V (=T A B12))
= (-t A=t X A X?B6)
V(=ty A=t X A X2=T A X?B12)

= 1YV (LT:T:L:L:TY A X2-T A X2B12))

= LT:T:L:L:TYAX?-T A X?B12
from which it follows that B12 = 1“. This is precisely the
statement that node B12 is never reached in scenario 4b when

preemption occurs. It follows from (8) that t3 =T A B12 =
1%, sync(t3) = L“ and therefore

B13 = (sync(t2) Ats) V (t2 Async(ts)) = L¥
Bl5 = Bl4=t;VB13=1:1:1:T:1%
B17 B16 =XB15= 1l:1:1:1:T:1%

by (9)-(11). This is precisely scenario 4b of Tab. I.

A full timing-aware semantics can be obtained by adding
timing costs into the equations (2)—(11). More specifically,
for each control C' let C be the fps with coefficients in N,
describing the timing cost of reaching C' in each tick. The
logical clock C'is a timing abstraction of C obtained' as C' =
C © T. For instance, to account for the timing costs of B2,
B3 and B4 we would refine equation B3 = B2V X B4 to
become B3 = (5 ® B2) V XB4 and B4 = S A B3 to
B4 =100 (S A250 B3). Such WCRT modelling has been
proposed in [14] for purely sequential control-flow, without
fork/join and abort constructs, which we model here.

There is however another, more direct way of getting the
timing behaviour from the logical clocks (2)—(11). We simply
superimpose the timing costs of all nodes in the TCCFG
qualified by their logical clock that determine their presence
or absence in a given tick. Let B(T') be the set of all nodes of
a thread T and wert(B) € N the timing cost associated with
B € B(T). The parallel composition

wert(T) = || {(wert(B) when B) | B € B(T)} (12)

with d when B = (d“ A B) V 1% is the fps for the worst-case
tick costs contributed by thread 7. Observe that the parallel
term wert(B) when B is a time series with coefficient wert(B)
in all ticks where B is active and coefficient 0 in all other
ticks. We obtain the WCRT over all ticks by evaluating (12)
at X =1, i.e., by computing wert(T")[1].

Consider thread 72 in Fig. 1 for which equation (12) is

wert(T2) = 10 when B9 || 30 when B10

[| 10 when B11|| 12 when B12.  (13)

To compute the worst case wert(72)[1] we need to know
the clocks B9, B10, B11 and B12, which depend on the
environment signals. Let us assume that signals .S and T are

INote that —c0® T = —c0@ 400 = —oco =L and dOT = d® 400 =
+oo =T for all d > —oo.



constant absent, S = T = 1%, so no abort takes place and
thread 72 remains in its cycle forever. Then, from (2)—(11):

B9 = (L:T)”
Bl2=1:1:1:(T:1)¥

B10= B11 = L:(L:T) (14)

(15)
This means

wert(72) = (0:10)“ | 0:(0:30)% || 0:(0:10)“ || 0:0:0:(12:0)~
= 0:10:(30 ® 10):((10 ® 12):(30 ® 10))~

= 0:10:40:(22:40)~ (16)

and thus wert(72)[1] = 0@ 10 ® 40 ® 22 @ 40 = 40.

In this fashion we can use the evaluation laws of WCRT
algebra to calculate the WCRT of arbitrary threads via cost-
weighted superposition of logical clocks. In the next section
we will present an efficient compositional approach for mo-
delling arbitrary TCCFGs when signals are abstracted.

V. COMPOSITIONAL MODELLING OF TCCFGsS

We follow a similar approach to that of [15] in the sense
that signals are abstracted and only the control-flow structure
is considered. From this perspective, a program execution is
a sequence of ticks, and each tick has two possible outcomes.
The program can either pause at an EOT node and resume
in the next tick, or reach the end node and terminate. It can
be shown that for every TCCFG there is a timing-equivalent
minimal Tick Cost Automaton (mTCA) as seen in Fig. 2.
This automata is formed by a sequence of states, each one
with two (cost) weighted transitions: one leading to the next
state (pause) and the other leading to the end (exit) state.
Since execution sequences are ultimately periodic, an mTCA
eventually loops back to one of the previous states.

b, ba b
l I I

Fig. 2.

The general form of a minimal tick cost automaton (mTCA).

