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ABSTRACT: The straightforward room temperature synthesis of hybrid polymetallic manganese clusters is investigated, exploit-

ing complementary ligand combinations of p-tert-butylcalix[4]arene and salicylaldoximes. Eight new [MnIII
7MnII] clusters have 

been prepared wherein the simple substitution of alkyl or aryl groups at well-defined positions of the salicylaldoxime scaffold leads 

to two distinct structure types that, while exhibiting the same general topology, contain the unique MnII ion in different positions. 

Incorporation of a methyl, ethyl or isopropyl group at the 3-position of the aromatic skeleton or a phenyl group at the oximic carbon 

gives structure type A that displays competing weak ferromagnetic and antiferromagnetic interactions. Substitution of a methyl or 

ethyl group at the oximic carbon atom invokes structure type B, incorporating an additional bulky chloride or nitrate into the metal-

lic core due to the smaller steric imposition and position of the methyl or ethyl group. The distortion of the cluster core is conse-

quently enhanced, switching the magnetic properties and resulting in single-molecule magnet behavior. The presence of tert-butyl 

groups at the 3- and 5-positions of the salicylaldoxime skeleton leads to a new [MnIV
2MnIII

2] cluster that is found to be a single-

molecule magnet. The bulky tert-butyl group in the 3-position is too large to facilitate Mn8 cluster formation, and thus assembly 

occurs by an alternative pathway. Characteristic bonding modes of the constituent ligands are retained in every case, and the results 

presented here give insight into the potential of ligand combinations in future studies, highlighting the importance of steric factors 

in evaluating their relevant compatibilities. 

INTRODUCTION 

For many years the field concerning the synthesis and study 

of polynuclear transition metal clusters has undergone rapid 

growth. This may be attributed in part to the relationship be-

tween the fascinating physical properties and potential low 

temperature applications that the molecules possess,1 and the 

myriad of structures that they can adopt. Of the transition ele-

ments, perhaps the most intensely studied for cluster formation 

is manganese, for which initial interest stemmed from the ox-

ygen evolving complex of photosystem II, which plays a cru-

cial role in photosynthesis.2 Subsequently, systematic studies 

in the application of polynuclear manganese compounds as 

nanoscale magnetic materials led to a further resurgence in 

research activity. As such, the structure of the first manganese 

single-molecule magnet (SMM) was reported by Lis in 1980.3 

This archetypal dodecanuclear [MnIII
8MnIV

4] carboxylate clus-

ter possesses a ground state spin (S = 10) and, importantly, 

large easy-axis anisotropy (highlighting the importance of 

MnIII ions in SMMs), which enables the Mn12 complex to func-

tion as a SMM.4 Although the Mn12 species remain benchmark 

compounds, the area has progressed significantly to include a 

plethora of SMMs of varying structure, nuclearity and with 

different oxidation state distributions. Structural effects are 

also important however, a fact that is perhaps best illustrated 

in a series of compounds constructed with phenolic oximes.5 

Using the salicylaldoxime family of ligands (SaoH2, Figure 

1A) a library of complexes based upon [MnIII
3O]+ building 

blocks (MnIII
3 and MnIII

6) revealed the magneto-structural rela-

tionship describing the effect of changing structural parame-

ters (determined by the oximic R group modulating the pair-

wise exchange through manipulation of the Mn-O-N-Mn tor-

sion angle) upon magnetic properties.5 

A major challenge in this area is controlling the structure 

(and hence properties) of polymetallic clusters. Since seren-

dipity is one of the main driving forces for cluster formation it 

is crucial that we understand the various coordination modes 

of the ligands involved. Knowledge of these, obtained through 

a thorough examination of the myriad of known compounds, 

can then give the synthetic chemist, at least in part, a degree of 

control over the likely molecular structure. For example, the 

aforementioned Sao2- ligands tend to bond so as to bridge two 

metal ions, and the arrangement of donor atoms is such that 

the formation of species based upon MnIII
3 triangles is favored 

(Figure 1B). 

We have recently been exploring the coordination chemistry 

of the closely related p-tert-butylcalix[n]arenes (TBC[n]) and 

calix[n]arenes (C[n]s, Fig. 1C). C[n]s are cyclic polyphenolic 

macrocycles that adopt well defined and relatively rigid con-

formations as a consequence of hydrogen bonding interactions 

between phenolic hydroxyl groups at what is termed the low-

er-rim.6 In an expanding body of work we (and others) have 

demonstrated that TBC[4] or C[4] readily coordinate a transi-

tion or lanthanide metal ion in the center of the polyphenolic 

cavity, with subsequent retention of the cone conformation.7 

Important breakthroughs in this regard include a 

[MnIII
2MnII

2(TBC[4])2] SMM (Fig. 1D),7b,c [MnIII
4LnIII

4(C[4])4] 

(where Ln = Gd, Tb or Dy) clusters that are magnetic refriger-

ants or SMMs depending on the lanthanide employed (Fig. 

1E),7d,e and a ferromagnetically coupled [Mn5] cluster, 



 

[MnIII
3MnII

2(TBC[4])2(hmp)2] (hmp = 2-

(hydroxymethyl)pyridine).7h The latter was synthesized using 

complementary ligands that each display well-defined coordi-

nation motifs as shown in Figure 1F.  

