
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A theoretical study on the P-I diagram of framed monolithic glass
window subjected to blast loading

Citation for published version:
Chen, S, Chen, X, Li, G & Lu, Y 2017, 'A theoretical study on the P-I diagram of framed monolithic glass
window subjected to blast loading', Engineering Structures, vol. 150, pp. 497-510.
https://doi.org/10.1016/j.engstruct.2017.07.055

Digital Object Identifier (DOI):
10.1016/j.engstruct.2017.07.055

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Engineering Structures

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 18. May. 2024

https://doi.org/10.1016/j.engstruct.2017.07.055
https://doi.org/10.1016/j.engstruct.2017.07.055
https://www.research.ed.ac.uk/en/publications/e0d602ce-3e29-4daa-9b2e-573378450d98


1 
 

A Theoretical Study on the P-I Diagram of Framed Monolithic Glass Window 1 

Subjected to Blast Loading 2 

Suwen CHEN 1,2, Xing CHEN 2, Guo-Qiang LI 1,2, Yong LU 3 3 
 4 

1 State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, 5 
China 6 

2 College of Civil Engineering, Tongji University, Shanghai 200092, China 7 
3 Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, 8 

Edinburgh EH9 3JL, UK 9 

 10 

 11 

ABSTRACT 12 

 13 

In this paper, an analytical model for determining the iso-damage curves for framed monolithic glass 14 

panels subjected to blast loading is proposed. Two typical damage levels corresponding to different 15 

conditions in GSA/ISC are classified, namely a) the glass crack limit and b) glass fragments invading 16 

with a certain velocity. The nonlinear dynamic responses and failure modes of framed monolithic 17 

glass under different blast loadings are firstly analysed numerically. Then critical states of glass panel 18 

in both impulsive region and quasi-static region of the pressure-impulse (P-I) diagram are defined. 19 

Based on the energy balance approach, an analytical method is proposed for determining the pressure 20 

asymptote and the impulse asymptote of framed monolithic glass for different damage levels. The 21 

proposed method is verified through comparison with published experimental data and numerical 22 

results. The method can be applied for any framed monolithic glazing with different dimension and 23 

thickness and provides a practical approach for engineering design and hazard level estimation of 24 

framed monolithic glass against blast loading.  25 

 26 

Keywords: Framed glass window; Monolithic glass; blast loading, P-I diagram; failure modes; 27 

analytical method 28 
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NOMENCLATURE 29 
 30 

a, b length and width of the monolithic glass panel, with a≥b 
h thickness of the monolithic glass panel 
E elastic modulus of glass 
G shear modulus of glass 
v Poisson’s ratio of glass 

σf failure stress of glass material 
ψ deflection function of glass panel 
w deflection at the panel centre 

wf deflection at the panel centre at glass crack moment 
p peak overpressure of a specific blast load 
i impulse of positive phase of a specific blast load 

td equivalent positive load duration of a specific blast load 
Ds width of shear region 
C length of shear region 

Me equivalent mass of the equivalent model 
Kb, Ks flexural stiffness and shear stiffness of the equivalent model 

Ke effective stiffness of the equivalent model 
Pe equivalent load of the equivalent model 
W the work done by the pressure 

Δb, Δs flexural deflection and shear deflection of the equivalent model 
Δ effective deflection of the equivalent model 

σ1 maximum principal stress within the glass panel 
Ek0 initial kinetic energy of glass panel 
Ek total kinetic energy of glass panel 

Ekr residual kinetic energy at glass failure moment 
v0 initial velocity at the panel centre 
vr ejection velocity of the glass fragments 
Ui internal strain energy of the panel 
Uf dissipated energy due to glass fracture 
γs surface energy per unit area 

Δa side length of a representative square fragment 
Af area of new formed surfaces of fragments 
k
cri , 
k
crp  

values of impulse asymptote and overpressure asymptote for damage level k, 
respectively. k=I,II,III… 

α, β shape parameter for the dynamic region of P-I curve 
ξ adjust coefficient to modify the impulse asymptote of damage level I 
1
ci  modified impulse asymptote of damage level I 

Ts natural period of glass panel 
λ ratio of residual kinetic energy to total energy at glass failure moment 

λc critical residual kinetic energy ratio for punching failure mode 
vrc critical ejection velocity for punching failure mode 
Dsc shearing region width for critical damage level 

 31 
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 32 
1. INTRODUCTION 33 
 34 

Glass curtain wall has become more and more popular in high-rise buildings nowadays for its 35 

artistic facade appearance and high clarity. However, its disadvantages are also very significant. 36 

Because glass is a brittle material with relatively weak strength compared with other structural 37 

members, glazing windows are more vulnerable to air blast waves caused by intentional or 38 

accidental explosions. Laminated glass has been proved to be very effective at mitigating the risk 39 

of fragment ejection, and therefore it is widely used and should be a priority choice in regions where 40 

high level of protection is required. However, due to the un-predictable nature of explosion 41 

occurrence, especially for concerns over malicious attacks, it is necessary to investigate monolithic 42 

glass as it is still the most commonly used glass type in the general building stock. According to the 43 

statistical data in literature [1], as listed in Table 1, over 40% of the injuries in an explosion incident 44 

have been glass-related injuries such as lacerations and abrasions from flying glass shards. 45 

Therefore, it is very important to strive for a proper design of glass windows with consideration of 46 

possible exposure to blast loading, and to this end a thorough understanding of the dynamic 47 

behaviour and failure mechanism of glass windows subjected to blast wave is crucial. 48 

 49 

GSA/ISC [2] classifies the performance of window systems subjected to blast loads and the related 50 

hazard levels, as indicated in Figure 1. These response conditions are classified based upon the post-51 

test location of fragments and debris. Under condition 1 or 2 there will be little fragments invade 52 

and the glazing remains to be retained by the frame. Only dusting or very small fragments near the 53 

sill or on the floor may be acceptable. Condition 3a to 5 are specified according to the invasion 54 

distance and the corresponding hazard level. For example, condition 3a and 3b correspond to 55 

invasion distances of no more than 1m and 3m respectively, while condition 4 or 5 represent 56 

fragments that can impact a target located 3m away from the window at a height lower or higher 57 
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than 0.6m above the floor, respectively. Currently, for design of blast resistant glazing, ASTM-58 

F2248 and ASTM-E1300 [3, 4] specify an equivalent 3-second duration design loading and design 59 

charts for different types of glass windows. However, neither the dynamic characteristics of the 60 

blast loading nor the dynamic response of glazing has been considered in these ASTM standards [3, 61 

