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FDTD Methods for 3-D Room Acoustics Simulation
with High-order Accuracy In Space and Time

Brian Hamilton, Member, IEEE and Stefan Bilbao, Senior Member, IEEE

Abstract—Time-domain finite difference (FDTD) methods are
popular tools for 3-D room acoustics modeling, but numerical
dispersion is an inherent problem that can place limitations on
the usable bandwidth of a given scheme. Compact explicit 27-
point schemes and “large-star” schemes with high-order spatial
differences offer improvements to the simplest scheme, but are
ultimately limited by their second-order accuracy in time. In
this paper, we use modified equation methods to derive FDTD
schemes with high orders of accuracy in both space and time,
resulting in significant improvements in numerical dispersion
as compared to the aforementioned schemes. In comparison to
such schemes, the high-order accurate schemes presented in this
paper use significantly less memory and fewer operations when
low error tolerances in numerical phase velocities are critical,
leading to higher usable bandwidths for auralization purposes.
Simulation results are also presented, demonstrating improved
approximations to modal frequencies of a shoe-box room and
free-space propagation of a bandlimited pulse.

Index Terms—Room acoustics, FDTD, finite difference meth-
ods, artificial reverberation.

I. INTRODUCTION

Wave-based methods such as time-domain finite difference
(FDTD) methods [1]-[3] are becoming essential tools for room
acoustics simulation, and have applications to artificial rever-
beration [4], sound source localization [5]-[7] and boundary
impedance estimation [7], [8], as well as potential for use in
virtual reality applications [9]. As opposed to conventional geo-
metric methods like image source and ray-tracing methods (see,
e.g., [10]), wave-based methods can capture all aspects of sound
propagation in rooms, including full wave diffraction. Although
wave-based methods come at a substantial computational cost
in comparison to geometric methods, audio-rate simulations
are becoming realizable through the use of modern graphics
processing units (GPU) devices [11]-[13]. Other wave-based
methods include boundary element [14] and finite element [15]
methods, although FDTD is often preferred due to its ease
of implementation and parallelization. Hybridizations of wave
and geometric methods have also been studied [16], [17].

An important problem in the study of FDTD methods
is the presence of numerical dispersion, as it places limits
on the usable bandwidth reproduced by a scheme due to
mistunings of modes and incorrect modal densities [3], and/or
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audible phase artifacts [18]. Mitigating such effects through grid
oversampling incurs significant additional computational costs
and therefore is not always practical for large-scale simulations.
To that end, there has been much work in the area of reducing
numerical dispersion in 3-D schemes—e.g., through the use of
closely-related digital waveguide mesh (DWM) topologies [19],
[20] and with 27-point compact explicit FDTD schemes [3].
Recently, two-step explicit “large-star” schemes employing
high-order spatial differencing [21], yet remaining second-order
accurate in time, have been proposed as viable alternatives to
second-order accurate 27-point compact explicit schemes [3].
Implicit schemes with fourth-order accuracy in both space
and time have also been considered [22], [23], but linear
system solutions required at each time-step may be prohibitively
expensive [23]. Two-step explicit FDTD schemes with high
orders of accuracy in both space and time have yet to be
considered in the context of 3-D room acoustics simulation.

The main contribution of this paper is to present a set of
two-step explicit schemes that display high orders of accuracy
in time and space for the 3-D wave equation, derived through
the use of modified equation methods. Numerical dispersion
analyses are carried out to demonstrate that these schemes
offer significant improvements in terms of computational costs
required to achieve low error thresholds in numerical phase
velocities over a given range of frequencies, as compared to the
aforementioned explicit schemes. Simulation results are also
presented in order to verify that these schemes perform better
than compact explicit and large-star schemes, and thus warrant
further investigation towards the ultimate goal of large-scale
3-D room acoustics simulations over non-trivial domains with
frequency-dependent impedance boundary terminations.

The organization of this paper is as follows. In Section I,
we review the basics of finite difference schemes for the
wave equation and 27-point compact explicit schemes [3].
In Section I, we review high-order-in-space schemes (as
considered in [21]) and provide additional insights into their
numerical dispersion and orders of accuracy. In Section IV, we
present our high-order accurate schemes derived using modified
equation methods. In Section V we compare the various
schemes in terms of numerical dispersion and computational
efficiency, and in Section VI we present simulation results.

Il. BACKGROUND
A. Model Equations
The starting model for 3-D room acoustics simulation is the
3-D wave equation, which can be expressed as:

@2 ¢ u=0:

@)
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Here, u = u(t;x) is a scalar field, which could represent
an acoustic velocity potential or sound pressure field [24],
t 0 is time in seconds, x = (x;y;z) 2 R® is a spatial
position in 3-D (coordinates x;y;z in m), and c is the speed
of sound in air (taken to be a constant; e.g., ¢ = 340m/s). The
notation @; denotes a partial derivative with respect to time,

=02+ @)% + @2 is the 3-D Laplacian, and @,, denotes a
partial derivative with respect to the spatial coordinate w, which
throughout the paper will represent any coordinate direction in
R3; i.e., w 2 fX;y; zg. Required initial conditions are u(0; x)
and @¢u(t; X)jt=o. It is worth recalling that solutions of the
wave equation are generally not known in analytic forms (apart
from some special cases), hence numerical methods like FDTD
must be employed.

In the frequency-domain, the wave equation is represented by
its dispersion relation, which can be derived by considering a
plane-wave tBaI solution of the form u = exp(j(It+ k x)),
where j = 1, ' 2 R is a temporal angular frequency
in rad/s and k = (kx; ky; kz) 2 R3 the wave vector (with
k = jkj the wavenumber in rad/m). The dispersion relation
and phase velocity for the wave equation are then found to be,

respectively:

1
o C @
which simply states that plane waves travel with the speed ¢
regardless of their frequency.

The wave equation can be augmented with viscothermal
and/or relaxation effects for a more complete description
of sound propagation in air, but such effects, which lead
to dissipation in high frequencies, can be neglected for the
purposes of this study; see, e.g., [25], [26]. Of course, for the
simulation of realistic room acoustics, the wave equation must
also be accompanied by suitable boundary conditions to model
reflection and absorption from wall materials. While a full
room acoustics problem (i.e., including impedance boundary
conditions over complex geometries, as in, e.g., [27]) is the
eventual goal, this study will only be concerned with improving
the approximation of sound propagation throughout the interior
of a room, which is the bulk of the computation in any FDTD
room acoustics simulation. However, as a first step towards the
full boundary problem, boundary conditions for a rigid cuboid
room will be implemented, and the topic of more complex
boundary truncation will be left as future work (discussed
further in Section VII). Sources and methods for spatialized

= ckj =) vy =

outputs will also be neglected in this work (see, e.g., [28]-[31]).