 

Figure 1. A) Schematic of the general salicylaldoxime (SaoH2) 

skeleton. B) General triangular [MnIII
3O(N-O)3]+ subunit resulting 

from the assembly of MnIII ions and Sao2- ligands.5 C) Schematic 

of TBC[4] and C[4]. D) Structure of a [MnIII
2MnII

2(TBC[4])2] 

SMM.7b,c E) Structure of [MnIII
4LnIII

4(C[4])4] magnetic refrigerant 

(Ln = Gd) or SMMs (Ln = Tb, Dy).7d,e F) Structure of ferromag-

netic [MnIII
3MnII

2(TBC[4])2(hmp)2] cluster.7h Color code: C grey; 

O red; N blue; Mn purple; Ln green. 

From the expanding library of clusters, we have established 

empirical metal-ion binding rules for these C[4] ligands. Of 

particular relevance here is the fact that the polyphenolic cavi-

ty has high affinity for MnIII ions, which bind preferentially 

over TMII or LnIII.7d,e,i Thus the [MnIIITBC[4]]- moiety can be 

considered a stable and persistent building block for cluster 

formation / structural fragment incorporation. By extension, it 

is likely that the combination of a wide-ranging array of com-

peting or complementary ligands with TBC[4] will lead to 

new clusters with diverse topologies and properties depending 

on the co-ligand employed. Moreover, these new clusters 

should form with a degree of control in terms of the metal-ion 

binding properties, with the proviso that the binding properties 

of the co-ligand employed have been surveyed thoroughly. 

RESULTS AND DISCUSSION 

In this contribution we present our initial investigations into 

cluster formation using TBC[4] as a ligand support in combi-

nation with a series of SaoH2 co-ligands; previously we noted 

that the combination of manganese with PhSaoH2 and TBC[8] 

results in formation of a ferromagnetically coupled 

[MnIVMnIII] metal dimer supported by both ligands.8 The gen-

eral SaoH2 skeleton can be readily altered at various positions 

via the formal substitution of either aromatic or oximic hydro-

gen atoms for simple aliphatic or aromatic substituents. We 

selected and synthesized ten candidates for our studies into 

cluster formation as shown in Figure 2.9 From our experiments 

we found that reaction of IV – VII and TBC[4] with a source 

of MnII ions, in presence of base under ambient conditions, 

resulted in the formation of four new MnIII
7MnII clusters, 1-4, 

all of which are supported by two tetra-anionic TBC[4] and 

three di-anionic Sao2- ligands. The general structure can be 

described as a buckled MnIII
5MnII plane that is capped on each 

face by a [MnIIITBC[4]]- moiety. The analogous reaction with 

II or III also results in formation of MnIII
7MnII clusters, 5-8, 

however the central MnIII
5MnII plane exhibits markedly differ-

ent coordination chemistry. The reaction of X under similar 

conditions resulted in the formation of a novel [MnIV
2MnIII

2] 

cluster containing no calixarene. From these studies we pro-

pose that the steric bulk presented by the tertiary butyl groups 

in X is too great to allow formation of a Mn8 cluster. Reactions 

involving the remaining ligands I, VIII or IX in combination 

with TBC[4] and a source of MnII resulted in formation of the 

familiar [MnIII
2MnII

2(TBC[4])2] cluster (Fig. 1D) as the only 

isolable product, suggesting that co-ligands may require par-

ticular structural features that offer a degree of cooperativity in 

cluster formation with TBC[4]; groups positioned around the 

SaoH2 that are either too small or too large may be unfavora-

ble for cluster formation due to a) their inability to form com-

plementary interactions with TBC[4] or b) steric properties 

that render them incompatible co-ligands. 

 

Figure 2. Ten SaoH2-based co-ligands explored as candidates for 

complementary cluster formation with TBC[4]. 

General cluster core structure for 1-4: Reaction of 

TBC[4], a SaoH2-based co-ligand candidate (IV – VII) and 

either MnCl2 or Mn(NO3)2 hydrates in a basic dmf / MeOH 

solvent mixture (this high polarity medium is used to ensure a 

homogenous solution is obtained) resulted in formation of four 

MnIII
7MnII clusters. As all four complexes have the same gen-

eral structure, and in the interest of brevity, we describe the 

structural characteristics common to 1–4 using 1 (Fig. 3) as a 

representative example prior to highlighting notable differ-

ences between each complex. Structural analysis of single 

crystals of 1-4 reveals that the metallic skeleton is a novel 

[Mn8] cluster where a buckled [MnIII
5MnII] triangle of triangles 

has been capped top and bottom by [MnIIITBC[4]]- moieties. 

Three di-anionic Sao2- ligands and other coordinating ligands 



 

(e.g. bridging methoxide) support the central belt of six man-

ganese ions. 

 

Figure 3. Single crystal X-ray structure of 1 showing the buckled 

MnIII
5MnII plane, capped on top and bottom by [MnIIITBC[4]]- 

moieties. Non-coordinating solvents and H atoms are omitted for 

clarity. Color code: C grey; O red; N blue; Mn purple. 

[MnIII
7MnII(TBC[4]-4H)2(IV-2)3(4-O2-)2(3-O2-)(dmf)2(2-

MeO-)2(2-OH-)(H2O)2]·6dmf·H2O, 1: Inspection of the 

structure of 1 reveals that each type of ligand retains its ex-

pected bonding mode within the new cluster formed. Each 

tetra-anionic TBC[4] houses a MnIII ion in the center of the 

polyphenolic cavity, and each doubly deprotonated IV 

(PhSao2-) bridges two MnIII ions via Mn-N-O-Mn coordina-

tion. The metallic skeleton (Fig. 4A) is shown alongside a top-

down view of the distorted [MnIII
5MnII] plane for clarity (Fig. 