4]. Besides, it should be noted that the equivalent 3-second duration uniform load is associated with 62 

a probability of breakage less than or equal to 8 lites per 1000 for monolithic annealed glass, which 63 

cannot satisfy the demand of multi damage level based design.  64 

 65 

This paper is concerned with the development of iso-damage curves for different damage levels of 66 

framed monolithic glass subjected to blast loading, which is to be used for practical applications in 67 

the blast resistant design of glazing as well as hazard estimation. A lot of research, including 68 

analytical derivation, field blast test and numerical simulation has been devoted to establish the iso-69 

damage curves for glass windows. In particular, many studies have been conducted to predict the 70 

response of glass panel using a single-degree-of-freedom (SDOF) approach [5-7]. Cormie et al [7] 71 

developed a theoretical method to describe the behaviour of laminated glass, and proposed iso-72 

damage curves for laminated glass under blast loading using a SDOF model. These iso-damage 73 

curves were compared with FEA results by Hooper [8] and Zhang [9], and the results revealed 74 

considerable errors in the values of impulse asymptote under different damage levels. The 75 

insufficient accuracy in the existing SDOF method for predicting blast resistant capacity of glass 76 

panels in different response regimes is believed to stem from the fact that the deformation shape 77 

function is inaccurate under impulsive loading.  78 

 79 

On the other hand, experimental investigations including field blast tests and shock tube tests have 80 

also been conducted [10-16], most of which, however, were restricted to specific window sizes and 81 

material properties. As it is very expensive to conduct blast tests, it is not practical to rely on large 82 
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numbers of blast tests to parametrically study the performance of glass panels or to obtain the 83 

detailed P-I curves. Numerical parametric study is another way to establish P-I curves. But the 84 

results based on numerical study and blast tests are only applicable to specific dimensions and 85 

thicknesses, therefore is not generally applicable. To achieve generality, developing a physics-based 86 

theoretical method for establishing P-I curves becomes of indispensable value. 87 

 88 

In this paper, a theoretical method is proposed for establishing the iso-damage curves for framed 89 

monolithic glass for different damage levels, which can be applied to any fixed framed monolithic 90 

glazing with variable dimensions and thicknesses. Firstly, two typical damage levels corresponding 91 

to different conditions in GSA/ISC [2] are classified, namely a) the glass crack limit and b) glass 92 

fragment invading with a certain velocity. The nonlinear dynamic responses and failure modes of 93 

framed monolithic glass under different blast loadings are analysed by means of finite element 94 

method. Then, critical states of glass panel in both impulsive region and quasi-static region of the 95 

pressure-impulse (P-I) diagram for different damage levels are defined. Based on the energy balance 96 

approach, the analytical method for calculating the pressure asymptote and the impulse asymptote 97 

of framed monolithic glass for different damage levels are proposed. The proposed method is 98 

verified through comparison with published experimental data and numerical simulation results. 99 

The method is shown to provide reliable prediction of the pressure-impulse (P-I) diagram of framed 100 

monolithic glass panel for different damage levels, and it can be used for quick estimation of 101 

splashing distance for an existing design and assess the hazard level, or a new design with a required 102 

hazard level.  103 

 104 

2. DESCRIPTION OF P-I CURVE  105 

 106 

According to previous study, a P-I curve for a certain structure may be expressed by the following 107 
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Equation [9, 17]:  108 

 109 

( )( ) ( )
2 2

k k
k k cr cr
cr cr

p ip p i i βα− − = +
 

(1) 

where p is the peak overpressure, i is the impulse, denotes the impulse value of the impulsive 110 

asymptote for a given damage level k, is the overpressure value of the overpressure asymptote 111 

for the same failure level; α and β are parameters related to the properties of the structure, which 112 

determine the shape of the curve in the dynamic zone, as shown in Figure 4.  113 

 114 

A blast load with a peak overpressure and an impulse above a P-I curve will result in the 115 

corresponding damage level of the structure, whereas the structure will be safe or undergo lesser 116 

damage if the peak overpressure and impulse combination is located below or left to the curve. In 117 

the following section,  and  are calculated employing energy method, and the deflection 118 

functions are determined based on the failure modes in the impulse zone and the quasi-static zone 119 

respectively. Due to the complexity of failure mode in the dynamic zone, it is very difficult to figure 120 

out an analytical solution for the shape parameters (α and β). Therefore a series of numerical test 121 

points are generated for the dynamic zone of the P-I curve to determine numerically the shape 122 

parameters for different damage levels. 123 

 124 

In this paper, three typical damage levels are defined to satisfy different blast resistant design 125 

requirements, as listed in Table 2. Damage level I represents the onset of crack of glass 126 

corresponding to condition 2 in GSA/ISC [2] (Figure 1). Damage level II and III represent the glass 127 

fragment invading with a certain velocity, which corresponds to condition 3a to 5 in GSA/ISC [2] 128 

(Figure 1).  129 

 130 

k
cri

k
crp

k
cri k

crp
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3. ANALYTICAL MODEL 131 

 132 

In the analytical model，a typical glass panel with dimensions of a×b×h (a ≥ b) is assumed to be 133 

gripped within an steel frame (Figure 2), in which a, b and h represent the length, width and 134 

thickness of the glass panel respectively. The boundary condition for the glass panel is simplified 135 

as fixed due to the constraint of the frame. The blast load is simplified as a triangular decay uniform 136 

pressure that acts perpendicularly to the glass panel. 137 

 138 

In a typical blast load scenario, the blast overpressure rapidly rises to the peak positive pressure, 139 

then it gradually reduces until it reaches the peak negative pressure, and finally it picks up to the 140 

ambient pressure slowly, as is shown in Figure 3. Previous study shows that negative phase may 141 

have a significant influence on cases where the rebound occurs during the negative phase [18, 19], and 142 

pull-out failure may take place due to the combination of elastic recovery force and the negative 143 

phase of loading. The main purpose of the present study is to propose a theoretical model for 144 

impulse asymptote and overpressure asymptote of P-I curves, where the corresponding td/T ratio 145 

(in which td is the load duration and T is the natural period of the panel) is less than 0.1 or larger 146 

than 10 [7]. It has been indicated that the effect of negative phase is insignificant in both ranges [18], 147 

so in the present study the negative phase is ignored and a triangular decay function is adopted to 148 

describe the blast loading for simplification. Therefore, the main parameters of the blast load are 149 

peak overpressure and positive phase duration. In the case of explosion in a close range, the blast 150 

loading has very high overpressure but very short duration, which is a characteristic of impulsive 151 

loading. In long-range blast cases, the overpressure decreases relatively slowly, resulting in long 152 

loading duration and hence a “quasi-static” type of loading. The coordinates on a pressure-impulse 153 

(P-I) plot can well represent the characteristics of the blast load, and therefore with the P-I curve 154 

the bearing capacity of glass panel subjected to different blast loadings can be well expressed. It 155 
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should also be noted that the uniform blast pressure assumption is only valid when the explosion is 156 

not very close to the glass panel. This is actually the general condition the current study is focused 157 

on; otherwise non-uniform blast loading distribution has to be considered due to different blast 158 

shock wave propagation distances and incident angles. As a matter of fact, very-close range 159 

explosion may lead to the destruction of structural members, in which case the failure of glazing is 160 

not a primary concern. Therefore a uniform blast pressure is considered suitable for general analysis 161 

of glass panels in the present study. Further study is needed to investigate the failure mechanism of 162 

glass panel subjected to very close explosion. 163 

 164 

3.1 SOLUTION OF THE OVERPRESSURE ASYMPTOTE 165 

 166 

The overpressure asymptote reflects the bearing capacity of a glass panel in the quasi-static region. 167 

In this region, the deflection of a four-side-fixed glass panel can be assumed to follow the classical 168 

slab deflection and expressed as [20] 169 

2 2( , ) cos ( )cos ( ) , ,
2 2 2 2

x y a a b bx y x y
a b
π πψ = − ≤ ≤ − ≤ ≤  (2) 