B. Shift and difference operators, and discrete Laplacians

In order to discretize the 3-D wave equation with Cartesian
grid-based FDTD schemes, let ul' u u(nT;X) represent
an approximation to u(t;x) attimet=nT,n22Z;n 0
and position x = IX, | = (Ix; ly;1;) 2 Z3, where X is the
Cartesian grid spacing and T is the time-step. Fs = 1=T is the
sample rate in Hz. Next, we introduce shift operators acting
on uy:

n 1.

n._— n.— n .
ec Ul i=ul s oew Ul =l

@)

where &,, are the standard unit vectors in R3. The notation
uy' o, is chosen for convenience, but for implementation

el
L gl

@K=6

(b) K =18

(©) K =26

Fig. 1: Various (K + 1)-point stencils on the 3-D Cartesian grid used in by
.26 (defined by (8)), with K as indicated.

purposes it helps to know that:

n — N . n — N . n — N
Ul e = Ui ntyit Ui ey = Uiy 11,0 U e, = Uiy,

I, 1-
(4)
We can then define temporal and spatial difference operators:
— 1 — ”2 2y .
t = ﬁ(et+ 2+ ¢ ) = @t + O(T ), (58)
1
ww = ﬁ(e"‘” 2+ey )= @3\/ +0(X?): (5b)

Note that the above operators are second-order accurate in time
and space, respectively. Also, it will be convenient throughout
this paper to use the following shorthand notation:

3\, = X2 ww - (6)
With the above, we can define a general discrete Laplacian as:
h i
1
=%z it ot I+ (59D )
where  represents any trinomial in %; Z; 2 such that =

O(X?M)ywith M 2, 0or = 0. Given these constraints, any
such discrete Laplacian has at least second-order accuracy in
space; i.e., we can write =+ O(X?).

We say that such a discrete Laplacian uses a (K + 1)-point
stencil,® where K is the number of neighboring points accessed
on the Cartesian grid. For example, a well-known family of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2017.2744799, IEEE/ACM
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schemes [3], [32] uses the following special case with K 26:
i

=g pririva Piviiviioaniily
®)

where a;b 2 R are free parameters. Example stencil configu-
rations for ., are shown in Fig. 1.

C. Two-step explicit Cartesian schemes

The schemes to be considered throughout this paper, and
indeed many of the schemes that have been analyzed in previous
work (e.g., [3], [32], [33]), can be written in the form of a
general two-step explicit scheme:

w ¢ ul=0;

©)

where the particular form of will be specified for each
scheme under consideration. For example, the choice of =
-26 leads to the so-called “compact explicit” schemes [3].
Any scheme of the above form can be rewritten as an explicit
two-step recursion:

n 1.

n+1 _
= ul ;

212 n

u @+c T Hy (120)
LIn this work we use the term “stencil” to describe the set of points
that contribute in a discrete Laplacian . This usage differs from a recent

article [21], where “stencil” is employed to describe what we call a “scheme”.
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where only two states need to be stored in memory since up'™**
can overwrite uy' Y in place. Each pointwise update in space
may be carried out in parallel, requiring K + 1 floating-point
instructions when fused-multiply add operations are available,
such as on modern GPUs [34]. As we are considering three
spatial dimensions, the memory required to simulate a given
volume scales with X 3,

The simplest scheme for the 3-D wave equation [35], also
known as standard rectilinear [2], [36], [37] and standard
leapfrog (SLF) [3] has the form (9) with =  .28Ja=b=0
(with a seven-point stencil illustrated by Fig. 1(a)) and the
following two-step update:

n+1 _ 2 n n n n n n
U™ = “(Uire, +Uike, FUlke, TUI o FU o U 6,)
2 n 1.
+(2 6 ‘Hu u' T; (11)
where :=c¢T=X >0 is known as the Courant number.

Two other important special cases are the “ISO” (short for
“isotropic”) scheme = .»gja=1=6:b=0 [3], Whose 19-point
stencil is shown in Fig. 1(b); and the so-called “interpolated
wideband” (IWB) scheme with = .26Ja=1=4:p=1=16 [3]s
whose 27-point stencil is shown in Fig. 1(c).

D. Numerical stability

Numerical stability is critical to the practical use of finite
difference schemes. In the free-space case, conditions for
numerical stability can be determined using von Neumann
analysis [38]. For this we consider a discrete plane-wave ansatz
of the form u = exp(j(n!+ +1 kx)), where 1+ :=1T 2
[ ; ]isanormalized frequency and kx :=kX 2[ ; 3
is a normalized wave vector (kx := jkxj is the normalized
wavenumber); for such solutions, the operators ¢ and \ww
behave as follows:

%&u,” ; %Qwu[‘ ;
where &; := sin?(17=2), and & := sin® (kx &w=2). In other
words, $; and 8, are the Fourier symbols of % t and

XTZ ww, respectively. A frequency-domain representation of
the general scheme (9) is then:

ttUF = WWUF = (12)

&= °F; (13)

where F = F(kx) is the symbol of XTZ (eg, F =
8y + 8y + §, for the SLF scheme), and F may also contain
real-valued free parameters.

Provided that $; is non-negative and bounded by unity, plane-
waves will propagate in this scheme without loss and without
exponential growth (von Neumann stability [35], [39]). This
leads to the following conditions for numerical stability:

0 °F 1: (14)
These conditions hold for any scheme whose frequency-domain
form is (13) with F real-valued. If the term in (7) is
independent of the Courant number, then (14) simplifies to:

F 0; max -= MaxF: (15)
kx

(a) axial (b) diagonal

Fig. 2: Relative phase velocities for SLF, I1SO, and IWB schemes with =
max, for wavenumbers kX along (a): axial direction (kx & 0;ky =
z = 0) and (b): diagonal direction (kx = ky = kz).

