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Abstract

Purpose: To develop finite element analysis (FEA) of magnetic resonance
elastography (MRE) in the human thigh and investigate inter-individual vari-
ability of measurement of muscle mechanical properties.
Methods: Segmentation was performed on MRI datasets of the human thigh
from 5 individuals and FEA models consisting of 12 muscles and surround-
ing tissue created. The same material properties were applied to each tissue
type and a previously developed transient FEA method of simulating MRE
using Abaqus was performed at 4 frequencies. Synthetic noise was applied
to the simulated data at various levels before inversion was performed us-
ing the Elastography Software Pipeline. Maps of material properties were
created and visually assessed to determine key features. The coefficient of
variation (CoV) was used to assess the variability of measurements in each
individual muscle and in the groups of muscles across the subjects. Mean
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measurements for the set of muscles were ranked in size order and compared
with the expected ranking.
Results: At noise levels of 2% the CoV in measurements of |G∗| ranged from
5.3 to 21.9% and from 7.1 to 36.1% for measurements of φ in the individ-
ual muscles. A positive correlation (R2 value 0.80) was attained when the
expected and measured |G∗| ranking were compared, whilst a negative cor-
relation (R2 value 0.43) was found for φ.
Conclusions: Created elastograms demonstrated good definition of muscle
structure and were robust to noise. Variability of measurements across the
5 subjects was dramatically lower for |G∗| than it was for φ. This large
variability in φ measurements was attributed to artefacts.

Keywords: finite element analysis, magnetic resonance elastography,
elastography software pipeline, human thigh

1. Introduction

Material properties of the human leg vary through natural physiological
processes, such as muscle contraction [1] and aging [2], and through disease
states, such as myofascial pain syndrome [3]. A non-invasive method of mea-
suring such properties in vivo is magnetic resonance elastography (MRE).
MRE utilises a phase-encoding gradient to visualise displacements resulting
from mechanically induced shear waves in order to probe the material prop-
erties of in vivo tissue [4, 5]. Typically a map of these material properties,
known as an elastogram, is created using an inversion algorithm [6, 7]. A
recent development in the field has been the creation and implementation
of the multi-frequency dual elasto-visco (MDEV) inversion algorithm [8],
which combines displacements from multiple frequencies in order to reduce
frequency dependent artefacts [9, 10, 11, 12].

A recent study by this group [13] demonstrated that whilst MDEV achieved
an improvement in the quality of the elastogram in comparison to direct in-
version at a single frequency (DI), measurements through both algorithms
were dependent upon the geometry of the structure under investigation as
well as the material properties. Whilst this study utilised idealised geome-
tries, there are potential practical implications given the often large inter-
individual variability in the size and shape of anatomical structures. Indeed,
this is true of the human leg, where muscle structure can vary significantly
from one individual to another and is dependent on multiple factors such as
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age, sex, height and exercise habits of the individual [14].
An increasingly common method of experimentation in the MRE field

is finite element analysis (FEA). Using FEA, datasets are created in silico
that can then be integrated into MRE post-processing software. The specific
benefit of FEA over in vivo or phantom studies is the level of control that
the researcher has over aspects such as the geometry and material properties
of the model, and noise levels in the resulting synthetic datasets. Tradi-
tionally, such studies have utilised simplistic geometries to validate or test
the limitations of inversion algorithms [15, 16, 17, 18, 12]. More recently,
however, focus has turned to anatomical structures. Of note in this regard,
Thomas-Seale et. al (2016) [19] used FEA to investigate arterial stenosis,
demonstrating the ability of the technique to differentiate between lipid and
fibrotic plaques. Meanwhile a study by McGrath et al. (2015) [20] simulated
3-D wave propagation in the human brain, raising concerns over whether
MRE would be able to detect the subtle change in stiffness through demen-
tia over the errors in MRE measurements resulting from interference patterns
and heterogeneity of human tissue.

The present study aims to develop and utilise FEA models to assess the
variability of MDEV measurements from the muscles of the human thigh in
a cohort of healthy volunteers.