 170 

Based on the assumed shape function , an equivalent SDOF system can be built and the 171 

corresponding parameters can be obtained as follows [21] : 172 

2 ( , )eM m x y dxdyψ= ∫∫  
(3

) 

23 2 2 2 2 2

2 2 2 2 2
( , ) ( , ) ( , ) ( , ) ( , )2(1 )

12(1 )e
Et x y x y x y x y x yK v dxdy

v x y x y x y
ψ ψ ψ ψ ψ    ∂ ∂ ∂ ∂ ∂ = + − − −    − ∂ ∂ ∂ ∂ ∂ ∂     

∫∫  
(4

) 

0 ( , )eP p x y dxdyψ= ∫∫  
(5

) 

where Me, Ke  and Pe are the equivalent mass, equivalent stiffness and equivalent load of the SDOF 173 

( , )x yψ
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system respectively. m is the mass of glass panel per unit area, and p0 is the uniform overpressure 174 

acting on the glass panel. E and v are the elastic modulus and Poisson’s ratio of glass respectively. 175 

 176 

Based on the small-deflection theory of bending, the stresses in the glass panel can be calculated 177 

using the stress-strain relations. The maximum stress occurs at the panel centre, which is also the 178 

maximum principal stress ( 1σ ) within the glass panel, as follows: 179 

2 2 2

1 2 2 2
( )

2(1 )
Eh a vbw

v a b
πσ +

= ⋅
−

 (6) 

where w is the displacement at panel centre.  180 

 181 

By equalling the maximum principal stress σ1 to the failure strength of glass σf, the failure 182 

displacement wf can be obtained as follows: 183 

2 2 2

2 2 2
1

( )f f
v a bw

Eh a vb
σ

π
−

= ⋅
+

 (7) 

 184 

It should be mentioned that glass failure is very sensitive to initial micro cracks and is therefore 185 

probability-dependent. In practical engineering design, the failure probability of the strength of 186 

glass is considered by introducing a strength reduction coefficient, and the corresponding design 187 

strength is given for different glass types and thicknesses [22]. When applying the method proposed 188 

in this study for design analysis, the failure strength can either be taken as the design value from 189 

relevant design codes, so that the probability-dependent failure is represented in a code-compatible 190 

manner, or be determined based on material test results. 191 

 192 

In the quasi-static region, the applied pressure is considered to be constant in time, so the work done 193 

by the pressure, W, can be calculated as:  194 
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e fW P w= ⋅  (8) 

 195 

Based on the SDOF method [21], the internal strain energy Ui and residual kinetic energy Ekr are 196 

given by Equation 7 and Equation 8, respectively: 197 

21
2i e fU K w=  (9) 

21
2kr e rE M v=  (10) 

where vr represents the ejection velocity.  198 

 199 

For damage level I, which represents the onset of glass cracking, there is no residual kinetic energy 200 

or fracture energy, which means Ekr and Uf equal 0. Thus the external work W will transform into 201 

the strain energy corresponding to the limit strain of cracking, Ui.  202 

 203 

For damage level II, W will transform into strain energy corresponding to the limit strain of cracking 204 

Ui, residual kinetic energy Ekr, and the energy dissipated by glass fracture Uf  : 205 

k fri EW U U= + +  (11) 

 206 

Ekr may be evaluated according to a specific ejection velocity through Equation 10. The 207 

determination of dissipated energy Uf will be detailed in Section 3.3. 208 

 209 

Once we obtain the external work W, the corresponding external pressure k
crp , which defines the 210 

value of the overpressure asymptote, can be determined by: 211 

( , )
k
cr

f

Wp
w x y dxdyψ

=
⋅ ∫∫

 (12) 

 212 
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3.2 Theoretical Model for Impulsive Region  213 

 214 

When the loading duration is very short, the response will depend on impulse rather than the peak 215 

load. For example if we assume a triangle pulse shape, then according to the structural dynamics 216 

theory the impulsive response will occur if the ratio between the duration of the loading and the 217 

natural period of the system (td/T) is less than 0.1 [7]. 218 

 219 

It is generally known that three failure modes could take place under impulsive loading, namely 220 

flexural failure, shear failure, and a combination of the two modes. A typical four-side-fixed 221 

monolithic panel in size of 1100mm×1100mm×8mm is modelled here to illustrate how the failure 222 

mode changes with different imposed impulse, as shown in Figure 5. The detailed finite element 223 

(FE) model will be described later in Section 3. It should be noted that the peak overpressure 224 

considered in blast resistance design for glazing is relatively smaller comparing with those for main 225 

structural members, and therefore in current study a peak overpressure not exceeding 2000kpa is 226 

considered for impulsive loading in numerical analysis.  227 

 228 

As can be seen from Figure 5, when the impulse is just above the critical limit (impulse asymptote) 229 

of damage level I (glass crack limit), the failure mode of the laminated glass is of a flexure pattern, 230 

with the cracks mainly occurring around the centre of glass panel as a result of bending deformation.  231 

 232 

When the impulse is much larger than the impulse asymptote value for glass crack limit, the damage 233 

of the glass panel tends to initiate earlier and at locations near the boundary, giving rise to a clear 234 

punching-type shear failure mode. In-between the above two modes, mixed patterns of cracks occur, 235 

indicating a combination of flexural failure and shear failure.  236 

 237 
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Figure 6 shows a typical development of the deflection profiles obtained by FEA for a fixed glass 238 

panel under impulsive loading, and the applied blast loading (p=2000kPa and i=24kPa·ms) is very 239 

close to impulse asymptote for damage level I. As can be seen, because the impulse is not large 240 

enough to cause a punching-type of shear failure at the early stage of the response, the panel will 241 

enter into the stage of global bending deformation and results in flexural failure; in the particular 242 

example herein this occurs at t=3.4ms. This gives the critical state of glass panel along the impulse 243 

asymptote of damage level I.  244 

 245 

Because of the global bending nature of the critical failure mode, the deflection mode of the fixed 246 

glass panel along the impulse asymptote of damage level I can be assumed the same as that of the 247 

quasi-static region. Figure 7 shows a comparison of the deflections obtained by FEA at a global 248 

bending failure under an impulsive load and that of theoretical hypothesis (i.e. deflection under a 249 

quasi-static load), giving a good agreement. The strain energy Ui required for this critical failure 250 

mode to develop under an impulsive load can be obtained by Equation 9 as well.  251 

 252 

For the quantification of the impulsive load, it is convenient to consider it to be a pure impulse i. 253 

Assuming a triangle pulse shape, 254 

1
2 di pt=  (13) 

where p and td are the peak overpressure and equivalent positive load duration of a specific blast 255 

load respectively.  256 

 257 

From impulse – momentum transfer, the initial velocity at the panel centre v0 can be written as 258 

0
e

iabv
M

=  (14) 

where iab equals to the total impulse calculated over the slab, Me is the effective mass.  259 
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 260 

Accordingly the initial kinetic energy of the system will be: 261 

2
00

1
2 ekE M v=  (15) 

 262 

For damage level I which corresponds to the onset of glass crack, the initial kinetic energy Ek 0 will 263 

completely transform into strain energy Ui at glass failure moment. In other words there will be no 264 

residual kinetic energy after glass fracture, or the imposed loading would be larger than the critical 265 

loading corresponding to glass crack limit. Thus, the energy transformation relationship can be 266 

written as 267 

0 ikE U=  (16) 