For example, under the family of compact explicit schemes
of [3], [32] (i.e.,, with = .56), we have for the function F:

F=86+98 +8 4da(88 +8,8 +5:8;)+ 16b8:8,8; :

(16)
The above function is multilinear in §,, terms, so the extrema
are found at 8, 2 f0; g, meaning that the condition F 0
can be simplified to [3], [32]:

a 1=2; b (12a 3)=16; (17)
while 2F 1 can be rewritten as:
max = (Max[1; (2 4a);(3 12a+16b)])
- (18)
For the simplest scheme (a =b = 0),,max = 1=3; for the

ISO scheme (a = 1=6;b =0), max = 3=4; and for the IWB
scheme (a = 1=4;b = 1=16), max = 1. It is generally best to
choose as high as possible, as this minimizes the number
of time-steps to be computed for a given grid resolution, and

leads to optimal dispersion in many schemes (see, e.g., [3]).

E. Numerical dispersion and numerical phase velocities

The dispersion relation of the numerical scheme—an approx-
imation to that of the wave equation (in (2))—is essentially
Eq. (13), but we can rewrite it more precisely as:

P E 0

By symmetry, we will consider only '+ 0 and kx 2 [0; ]
for the remainder of this study. The dispersion relation is
generally non-linear and consequently, temporal frequencies
experience a warping effect, leading to a mistuning of modes
in an enclosed space.

A numerical phase velocity may also be defined as:

Ir(kx) .

jkxj
This describes the relative speed at which plane-wave com-
ponents travel in a given scheme, which is ideally unity. For
any consistent (and stable) FDTD scheme ¢, ¥ 1 as kx ¥ 0,
which, in turn, means that j1 9] tends to increase with the
wavenumber. For example, Fig. 2 shows the relative phase
velocity for SLF, 1SO, and IWB schemes, for kx 2 [0; ]
along axial and diagonal directions,? which tend to be the

I+ (kx) = 2arcsin (19)

Po(kx) = (20)

2\We should note that we only consider wavenumbers up to kxx = , because
this is the spatial bandlimit on the Cartesian grid for representing a signal
isotropically (i.e., independent of direction) [40], and because kx = is
associated to a transition frequency above which modal densities tend to be
incorrect in an enclosed domain [41].
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@M =2 )M =3 ©M=4

Fig. 3: Relative dispersion error as a function of wavenumber along worst-case
directions for SLF, 1SO, and IWB schemes.

extreme-case directions in Cartesian grid—based schemes [3].
We see that apart from diagonal and axial directions for SLF
and IWB schemes, respectively, deviations from unity can be
significant in upper portions of the simulated bandwidth—at
kx = phase velocity errors reach 33%, 23%, and 15%,
respectively for the SLF, 1SO, and IWB schemes.

F. Order of accuracy

The order of accuracy (OoA) is an important characteristic
of a scheme, and a central theme of this study. Formally, the
Oo0A of a fully-discrete numerical scheme is defined as the
minimum rate at which the numerical solution converges to
an exact solution under refinement of both T and X, usually
while keeping the grid ratio fixed to some value [38]. Provided
that the scheme is stable, the OoA of the scheme is revealed
by its truncation error by the Lax equivalence theorem [38].

For the two-step schemes considered in this study, we have
the following Taylor expansion:

w ¢ =0 & +TE; (21)

where the term denoted “T.E.” represents the truncation error
of the scheme. Then, for a scheme with 2Mth-order accuracy
(M 1), one can expect that:

TE = O(X*M) = o(T™M); (22)

where the latter “equality” above results from the fact that

is fixed and X = cT= . It is important to note that the
use of centered operators (e.g., ¢« and ww) tends to lead
to even-order accuracy; hence, in this paper M = 2 implies
fourth-order accuracy, and so on. Typically, for a scheme to be
called “high(er)-order accurate” it must have an OoA higher
than two (i.e., M > 1 for even-order accuracy).

It is also important to note that the OoA of a scheme is
not only determined by the individual operators in the scheme,
but also the balance of their respective temporal and spatial
errors, which may cancel, meaning that second-order operators
can possibly lead to high-order accuracy. The most notable
example of this is the digital waveguide algorithm [42], or
more generally, the simplest FDTD scheme in 1-D [43], which
is able to achieve infinite order accuracy by employing only
the second-order accurate finite difference operators ¢ and

xx (See, e.g., [44, Section 6.2.4]).

It can also be shown that the OoA of a scheme is reflected in
its relative dispersion error. Since the scheme is itself defined
by the equation (9), we can say that such a scheme with
2Mth-order accuracy would satisfy the equation;

02 ¢ =0oX*M): (23)

Fig. 4: (6M + 1)-point stencils on the 3-D Cartesian grid. The case M =1
is illustrated in Fig. 1(a).

In the case of plane-wave solutions, the above transforms to:

12 + c?jkj* = O(X*M); (24)
where T and k are still related through (19). Dividing through
by c?jkj?, the above can be rewritten as:

=1

2 O(xZM) :

(25)
Finally, we take the goluare root of both sides and in the limit
of small X wehave 1 O(X2M) 1 O(X2M), allowing

us to write:

1 9 =0(X*M): (26)
Thus, if we plot log(j1  ¢,j) with respect to log(kx) in a
2Mth-order accurate scheme, we should see a negative slope
of 2M as kx approaches zero—at least along any non-exact
direction. As an example, we plot this in Fig. 3 for the SLF,
I1SO, and IWB schemes. Indeed, we observe a negative slope
of two along respective worst-case directions, reflecting the
fact that these schemes are second-order accurate (i.e., they
have an OoA of two (M = 1)).

I1l. SCHEMES WITH HIGH-ORDER SPATIAL

DIFFERENCING

Recently, a family of two-step explicit “large-star” schemes
were proposed as alternatives to the SLF and IWB schemes [21].
Such schemes—which have a long history in the field of
geophysics [45]-[47]—employ (6M + 1)-point stencils that
reach out to M neighboring points along each coordinate
direction, as illustrated in Fig. 4, in order to achieve a high
order of accuracy in space (combined with a second-order
accuracy in time).

While such schemes are sometimes referred to as “higher-
order accurate schemes” (e.g., in [21])—in reference to the
underlying high-order approximation to the Laplacian—one
should not conflate the concept of spatial accuracy with the
global accuracy of the scheme (i.e., with respect to the wave
equation itself). The purpose of this section is to elaborate on
this point, through an analysis of the numerical dispersion of
these schemes, using the concepts introduced in Section II.