The behaviour of an mTCA can be described by the types of
control path taken inside the mTCA during a tick. In a through
path control passes straight through the mTCA from the initial
to the end node, i.e., transition b; in Fig. 2. In a sink path, the
mTCA is entered from the initial node and control pauses in
a sequential state to wait there for the next tick, i.e., transition
a; in Fig. 2. A source path starts the tick from a sequential
state and instantaneously reaches the end state, i.e., any of
the transitions b; with ¢ > 2 in Fig. 2. Finally, a internal
path, control starts inside the mTCA and stays there during
the current instant, e.g., any of the transitions a; with ¢ > 2 in
Fig. 2. To reflect this structure in terms of costs of paths, we
define an mTCA A as a quadruple (A, Asnk, Asre, Aint)
where Aipr, Asnke € Noo, Agre, Aint € Noo[X] are the
associated costs of the through, sink, source and internal
paths of A, respectively. For the mTCA of Fig. 2 we have

than Athr = b17 Asrc =
Aint = ag: -+ :(an: - am)”.

The WCRT of a program is computed from the mTCA of the
corresponding TCCFG. The modelling follows the hierarchical
structure of the TCCFG and is based on “boxes” as the
primitive units of composition. A box is a fragment of the
TCCFG delimited by two transitions called entry and exit such
that: (i) there is at least one control-flow path from entry to
exit and (ii) every control-flow path of the TCCFG intersecting
with the box goes from entry to exit. For instance, in Fig. 1,
all the controls from transition ¢5 (entry) to t3 (exit) form the
box of thread 7'2, and all the controls from transition ¢4 (entry)
to to (exit) correspond to the box of thread 7'1. The modular
translation maps each box into a timing equivalent mTCA.
Intuitively this is possible because every box has a single
entry and a single exit point relative to which the timing can
be measured in the mTCA. For example, for the box(ts,t3)
of T2 the corresponding mTCA is given by T2, = 0,
T25rc = (0:12)%, T24, = 10 and T2;,; = (40:22)%.

The idea is that these components describe the worst-case
cost generated by the box at each tick when the corresponding
path is executed. Since our intention is to obtain a timing
equivalent mTCA from the hierarchical structure of a given
TCCFG by means of algebraic manipulations, we define the
following operations where A and B are mTCAs.

by ibyp, Asnr = a1 and

o Sequential composition A;B is given by:

(A;B>thr - Athr ®© Bthr

(A;B)snk = Asnk @ (Athr © Bsnk)

(A;B)src = (Asrc © Bthr) b ((Athr A ]]-) ®© Bsrc)
@ ((Asre N1¥) © X Bgyre)

(A;B)int = Aint @ (Asrc ®© Bsnk)

@ (((Athr @ XAS’I‘C) A j]-w) © Bint)

Intuitively, this indicates that the cost of the through path of
a sequential composition is the addition of the cost of the
through path of both components. The cost of the sink path is
that of the sink path of the first component A otherwise it is
the cost of the through path of A plus the cost of the sink path
of B, which correspond to the two forms of entering from the
initial state and pausing inside the sequential composition. A
source path cost can be derived in three forms. First, it is the
cost of a source path leaving A plus the cost of the through
path crossing B. Second, it is the cost of a source path of B
provided that A was left from its through path, i.e., if A, A1
is 1. For the third case, we observe that the coefficients of the
fps Agre A 1% select with 1 the ticks when a source path of
A can occur and with 0 otherwise. The convolution of this
fps with X B, lines up the costs of the source paths of B
starting from the next instant where the control is transferred
from A. The internal path cost of a sequential composition
can also occur in three ways. This is the cost of an internal
path of A, the cost of a source path leaving A plus the cost
of a sink path entering B or the cost of an internal path of B.
Notice that in the latter case, the internal paths are obtained
from the next tick when control enters B.



e Parallel composition A||B is determined by:

(A[|B)thr = Athr © Biny
(AllB)snk = (Asnk © Bsnk) @ (Asnk © Binr)
@ (Athr © Bsni)
(A B)sre = (Asre I sync™ (Bsre)) © (sync™(Asre) || Bsre)
(Al B)int = (Aint || Bint) © (Aine || sync™ (Bgre))
@ (sync*(Asre) || Bint)