 268 

This gives rise to the required minimum explosion impulse for the damage level I:  269 

1 2I
cr e ii M U

ab
=  (17) 

 270 

When it comes to damage level II, where the impulse is large enough, damage can develop in a very 271 

rapid manner prior to the development of a flexural deformation mode and flexural failure. The 272 

failure of glass panel is therefore mainly caused by the shearing force near the boundaries, as has 273 

been explained earlier and shown in Figure 5. The whole panel will detach from the frame after the 274 

cracks linking up along the boundary, indicating a punching failure. In this case, only a fraction of 275 

the impact energy is dissipated by local fracture while the remaining part exists as kinetic energy, 276 

consequently leading to the high speed flying fragments. Figure 8 shows the contours of 277 

displacement and stress of glass panel under impulsive loading for level II obtained by FEA. In the 278 

early phase, the deformation and stress level in the core region is negligible as compared with those 279 

in the shearing region. The damage zone forms an annular shape along the glass boundaries with a 280 
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width of Ds, as depicted in Figure 8 and 9.  281 

 282 

In order to describe the dynamic behaviour of the glass panel in such a concentrated zone, herein 283 

we propose a simplified short beam model, as shown in Figure 10. The boundary condition in the 284 

model is simplified as clamped such that there is no rotation at the two ends of the beam. This 285 

assumption is deemed reasonable concerning the shear failure mode as described earlier. The length 286 

of the beam equals the width of the shear region Ds while the cumulative “width” of the beam equals 287 

the circumference of the shearing region C,  288 

 (18) 

 289 

In the simplified beam model, the bending stiffness and shearing stiffness are given by Equation 19 290 

and 20,  291 

3
12

b
s

EIK
D

=  (19) 

s
s

GAK
D

=  (20) 

where E and G are the elastic modulus and shear modulus respectively, A is the section area which 292 

equals C × h, I is the section inertia which equals Ch3/12, and h is the depth of the panel. 293 

 294 

The rigid movement of core region can then be represented by the deformation at the end of the 295 

beam Δ, which is combined of the shearing deformation Δs  and bending deformation Δb,  296 

s b∆ = ∆ + ∆  (21) 

 297 

According to the deformation-stiffness relationship, the following effective stiffness Ke is obtained: 298 

2( 2 )sC a b D= + −
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s b
e

b s

K KK
K K

=
+

 (22) 

 299 

The displacement caused by shearing deformation and bending deformation can also be separated 300 

from total displacement, as follows: 301 

e
s

s

K
K

∆ = ∆ ⋅  (23) 

e
b

b

K
K

∆ = ∆ ⋅  (24) 

 302 

Consequently the bending moment M and shear force Fs applied at the ends of the beam can be 303 

obtained as: 304 

2
s

b b
DM K= ⋅∆ ⋅  (25) 

s s sF K= ⋅∆  (26) 

 305 

By equating the maximum bending stress σm to the failure stress of glass σf (Equation 27) the failure 306 

displacement controlled by bending effect is given Equation 28. 307 

2m f
M h
I

σ σ= ⋅ =  (27) 

2

1 3
f

f
e s

Ch
w

K D
σ

=  (28) 

 308 

On the other hand, by equating the maximum principal stress σ1, which equals τm under a pure shear 309 

condition, to the failure stress of glass σf  (Equation 29), the failure displacement controlled by 310 

shearing stress can then be determined by Equation 30.  311 
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1
3
2

s
m f

F
A

σ τ σ= = =  (29) 

2

2
3

f
f

e

Ch
w

K
σ

=  (30) 

 312 

The actual failure displacement is the smaller between the bending controlled displacement and 313 

shearing controlled displacement,  314 

1 2min[ , ]f f fw w w=  (31) 

 315 

Therefore the bending deformation Δbf and shearing deformation Δsf at failure moment can be given 316 

by: 317 

e
sf f

s

Kw
K

∆ = ⋅  (32) 

e
bf f

b

Kw
K

∆ = ⋅  (33) 

 318 

The bending strain energy and shearing strain energy of the glass panel when failure occurs are 319 

obtained by Equation 34 and 35. The total energy of glass panel is the combination of bending strain 320 

energy and shearing strain energy, which is given by Equation 36. 321 

2
2

3
0

( ) 6
2

sD

b bf
s

M x EIU dx
EI D

= = ⋅∆∫  (34) 

2
2

0

( )
2 2

sD

s sf
s

V x GAU dx
GA D

= = ⋅∆∫  (35) 

i b sU U U= +  (36) 

 322 

The initial kinetic energy imparted by explosion impulse has been given by Equation 15. Based on 323 

energy conservation, the initial kinetic energy Ek 0 will transform into the strain energy in the 324 
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concentrated deformed band (i.e. the “beam”) Ui, the residual kinetic energy of the panel Ekr , and 325 

the fracture energy for the central panel region Uf, as shown in Equation 37. Ekr may be evaluated 326 

according to specific ejection velocity of fragments. Thus the blast load impulse can be calculated 327 

by Equation 38, which represents the value of II
cri .  328 

0

2
0

2 k i kr f
e

I U E U
M

E= = + +  (37) 

1 2 ( )e i
I

r f
I
c kr M U E Ui

ab
= + +  (38) 

  329 

3.3 Determination of the Fracture Energy of the Glass Panel 330 

 331 

In the above section the strain energy stored in the concentrated “beam” zone up to glass fracture 332 

has been formulated for the impulsive regime. The main panel is simplified as rigid body, however 333 

in reality the whole glass panel will be involved in the fragmentation process once the fracture limit 334 

is reached. From the energy point of view, the breakup of the central area of the panel will require 335 

additional input energy for the formation of new fragment surfaces [23, 24]. Based on the Griffith 336 

energy balance criterion [25], the fragmentation energy may be written as 337 

sff AU γ=  (39) 

where  is the total surface area of fracture and sγ  is the surface energy per unit area. For the 338 

monolithic glass plate, sγ  is 3.9 J/m2  for soda-lime glass in static state [24].  339 

 340 

To simplify the calculations, a representative square fragment with a side length of △a is taken as 341 

an example, as shown in Figure 11, and therefore the total amount of fragments can be obtained as 342 

2
ab
a∆

. Then the area of new formed surfaces equals the total surface area of fragments minus the 343 

original surface area of glass panel, which can be written as 344 

fA
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2
2 (4 2 ) 2 2 2f

abA ah a ah bh ab
a

= × ∆ + ∆ − − −
∆

 (40) 

 345 

Substituting Equation 40 into Equation 39, the total fragmentation energy of the panel for a given 346 

fragment size ( a∆ ) is given by 347 

22 ( )f s
abU h a b
a

γ= − −
∆

 (41) 

 348 

Previous experimental investigations show that the glass fragment characteristic is affected by many 349 

factors, including panel sizes, blast loading conditions (strain rate) and glass types et al. [12, 26, 27]. 350 