The key component of the large-star schemes is a family
of high-order accurate, centered second-order finite difference
operators, which we can write as:

M) .— aM;m m
ww T X 2 Ew+
m= M

=05 +o0x*M); (1)
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A

(a) axial (b) diagonal

Fig. 5: Relative phase velocities for 2Mth-order-in-space (6M + 1)-point
schemes with M as indicated and = mpax:m, for wavenumbers kx
along (a) axial and (b) diagonal directions.

where e, = (ew+)™ and e, := e , and where the

coefficients am.m are given by:

2. )™ H(my?

R fd . — 1 ----- M 2
aMim = 2 m)I(M + m)! M (28)
b ¢
ampo = 2 aM;m; am; m = am;m: (28D)
m=1

These coefficients were individually derived in [21] up to
M = 8, but they are completely determined by the general
formula above (derived in [46]). It follows that we can construct
a discrete Laplacian with 2Mth-order accuracy as:
M= v )(,9") + M= +0oXM): (29

The two-step explicit schemes analyzed in [21] can then be
expressed by (9) or (10) with = ™ Note that the case
of M =1 gives the SLF scheme (i.e., @ = -26Ja=b=0)-

It is also worth noting that an equivalent representation of
M) 148] is:

o) = > bm w20 )™ T(m 1HY°,
ww w ’
X2 2m)!
(30)
where 2M := (2)™ and m 1. Although not featured

in [21], the above representation is particularly useful for the
analysis of numerical stability.

A. Numerical stability analysis

Towards a numerical stability condition, as a first attempt
we may insert the plane-wave ansatz into the scheme, from
which we obtain a relation of the form (13) with:

b ¢
aM;m (éx;m + 9y;m + 9z;m) ;
m=1

F=Fuw = (31)

where §:m :=sin? (k &,mX=2) (and 8.1 = $w), and Fp
can be seen as the Fourier transform of XTZ ™) However, the
conditions (14) are not easily verified in general (for M > 1)
from the above representation, since am.m alternates in sign
while each term $.m is positive. In particular, we cannot
immediately ascertain the non-negativity of Fy, for M > 1,
nor can we easily determine its maximal values. On the other

Fig. 6: Relative dispersion error as a function of wavenumber along axial
directions for various 2M th-order-in-space schemes with = a;m. In this
logarithmic plot, a negative slope of two is observed as kx approaches zero
for all M 1, reflecting a second-order accuracy with respect to the wave
equation.

hand, using (30), we also have that [46]:

. 22M(m 1H?
&+ &) = ) :
(32)

where &' = (8y)™. From the above we can easily see
that Fm 0. Furthermore, it is clear that Fy, increases
monotonically for kx 2 [0; ] along axial directions, meaning
that extrema appear at kK = 0 and kyx = ky = k, = =X.
After [46], a general stability condition (not reported in [21])

m=1

is then found to be max:m, Where:
1o b ¢ <
max;M = (3 M) - M = m = aM:m
m=1 1 m M
m odd
(33)
For example, qax2 = 0:5 and a3 =  15=68  0:4609.

Also, it has been shown that limpy » 1 Ml = 2= [46]—a
limiting value that was conjectured to be equal to 1=2 in [21,
Section III.A]—meart'mg that these stability limits converge to
the value a2 = 2=(3 ).

B. On high-order accuracy

At this point we can discuss and analyze the OoA of the
large-star schemes. For this family of schemes, we have the
Taylor expansion:

2 M=g2 & +7TE; (34)
where T.E., the truncation error, is:
TE. = O(T?) +0O(X*M): (35)

For fixed (e.g.,,t0 = maxm as in [21]) and c fixed, we
can make the substitution T = X =c, which implies that:

TE. = O(T?) + O(X®M) = 0O(X?) = 0O(T?):  (36)

This simply shows that the second-order temporal error
dominates in the limit of small grid spacings (or high sample
rates for  fixed), and consequently, these schemes have a
second-order rate of convergence with respect to X or T
(keeping ;c fixed). In other words, we find that these schemes
are only second-order accurate for the wave equation, for all
M 1, despite the higher-order accurate approximation to the
underlying Laplacian operator. As such, they cannot be said
to be “high-order accurate” for the wave equation, in the strict
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sense at least. Indeed, analyzing the error in the relative phase
velocity in Fig. 6, we see that these schemes converge towards
the ideal dispersion relation with O(X?) for all M 1.

IV. HIGH-ORDER ACCURATE SCHEMES

Having seen that the large-star schemes are in fact only
second-order accurate for the wave equation, it remains to
derive and explore two-step schemes with high-order accuracy—
i.e., with orders of accuracy greater than two. Towards that goal,
in this section we investigate the use of stencils that reach out
to axial and non-axial neighboring points, with stencil weights
carefully set according to linear constraints obtained through
operator expansions and modified equation methods [47], [49],
[50], following previous work for 2-D schemes from the current
authors [51], [52].

The family of schemes under consideration in this section
can be written in the general form (9), using the following
(K + 1)-point discrete Laplacian with K 62:

No XN
NN

@37)

Here, a;;:::;ag are real-valued free parameters and a; 1
is required for consistency. Expanding products of difference
operators and collecting terms, the two-step update equation
for this family of schemes can be compactly expressed by:

XKD 3 Uy
u:H_l = ur 1+ dqquqz uﬂ(+qx;|y+qy;lz+QZ ’
4x=0 gqy=0 qr=0
(38)
where
digo= ? 1; dito= 2 2=4; dpoo = 2 374;
disgn = 2 4=4; dao= ? 5220; dzo= ? 6=9;
dooo =2 (6d100+12d110+60200+8d111+240210+6d300) ;
(39)

and ququZ = dQXCIZQy = deQxQz = dququ = dQZQXQy =

dg,qyqx- The parameters 1;:::; ¢ appearing above can be
related to the parameters az;:::;ag appearing in (37) through
the following linear system:
1 10 1

1 1 4 4 4 28 15 az

2 0 4 0 8 32 0 as

s3<_BO 0 4 O 16 24 aze= .