For parallel composition, the cost of a through path is the addi-
tion of the cost of the through paths of both components, calcu-
lated as a result of an interleaving (multi-threaded) model. The
cost of a sink path is the addition of costs of both sink paths
(interleaving) or the cost of the through path of one component
plus the cost of the sink path of the other component. A source
path of A||B must reach a (global) end state. This occurs when
the one parallel components takes a source path and the other
component follows a source path or has already reached its
(local) end state. For the latter, we define a synchronisation
operator by the recursion sync*(L & XC) = L & Xsync*(C)
and sync* (a® X C) = a®X (CV1¥) if 0 < a. The termination
aligned source cost sync*(Ag,c) then contributes the cost of
Ay in each tick where A terminates, i.e., where Ag,.. is
positive, and the cost of 1 in each tick in which A does not
terminate, i.e., where A,,.. is 0, but where it has terminated
before. The term sync*(Bs,.) is symmetric. The cost of the
internal path of A||B at each instant is the maximum cost
among the tick-wise additions of the costs of internal paths
from both components or the cost of an internal path of one
component plus a source path of the other, termination aligned
in case it has already terminated.

e The other control structures such as branching and loops can
be modelled in a similar fashion.

The WCRT of any mTCA A gets specified by
WCI't(A) = Asnk D Aint ® Athr 5% Asrc

Thus wert(A)[1] essentially takes the maximum path costs
for A over all the ticks. This computes the WCRT of A
independently of any context, so it assumes that the box A
is isolated and activated (entered) in the first tick. In this
view, primitive control nodes of a TCCFG are special case
of boxes. From Fig. 1, take for instance the EOT node B5
where wert(B5) = 10 corresponding to a sink path, or the
computation node B10 with wert(B10) = 30 representing an
internal path. Now, the WCRT of a box has been obtained
independently of a context, say for instance, the cost of thread
T2, ie., wert(ts,t3) = Tsnk D Tint ® Tinr ® Tsre. Then
we can compute the cost considering an activation context
(using clocks) whenever the entry transition t5 is activated,
ie., wert(T2) = (ts A 1¥) © wert(ts, t3)[1].

This modelling technique significantly improves on that
of [15] in compositionality because we are able to specify
any box inside a TCCFG independent of its activation context.
In [15] the activation context of a box is hard-wired and fixed

by the specific TCCFG in which it appears. Both this paper
and [15] depend on the abstraction of signals/data from the
control-flow structure. Computing WCRT in this way gives
an over-approximation which could add the time of concurrent
control-flow paths that do not arise simultaneously due to data
dependencies. In some cases, however, it is still possible to
encode the data dependencies directly in the program to get a
better WCRT approximation.

VI. TiCK ALIGNMENT & MAXIMUM WEIGHT CLIQUES

The modularity of the approach in Sec. V is obtai-
ned by over-approximating control flow branching by non-
deterministic choice. There is experimental evidence [15]
that on typical synchronous programs this signal-abstract al-
gebraic modelling via mTCAs performs significantly better
than standard approaches via model-checking or ILP. Still,
as exhibited on synthetic benchmarks in [15], the worst-case
complexity remains exponential. This is because the naive
algebraic expansion of a parallel composition A| B of fps
amounts to a state exploration whose termination depends on
the least common multiple of the cycle lengths of A and B.

We now show how one can avoid the state explosion
algebraically by clock decomposition and frequency domain
transformation. This result points towards a direct connection
between formal power series, ILP modelling and a reduction of
the tick alignment problem (TAP) to the maximum weighted
clique problem (MWCP).

Let T be a TCCFG with nodes B(T) = {By, Ba, ..., Bn}
and costs b; = wert(B;) € N as in Sec. IV. We want to
compute wert(7')[1] from the clock-decomposed form (12).

Unraveling the operators in (12) this is the same as

D O T

t>0 1<i<n
= maxtzo Z{bz ‘ Bi,t = T}

with coefficients B;; € {L, T} from the node clocks B; =
@D,>oBit X" and T;; = (b; A B;;) V 1. Computing (17)
generates the Tick Alignment Problem (TAP): Finding the
maximum sum Y {b; | B; € B} for any tick-aligned set
B C B(T) of nodes, i.e., such that there exists ¢ > 0 with
B;+ = T for all B, € B. This can be rephrased as a finite
combinatorial problem considering that each B; is ultimately
periodic with transient length 7; and cycle length ¢;:

wert(T)[1] =

7)

B; = Bi BB —1:(Bir:Birp1t e 1 Bi g —1)"

Because of periodicity, B;:, = By, iff min{t1,t2} < 7
and ¢, = to, or min{ty,t2} > 7; and t; — 7; =, to — 7. Here
and in the following = =,, y stands for congruence modulo
m, i.e., x mod m = y mod m.