For example, in Zhang’s test [27], the nominal length (square root of the measured fragment area) of 351 

fragment mainly varies between 15mm to 80mm for each load case, and fragments with nominal 352 

length less than 30mm shows a dominant proportion. Besides, the amount of small fragments 353 

increases as the reflected pressure and impulse increases. Here two extreme cases are considered 354 

here to analyze the influence of different fragment sizes on the calculation results, in which the 355 

fragment sizes are taken as 15mm and 80mm respectively. According to Equation 41, the resulting 356 

surface energy for a 1500mm×1200mm×10mm is 2.13J and 18.51J respectively. If the ejection 357 

velocity is assumed as 5m/s, the corresponding kinetic energy will be 441.1J based on Equation 10, 358 

which is more than 20 times the magnitude of surface energy. Then it can be concluded that surface 359 

energy is relatively small comparing with the kinetic energy of flying fragment and its influence on 360 

calculation results is negligible. Due to the glass size is very difficult to be determined for various 361 

glass panels and load cases, a constant fragment size of 20mm is utilised in the present study for an 362 

easy estimation of the surface energy. Accordingly, the dissipated energy due to glass fracture can 363 

be obtained based on Equation 39 and 41.  364 

 365 

4. NUMERICAL STUDY 366 
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 367 

As discussed in Section 2, the shape parameters (α and β) of the P-I curves are determined through 368 

a numerical simulation study instead of using a theoretical approach due to the complexity of failure 369 

mode in the dynamic zone of the P-I curves. In this section, numerical analysis for framed 370 

monolithic glass panel subjected to blast loading is conducted using explicit dynamic analysis 371 

program LS-DYNA [28]. Based on the numerical result, the shape parameters (α and β) of the P-I 372 

curves are obtained using curve fitting. 373 

 374 

4.1 Numerical model 375 

 376 

Glass panels with two dimensions are chosen in accordance with the experiment tests reported by 377 

Ge et al. [12] and Zhang et al. [27], which are 1100mm×1100mm×8mm and 378 

1500mm×1200mm×10mm respectively. In both tests, four sides of glass plies are fully clamped by 379 

steel window frames with certain embedded depths (100mm in Ge’s test [12] and 50mm in Zhang’s 380 

test [27]). The same boundary condition is simulated in numerical analysis. As shown in Figure 12, 381 

the glass ply is fixed into a steel frame with embedment on all sides in the FE model, and the 382 

thickness of steel plate is 5mm. The nodes on the surface of the steel frame are restrained in all 383 

directions to simulate a fix boundary condition. To simulate actual installation practice, a 2mm-384 

thick cushion is inserted between the frame and the glass panel. The presence of a cushion layer 385 

also helps mitigate stress concentration, which could occur if the glass panel is just rigidly fixed to 386 

the steel frame in the FE model, leading to unrealistic premature failure of glass panel. It should be 387 

pointed out that such a treatment will tend to induce a difference between the boundary condition 388 

in the FE model and the assumed fixed boundary condition in the theoretical method. The possible 389 

influence of such a difference will be discussed in Section 4.2.  390 

 391 
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The blast loading is simulated by applying a simplified triangular decay uniform pressure on the 392 

outer surface of glass panel. As is discussed in section 3, the explosion distance should not be too 393 

close, or the assumption of uniform blast pressure cannot be justified. In Ge’s test [12], the standoff 394 

distance is 5m, and the explosive was elevated at the same level as the panel centre (the panel size 395 

is 1100mm×1100mm). The resulting incident angle changes from a maximum value of 90° (at panel 396 

centre) to a minimum value of 83.72° (at panel corner) with a variation of 7%, and the corresponding 397 

propagation distance ranges from 5m to 5.05 with a variation of 1%, which are negligible. The 398 

variations of incident angle and propagation distance are also very small in Zhang’s test [27]. It is 399 

therefore believed that the assumption of uniform blast pressure is justified in their tests. 400 

 401 

The material properties employed in the FE analysis are listed in Table 3. Glass is a kind of brittle 402 

material with high elastic modulus. Therefore, the material type “ELASTIC” is employed for glass 403 

[16, 29-32], and the corresponding Poisson’s ratio and mass density of the glass are taken as v = 0.22 404 

and ρ = 2560 kg/m3 respectively. Strength failure criterion is adopted to define the failure of glass. 405 

To simulate cracking, the erosion technique in LS-DYNA is employed in the FE analysis in 406 

conjunction with the strength criterion, which means the element will be deleted when its first 407 

principal stress exceeds the predefined failure stress. It should be noted that float glass and tempered 408 

glass were used respectively in the above two experiments. As is reported by Ge et al. [12], the failure 409 

strength for 8mm float glass is taken as 62.48 MPa based on flexure tests of the glass bar, and this 410 

value is adopted in the first numerical model. However, neither destructive tensile test nor bending 411 

test was conducted in Zhang’s test [27] to quantity the failure stress of glass. The failure strength is 412 

therefore taken as 84Mpa for 10mm tempered glass in accordance with Chinese design standard 413 

JGJ102 [22] in the other model. For consistency, the same value is adopted in the proposed analytical 414 

model to generate the asymptotes of P-I curves. As the analysis focuses on the dynamic behaviour 415 

of the glass panel, the possible failure of the steel frame and cushion are not taken into consideration. 416 
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It should be noted that, in spite of its effectiveness, the above modelling method with erosion may 417 

not precisely simulate the details of the fragment shapes of glass, but it can well predict the dynamic 418 

response and failure modes of the whole glass panel [8, 29-31]. Therefore the modelling technique is 419 

considered as appropriate concerning the global dynamic response and the failures, which form the 420 

basis of proposing the analytical model of the P-I curves.  421 

 422 

An 8-nodes element with one-point integration and hourglass control is adopted for all the materials 423 

in the FE model. The glass panel has been meshed into 3 layers along the thickness to simulate the 424 

bending effect, but neither the cushion nor the steel frame is further divided in thickness direction 425 

to save computing time. Based on a preliminary mesh convergence study, the element size of 5mm 426 

in both X and Y directions is determined. The results from the mesh convergence study indicate 427 

that further reduction of the mesh size would only introduce a negligible improvement of the 428 

numerical results but lead to a substantial increase in the computing time.  429 

 430 

4.2 Numerical results and determination of α and β 431 

 432 

The shape parameters (α and β) of the P-I curves are obtained based on the following process. Firstly, 433 

the post-crack behaviour of a glass panel is classified into 3 levels according to the damage 434 

characteristic and hazard level, as shown in Table 2. Then different combinations of pressure and 435 

impulse are applied in the numerical model to simulate the response of glass panel subjected to 436 

different blast loading. Thereafter, the behaviour of the glass panel corresponding to different 437 

combinations of pressure and impulse, such as damage state of glass panel and ejection speed of 438 

fragment, are extracted through numerical post-processing, and the boundaries between the 439 

predefined damage levels are identified. Based on these results, α and β in Equation 1 can be 440 

obtained using curve fitting method. The fitted curves are shown with solid lines in Figure 13. It 441 
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should be noted that k
crp  and k

cri  are calculated using the proposed analytical model, and the material 442 

parameters for glass are the same as those used in the numerical model. The calculated k
crp  and k

cri , 443 

together with the obtained shape parameters (α and β) are summarised in Table 4,  444 

 445 

As can be seen in Table 4, α and β is around 2.5 and 1.5, respectively, and the variation of both 446 

parameters are within 5%. It is therefore believed that α and β are relatively insensitive to the change 447 

of damage level as well as panel size, thus in this study α and β are considered as constants by taking 448 

the average value of α and β in the above cases respectively, i.e. α = 2.48 and β = 1.48. Therefore 449 