4B); the Mn1 – Mn4 and Mn6 – Mn8 ions are all in the +3 

oxidation state, while Mn5 is the only MnII ion in the assem-

bly. Mn7 is bound centrally to the four oxygen atoms of one 

fully deprotonated TBC[4] and this occurs with Mn7-O1, 

Mn7-O2, Mn7-O3 and Mn7-O4 distances in the range of 

1.925(7) – 1.984(7) Å. The coordination sphere of Mn7 is 

completed by a 4-oxide (Mn7-O18, 2.300(8) Å) and a ligated 

dmf (Mn7-O15, 2.241(8) Å), both of which define the Jahn-

Teller axis. O3 is terminally bound to Mn7, whereas O1, O2 

and O4 bridge to Mn5, Mn2 and Mn4 respectively (Mn5-O1, 

2.174(8) Å, Mn2–O2, 2.203(8) Å and Mn4–O4, 2.099(7) Å). 

Mn5 is also bonded to O5 from the second tetra-anionic 

TBC[4] with a Mn5-O5 distance of 2.186(8) Å. As is the case 

for Mn7, Mn3 is located in the center of the second tetra-

anionic TBC[4] binding cavity (Mn3-O5, Mn3-O6, Mn3-O7 

and Mn3-O8 distances in the range of 1.920(7) – 1.968(7) Å) 

and has a Jahn-Teller axis defined by a 4-oxide (Mn3-O17, 

2.329(7) Å) and a ligated dmf  (Mn3-O16, 2.201(9) Å). 

As mentioned above, the rather complex bonding / topology 

found in the distorted [MnIII
5MnII] belt of atoms (Fig. 4B) is 

general for 1 – 4. Within this belt, Mn8 has distorted octahe-

dral geometry, with two water ligands (Mn8-O23, 2.201(7) Å 

and Mn8-O24, 2.330(8) Å) defining the Jahn-Teller axis. A 

methoxide links Mn8 and Mn1 with Mn8-O21 and Mn1-

O21 distances of 1.971(8) Å and 1.943(8) Å respectively. In 

addition, a 3-oxide links Mn8, Mn1 and Mn2 with Mn-O19 

distances in the range of 1.859(8) – 1.903(8) Å. The coordina-

tion sphere of Mn8 is completed by terminal bonding to the 

phenolic oxygen and oximic nitrogen atoms of a dianionic IV 

(O11/N2/O12 in Fig. 4B), with Mn8-O11 and Mn8-N2 dis-

tances of 1.856(8) Å and 1.985(10) Å respectively. This dian-

ionic IV connects to square pyramidal Mn2 via its oximic 

oxygen atom with a Mn2-O12 distance of 1.928(8) Å. The 

coordination sphere of Mn2 is completed by an oximic oxygen 

atom of a second dianionic IV (O10/N1/O9 in Fig. 4B) and a 

4-oxide (Mn2-O10, 1.926(8) Å and Mn2-O17, 1.898(7) Å 

respectively). The same 4-oxide (O17) bridges to both Mn6 

and Mn5 with respective Mn6-O17 and Mn5-O17 distances of 

1.903(7) and 2.203(7) Å. Mn6 bonds to the phenolic oxygen 

and oximic nitrogen of the dianionic O10/N1/O9 IV (Mn6-O9, 

1.873(7) Å and Mn6-N1, 1.96(10) Å) and the coordination 

sphere is completed by -hydroxide that links to Mn5 (Mn6-

O22, 1.942(7) Å and Mn5-O22, 2.107(8) Å).  

 

Figure 4. A) Polymetallic skeleton highlighting the coordination 

environments of Mn ions in 1. B) Distorted [MnIII
5MnII] plane 

found in 1. Atoms selectively labelled to aid discussion. Color 

code: C grey; O red; N blue; Mn purple. H atoms and other parts 

of the structure omitted for clarity.  

Mn5 has distorted octahedral geometry and is connected to 

square pyramidal Mn4 via a methoxide (Mn5-O20, 

2.075(7) Å and Mn4-O20, 1.897(7) Å) and a 4-oxide (Mn5-

O18, 2.211(7) Å and Mn4-O18, 1.897(7) Å). In addition to the 

Mn4-O4 coordination described above for the first TBC[4] 

tetra-anion, the coordination sphere of Mn4 is completed by 

bonding to phenolic oxygen and oximic nitrogen atoms of the 

third dianionic IV (O13/N3/O14 in Fig. 4B), with Mn4-O13 

and Mn4-N3 distances of 1.863(7) and 1.968(9) Å respective-

ly. Finally, the O13/N3/O14 oximic oxygen (O14) and the 

O18 4-oxide both coordinate to square pyramidal Mn1 (Mn1-

O14 and Mn1-O18 distances of 1.928(8) and 1.874(7) Å re-

spectively). With respect to the generic nature of the cluster 

core topology found in 1 – 4 (1 PhSao2-; 2 3-iPr-Sao2-; 3 3-Et-

Sao2-; 4 3-Me-Sao2-) it should be noted that some small differ-



 

ences are observed in the identity of peripheral ligands around 

the distorted six ion [MnIII
5MnII] plane. In the bridging posi-

tions, these are all either -methoxide or -hydroxide, and are 

all either methanol or water in the analogous position to the 

Jahn-Teller axis of Mn3 in 1. In addition, in 4 one Mn ion and 

the attached dianionic VII are each disordered over two posi-

tions, and this was modelled with crystallographic occupancies 

of 0.75 and 0.25 respectively. 