Proposition VI.1 (Tick Alignment Problem).

A candidate set B={B; | i € I} C B(T) is aligned iff there
exist 0 < t; < 1; + @; for all © € I such that for all pairs
of indices i,j € I, we have t; = t; or 7; < t;, 7; < t; and
bi = Ti Sged(gi,8) i — 75



Proposition VI.1 suggests a decision procedure. We build
a tick alignment graph Gp = (Vp, Ep,wr) with vertices
Vr =ar {(i7ti) ‘ 1<1<n 08t <1+ ¢z} and weights
w(i,t;) =qr Ty, The edges Ep connect two vertices (i1, t;,)
and (iQ,tiQ) if ¢, = t;, or both 7;, < t;,, Tiy <ty and
th — Tiy qu‘,l i tig — Tiy where Giyio = ng(¢i1 ’ ¢22) We then
search for a maximal weighted clique in Gr.

Proposition VI.2 (Max Weight Clique Problem). A candidate
sum Ty ¢, @ Toy, © - O Ty, is aligned iff the nodes S =
{(4,t;) | 1 < i < n} form a cligue in the TAG Gr. Hence,
wert(T)[1] = max {w(S) | S clique in Gr}.

Prop. V1.2 reduces the TAP to the Maximum Weight Clique
Problem (MWCP), which is known to be NP-complete for
arbitrary graphs [20]. This means that WCRT (under signal
abstraction) is in NP which will be better behaved than the
PSPACE approach of [15] using naive algebraic expansion of
parallel composition in WCRT algebra.

VII. PRACTICAL ALGORITHMS FOR TAP

Many algorithms have been proposed to solve the MWCP.
The most well-known are encodings in Integer Linear Pro-
gramming (ILP) style, see e.g. [20], or branch-and-bound
search algorithms such as [21]. All these can be applied to
obtain exact solutions for the TAP. We use the wclique
program [21] which is publicly available and hence suitable for
rapid prototyping. We also compare with StateExploration [9],
[10]. Though these algorithms have exponential worst-case
behaviour on arbitrary graphs, it is not known how they fare
on tick alignment graphs. We conducted experiments to find
out and the results are reported here. Alongside, we observed
that the incremental WCRT evaluation method ILPs [11] is
also based on a linear programming formulation. Exploiting
Props. VI.1 and V1.2 we were able to obtain a simple but rather
efficient improvement of ILP-, which we term as ILPcp.

The ILP¢ algorithm [11] starts with a linear program
ILPgasg which approximates (17) by considering a set of no-
des B aligned as long as the B; € B3 are in concurrent threads
or connected by sequential control flow paths not containing
any EOT nodes. Solving ILPgasg gives the same WCRT as
the Maximum Thread Cost (MaxTC) approach [5], [6]. For
instance, for the TCCFG of Fig. 1 such MaxTC candidates are
the nodes By = {B2, B3, B8, B12, B13, B14, B15} with a
total cost of 109. This is a safe overapproximation. The incom-
patibility of these nodes is discovered using another linear pro-
gram called ILPcypck which finds that the intersection of the
node clocks B; € By, called tick expressions in [11], is empty.
The principle of ILP¢ is then to improve the ILPgasg model
iteratively by adding new constraints that rule out these infea-
sible combinations until reaching a valid one. In our example,
the constraint B2\ B3A BSAB12A B13AB14AB15 = ¥
is added to ILPgasg. By thus refining ILPgagE iteratively, the
optimal feasible solution B, = {B3, B4, B8, B10, B11} with
cost of 100 eventually appears.