Equation 1 can then be expressed as 450 

 451 

1.48( )( ) 2.48( )
2 2

k k
k k cr cr
cr cr

p ip p i i− − = +  (42) 

 452 

Then the complete P-I curves of different damage levels for the glass panel can be generated 453 

according to Equation 42. As shown in Figure 13, P-I curves generated using a constant α and β 454 

(represented by dotted line) also show good agreement with numerical results, which demonstrates 455 

the effectiveness of adopting constant shape parameters for the P-I curves. 456 

 457 

5. VERIFICATION OF THEORETICAL MODEL 458 

 459 

5.1 Comparison of the Analytical Prediction and Test Result 460 

 461 

For verification, the generated P-I curves are compared with experimental observations reported by 462 

Ge et al. [12] and Zhang et al. [27] (Figure 14). The test scenarios and corresponding ejection velocity 463 

of glass fragments are listed in Table 5.  464 

 465 
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As can be seen in Figure 14, the test results are basically located in the corresponding zones divided 466 

by theoretical P-I curves of different damage levels for both cases. In one of Ge’s tests [12], a ejection 467 

velocity of 10.85m/s is measured when the glass panel is subjected to 1.6kg TNT charge exploded 468 

at a standoff distance of 5m. The tested peak overpressure and impulse are 139.76kPa and 469 

174.92kPa·ms respectively. As is shown in Figure 14a, the corresponding coordinate point is very 470 

close to the generated P-I curve for a ejection velocity equals to 10m/s, which shows good accuracy. 471 

Further comparison is made for a different size of glazing according to ref. [27]. It should be noted 472 

that two panels were tested for one blast in Zhang’s test, and totally 6 available testing results were 473 

obtained from 4 loading cases. As can be observed in Figure 14b, one of the loading conditions 474 

(p=130.12kPa and i=377.73kPa·ms) is situated very close to the P-I curve corresponding to ejection 475 

velocity=10m/s, and the measured velocity is 11.6m/s and 13.7m/s for two specimens respectively. 476 

Comparison indicates that the predicted ejection velocity of glass fragment is a little underestimated. 477 

This difference can be partly attributed to the material properties of glass may be different from the 478 

tempered glass used in the tests. Meantime, as field test is strongly affected by on-site conditions, 479 

the obtained experimental data exhibits some variation. For example, in another testing case, a 480 

higher ejection velocity (v=16.4m/s) is measured when the panel is subjected to a smaller blast 481 

loading (p=84.69kPa and i=296.78kPa·ms), which may result in the derivation between numerical 482 

prediction and test results. In general, the P-I curves generated in current study fit well with test 483 

results. 484 

 485 

The agreement between FE result and experimental result in dynamic region indicates that the FE 486 

model can well predict the dynamic response of glass panels subjected to blast loading. Besides, 487 

the correctness of the shape parameters is well justified. However, due to the limitation of 488 

experiment data, only the dynamic region of P-I curve has been verified by experimental data. A 489 

validation against further numerical simulation is carried out for both impulse region and quasi-490 



24 
 

static region in the following section. 491 

 492 

5.2 Comparison of the Analytical Prediction and Numerical Result 493 

 494 

In order to validate the theoretical results of the impulse asymptotes and overpressure asymptotes 495 

of P-I curve of different damage levels, additional FE analysis is conducted in both the impulse and 496 

quasi-static regions, using the same FE model as introduced in section 4.1. A series of numerical 497 

tests are carried out with different blast loadings, and the corresponding combinations of 498 

overpressure and impulse are set around the asymptotes calculated from the theoretical method. The 499 

comparisons are shown in Figure 15 and Table 6. 500 

 501 

As can be seen, the results from the numerical simulation and theoretical method are generally in 502 

good agreement. The data points situated in the impulse region and in the quasi-static region for 503 

different damage levels match well with the respective impulse and overpressure asymptotes 504 

predicted by theoretical method. The discrepancies of the results are within about 15%, except for 505 

the impulse asymptote of damage level I I
cri . For the 1100mm×1100mm×8mm panel, the obtained 506 

I
cri  is 43kPa·ms in numerical simulation, while that is 36.05kPa·ms by theoretical method with a 507 

maximum discrepancy of -16.17%. For the panel with dimension of 1500mm×1200mm×10mm, the 508 

discrepancy is -16.26%. The discrepancy may be partly attributed to the idealised fixed boundary 509 

conditions in the analytical model, but more attributed to the inconsistent movement of glass panel 510 

during dynamic response. In order to improve the accuracy of the calculated I
cri , an adjust 511 

coefficient is proposed later to minimise errors due to the inconsistent movement, which will be 512 

further discussed in the section 6.1. 513 

 514 

On the whole, the proposed simplified analytical model provides satisfactory prediction of the 515 
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impulse asymptote and overpressure asymptote of different damage levels, and the constant shape 516 

parameters α and β obtained from numerical analysis also show good agreement with experimental 517 

results.   518 

 519 

6.  DISCUSSIONS 520 

 521 

6.1 Influence of Inconsistent Movement 522 

 523 

As is discussed in section 5.2, the I
cri  calculated by the theoretical model shows considerable error 524 

with the numerical results for damage level I. The main reason should be attributed to the 525 

inconsistent movement of the glass panel during the dynamic response. The inconsistent movement 526 

refers to the situation where the movement of the glass panel at different locations is not precisely 527 

synchronized to follow a given mode of deflection, as can be expected in an actual situation. For 528 

example, when the velocity at the panel centre becomes zero at a peak response, the velocity at the 529 

panel corner may be non-zero, thus resulting in a certain amount of kinetic energy. The inconsistent 530 

movement cannot be included if only one deflection mode is considered in calculation, as in that 531 

case the motion of whole panel is dominated by panel centre, and the velocity of each point on the 532 

panel can be 0m/s simultaneously. However, high modes of motion can be excited when the glass 533 

panel is subjected to blast loading, and the existence of inconsistent movement will result in 534 

derivation.  535 

 536 

Figure 16 shows the energy time history for the 1100mm×1100mm×8mm panel under impulsive 537 

loading, and the corresponding overpressure and impulse are 2000kPa and 60kPa·ms respectively 538 

corresponding to damage level I, the onset of glass crack. As can be seen, the kinetic energy Ek 539 

increases rapidly due to the initial loading and then gradually transform into internal strain energy. 540 
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At t=3.4ms, the kinetic energy decreases to a minimum value of 3.44J while the internal energy 541 

rises to a peak value of 17.79J. At the same time, the panel reaches its maximum deflection and 542 

glass cracks. It shows that at the failure moment, the initial kinetic energy Ek0 cannot completely 543 

transform into strain energy Ui, and a certain amount of kinetic energy resulting from the 544 

inconsistent movement remains. The existence of Ekr will lead to an increase of the imparted energy 545 

to cause glass fracture. In other words, the bearing capacity in theoretical model tends to be 546 

underestimated as Ekr is ignored for damage level I, resulting in a conservative estimation. 547 

 548 

It can also be noted that the influence of inconsistent movement would cause relatively larger error 549 

for the impulse asymptote of damage level I (glass crack limit) than that of damage level II (eject 550 

with certain velocity). For the later damage levels, the proportion of the kinetic energy related to 551 

inconsistent movement of panel becomes negligible in comparison with the totla kinetic energy 552 

related to the flying of glass fragments. That also explains why the discrepancy between theoretical 553 

results and numerical results decreases with the increase of ejection velocity (Table 6). In order to 554 

reduce the error for theoretical result of the impulse asymptote of damage level I, an adjust 555 

coefficient ξ is proposed.  556 

1 1
c cri iξ= ×  (43) 