General cluster core structure 5-8: Reaction of TBC[4], 

II or III and either MnCl2 or Mn(NO3)2 hydrates (figure 5A 

shows 5 as a representative structure of 5-8) in a basic solvent 

system of dmf / MeOH also resulted in formation of four new 

[MnIII
7MnII] clusters (II (MeSaoH2) affords 5 and 6, whilst III 

(EtSaoH2) affords 7 and 8). All four complexes conform to the 

same basic core structure as 1-4, highlighting the structural 

persistence of the Mn8 cluster. Two key differences between 

5-8 and 1-4 are found in the location of the unique MnII ion 

(Mn7 in 5, Fig. 5B, and the equivalent position in 6-8) and in 

the incorporation of a chloride or nitrate (dependent on reac-

tion conditions) into the central six ion plane.  

 

Figure 5. A) Single crystal X-ray structure of 5. B) Coordination 

environment around distorted [MnIII
5MnII] plane. Non-

coordinating solvents and H atoms omitted for clarity. Color code: 

C grey; O red; N blue; Mn purple. 

The [MnIII
5MnII] moieties in 5-8 are slightly different, as is 

the case in 1-4, and these small differences are generally mani-

fested in the peripheral ligands around the manganese ions 

(combinations of terminal water, methanol and dmf). In 5 and 

6 Mn5 is bonded to a dmf ligand, which is presumably a con-

sequence of the specific oxime used for cluster formation (II 

along with VII are the SaoH2 ligands with the smallest sub-

stituents to result in a Mn8 complex in this study, although VII 

results in the alternative Mn8 cluster topology). The main dif-

ference is that a nitrate ion is coordinated to Mn7 in 5. The 

equivalent position in 7 is also occupied by nitrate and in 6 

and 8 it is occupied by a chloride ligand.  

Mn8 clusters are relatively common in the literature,10 and a 

search of the Cambridge Structural Database reveals ca. 90 

entries which encompass a variety of topologies and oxidation 

state distributions. However to our best knowledge 1-8 repre-

sent the first examples of [MnIII
7MnII] clusters and exhibit a 

unique metallic skeleton. Both factors are linked to the pre-

ferred metal-ion binding properties of the ligands employed 

(TBC[4] preferentially binds MnIII and Sao2- ligands generally 

adopt architectures based upon MnIII
3 triangles).5 

Structural comparison of the [MnIII
5MnII] skeleton 

Schematics of the generic [MnIII
5MnII] moieties obtained in 

1-4 and 5-8 are given in Figure 6. Simple inspection reveals 

that one key difference is the position of the unique MnII ion. 

In 1-4 the MnII lies in a position at the midpoint along an edge 

of the horizontal [MnIII
5MnII] plane, whereas in 5-8 it occupies 

a corner position. This naturally results in different magnetic 

exchange interactions within each custer type. The relative 

position of the Sao2- ligands observed in the two cluster 

skeletons is also different. In Figure 6A each of the corner 

manganese ions is coordinated to the phenolic oxygen of a 

Sao2- ligand. In Figure 6B this is not the case, and position 3 is 

involved in coordination to either a chloride or nitrate ion. The 

reason for this is unknown, however the nature of the oxime 

subtituent appears to be important.  

 

Figure 6. Generic schematic and Mn ions in the buckled 

[MnIII
5MnII] planes observed in 1-4 (A) and 5-8 (B). MnII 

positioning is indicated by *. X = Cl- or NO3
-. 



 

In 1 the substituent is a relatively large phenyl group 

attached to the oximic carbon atom. The substituents in 2-4 are 

methyl, ethyl or isopropyl groups attached to the aromatic 

skeleton, and therefore the spacial arrangement of each 

substituent is relatively well defined due to the rigidity of the 

phenyl ring. The substituents in 5-8 are methyl or ethyl groups 

attached to the oximic carbon atom, and are therefore in a 

comparitively flexible environment, potentially allowing 

subsequent coordination of a chloride or nitrate ion. This 

effect is perhaps precluded in 1 due to the relative size of a 

phenyl substituents w.r.t methyl or ethyl groups. 

From inspection of the collated structural data from analysis 

of 1-8 it is clear that the [MnIII
5MnII] belt is non-planar in each 

case. Given this, several structural parameters were measured 

to quantify this non-planarity and thus the degree of similarity 

between each complex (full details in Supporting Information, 

Table S1). In general, the distances between Mn ions remain 

relatively consistent across the series of compounds, and the 

corners of the [MnIII
5MnII] moiety correspond very closely to 

an equilateral triangle. It is evident that the “buckling” of the 

plane of Mn ions is mainly manifested in the positions where 

the  parameter varies significantly from 0°, although the C[4] 