2. Methods

2.1. Overview

MRI datasets were acquired for 5 healthy male volunteers aged 20-32
(mean of 25). Segmentation was then performed upon these images and FE
models created. Material properties were defined consistently for each muscle
across the set of models. Once the simulation had run, the displacements
resulting from the induced wave propagation were extracted and exported
to post-processing software, where the inversion was performed using the
Elastography Software Pipeline (ESP) [12]. The variability in measurements
across the different set of models was then assessed.

2.2. MRI Acquisition

MRI was performed on a 3 T scanner (Verio, Siemens, Erlangen, Ger-
many) using a single-shot spin-echo sequence with FoV of 200 x 200 mm3

and 48 slices corresponding to a voxel size of 0.39 x 0.39 x 3.3 mm3.
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2.3. Image Segmentation
Manual segmentation was performed on each set of images using Scan IP

(Simpleware, Exeter, UK). Masks were created for twelve different muscles,
the femoral bone and all other tissue, termed from here on as the surrounding
tissue (figure 1). To allow for better smoothing, the masks were re-sampled in
the z -direction by linearly interpolating to a pixel spacing of 1 mm. For the
purposes of efficiency with regards to the modelling, the masks were cropped
such that only the upper 10 cm of the scans were included in the model.

2.4. Finite Element Analysis
An explicit transient methodology for simulating MRE as previously de-

scribed in [13, 21] was utilised in Abaqus/explicit (Dassault Systéme, Simulia
Corp., Providence, Rhode Island, USA). In this approach, the load is ap-
plied throughout the entire time that the simulation is run. Displacement
are output at 8 time-points evenly spaced across a single wave cycle at the
frequency of interest. For the present study, the simulation was allowed to
run for 0.052 s before outputting data in order to allow the wave to propagate
throughout the entire model.

2.4.1. Mesh

Meshing was performed in Scan IP with minimum and maximum edge
lengths of 1 and 1.25 mm respectively using linear tetrahedral elements
(C3D4). Table 1 summarises the number of elements in each model.

Boundary and loading Conditions

The peripheral surfaces of the model in the z -direction were fixed with
no translation or rotation permitted. In order to reduce simulation time, the
bone was removed from the model and the ensuing surface, representing the
boundary between the bone and other tissues, also fixed. During the meshing
procedure the muscles and surrounding tissue were merged together to form
a single part. This has previously been shown to have the same effect as
applying tie constraints between the different regions [21].

The load was applied via a concentrated force in the z -direction acting
on a ring of nodes on the surface of the leg in the central 5 cm of the model
(figure 2). This was seen as representative of the circular ring actuator that
is often used for inducing vibrations into the leg [22, 1]. Frequencies of 25,
37.5, 50 and 62.5 Hz were applied [22, 12]. Based upon comparisons of the
amplitudes of the wave in the models and in vivo scans, the total force applied
over all the elements in the model was 10 N (table 1).
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Convergence Studies

Convergence studies were performed based on the criteria outlined in [21].
Meshes were defined with minimum edge lengths of 1, 1.5, 2, 2.5 and 3 mm.
The load was applied through the same area on the surface of each model,
with the force per node adjusted so that the total load applied remained
consistent in each case. Convergence was assumed to have been achieved
when the change in mean |G∗| and φ values from one refinement to the next
was less than 2% in all of the regions of interest in the model.

2.4.2. Material Properties

There has been relatively little previous work undertaken to measure the
material properties of all muscles in the leg simultaneously in the frequency
range of interest in the present study. A previous MRE study by Chakouch
et al. (2015) [23] demonstrated that of four rheological models tested, the
Zener model of viscoelasticity provided the best fit to muscles in the upper
leg and this model was used to define material properties here. The model
consists of a spring, µ1, connected in parallel with a series connection of a
dashpot, η, and spring, µ2 (see figure 3). The resulting equation that governs
the shear modulus in the Zener model is:

GM(ω) =
µ1µ2 + iωη (µ1 + µ2)

µ2 + iωη
(1)

where ω represents the angular frequency of the propagating shear wave.
The model parameters for the biceps, gracilis, semitendinosus and semimem-

branosus muscles were calculated in the aforementioned Chakouch study and
have been utilised here. Klatt et al. (2010) [22] calculated storage and loss
modulus values at multiple frequencies for the grouped quadricep muscles
(rectus femoris, vastus medialis, vastus intermedius and vastus lateralis).
Parameters for the Zener model based on these measurements were calcu-
lated by minimising the cost function in the same manner as previous studies
[24, 23]:

χ =
N
∑

n=1

√

(ℜ [G(ωn)−GM(ωn)])2 + (ℑ [G(ωn)−GM(ωn)])2 (2)

where GM(ω) represents the complex shear modulus for the Zener model
iterated over, G(ω) represents the complex shear modulus as measured using
MRE, and N represents the number of frequencies used.
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Whilst the calculated viscous values was similar to those from the Chak-
ouch study (and therefore used here), the elastic parameters were 4-5 times
smaller. Based on observations from in house elastograms, it was determined
that such variation was unrealistic. As such, the mean µ1 and µ2 values were
calculated for the muscles from Chakouch study, and the elastic components
were normalised using the mean of the elastic measurements of the same mus-
cles made by a separate Chakouch et al. (2015) [25] study, which investigated
the elastic properties of 11 muscles in the thigh.

The remaining tissues without definition were the sartorius and adductor
muscles, and the surrounding tissue. There are no published values of the
mechanical properties of these muscles at multiple frequencies. The elastic
properties of the sartorious muscle and surrounding tissue were measured in
the study by Chakouch et al. (2015) [25], and therefore the same normalisa-
tion process described previously was used to calculate the elastic components
with which to define this muscle. The mean values of the components for
all of the other muscles were used to define the viscous components of the
adductor and sartorius muscles and the surrounding tissue, and the elastic
components of the adductor muscles. The components used for all tissue
types are summarised in table 2.

2.4.3. Data Processing

Nodal coordinates and corresponding displacements in each spatial di-
rection and at each time-point were extracted from the .odb file created by
Abaqus during simulation and written to .txt files. These were then imported
intoMatlab where displacements were interpolated to a newly created, evenly
spaced grid. Spacing between neighbouring points was 2 mm in all directions
thus representing an MRE scan with a 2 x 2 x 2 mm3 voxel size, and the grid
was centered on the central axial plane of the model. The size of the grid
varied in the x and y-axial planes depending on the size of the leg, but was
spread over 40 mm in the z-direction.

Gaussian noise [26] was added to the wave images based on the method
outlined by Miller et al. (2015) [27]. Noise levels were varied from 0 to 10%.

2.5. Inversion and Post-Processing

Inversion was performed using the Elastography Software Pipeline (ESP)
[12]. The basis for inversion in ESP are the MDEV equations [8]:

|G∗| = ρ

∑3

m=1

∑

N

n=1 ω
2
n
|u∗

m
(ωn)|

∑3

m=1

∑

N

n=1∇
2 |u∗

m
(ωn)|

(3)
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φ = cos−1

(

−

∑3

m=1

∑

N

n=1 [∆u′
m
(ωn) u

′

m
(ωn) + ∆u′′

m
(ωn) u

′′

m
(ωn)]

∑3

m=1

∑

N

n=1 |∆u∗
m
(ωn)| |u∗m (ωn)|

)

(4)

Here u′ and u′′ represent the real and imaginary components of the dis-
placement, u∗, whilst |G∗| and φ represent quantities akin to the traditional
magnitude and phase of the complex shear modulus, but with contributions
averaged over multiple frequencies. ESP also employs wavelet-domain denois-
ing techniques to remove both low and high frequency noise contributions.

Masks representing the region of interest (ROI) for each muscle were cre-
ated and applied to the elastograms in order to calculate the mean values of
|G∗| and φ in each muscle. To achieve this, the set of elements that consti-
tuted each material were identified from the Abaqus .inp file and matched to
the nodes from which they were constructed. A value of one was assigned
to those elements within the material element set, whilst a value of zero was
assigned for all nodes outside the element set. These values could then be in-
terpolated to the same coordinate grid as used for importing the wave images
thus creating a mask for each individual muscle.

In order to assess the effectiveness of the algorithm in terms of its ability
to map the material properties, the prescribed and measured |G∗| and φ

values were ranked in order of highest to lowest value and these rankings
compared to one another. Additionally, combined measurements of |G∗| and
φ were made in the quadriceps, hamstring and medial muscle groups. The
ratio of the values the measurements made from one group to another was
then calculated and compared with the expected ratio.