 557 

Based on the above discussion, the I
cri  is re-given by Equation 44 to take the influence of residual 558 

kinetic energy into consideration.  559 

1 2 ( )I
cr e i kri M U E

ab
= +  (44) 

where iU  and krE  are the internal energy and the residual kinetic energy of glass panel at failure 560 

moment respectively. 561 

 562 
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Through the comparison between Equation 17 and 44, the adjust coefficient ξ can be written as 563 

i kr

i

U E
U

ξ +
=  (45) 

 564 

Here, another index λ = kr

i kr

E
U E+

 is introduced to represent the ratio of residual kinetic energy to 565 

total energy at failure moment, which can reflect the influence of inconsistent movement of glass 566 

panel for damage level I. According to Equation 45, the relationship between ξ and λ  can then be 567 

obtained as 568 

1
1

ξ
λ

=
−  (46) 

 569 

To determine the value of λ, a numerical parametric analysis in terms of panel size and glass 570 

thickness is conducted, and the corresponding parameters are shown in Table 7. The numerical 571 

model is the same as introduced in section 4.1 and the failure stress of different glass panels are 572 

uniformly taken as 60MPa. The blast loading applied in each case corresponds to the glass crack 573 

threshold and is pre-determined numerically. The values of internal energy, kinetic energy and total 574 

energy at glass failure moment are extracted for each case, and the corresponding λ can be obtained. 575 

It is found that the ratio λ is linearly correlated to the first vibration period of glass panel Ts, as 576 

shown in Figure 17. Thus the relationship between λ and Ts is given by 577 

0.0025 0.18sTλ = +  (47) 

 578 

It should be pointed out that the modification coefficient ξ is suitable for glass panel with the natural 579 

period within the range of 5ms to 45ms, which basically covers the commonly used glass windows. 580 

The main function of ξ is to modify the impulse asymptote of damage level I to consider the 581 

inconsistent movement. As listed in Table 8, after adjustment for theoretical results, the 582 
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corresponding errors reduce from -16.17% to -5.26% and from -16.26% to -4.53% respectively, 583 

indicating the accuracy of theoretical results is improved.   584 

 585 

6.2 Influence of the Shearing Region Width Ds 586 

 587 

It is worth noting that the assumed shearing region width Ds has a significant influence on the value 588 

of impulse asymptote of damage level II. The reason is that for punching failure mode, the internal 589 

strain energy mainly stores in the shearing region near boundaries, thus the width of the shearing 590 

region can directly affect the amount of stored strain energy in the glass panel before fracture and 591 

then the corresponding theoretical result of . Detailed numerical simulation for the panel of 592 

1100mm×1100mm×8mm shows that with the increase of ejection velocity the width of the shearing 593 

region decreases (Figure 18), and punching failure mode becomes more obvious. When the ejection 594 

velocity is relatively small, the failure mode is a combination of bending failure and punching 595 

failure, which is different from the assumed punching failure mode and may consequently cause a 596 

larger error in the results using the proposed analytical method. 597 

 598 

It may be argued that a clear punching failure occurs only when the kinetic energy Ekr is large 599 

enough, wherein the validity of the theoretical method can be guaranteed. As can be seen in Figure 600 

19, with the increase of imparted impulse, the proportion of the residual kinetic energy tends to 601 

increase and the punching failure mode of the panel becomes increasingly dominant, for which a 602 

critical residual kinetic energy ratio λc=0.8 is suggested as the low limit to ensure the occurrence of 603 

punching failure. Then the corresponding critical velocity vrc is given by Equation 48. 604 

2
(1 )

i
rc

e c

Ev
M λ

=
−

 (48) 

 605 

k
cri
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Accordingly, the critical ejection velocity for the 1100mm×1100mm×8mm glass panel can be 606 

obtained, which is about 10m/s. Here a critical damage level is defined as the glass fragments eject 607 

at the critical velocity (vrc), and different shearing region widths are adopted in the theoretical 608 

calculation. The obtained results are summarized in Table 9. As can be observed, the theoretical 609 

impulse asymptote of the critical damage level is in good agreement with the FEA result 610 

(icr=140kPa·ms) when the width of the shearing region equals 5h, where h is the thickness of glass 611 

panel. Therefore, 5h is a recommended value for the shearing region width for critical damage level 612 

under impulsive loading (Dsc) in the present study. Further study is needed to provide a more 613 

rigorous prediction of Dsc.  614 

 615 

 As is discussed above, punching failure mode becomes increasingly dominant when ejection 616 

velocity increases, resulting in the decrease of the shearing region width. In order to determine the 617 

width of the shearing region Ds for an arbitrary velocity vr that exceeds the critical velocity vrc, an 618 

empirical formula is developed based on numerical parametric study, as shown in Equation 49. The 619 

width of the shear region shows an exponential decay with the increase of the ejection velocity, and 620 

it eventually approaches a simple impulse-momentum transfer (Ds=0).  621 

( ) ,r rcv v
s sc r rcD D e v v− −= ≥  (49) 

 622 

7. CONCLUSIONS 623 

 624 

In this paper, a theoretical method is proposed to build the P-I curves for framed monolithic glass 625 

panel for different damage levels, in particular a) the onset of glass crack and b) the fragments eject 626 

with a specified velocity. Based on the observed failure modes from finite element simulations, the 627 

pressure asymptote and the impulse asymptote are derived analytically, whereas the dynamic 628 

segment of the curve is established using an empirical approach based on numerical simulation 629 
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results.  630 

 631 

The method is verified with published experiment results and against additional numerical tests. 632 

The effects of inconsistent movement at the bending failure limit and the possible variation of the 633 

shearing region size are discussed. Based on numerical parametric analyses, empirical formulae for 634 

the modification coefficient ξ  and shearing region width Ds are proposed. It is shown that the 635 

modified theoretical model improves the prediction results.  636 

 637 

The proposed theoretical model can be used to establish the P–I diagrams for framed monolithic 638 

glass windows with variable dimension, which provides a practical approach for estimation of 639 

splashing distance and thereafter hazard assessment for an existing design, as well as for a new blast 640 

resistant design of glazing for a required hazard level.  641 
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Table 1: Glass-Related Injuries by Buildings in Proximity to Ground Zero [1] 

Building 

number 
Building name 

Total bomb-related 

injuries 

Glass-related 

injuries 

1 Alfred P. Murrah Federal Building N/A N/A 

2 Durham Post Office 7 3 

3 Water Resources Board 39 23 

4 Athenian Restaurant 4 2 

5 YMCA 81 33 

… … … … 

 
 
 

Table 2: Classification of damage levels 

Damage level Features of performance under blast loading 

I Glass crack limit 

II The ejection velocity vr = 10m/s 

III The ejection velocity vr = 20m/s 

 
 
 
 

Table 3: Material properties adopted in FEA 

Material Material model Material No. 
in Ls-dyna 

Density 
(Kg/m3) 

Elasticity 
module (N/m2) 

Poisson’s 
ratio 

Failure criterion 

Float glass Elastic MAT_001 2.56e3 7.2e10 0.22 
σ1=62.48MPa or 

84MPa * 

Steel Plastic_Kinematic MAT_003 7.86e3 2.1e11 0.288 —— 

Silicon 
cushion 

Elastic MAT_001 1e3 1e8 0.45 —— 

* The failure criterions are adopted for two different cases respectively, 62.48MPa for Ge’s test [12] and 84MPa for 
simulating Zhang’s test [27]. 
 