LB 0 0 4 o 0 EBag’ @O

5 0 0 0 0 20 0 as

6 0 0 0 O 0 9 as

This parametrized discrete Laplacian can also be seen as
the linear combination of six distinct discrete Laplacians,
each second-order accurate (following [41]) and weighted by
elements of the column-vector

, the condition for consistency can also be written as
1 =1, where 1 is a column-vector of ones. Note that for
az = as = ag = 0, the compact explicit schemes considered in
Section Il are recovered (with a = a, and b = a4). This family

(a) K =24

(b) K = 42

() K =56 ) K =62

Fig. 7: Various (K + 1)-point stencils for the discrete Laplacian  .g2 on the
3-D Cartesian grid, with K as indicated. Stencil (a) results when 1; 2; 3 &
Oand 4 = 5 = ¢ = 0. Stencil (b) results when 1; 2; 5 & 0 and

3= 5= ¢ =0. Stencil (c) results when 1;:::; s&0and =0.
Stencil (d) results when 1;:::; 6 & 0.

also comprises the large-star schemes for M 3. There are
obviously many other stencil configurations possible depending
on the non-zero elements of ; see Fig. 7 for some special
cases to be considered shortly. For plane-wave analyses, the
scheme (38) transforms to (13) with:

F=a(&+8& +8) 4a(58 +488 +5&8)
dag & +& + 85 +16a, (5u8y8) +16ag & + 4 + &
+16as 838 + &K + 878, + S+ 88, +8& 1 (4

A. Deriving high-order accuracy via modified equations

The process by which we derive high-order accurate schemes
follows previous work using modified equation methods® for
2-D schemes [51], [52], and for this family of schemes we
limit our attention to fourth- and sixth-order accuracy. It is
important to point out that with this approach, one does not
proceed by specifying high-order accuracy in time and/or space
separately. Rather, the goal is a delicate balance of spatial and
temporal errors such that they effectively cancel to some high
order. The first step is to constrain our schemes for fourth- and
sixth-order isotropy in the discrete Laplacian, then we impose
constraints for fourth- and sixth-order accuracy.

1) Isotropy: Since we aim to cancel spatial errors with
temporal errors—which themselves are independent of spatial
direction—we must ensure that spatial errors have some degree
of isotropy [51]. Isotropy up to 2Mth-order (i.e., “2Mth-order
isotropy”) in a discrete Laplacian means that we can write:

= +  CupX®™ Mm+OoX*™M); (42
m=1
for dimensionless C,, which may be affine functions of any
free parameters in
In order to write our discrete Laplacian  .g2 in the above
form, we first consider the case of fourth-order isotropy (M = 2

in (42)). Expanding  .e2 in a Taylor series to fourth-order in

X, we have:
X2h
2=+ ((5:5:205:17,45) ) (@5 + 65 +67)
1
+((0;15;0;30; 24;0) ) (0705 +@Z0Z+0707) +O(X™);
(43)

3In the context of FDTD methods, a “modified equation” is the partial dif-
ferential equation that is solved exactly by the FDTD scheme, usually obtained
through Taylor expansion of the scheme, and “modified equation methods” is
a general term that comprises manipulations of such expansions [47].
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and we know that the biharmonic operator ( 2) may be
expanded as

2= 04+ 0%+ 07 +2 0202 + 0202 + 0202

Thus, we need the two dot products in (43) to be in proportion
with a ratio of 2 : 1, which simplifies to the following
constraint:

(44)

vi =0; vi:=(2;, 1,8 4,2;18)":  (45)
In other words, the above is a constraint for fourth-order
isotropy in  .e2, for some C; to be specified shortly.
Carrying on with this procedure for sixth-order isotropy—
i.e., expanding .2 to sixth-order in X and associating terms
to the triharmonic (leaving out steps for brevity)—we obtain

the following two additional constraints:

:0;
=0;

vo:=( 2;3; 32;8, 6, 162)T;
vz = (0;1;0; 4;4:0)":

V2 (46a)

Vs (46Db)

Under these isotropy constraints, the scheme expands to:
> 2 =0Ff & +nT2ef °X?Cy 2
+rT¢  ¢PXAC, 2+ 0O(T®) +0O(X%);

tt C
(47)

where r; = 1=12 and r, = 1=360, and where C; and C, are
now given as:

c1:=(1;1;4;1;17=5;9)";
Co:=(1:1;16;1;13;81)":

Ci=nrc (48a)

Co=rxc, (48b)

2) High-order accuracy: From here, our goal is to arrive at
fourth-order or sixth-order accuracy, which effectively means
that the finite difference operators will expand to:

w € =02 & +O0X*™M)+0(TM): (49)

with M = 2 or M = 3. Since the above equation is also
equal to zero (by the definition of our scheme; i.e., (9) with

= .g2), our scheme solves a modified equation of the
form (23) for M 3. It is easy to show that (23) implies the
following for any M:

@14:1 C4 2 — O(XZM),
B o 2=0(M):

(50a)
(50b)

Using the above relations we can substitute for @¢ and @
in (47) to obtain the following expansion:

2 — N2 2 2 2 2 2
tw € e2=0f c° +riX( ci )c

+X4( % o )t PH+O(T8)+0(X%: (51)

At this point it is clear that we can eliminate O(X?) and
O(X*) terms through the following additional constraints:

C1 = 2 C2 = 4, (52)
which gives our desired result. In other words, we have arrived
at (49) with M = 2 or M = 3, leaving truncation errors that
are O(X*) or O(X®) for this family of schemes.

To summarize, our finite difference scheme expands to (49)
where M 1 (in general), but under the constraints described
by the following overdetermined system:

ljvijes T = (L0, 2)T (53)
we have M = 2 (a fourth-order truncation error); and
furthermore, under the constraints described by:

2 4)T

1jvijvajvsjcijca T o= (3;0;0;0; % (54)

we have M = 3 (a sixth-order truncation error).

B. Example high-order accurate schemes and coefficients

What follows are three schemes that are able to achieve
fourth-order accuracy, along with a sixth-order accurate scheme.
These schemes represent particular solutions to the linear
systems above. Of course, in order to fully achieve high-order
accuracy a scheme must also be stable, so numerical stability
conditions will be provided alongside the particular schemes
to follow. However, for brevity we will omit detailed stability
derivations, as they can be lengthy, particularly due to the fact
that the simplified conditions (15) will not apply for the high-
order accurate schemes to follow, as the associated functions F
are polynomials in §,, and 2, and evaluating (14) can become
quite involved.

It should also be mentioned that the first and last schemes
considered next have previously been derived by related
modified equation approaches [50], but they have yet to
be considered for room acoustics simulation. Subsequent to
presenting the coefficients for these schemes, we will analyze
numerical dispersion and compare to the compact explicit
schemes and large-star schemes.