ligands have been tethered of the metals midway between the 

corners of each edge of the triangle. A parameter n  has been 

used to describe the lateral displacement of each Mnn ion from 

a least-squares plane through Mn1-Mn3-Mn5.11 In all cases 2 

has the largest value (range of 0.900 Å – 1.002 Å). 4 has a 

relatively small displacement of less than 0.2 Å in each case, a 

consequence of coordination to both TBC[4] tetra-anions, and 

6 is displaced from the least-squares plane by between 0.565 

Å and 0.916 Å. The fact that 2 and 6 are out-of-plane ex-

plains another structural effect in 1-8 causing the TBC[4] tet-

ra-anions to point in opposite directions. Least-squares planes 

containing the oxygen atoms of each TBC[4] can be calculat-

ed, and the dihedral angle () between these measured. The  

parameter varies from 15.14˚ – 22.62˚ and is therefore reason-

ably consistent across the series of complexes. Analysis of 

TBC[4] complexes containing manganese reveals that  is 

normally close to 0˚,7b,c emphasizing the considerable effect of 

the co-ligand on cluster formation here. The exchange of a 

LnIII for a MnII ion in [MnIII
2MnII

2(TBC[4])2] leads to a less 

symmetric cluster with an  value of 7°, still smaller than in 1-

8.7i Other examples exist at the methylene bridge, somewhat 

constraining the bonding geometry.10a,12 It was previously 

reported that magnetic exchange interactions within Sao2--

based clusters can be modulated through variation of the Mn-

N-O-Mn torsion angle.5 These torsion angles () were meas-

ured for every Sao2- in each of the complexes 1-8. While it is 

difficult to draw definitive conclusions for such complex mul-

ticomponent systems, it is clear that mean in 1-4 (10.81˚ – 

22.16˚) is considerably smaller than that in 5-8 (23.20˚ – 

31.42˚). This fact can perhaps be explained by consideration 

that 5-8 incorporate an additional bulky chloride or nitrate 

anion in the resulting assembly.

[MnIV
2MnIII

2(X2-)6(X(imine)2-)2]·dmf·6MeOH,9: In con-

trast to successful formation of Mn8 clusters with oxime lig-

ands II–VII, analogous reactions with X afforded the new 

[MnIV
2MnIII

2] cluster shown in Figure 7. The asymmetric unit 

contains half of the title formula of 9, which upon symmetry 

expansion reveals a [MnIV
2MnIII

2] cluster supported by six 

dianionic X ligands and two related imine ligands. The mag-

netic core of 9 is best described as a zig-zag chain of four Mn 

ions. Mn1 and its symmetry equivalent (s.e., Mn1’) have octa-

hedral geometry and are in the 4+ oxidation state. Three fully 

deprotonated X ligands occupy the coordination sphere of 

Mn1: both the phenolic oxygen atoms (O1, O3 and O5, Mn1-

O distances in the range of 1.865(3) – 1.868(3) Å) and the 

oximic nitrogen atoms (N1, N2 and N3, Mn1-N distances in 

the range of 1.982(3) – 1.996(3) Å) coordinate in a fac fashion 

(Fig. 7A). The oximic oxygen atoms of the dianionic X lig-

ands further bridge to the distorted octahedral MnIII ions, Mn2 

and Mn2'. O2 and O4 are terminally bound to Mn2 (Mn2-O2, 

1.938(3) Å and Mn2-O4, 2.121(3) Å), whilst O6 bridges Mn2 

and Mn2' (Mn2-O6, 1.948(3) Å and Mn2'-O6, 2.357(3) Å). 

Mn2 and its s.e. are in the 3+ oxidation state, with Jahn-Teller 

axes defined by the O4-Mn2-O6' or corresponding O4'-Mn2'-

O6 vectors. The two remaining coordination sites of Mn2 are 

occupied by the phenolic oxygen and nitrogen of the imine 

moiety (Mn2-O7, 1.869(3) Å and Mn2-N4, 1.974(3) Å). 

While there is nothing remarkable about the bond lengths 

found in 9 there are two main points of interest. First, the pres-

ence of two MnIV ions (resulting from a two electron oxidation 

from the MnII starting material) is important from a magnetic 

perspective, vide infra. Although the presence of MnIV is not a 

rare occurrence in polynuclear manganese chemistry, its com-

paratively large and antiferromagnetic exchange interactions 

with MnIII typically result in higher lying exited states than 

MnIII–MnIII or MnIII–MnII exchange interactions, which is a 

desirable property for SMM behaviour.13 Secondly, from a 

synthetic point of view, the reduction of two oxime ligands to 

the corresponding imine during cluster formation is interesting 

and relatively rare for salicylaldoximes.14 The nature of this 

transformation is not known and may be related to the varied 

redox chemistry of manganese, proceeding via an initial metal 

mediated oxygen transfer of the oxime ligand. Interestingly X 

has been used before to construct either MnIV
2MnIII clusters or 

MnIII
3 single-chain magnets,15 albeit in these cases the oximate 

ligands are retained and are not reduced to the corresponding 

imine. 

 



 

Figure 7. A) Single crystal X-ray structure of 9. Non-coordinating 

solvents and H atoms omitted for clarity. B) Polymetallic skeleton 

and coordination spheres of Mn atoms in 9. Atoms selectively 

labelled to aid discussion. Color code: C grey; O red; N blue; Mn 

purple. 

Steric effects of co-ligands on cluster formation: In com-

pound 9, the fact that a Mn4 was isolated as the only product 

rather than a Mn8 cluster prompted further consideration. The 

co-ligand X possesses a tertiary butyl group adjacent to the 

phenolic oxygen atom, and it is postulated that the steric de-

mands of this group are too large to permit Mn8 cluster for-

mation with TBC[4] as an additional bulky co-ligand. Partial 

space-filling diagrams of 1, 2 and 3 (Figure 8) indicate that 

this may well be the case. In 1 the phenyl rings of the oxime 

and the TBC[4] tetra-anion are approximately co-planar and 

the phenyl substituent points away from the cluster core, sug-

gesting that there is no steric impediment to assembly. Simi-

larly, in 3 the ethyl substituent adjacent to the phenolic oxygen 

is sufficiently small that it does not appear to interfere with 

cluster formation; it is positioned so as to form a complemen-

tary CH… interaction as shown in Fig. 8B. In 2 the methyl 

groups of the isopropyl group point away from the cluster, 

again leaving a hydrogen atom pointing towards an aromatic 

ring of the calixarene (Fig. 8C). Extending this argument to 

include a methyl group in place of the hydrogen atom of an 

isopropyl group, i.e. being tBu as in IX or X, would necessi-

tate a methyl group pointing directly towards the calixarene. 