To investigate the variability in measurements across the volunteer cohort,
the coefficient of variation was calculated as a percentage:

cv = 100 ·
σ

µ
(5)

where µ is equal to the mean of the measurements from the 5 volunteers
and σ represents the standard deviation of the acquired measurements. The
coefficient of variation was calculated for each muscle individually and for
the three muscle groups.

To assess the influence of size upon the variability of measurements, the
coefficient of variation for each muscle was plotted against the mean size of
the ROI for that muscle across the 5 patients, linear regression performed
and the coefficient of determination (R2 value) calculated.

7
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3. Results

Examples of the complex displacement images and |G∗| and φ elastograms
for each leg are presented in figure 4. Definition of the different muscles and
variation in their measurements could be clearly seen for many of the muscles
in the |G∗| elastograms. Artefacts often dominated the boundaries between
materials in the φ elastograms. The application of noise to the displacement
data tended to result in a slight decrease in measurements of |G∗|, but a
slight increase in measurements of φ. In both instances, the definition of
the boundaries between muscles in the elastogram became less clear with
increasing noise (figure 5).

Measurements of |G∗| and φ in the individual muscles have been compared
to the expected values in figure 6 a-b. Whilst measurements of |G∗| tend to be
relatively accurate, this is not the case for φ where measurements are typically
overestimated. The ranking in |G∗| and φ of the expected measurement has
been compared against the ranking of actual measurement in figure 6 c-d.
For |G∗| there was a clear positive relationship between the measured and
expected rank (R2 value 0.80). For φ the relationship represented a negative
trend (R2 value of 0.43).

The coefficient of variation was dependent upon the muscle under investi-
gation. At a noise level of 2% the coefficient of variation in the measurements
of |G∗| ranged from 5.29 to 21.90%, with these values occurring in the bi-
ceps femoris short head and sartorius muscles respectively. For φ values were
typically higher with a range from was 7.07 (vastus intermedius) to 36.08%
(rectus femoris) (table 3). There appeared to be no direct relationship be-
tween the coefficients of variability for |G∗| and φ. For |G∗| the coefficient
of variation tended to increase with increasing noise, whilst the opposite was
true for φ (figure 7). There was no clear linear relationship between the co-
efficient of variation calculated for |G∗| or φ across each muscle in the 5 legs
and the mean size of the region of interest for that muscle with R2 values
less than 0.1 figure 6 d-e).

With regards to the muscle groups, the coefficient of variation was lowest
in the medial muscles for both |G∗| and φ. For |G∗| the coefficient of variation
for the group as a whole was slightly lower than the mean of the coefficient
of variations for the individual constituent muscles in that group for all three
muscle groups; for φ the value for the group was much lower than the mean.
The mean ratios of measurements and standard deviations across the 5 sub-
jects made in the different muscle groups has been presented graphically in
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figure 8. Ratios of measurements were similar to those expected for |G∗|,
however, were significantly different for φ.

4. Discussion

To the authors knowledge, the present study represents the first attempt
to simulate wave propagation in multiple muscles simultaneously, and the
first to utilise FEA to investigate the variability of MRE measurements in
the muscles of the human leg. The elastograms created from the datasets
in this study bear strong resemblance to those obtained in vivo, notably the
artefacts associated with aliasing at the boundaries in the φ elastograms and
the definition of individual muscles in the |G∗| elastograms [1, 12]. Impor-
tantly, definition remained good at noise levels below 5%; estimations in [12]
demonstrated that noise for in vivo MRE of the leg was in the region of 2%.
The present study therefore acts as further validation of the robustness of
ESP to noise at levels typically seen in vivo.