1) A 25-point fourth-order accurate scheme: The smallest
two-step explicit scheme that can achieve fourth-order accuracy
employs the stencil illustrated in Fig. 7(a) [47], [50]. Solv-
ing (53) under the additional constraints: 4 = 6 =0,
the coefficients for this scheme are found to be:

5=

1=1 2 37 2=8r1 %  3=4r(? 1); (55)

or in terms of the coefficients a;; ay; az [50]:

a1 =1; a=2r %, a=r(? 1): (56)
It is worth noting that under the above constraints, the discrete
Laplacian can be rewritten as [47]:

= @ 4 rlCZTZ @ (1): (57)
In a sense, the above shows that this scheme augments the
fourth-order-in-space large-star scheme from Section Il with
an appropriately scaled second-order accurate approximation
to the biharmonic operator ( @ @ = 2 + O(X?2)), which,
in effect, leads to a cancellation with the second-order error
term that arises in ¢ [47], [50]. With regards to numerical
stability, from (57) it ibsnghtforward to derive the condition
for this scheme: 1=3 [50]. That this scheme is indeed

fourth-order accurate is confirmed in Fig. 8.
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Fig. 8: Relative dispersion error as a function of wavenumber along axial
directions for 2Mth-order accurate (K + 1)-point schemes presented in this
section, with Courant numbers set to respective upper stability limits.

2) A 43-point fourth-order accurate scheme: Consider the
43-point stencil illustrated in Fig. 7(b), as given by the
constraints 3 = 4 = § = 0. Solving (53) under these
additional constraints leads to:

1=1 2 5, 2=233; s=5r(? 1); (58)
or a;; az; as given by (56) and
ar=0; as=(2 1)=48; ag=0: (59)

Through an exhaustive analysis of the associated function F
(left out f% brevity), the stability condition is found to be:
2 (3 3)=2 0:79. Also, see Fig. 8.

3) A 57-point fourth-order accurate, sixth-order isotropic
scheme: Consider the 57-point stencil illustrated in Fig. 7(c).
Given the number of free parameters, we can aim for a fourth-
order accuracy and sixth-order isotropy. As such, we solve the
following system, along with the constraint ¢ = 0:

lvijvajvaics | = (1;0;0;0; )T (60)
This gives the following coefficients:
2=8rp(72 40 %); 3=8ry(9 5 7?);
A=24r,(52 4); 5=40r(52 6); (61)

and 1=1 > 3 4
given by (56) and

as =6ry(5 ?

5. Equivalently, a;;as;az are

4); as=2r(52% 6); as=0: (62

Through analysis of the associated F, the stabili%condition
for this scheme is found to be: 4=15 2 3(6 = 11)=10
0:896, where the lower bound on the Courant number results
from evaluating the condition F 0. See Fig. 8.

4) A 63-point sixth-order accurate scheme: For sixth-order
accuracy, we will need the entire set of free parameters in this
family of schemes, and thus the stencil illustrated in Fig. 7(d).
Solving (54) gives:

2=8rp 2+1rp(160 2 144 %); 4 =24r, %,
5= r2(60 4 100 2), 6= r2(9 4 45 2 4 36),
s=r1(4 2 4)+ry2002 724 96); (63)

and 1 =1 2 3 4 5
are given by (56) and:

as=r,3 * 572);

6. Equivalently, a;; a,; a3

a6:r2( 4 5 2+4):
(64)

ag=6r; 4;

(a) axial (b) diagonal

Fig. 9: Relative phase velocities for (K + 1)-point high-order accurate schemes
with = max and for wavenumbers kx along (a) axial and (b) diagonal
directions.

Fig. 10: Comparisons of various (K + 1)-point schemes in terms of cumulative
max error (kx). Large-star schemes are denoted “LS-M”, where K = 6M,
and “HOA-Q” refers to the high-order accurate schemes from Section 1V with
Qth-order accuracy.

For this scheme, it ¢gn be shown that numerical stability is
ensured when 1=3 [50]. See Fig. 8 for confirmation
that this scheme in indeed sixth-order accurate.

V. COMPARISONS: NUMERICAL DISPERSION

So far we have derived four high-order accurate schemes
and confirmed their reported orders of accuracy (in Fig. 8).
However, this only gives an indication as to how the schemes
behave as kx approaches zero, whereas for room acoustics we
are also interested in the numerical dispersion over a wide range
of frequencies, extending from DC towards the Nyquist. With
that said, numerical phase velocities for the high-order accurate
schemes presented in this section are displayed in Fig. 9 over
the range of wavenumbers kx 2 [0; ]. Immediately, it can
be seen that in the range of kx  0:25 there are substantial
improvements over the SLF, ISO, IWB, and large-star schemes
(in Figs. 2 and 5). For kx 2 [0:25 ; ]it is difficult to visually
discern from these figures how these schemes compare to
the second-order accurate schemes from Sections 1l and IlI,
so we need to quantify these dispersion error in some other
meaningful way.

To that end, we introduce a cumulative maximum error for
the relative phase velocity:

(kx):=_ max j1 ¢(K&)j; (65)

ik3i2[0;kx]

where 0 < kx . In Fig. 10, we plot (kx) for various
schemes (leaving out some large-star schemes, for clarity); and
we focus on (kx) 5%—for brevity, and because there is
recent evidence that high-fidelity auralizations require phase
velocities errors to be as low as 2% to mitigate audible phase
artifacts [18]. From Fig. 10 we can conclude the following:
under equivalent memory costs,
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TABLE I: Relative computational efficiency (RCE), defined by (66), allowing
at most P % absolute error in phase velocity in (K + 1)-point schemes. The
notation: b c3 denotes  truncated to three decimal places.

scheme K b cz 0:1% 0:5% 1% 2% 4% 8%
SLF 6 0:577 1:.00 1:00 1:00 1:00 1:00 1:00
1SO 18 0:866 105 10:06 9:51 857 7:12 5:30
IWB 26 1:000 6:93 6:93 6:93 6:93 6:94 6:97
LS-2 12 0:500 6:21 6:40 6:66 7:21 8:50 4:37
LS-3 18 0:469 7:40 7:31 7:22 7:10 7:04 651
LS-4 24 0:452 8:26 8:14 8:00 7:74 7:34 6:92
LS-7 42 0:428 9:76 9:62 9:45 9:11 8:48 7:42
LS-11 66 0:414 108 10:6 10:5 10:1 9:37 8:10

HOA-4 24 0:577 233  48:0 24:7 1219 6:88 3:84

HOA-4 42 0:796 620 123 61:6 30:8 154 7:82

HOA-4 56 0:897 1331 253 122 57:7 26:8 12:3

HOA-6 62 0:577 1296 163 68:2 29:1 12:8 5:96

the large-star schemes (1 < M 11) outperform compact
explicit schemes—at least for (kx) 5%;
the high-order accurate schemes generally outperform
large-star schemes for kx  0:5 ;
the high-order accurate schemes generally outperform
large-star schemes for (kx) 2%;
for (kx) 2 [2%;5%], the high-order accurate schemes
tend to outperform large-star schemes of equivalent or
larger stencil size;
and, as expected, the high-order accurate schemes increasingly
outperform second-order accurate schemes as (kx) ¥ O or
as kx ¥ 0.