In our improved version ILPcp we replace ILPcygck by
a polynomial infeasibility test using the tick alignment graph

10000

—— 7T
StateExploration = ]

WClique 2
1000 ILPc 3 H
ILPcp 4 :

0.1

0.01 |

Computation Time (sec)

0.001

0.0001

le-05

10 100 1000
Instance complexity (lcm)

10000 100000 1e+06 1le+07 1le+08

Fig. 3. Evaluation Results

Gt as per Prop. VI.2. We check every pair of candidate nodes
for a connection in G'p. Thus, while ILPcygck only rules out a
specific candidate set such as By, we rule out every candidate
set that shares some infeasible pair. For instance, because
{B2, B8} and { B8, B12} cannot be active in the same tick we
add the constraints B2AB8 = 1“ and BEAB12 = 1“. Each
missing edge in ¢ not only witnesses the infeasibility of the
given candidate sum but also of others. This tightens up the
ILPgasg more effectively, whence we need fewer iterations.

Fig. 3 presents the results from our evaluation. In order to
obtain an accurate performance estimation of our proposed
method, we managed to randomly produce set of synthetic
benchmarks composed of more than 8000 TAP instances of
varying complexity i.e., the size of the reachability state ex-
pansion. Every point is corresponding to a particular instance
of a TAP and the lines show the average trend of each
evaluated method. It is not surprising that wclique is far
superior to state exploration. The most surprising observation
is that wclique is also superior to ILP~, a domain-specific
algorithm designed for WCRT analysis on signal-abstracted
TCCFGs. However, ILPcp which exploits MWCP informa-
tion in the narrowing loop, allows us to improve ILP¢ again,
so it outperforms wclique.

From these experiments we believe that it could be inte-
resting to adapt MWCP algorithms for extending the scope of
the compositional algebraic method described in Sec. V which
itself has already shown excellent performance on typical
TCCEFG structures [15].

VIII. CONCLUSIONS

Synchronous programs react to the environment using
discrete instants, called reactions. Worst case reaction time
analysis (WCRT) is essential to validate the correctness of
the implementation of a program on an given architecture .
Precise analysis requires the elimination of infeasible paths
and infeasible state combinations from concurrent threads,
known as the tick alignment problem (TAP).

This paper presents, for the first time, a compositional
algebraic semantics of synchronous control-flow programs



(TCCFGs) to give a precise definition of the WCRT and
the TAP. It is precise (called (1,0)-timing compositional in
the terminology of [16]) because it combines both signal-
dependent function and timing, unlike [5], [11], [15] which
also use max-plus algebra but abstract from signals. It is
general because it captures arbitrary hierarchical structures
of sequential and concurrent control flow, unlike [14] which
also uses formal power series in min-max-plus algebra but is
restricted flat parallel compositions of sequential synchronous
automata. Observe that the TAP is non-trivial because of the
multi-threading semantics of PRET-C. Under multi-processing
the total cost of a parallel is the maximum of its threads.
Hence, we compute max;>o{b; | B;+ = T} instead of a max
of sums as in (17) which is trival to obtain from the clocks B;.

The computational complexity of solving the system equa-
tions to to determine wert(7')[1] is unknown. There are two
sources of combinatorial explosion. The first is the dependency
on environment signals. To compute the exact worst-case we
need to do computationally expensive case analysis on all
possible behavioural patterns of environment signals (such as
S and 7T in Fig. 1). Therefore, all practical timing analyses
must abstract from signals in some way, as discussed in [14].
In this paper we have shown how the precision of signal-
abstract WCRT can be improved efficiently using the number-
theoretic structure of periodic activation clocks to reduce tick
alignment to MWCP. The inclusion of signal dependencies is
left to future work.

Existing works such as [22], [23] also exploit mathematical
abstractions to obtain compositional real-time performance
analyses. However, these typically abstract from causality and
control flow which we model, while being able to express
stochastic timing properties which we ignore.

Note that min-max-plus algebra can be used at all levels
of abstraction, from low-level hardware to high-level program
code. Here, we use it to analyse high-level TCCFG program
behaviour. This has little meaning unless the timing para-
meters are linked with some compiled binary code. This is
addressed by work such as [17], [24], [13]. The purpose of
our approach is to complement low-level WCRT analyses to
form a genuine round-trip process. The high-level design is
informed by a prescription of the intended tick cost timing.
Once the implementation is fixed, the actual low-level timing
can be determined and back-annotated into the high-level
design, see e.g. [25]. This enables the designer to change the
program structure in order to fix or optimize the timing, e.g.,
by refactoring or the shifting of computations (code blocks)
between tick boundaries. This holistic view has been termed
interactive timing analysis, see e.g., [26].
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