A previous study undertaken by this group demonstrated the dependence
of MRE measurements upon the geometry of the structure under investiga-
tion [13]. This has potentially significant implications upon studies that are
attempting to compare measurements from multiple individuals, since there
is often a large degree of variability in the shape and size of anatomical
structures. Variability of measurements was dependent upon the muscle in-
vestigate and the level of noise applied. The most reproducible measurements
of individual muscles for |G∗| typically came from muscles in the medial and
hamstring muscle groups, whilst conversely, the least variable measurements
tended to be made in the quadriceps muscles. These results were reflected
in the coefficient of variation values for the overall muscle groups. In the
quadriceps group, the vastus medialis obtained the highest coefficient of vari-
ation. In several of the |G∗| elastograms (figure 4), there appeared to be a
bright artefact within this muscle that potentially caused the higher variabil-
ity seen. Further work is required to identify the source of this artefact to
assess whether it is likely to be present in vivo. Variability of φmeasurements
was greatly reduced in the individual muscles in comparison to |G∗|. The
presence of artefacts was much more prevalent in the elastograms (figure 4),
particularly around the boundaries between muscles, and in superficial re-
gions. Averaging φ values over muscle groups was a much more effective way
of achieving reproducible measurements, however, the ratio of the measured
values from one group to another was significantly different than expected.
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This suggested that the influence of artefacts was more consistent over the
larger groups than in the individual muscles.

There did not appear to be a relationship between the coefficients of vari-
ation for |G∗| and φ, suggesting that measurements of these two properties
are influenced by different factors. In this regard it should be noted that noise
typically had a limited, but different influence on the coefficient of variation
of |G∗| and φ measurements (figure 6). Whilst it typically caused increased
variability across the measurements of |G∗|, it tended to decrease the vari-
ability of measurements of φ. Inspection of the elastograms showed that in
both cases, noise tended to increase the size and number of artefacts produc-
ing a less smooth elastogram, and resulting in poorer definition of individual
muscles (figure 5). As previously discussed, the coefficient of variation for φ
measurements was strongly influenced by the presence of artefacts, even at
zero or low levels of noise, whilst for |G∗| artefacts were not as prevalent, and
therefore did not have as great an influence on variability. Inspection of the
φ elastograms demonstrated that at high noise levels some muscles (such as
the gracilis), were almost totally dominated by artefact. For φ, values can
only vary from 0 to 2π, with artefacts typically represented by high values. It
is therefore likely that whilst measurements were increasingly inaccurate at
high noise levels, the influence of the artefact became more consistent across
the set of geometries, and the variability decreased as a result.

The lack of positive correlation between expected and measured rankings
for φ prompts caution in its mapping, implying that measured values from dif-
ferent muscles within the same individual are not directly comparable to one
another. This point is further emphasised by the lack of agreement between
the measured and expected values (figure 6 a-b), with large overestimations
in several of the muscles. In contrast, the data suggests that mapping using
|G∗| has far greater validity. Measurements of the individual muscles were
relatively accurate, whilst there was a strong positive correlation between the
measured and expected rankings. In this respect, the influence of artefacts
should again be noted. The highest expected |G∗| value for muscles stud-
ied here was in the gracilis. In all of the elastograms, the gracilis appeared
brightest (figure 5), however, its measurement was ranked second. Closer
inspection of the elastograms show that in each case, there is a dark arte-
fact around the edge of the gracilis that is expected to result from aliasing,
and it is likely that this artefact reduces the measurement. Removal of such
artefacts would further improve the ability to map |G∗| and in all likelihood,
improve the accuracy of measurements. Future work should therefore place
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emphasis upon achieving this.
Since prescribed material property values were based on measurements

made using MRE, this study did not intend to validate the technique in
the leg. It is worth noting however, that measurements of both |G∗| and
φ in this study were very similar to measurements that have been made in
vivo [23, 28, 1]. Furthermore, visual comparison of the elastograms pro-
duced in silico here with those produced in previous in vivo studies was very
favourable. Whilst previous studies by this group utilising typically idealised
and simplistic geometries have tended to produce very clean elastograms
with well-defined borders between different materials in the elastograms, the
elastograms produced from the simulations here, and with noise applied at
the levels expected in vivo, look remarkably similar to those produced in
vivo [1]. Furthermore, many of the features from in vivo studies are well
replicated in this study, such as the artefacts that are typically seen at the
edge of individual anatomical features in vivo in φ elastograms that can be
seen around the individual muscles here (figure 4) [12].