It is important to remember that the high-order accurate
schemes have the advantage of operating with significantly
higher Courant numbers than the large-star schemes, and thus
lower sample rates for the same grid density. To take this into
account directly in the comparisons, we can make use of the
relative computational efficiency (RCE) metric described in [3],
[53], which compares schemes in terms of spatiotemporal grid
densities required to maintain a given error threshold over some
bandwidth of interest. We can define this RCE as:

maXy, S.t. (kx) P%
maxk, s.t. (kx) P%in SLF
(66)
where the SLF scheme serves as a common reference of
comparison, as in [3]. RCEs for some error thresholds between
0.1% and 8% are listed in Table | for the schemes displayed in
Fig. 10. We find that the HOA schemes outperform compact
explicit and large-star schemes by up to three orders of
magnitude in their RCEs for the %-errors listed. Interestingly,
we also find that the compact explicit schemes sometimes
outperform large-star schemes in terms of RCEs. For example,
if a maximum 2% phase velocity error is deemed necessary,
Table | indicates that the 19-point 1SO scheme is a better
choice than 19-point and 25-point large-star schemes—that
is, if the interest is in minimizing the number of pointwise
updates required by the scheme, and not just memory costs.

RCE(P %) :=
max,SLF

VI. COMPARISONS: SIMULATIONS
A. Modes of a rigid cuboid room

In order to demonstrate how the dispersion errors in the
various schemes manifest in simulation outputs, consider,

(a) SLF, I1SO, and IWB schemes.

(b) (6M + 1)-point large-star schemes

(c) (K + 1)-point high-order accurate schemes.

Fig. 11: Simulated responses of cuboid room with side-length 10 m and rigid
boundaries, along with analytic modes (dotted lines). Responses are shifted by

50dB for clarity, and the frequencies are normalized by ° = & = 200 Hz.

as a simple first example, the modal response of a cuboid
room under rigid boundary conditions. For this example, we
consider a cubic room with side-length 10m, and for all
schemes we keep X = 0:85m and sample rates are set
according to respective stability limits (i.e., Fs = 5, and see
Table 1). In this idealized scenario, boundary conditions can
be implemented by forcing ghost points to be even-symmetric
with interior points.* The box is excited with an off-center
spatial Gaussian and outputs of duration 10s are taken near a
corner of the room.

The simulated responses—transformed to frequency domain
via discrete Fourier transform without zero-padding—can be
seen in Fig. 11, wherein they are shown as a function of
normalized frequencies f=f'  0:5 with f' = % = 200 Hz
representing the frequency associated to the isotropic spatial
bandlimit of the Cartesian grid used here [40]. It can be seen
that all schemes correctly approximate modal frequencies in
low frequencies (indicating that the schemes are consistent for

4Numerical stability is ensured in this special case because the simulated
modes are spatial cosines that can be decomposed into plane-wave solutions,
which are covered by von Neumann stability analyses.
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(a) SLF, I1SO, and IWB schemes

(b) (6M + 1)-point large-star schemes

(c) Fourth-order accurate 25- and 43-point schemes

(d) Fourth-order accurate 57-point scheme and sixth-order accurate 63-point scheme.

Fig. 12: Demonstration of numerical dispersion in a pulse propagating through
various (K + 1)-point schemes under equivalent memory costs. The pulse is

bandlimited to fmax = 500 Hz and outputs are taken along respective worst-

case directions, at 10m from source position. Grid spacings are X = °—

(four points per wavelength), and sample rates are as indicated (Courgﬁt
numbers at stability limits).

this problem and boundary implementation) and mismatches
tend to increase with £=F". For f=f’ > 0:25, the second-order
accurate schemes (including large-star schemes) are unable to
simulate correct modal frequencies, but the high-order accurate
schemes return good matches until at least f=F"  0:4. It can
also be seen that modal responses in large-star schemes do not
improve significantly with increasing spatial order 2M, which
is ultimately due to a temporal error that remains second-order
throughout.

B. Free-space propagation

In order to demonstrate how dispersion errors affect free-
space propagation of waves in these schemes, we consider
an unbounded problem with initial conditions u(0;x) = 0
and @¢u(t; X)ji=o0 = Voc? (X) where Vg is a source volume—
without loss of generality, taken to be 1m—and (X) rep-
resents a 3-D spatial Dirac delta. In this case, u represents
an acoustic velocity potential (in m?s?) [54]. For discrete
initial conditions, we take uf = 0, and in order to mitigate
possible errors from initialization, we compute uj from the
known solution [55] (bandlimited to the Cartesian grid). For
this example, we consider only kx  0:5 (i.e., we use at

(@) SLF, I1SO, and IWB schemes

(b) (6M + 1)-point large-star schemes

(c) Fourth-order accurate 25- and 43-point schemes

Fig. 13: Simulation results for a pulse propagating through various (K + 1)-
point schemes with maximum 0.6% phase velocity errors (as in Fig. 12(d)),
with sample rates and grid resolutions (specified in points per wavelength) as
indicated (with Courant numbers at stability limits). The pulse is bandlimited
to fmax = 500 Hz and outputs are taken along respective worst-case directions,
at a distance of 10 m from the source position.

least four points per wavelength) and we focus on a maximum
frequency of fax = 500Hz. Thus, the grid spacing is chosen
as X = c=4fax for all schemes, and T = X =c where is
chosen respectively at upper stability limits for each scheme.
Shown in Fig. 12 are numerical solutions obtained from the
various schemes, at output positions along respective worst-
case directions (axial for SLF and 1SO, and diagonal for IWB;
diagonal for large-star schemes; axial for high-order accurate
schemes with K = 24;42;62 and diagonal for K = 56) at
a distance of 10m from the source position, along with the
corresponding (bandlimited) analytical solution. It is important
to remember that here memory costs are equivalent across
schemes, but sample rates vary according to respective