The structure of 2 (Fig. 8C) suggests that there is insufficient 

space for this to occur, and so any cluster formation would 

likely proceed via an alternative pathway, that is, giving a 

C[4]-supported MnIII
2MnII

2 cluster with IX and an ox-

ime/imine-supported MnIV
2MnIII

2 cluster with X. 

 

Figure 8. Sections of the single crystal X-ray structures of 1 (A), 

3 (B) and 2 (C) shown in partial space-filling representations to 

illustrate the steric requirements of co-ligand substituents. Color 

code: C grey; O red; N blue; Mn purple. H atoms and other parts 

of the structure omitted for clarity. 

Magnetic properties: The dc (direct current) molar mag-

netic susceptibility, χM, of polycrystalline samples of 1, 3, 4, 5, 

6 and 9 (representative examples of the different structure 

types) were measured in an applied magnetic field, B, of 0.1 T, 

over the T = 2-300 K temperature range. The experimental 

results are shown in Figures 9-10 in the form of the χMT prod-

uct versus T, where χM = M / B, and M is the magnetization of 

the sample.  

The octametallic species can be divided into two distinct 

families whose structures differ in the position of the Mn(II) 

ion, complexes 1-4 (type A) and 5-8 (type B), as depicted in 

Figure 6. At room temperature, the χMT product of all five 

compounds is approximately 25 cm3 K mol–1 (Figure 9), in 

good agreement with the sum of Curie constants for a 

[MnIII
7MnII] unit (25.875 cm3 K mol–1, g = 2.0). Upon cooling, 

the χMT products remain relatively constant until T ~ 200 K 

where the data diverges:  decreasing slowly to values close to 

10 cm3 K mol–1 for 1, 3 and 4 at 2 K, but increasing for 5 and 

6 to maximum values of 37 and 33 cm3 K mol–1, respectively, 

at T = 15 K. This behavior is consistent with competing 

(weak) ferro- and antiferromagnetic exchange interactions in 

both cases, but where the metal topology in structure type B 

gives rise to the stabilization of a larger ‘spin ground state’ 

than that for structure type A. The decrease in χMT below 15 K 

for 5 and 6 can be attributed to zero-field splitting effects 

and/or the presence of antiferromagnetic inter-molecular inter-

actions. The large nuclearity and complex topology of these 

[MnIII
7MnII] species prevents any quantitative analysis of ex-

change constants, and we note that |J| is likely of the same 

magnitude as |DMn(III)| resulting in a band of closely spaced 

spin states in each case, rendering the notion of an isolated “S” 

ground state moot. This is in-line with previous measurements 

of calix[n]arene and oxime-based Mn clusters with Mn(III/II) 

ions bridged by hydroxide, alkoxide and -N-O- atoms, where 

|J| ≤ 5 cm-1.5d,7i Low temperature variable-temperature-and-

variable-field (VTVB) magnetization data collected in fields 

of up to B = 7 T (Figure S1) are also consistent with this pic-

ture, with M increasing in a near linear fashion with B for all 

five complexes. Both 5 and 6 display frequency-dependent 

signals in out-of-phase (χM″) ac susceptibility (Figure S2), 

suggestive of slow relaxation of the magnetization and SMM 

behavior. Data obtained by varying the frequency of oscilla-

tion of the ac field were fit to the Arrhenius equation, afford-

ing Ueff = 26.1, 28.5 K and τ = 9.63 x 10-9, 1.45 x 10-9 s for 5, 

6, respectively. 



 

 

Figure 9. Plot of χMT versus T for complexes 1 and 3-6 measured 

in the T = 300 – 2 K temperature range in an applied magnetic 

field of B = 0.1 T. 

At room temperature, the χMT product of the tetrametallic 

species 9 has a value of ~10 cm3 K mol–1 (Figure 10), in good 

agreement with the sum of Curie constants for a [MnIV
2MnIII

2] 

unit (9.75 cm3 K mol–1, g = 2.0). Upon cooling, the χMT prod-

uct of 9 increases, reaching a maximum value of ~19 cm3 K 

mol–1 at T = 2 K. This behavior is suggestive of the presence 

of both ferro- and antiferromagnetic exchange interactions 

being present. Inspection of Figure 7 reveals that there are 

three distinct interactions present in complex 9, whose struc-

ture is that of a distorted butterfly, with the Mn(IV) ions on the 

wing-tips and the Mn(III) ions in the body positions. Mn1 is 

connected to Mn2’ (J1) through three Mn-N-O-Mn oxime 

bridges and to Mn2 (J2) by just one Mn-N-O-Mn oxime 

bridge. Mn2 is connected to Mn2’ (J3) by two O-atom(oxime) 

bridges. Isotropic fitting the experimental susceptibility data to 

the model in the inset of Figure 10 and spin-Hamiltonian (1) 

affords the best fit parameters J1 = +6.62 cm-1, J2 = +12.92 cm-

1, J3 = -8.36 cm-1, with g fixed at g = 2.0.  
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A fit of the magnetization data (Figure 10, inset) with these 

J values fixed, and maintaining g = 2.0, gives DMn(III) = -4.4 

cm-1. J1 and J2 are  consistent with the exchange reported in a 

mixed-valent c[8]/oxime-based Mn(III/IV) dimer  where J = 

+9.81 cm-1.8 Magneto-structural correlations recently devel-

oped for alkoxide-bridged [MnIII
2O2] dimers revealed the im-

portance of the orientation of the JT axis in determining both 

the sign and magnitude of the exchange interaction.16 Indeed 

in all cases where the JT axes were aligned parallel to each 

other but perpendicular to the bridging [MnIII
2O2] plane, as 

here, the interaction was found to be weakly antiferromagnetic 

with J values ranging from −8.2 cm−1 to −15.5 cm−1, consistent 

with J3. Ac susceptibility measurements on 9 reveal the pres-

ence of frequency-dependent χM″ signals (Figure 11) indica-

tive of slow relaxation of the magnetization and SMM behav-

ior, with Ueff = 28.4 K and τ = 6.85 x 10-9 s. 