A limitation of this study was in the application of material properties.
There are currently a limited number of studies that have investigated ma-
terial properties in the leg at the frequency range of interest, and those that
have, often typically investigate at a single frequency [1, 25] or studied a lim-
ited number of muscles within the leg [22, 29]. Further work to characterise
all the material properties in the human leg and match them to a material
model in the same manner as undertaken by [23] would be of considerable
benefit to future studies that are similar to the present one. Additionally,
this study has assumed that the material properties are isotropic, whereas in
reality they are highly anisotropic [30]. In future studies it will be interest-
ing to incorporate anisotropic properties and assess its influence upon wave
propagation and MRE measurements.

5. Conclusions

This study developed FEA of MRE in the human thigh in models incor-
porating multiple muscles and surrounding tissue. In the present study this
was utilised to examine the variability of measurements in 5 human thighs
through ESP. Individual muscles were well defined in the elastograms, which
remained robust at the noise levels expected in vivo. Variability of measure-
ments in the muscles was dramatically lower in |G∗| than it was in φ, where
artefacts appeared to have a large influence. Strong correlation between the
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ranking of the magnitude of expected measurements and ranking of the mag-
nitude of actual measurements for |G∗| demonstrated that mapping allows
for relatively good comparison of stiffness values from different muscles in
the leg, whilst a lack of positive correlation for φ values prompts caution as
to its use in this regard.

References

[1] E. Barnhill, P. Kennedy, S. Hammer, E. van Beek, C. Brown, N. Roberts,
Statistical mapping of the effect of knee extension on thigh muscle
viscoelastic properties using magnetic resonance elastography., Physiol
Meas 34 (12) (2013) 1675–98. doi:10.1088/0967-3334/34/12/1675.

[2] L. Debernard, L. Robert, F. Charleux, S. F. Bensamoun, Analysis of
thigh muscle stiffness from childhood to adulthood using magnetic res-
onance elastography (MRE) technique, Clinical Biomechanics 26 (8)
(2011) 836–840. doi:10.1016/j.clinbiomech.2011.04.004.

[3] P. Lew, J. Lewis, I. Story, Inter-therapist reliability in locating latent
myofascial trigger points using palpation, Manual Therapy 2 (2) (1997)
87–90. doi:10.1054/math.1997.0289.

[4] R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca,
R. Ehman, Magnetic resonance elastography by direct visualization of
propagating acoustic strain waves., Science 269 (5232) (1995) 1854–7.
doi:10.1126/science.7569924.

[5] R. Muthupillai, P. Rossman, D. Lomas, J. Greenleaf, S. Riederer,
R. Ehman, Magnetic resonance imaging of transverse acous-
tic strain waves., Magnet Reson Med 36 (1996) 266–274.
doi:10.1002/mrm.1910360214.

[6] A. Manduca, R. Muthupillai, P. Rossman, J. Greenleaf, R. Ehman,
Local wavelength estimation for magnetic resonance elastography,
in: Proceedings of 3rd IEEE International Conference on Image Pro-
cessing, Vol. 3, IEEE, 1996, pp. 527–530. doi:10.1109/ICIP.1996.560548.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=560548

12



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

[7] A. Manduca, T. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Am-
romin, J. Felmlee, J. Greenleaf, R. Ehman, Magnetic resonance elastog-
raphy: non-invasive mapping of tissue elasticity., Med Image Anal 5 (4)
(2001) 237–54.

[8] S. Papazoglou, S. Hirsch, J. Braun, I. Sack, Multifrequency inversion in
magnetic resonance elastography., Phys Med Biol 57 (8) (2012) 2329–46.
doi:10.1088/0031-9155/57/8/2329.

[9] J. Guo, S. Hirsch, A. Fehlner, S. Papazoglou, M. Scheel, J. Braun,
I. Sack, Towards an elastographic atlas of brain anatomy., PloS One
8 (8) (2013) e71807. doi:10.1371/journal.pone.0071807.