 
 



 
 

Table 4: Shape parameters of P-I curve  

Dimension 

(mm×mm) 

Glass 

thickness 

(mm) 

Damage level 

Theoretical result Shape parameters 

Pcr icr α β 

1100×1100 8 

I (Glass crack) 12.60  36.05  2.41 1.53 

II (vr = 10m/s) 69.98  149.16  2.49 1.43 

III (vr = 20m/s) 242.04  199.90  2.53 1.50 

1500×1200 10 

I (Glass crack) 23.79 52.34 2.55  1.51  

II (vr = 10m/s) 103.8 194.1 2.42  1.45  

III (vr = 20m/s) 323.83 255.64 2.50  1.47  

Average value 2.48 1.48 

 

Table 5: Experimental results by Ge et al. [12] and Zhang et al. [27] 

Dimension 

(mm×mm) 

Thickness 

(mm) 

TNT 
Charge 

(kg) 

Standoff 
distance 

(m)  

Impulse 

(kPa·ms) 

Overpressure 

(kPa) 

Measured ejection velocity 
(m/s) 

1100×1100 [12] 8 

0.6 5 87.77 72.88 3.49 

0.8 5 107.35 87.08 3.83 

1.2 5 142.79 113.9 6.62 

1.6 5 174.92 139.76 10.85 

1500×1200 [27] 10 

5 6 363.86 219.99 16.4 

5 8 377.73 130.12 11.6 

5 8 377.73 130.12 13.7 

10 12 296.78 84.69 16.4 

10 9 459.35 141.47 25.4 

10 9 459.35 141.47 18.5 

 
 
 



Table 6: Comparison between the asymptotes obtained from theoretical results and FEA results 

Dimension 

(mm×mm) 

Glass thickness 

(mm) 
Damage level 

FEA result Theoretical result 

pcr 

(kPa) 

icr 

(kPa·ms) 

pcr 

(kPa) 
error 

icr 

(kPa·ms) 
error 

1100×1100 8 

I (Glass crack) 13 43 12.60 -3.08% 36.05 -16.17% 

II (vr = 10m/s) 80 140 69.98 -12.53% 149.16 6.54% 

III (vr = 20m/s) 250 220 242.04 -3.18% 199.90 -9.13% 

1500×1200 10 

I (Glass crack) 22.5 62.5 23.79 5.73% 52.34 -16.26% 

II (vr = 10m/s) 110 210 103.8 -5.64% 194.10 -7.57% 

III (vr = 20m/s) 310 270 323.83 4.46% 255.64 -5.32% 

Note：The corresponding errors between simplified theoretical model and FEA result equal to Theoretical FEA

FEA

PP
P

−
 or 

Theoretical FEA

FEA

ii
i

− . 

 
Table 7: Summary of numerical parametric analysis results 

Case No. 
a 

(m) 
b 

(m) 
thickness 

(mm) 
Ts 

(ms) 
iFEA 

(kPa·ms) 

Kinetic 
Energy 

(J) 

Internal 
Energy 

(J) 

Total 
Energy 

(J) 
λ 

test 1 1.75 1.75 6 42.71 35  5.35 15.40 20.15 0.27 

test 2 1.50 1.50 6 30.67 38  4.75 14.11 18.33 0.26 

test 3 1.00 1.00 6 14.23 40  1.60 6.51 7.94 0.20 

test 4 0.50 0.50 6 3.85 40  0.72 3.23 3.87 0.19 

test 5 1.88 1.20 6 26.58 29  3.61 11.15 14.35 0.25 

test 6 2.25 1.00 6 20.31 23  2.74 10.06 12.81 0.21 

test 7 2.50 0.90 6 16.89 23  2.24 9.41 11.65 0.19 

test 8 1.50 1.50 8 24.74 47  4.24 13.58 17.82 0.24 

test 9 1.50 1.50 10 20.77 53  5.79 18.24 24.03 0.24 

test 10 1.50 1.50 12 17.94 68  6.93 26.44 33.37 0.21 

 
 
 
 



 

Table 8: Theoretical result after modification for inconsistent movement 

Dimension 

(mm×mm) 

Glass thickness 

(mm) 

Ts 
(ms) 

iFEA 
(kPa·ms) 

Theoretical icr for damage level I 
(kPa·ms) Adjust coefficient ξ 

Before modification After modification 
1100×1100 8 16.26 43 36.05 (-16.17%) 40.73 (-5.26%) 1.13 
1500×1200 10 18.65 62.5 52.34 (-16.26%) 59.66 (-4.53%) 1.14 
Note：Values in parentheses are corresponding error between simplified theoretical model and FEA result, which equals 

to Theoretical FEA

FEA

ii
i

− . 

 

 

Table 9: Theoretical results of impulse asymptote for different Ds for critical damage level 

Ds /h 2 3 4 5 6 

icr (vr =10m/s) 94.84 106.53 124.85   149.16 178.42 
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Figure 1: Performance classification for window system response in GSA/ISC[2]. 

 
 
 
 
 

 
Figure 2. Simplified analytical model 
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Figure 3. Simplified blast wave 

 
 
 
 

 

Figure 4. ISO damage curves under different damage levels 
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Figure 5. Failure modes of glass panels subjected to different impulsive loading 

 
 
 
 
 
 
 
 

 

Figure 6. Deflection profiles at the window centre line under impulsive loading (Damage level I), based on FE simulation 
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Figure 7. Comparison of deflection profiles between FEA result and theoretical hypothesis for impulsive region (Damage 
level I) 

 
 
 
 
 
 

  

  

a. z-displacement profile b. x-stress profile 

Figure 8. Displacement and stress distribution of glass panel under impulsive loading (Damage level II), based on FE 
simulation 
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Figure 9. Deflection profile near the window border under impulsive loading (Damage level II), based on FE simulation 

 

 
 

 

Figure 10. Simplified beam model; beam length = Ds 
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Figure 11. A typical fragment with sides of △a in a glass ply 

 

 

Figure 12. FE model 
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b. 1500mm×1200mm×10mm glass panel. 

Figure 13. Comparison between the generated P-I curves and FEA results in dynamic region 
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b. 1500mm×1200mm×10mm glass panel. 

Figure 14. Comparison between the generated P-I curves and experimental results 
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a. 1100mm×1100mm×8mm glass panel. 
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b. 1500mm×1200mm×10mm glass panel. 

Figure 15. Comparison between the generated P-I curves and FEA results in impulsive and quasi-static regions 

 

 

Figure 16. Time history of kinetic energy and internal energy for damage level I in impulsive asymptote, based on FE 
analysis 
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Figure 17. Incomplete conversion coefficient of kinetic energy  
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Figure 18. Deflection profiles at failure time for different ejection velocity under impulsive loading, based on FE 

analysis 
 
 
 

 
Figure 19. Relationship between energy ratio and imparted impulse 
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