 

Figure 10. Plot of χMT versus T for complex 9 measured in the T 

= 300 – 2 K temperature range in an applied magnetic field of B = 

0.1 T. The solid line is a fit of the experimental data to the iso-

tropic part of spin-Hamiltonian (1) using the exchange coupling 

scheme in the inset (bottom left). The top right inset shows the 

magnetization data for T = 2, 4, 6 K. The red lines are a fit of the 

experimental data to spin-Hamiltonian (1) with the J values fixed 

to the values extracted from the susceptibility. 

CONCLUSIONS 

This work demonstrates the synthesis of eight new 

MnIII
7MnII clusters and one new MnIV

2MnIII
2 cluster, by the 

complementary combination of C[4] and SaoH2 ligands. The 

characteristic bonding modes of each ligand type is present in 

the resultant complexes. Furthermore, variation of the steric 

properties of the SaoH2 ligand leads to different metallic core 

topologies and oxidation state distributions. The magnetic 

properties of the MnIII
7MnII clusters can thus be fine-tuned by 

simple ligand modification, with one structure type (B) dis-

playing SMM behavior and the other (A) not. In the case of 

the MnIV
2MnIII

2 cluster the large steric requirement imposed by 

two bulky tBu groups leads to a radically different complex 

that exhibits competing ferro- and antiferromagnetic exchange 

interactions and slow relaxation of the magnetization. The 

protocol of ligand complementarity is therefore demonstrated 

as an important strategy in the design of large polymetallic 

architectures and importantly, in the quest for complexes pos-

sessing enhanced or targeted magnetic properties. 

 

Figure 11. Plot of the out-of-phase ac susceptibility (χM″) versus 

temperature for complex 9 at the indicated frequencies. 



 

Experimental 
TBC[4]6 and ligands I – X5 were synthesized according to litera-

ture procedures. Crystallographic data were collected on a Bruker 

Apex II Diffractometer operating with Mo-K radiation (0.71073 Å) 

at 100(2)K. 

[MnIII
7MnII(TBC[4]-4H)2(IV2-)3(4-O

2-)2(3-O
2-)(dmf)2(2-MeO-

)2(2-OH-)(H2O)2]·6dmf·H2O, 1: TBC[4] (100 mg, 0.154 mmol), 2-

hydroxybenzophenone oxime (66 mg, 0.308 mmol) and 

Mn(NO3)2·4H2O (232 mg, 0.924 mmol) were dissolved in dmf / 

MeOH (8mL / 8mL) and stirred for ten minutes. Triethylamine (1.54 

mmol, 0.21 mL) was added and the resulting dark brown solution was 

stirred for a further hour before the mixture was filtered. Dark brown 

crystals of 1 were grown by slow evaporation of the mother liquor 

over several days. Yield (based on TBC[4]): 91 mg, 38%. 

C153H200N11Mn8O31: calcd. C 58.73; H 6.44; N 4.92; found C 57.90; H 

6.19; N 4.68%. Crystal data (CCDC 1555660): 

C153H200Mn8N11O31, M =3128.76 g/mol, monoclinic, space group 

P21/n (no. 14), a = 22.19(6) Å, b = 21.12(5) Å, c = 31.66(8) Å, β = 

91.96(8)°, V = 14824(61) Å3, Z = 4, 85392 reflections measured, 

14005 unique (Rint = 0.1446) which were used in all calculations. The 

final R1 was 0.0615 (>2sigma(I)) and wR2 was 0.1589 (all data). 

[MnIII
7MnII(TBC[4]-4H)2(V

2-)3(4-O
2-)2(3-O

2-)(dmf)2(2-MeO-

)3(H2O)(MeOH)], 2: TBC[4] (100 mg, 0.154 mmol), 3-isopropyl-

salicylaldoxime (55 mg, 0.308 mmol) and Mn(Cl)2·4H2O (183 mg, 

0.924 mmol) were dissolved in a solvent mixture of dmf / MeOH 

(8mL / 8mL) and stirred for 10 minutes. Triethylamine (1.54 mmol, 

0.21 mL) was added and the mixture changed Color from pale pink to 

dark brown. After stirring for a further hour, the reaction was filtered 

and dark brown crystals of 2, suitable for single-crystal X-ray diffrac-

tion studies, were grown by slow evaporation of the mother liquor. 

Crystalline samples were contaminated with V, precluding calculation 

of an accurate yield and the study of the magnetic properties. Alt-

hough this is the case, the structure of 2 has been included here to aid 

discussion of the steric factors in determining cluster type. Crystal 

data (CCDC 1555661): C128H166Mn8N5O24, M =2598.17 g/mol, 

monoclinic, space group P21/c (no. 14), a = 24.654(3) Å, b = 

21.946(2) Å, c = 30.893(3) Å, β = 103.802(3)°, V = 16232(3) Å3, Z = 

4, 16906 reflections measured, 16906 unique (Rint = 0.0000, merged) 

which were used in all calculations. The final R1 was 0.0801 (I > 

2σ(I)) and wR2 was 0.2466 (all data). 