[10] S. Hirsch, J. Guo, R. Reiter, S. Papazoglou, T. Kroencke, J. Braun,
I. Sack, MR Elastography of the Liver and the Spleen Using a Piezo-
electric Driver, Single-Shot Wave-Field Acquisition, and Multifrequency
Dual Parameter Reconstruction, Magnet Reson Med 71 (1) (2014) 267–
277. doi:10.1002/mrm.24674.
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Figure 1: Left: 3-D image of the segmented muscles and bone from sub-
ject 3. Right: Labelled 2-D diagram of the material properties through the
centre of the same model: 1) vastus lateralis, 2) vastus intermedius, 3) rec-
tus femoris, 4) biceps femoris short head, 5) biceps femoris long head, 6)
semitendinosus, 7) semimembranosus, 8) gracilis, 9) adductor magnus, 10)
adductor longus, 11) vastus medialis, 12) sartorius, 13) surrounding tissue
and 14) femoral bone.

Figure 2: The load was applied to a ring of nodes, represented in red
here, on the surface of the surrounding tissue in the model.

Figure 3: Diagram of the Zener model of viscoelasticity used for materials
throughout this study.

Figure 4: From top to bottom: MRI scan of the leg of each subject in the
central axial plane; 2-D image of segmented model; real part of the complex
z-displacement at 25 Hz; real part of the complex z-displacement at 62.5 Hz;
map of |G∗| from noise free dataset; and map of phi from noise free dataset.

Figure 5: Elastograms of |G∗| and φ in subject 1 at each noise level stud-
ied.

Figure 6: All graphs are from datasets with 2% noise. a) and b) Measured
and expected values for |G∗| and φ respectively. c) and d) Measured against
expected ranking of measurements for |G∗| and φ respectively. d) and e) The
coefficient of variation for measurements of |G∗| and φ respectively across the
5 muscles against the mean size of the ROI of each muscle.

Figure 7: The influence of noise level upon the coefficient of variation for
|G∗| (right) and φ (left).

Figure 8: The ratio of measurements in the from muscles group to an-
other for |G∗| (right) and φ (left) at a noise level of 2%.

Table 1: Summary of the number of elements, total number of nodes over
which the load was applied and the force per unit node applied in each of
the models.
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Table 2: The parameters of the Zener model applied for different mate-
rials within the model and the expected |G∗| and φ values when calculated
using the MDEV inversion algorithm at the frequencies applied in this study.

Table 3: The coefficient of variability for |G∗| and φ for each muscle and
each group of muscles across the 5 legs that were studied at a noise level of 2%.
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No. of Elements Nodes in Load Force per Node (N)
Subject 1 5,478,550 46,826 2.14× 10−4

Subject 2 5,561,574 47,659 2.10× 10−4

Subject 3 6,030,959 46,267 2.16× 10−4

Subject 4 6,977,826 51,331 1.95× 10−4

Subject 5 6,131,461 52,061 1.92× 10−4
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Tissue µ1 (Pa) µ2 (Pa) η (Pa·s) |G∗| (Pa) φ (rad)

Quadriceps

Rectus Femoris 3061 4066 3.60 3438 0.27
Vastus Intermedius 3296 4379 3.60 3653 0.25
Vastus Lateralis 3139 4171 3.60 3509 0.26
Vastus Medialis 3139 4171 3.60 3509 0.26

Hamstrings

Semitendinosus 3920 3340 4.29 4433 0.23
Semimembranosus 2920 7380 4.19 3318 0.34
Biceps Femoris LH 3420 6900 3.96 3764 0.28
Biceps Femoris SH 3420 6900 3.96 3764 0.28

Medial
Gracilis 5200 2920 6.65 6146 0.20

Adductor Longus 3552 4954 4.16 3978 0.27
Adductor Magnus 3552 4954 4.16 3978 0.27

Others
Sartorius 4002 5317 4.16 4399 0.25

Surrounding Tissue 2433 3232 4.16 2984 0.33
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Tissue CoV |G∗| (%) CoV φ (%)

Quadriceps

Rectus Femoris 14.4

9.4

36.1

7.5
Vastus Intermedius 8.9 7.1
Vastus Lateralis 9.5 18.5
Vastus Medialis 18.3 25.9

Hamstrings

Semitendinosus 9.3

6.2

10.9

7.8
Semimembranosus 9.0 11.0
Biceps Femoris LH 7.5 8.1
Biceps Femoris SH 5.3 17.5

Medial
Gracilis 6.0

5.2

10.5

2.3
Adductor Longus 9.4 27.5
Adductor Magnus 6.8 12.5

Others Sartorius 21.9 12.6
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