The effect of phase velocity errors in these schemes is most
apparent in Fig. 12(a), with visible deviations between the ideal
solution and numerical solutions. The ISO and IWB schemes
appear to give similar results along their respective worst-case
directions, and the SLF scheme returns significantly worse
results. Across the large-star schemes in Fig. 12(b), results are
similar, and Fig. 12(b) represents an improvement over SLF,
ISO, and IWB schemes—at the cost of higher sample rates.
We also note the numerical approximations in Fig. 12(b) are
advanced-in-time with respect to the ideal solution, which is
a result of the phase velocities along the chosen propagation
direction (diagonal). Finally, the high-order accurate schemes,
in Fig. 12(c) and Fig. 12(d) tend to give the best results—
particularly for K 2 56; 629 in Fig. 12(d)—while operating
at significantly lower sample rates than large-star schemes.

While we have found that the high-order accurate schemes
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performed best under equivalent memory costs for this example,
it is also worth checking how all schemes compare under
equivalent error tolerances, which requires that grid densities
and sample rates vary across schemes. As a point of reference,
we can use the results in Fig. 12(d), for which the schemes
are set up with approximately (kx) = 0:6% for Cg—x =
500 Hz. As such, we re-calibrate the other schemes to have the
same maximum phase velocity error at the same corresponding
wavenumber. Results are displayed in Fig. 13, with sample
rates and grid resolutions—specified in points per wavelength
(PPW)—as indicated. Recall, memory costs scale cubically
with the grid resolution in PPW.

As one might expect, all schemes now return similar results
to those in Fig. 12(d), but we see that the high-order accurate
schemes use significantly lower grid resolutions and sample
rates than compact explicit and large-star schemes to obtain
such results. For example, the 25-point fourth-order accurate
scheme uses approximately 5.6 less memory than the 27-
point IWB scheme, and 2.8 less memory than the large-star
scheme with same stencil size (M = 4). We also note that the
fourth-order accurate scheme with K = 42 uses approximately
3.7 less memory than the large-star scheme with same stencil
size (M = 7). To quantify how “similar” these results are—
beyond what can be discerned visually—we can report that
residual errors are all between 22dB and 20dB in signal-
to-noise-ratio (SNR), but we should also remark that SNR is
not necessarily a good indicator of performance here, since
the residual is highly correlated with the signal itself, although
a detailed perceptual examination of such residuals is beyond
the scope of this study (see, e.g., [18]).

VIlI. CONCLUSIONS AND FINAL REMARKS

We have presented high-order accurate schemes for the
3-D wave equation derived through the use of modified
equation methods, reaching up to sixth-order accuracy with
a 63-point stencil, along with fourth-order accurate schemes
with 25-, 43-, and 57-point stencils. As opposed to large-star
schemes that employ high-order spatial differences yet are
limited by a second-order temporal accuracy, these schemes
possess high orders of accuracy in both space and time, and
as a result, display high-order rates of convergence in their
numerical dispersion relations, confirming that they are indeed
high-order accurate for the 3-D wave equation. Numerical
phase velocities were analyzed for these schemes along with
previously considered second-order accurate schemes (which
includes large-star schemes), and it was shown that the high-
order accurate schemes are significantly more computationally
efficient when low error tolerances in numerical phase velocities
(e.g., less than 2%) are critical—as is the case for high-fidelity
auralizations. In order to confirm the performance of these
schemes, example simulations were conducted, including modal
responses of a rigid box and free-space pulse propagation.
As compared to second-order counterparts, with memory
costs fixed the high-order schemes returned more accurate
approximations (closer to analytical solutions); and similarly,
with a prescribed accuracy in the approximations, the high-
order schemes were able to operate with significantly less
computational costs than second-order counterparts.

There are many avenues for further investigation. First, large-
star schemes are known to benefit from operating with Courant
numbers below stability limits, at the cost of even higher sample
rates [45]—in contrast to the compact explicit schemes and
the high-order accurate schemes presented here. This could
not be considered in this study, as it is an optimization that
must be tuned to error metrics of interest; see [56], [57].
The family of schemes we have presented (based on the
discrete Laplacian (37)) can also benefit from optimization
(e.g., following [41]), where degrees of high order accuracy
and isotropy can be traded for the pursuit of higher RCEs at
fixed error tolerances (as in [52]; see also [57]). Decimation-in-
time techniques could also be investigated as a further means
of saving computation [58].

Parallel implementations on GPUs could also be investigated
in future work. To that end, it is worth remarking that there
are no significant additional bottlenecks for schemes that use
large stencils [34], such as those presented here, as compared
to those with smaller stencils, such as the 7-point SLF scheme
or 27-point compact explicit schemes. This is because in GPU
implementations of large-scale room acoustics simulations, the
main bottleneck tends to be memory accesses and limited
memory bandwidth, and while larger stencils require more
memory accesses from neighboring grid points, this is mitigated
by memory cache effects (as demonstrated in [34]). Ultimately,
this is due to the fact that as stencil sizes increase, so does
the number of neighboring points that are shared between
neighboring point-wise updates.

Perhaps the most important area of future work is the formu-
lation of consistent and stable grid truncation with impedance
boundaries over complex geometries for these schemes, and
indeed, this constitutes a major challenge for any scheme
that employs stencils reaching beyond nearest grid neighbors.
Boundary updates for half-spaces aligned with Cartesian axes
could possibly be derived following the frequency-domain
techniques used in [3], but such techniques do not necessarily
extend to non-cuboid rooms (see, e.g., [59] and [57, Chapter 5]).
One could resort to perfectly matched layer (PML)-based
boundaries (as in, e.g., [60]), although open problems with
such techniques include consistency with realistic room models
and numerical stability. Another possible approach might be
to investigate finite volume generalizations of the presented
FDTD schemes, as this has already proven to be useful for some
nearest-neighbor FDTD schemes [27], [61]. With any of these
approaches, maintaining high-order accuracy at boundaries
may be an additional concern. Including viscothermal losses
in air (classical air absorption) is a straightforward extension
(see [25]) but it should be noted that explicit two-step schemes
are reduced to first-order accuracy. However, maintaining high-
order accuracy for losses at walls and in air may not be so
important (as long as consistency can be achieved), since
general improvements to dispersion would be unchanged in
the wideband sense.
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