 [MnIII
7MnII(TBC[4]-4H)2(VI2-)3(4-O

2-)2(3-O
2-)(dmf)2(2-MeO-

)3(MeOH)1.5(H2O)0.5]·2dmf, 3: TBC[4] (100 mg, 0.154 mmol), 3-

ethyl-salicylaldoxime (51 mg, 0.308 mmol) and Mn(NO3)2·4H2O 

(232 mg, 0.924 mmol) were dissolved in a mixture of dmf / MeOH 

(8mL / 8mL). After stirring for 10 minutes, triethylamine (1.54 mmol, 

0.21 mL) was added and the resulting dark brown solution was stirred 

for a further hour. The reaction was filtered and dark brown crystals 

of 3 were grown by slow evaporation of the mother liquor over sever-

al days. Yield (based on TBC[4]): 58 mg, 27%. C131.5H175N7Mn8O26: 

calcd. C 58.30; H 6.51; N 3.62; found C 57.68; H 6.39; N 3.68%. This 

difference is attributed to solvent loss and disorder within the crystal, 

precluding accurate calculation of the former. Crystal data (CCDC 

1555662): C131.5H175Mn8N7O26, M =2709.31 g/mol, monoclinic, space 

group P21/n (no. 14), a = 20.45(9) Å, b = 32.73(13) Å, c = 

22.39(9) Å, β = 112.39(6)°, V = 13857(98) Å3, Z = 4, 68260 reflec-

tions measured, 18453 unique (Rint = 0.1455) which were used in all 

calculations. The final R1 was 0.0911 (>2sigma(I)) and wR2 was 

0.2744 (all data). 

[MnIII
7MnII(TBC[4]-4H)2(VII2-)3(4-O

2-)2(3-O
2-)(dmf)2(2-

MeO-)3(MeOH)(H2O)]·0.25H2O, 4: TBC[4] (100 mg, 0.154 mmol), 

3-methyl-salicylaldoxime (47 mg, 0.308 mmol) and Mn(NO3)2·4H2O 

(232 mg, 0.924 mmol) were dissolved in dmf / MeOH (8mL / 8mL) 

and stirred for 10 minutes. Triethylamine (1.54 mmol, 0.21 mL) was 

added and the dark brown solution was stirred for a further hour. The 

reaction was filtered and dark brown crystals of 4, suitable for single-

crystal X-ray diffraction studies, were grown by slow evaporation of 

the mother liquor. Yield (based on TBC[4]): 67 mg, 24%. 

C122H151N5Mn8O24: calcd. C 58.36; H 6.06; N 2.79; found C 59.05; H 

6.45; N 3.49%.%. This difference is attributed to solvent loss and 

disorder within the crystal, precluding accurate calculation of the 

former. Crystal data (CCDC 1555663): 

C122H154.5Mn8N5O24.25, M =2518.52 g/mol, monoclinic, space group 

P21/n (no. 14), a = 19.5613(16) Å, b = 31.705(3) Å, c = 

23.5099(16) Å, β = 112.680(3)°, V = 13453.1(18) Å3, Z = 4, 18427 

reflections measured, 18427 unique (Rint = 0.0750) which were used 

in all calculations. The final R1 was 0.0873 (I > 2σ(I)) and wR2 was 

0.2703 (all data). 
[MnIII

7MnII(TBC[4]-4H)2(II2-)3(4-O
2-)2(3-O

2-)(dmf)3(2-MeO-

)2(NO3
-)(MeOH)1.5(H2O)0.5], 5: TBC[4] (100 mg, 0.154 mmol), 2-

hydroxyacetophenone oxime (46 mg, 0.308 mmol) and 

Mn(NO3)2·4H2O (232 mg, 0.924 mmol) were dissolved in dmf / 

MeOH (8mL / 8mL) and the mixture was stirred for 10 minutes. Tri-

ethylamine (1.54 mmol, 0.21 mL) was added and the dark brown 

solution was stirred for an additional hour. The reaction mixture was 

filtered and dark brown crystals of 5, suitable for single-crystal X-ray 

diffraction studies, were grown by slow evaporation of the mother 

liquor. Yield (based on TBC[4]): 42 mg, 21%. C124.5H156.5N7Mn8O27: 

calcd. C 57.02; H 6.01; N 3.74; found C 55.67; H 6.45; N 5.54%. This 

difference is attributed to solvent loss and disorder within the crystal, 

precluding accurate calculation of the former. Crystal data (CCDC 

1555664): C124.5H159Mn8N7O27, M =2625.10 g/mol, monoclinic, space 

group P21/n (no. 14), a = 21.16(4) Å, b = 21.80(4) Å, c = 

33.97(6) Å, β = 93.63(5)°, V = 15635(54) Å3, Z = 4, 28606 reflections 

measured, 28606 unique (Rint = 0.0000, merged) which were used in 

all calculations. The final R1 was 0.1130 (I > 2σ(I)) and wR2 was 

0.3270 (all data) 

[MnIII
7MnII(TBC[4]-4H)2(II2-)3(4-O

2-)2(3-O
2-)(dmf)3.5(2-MeO-

)2(Cl-)(MeOH)(H2O)0.5], 6: TBC[4] (100 mg, 0.154 mmol), 2-

hydroxyacetophenone oxime (46 mg, 0.308 mmol) and MnCl2·4H2O 

(183 mg, 0.924 mmol) were dissolved in dmf / MeOH (8mL / 8mL) 

and the mixture was stirred for 10 minutes. Triethylamine (1.54 

mmol, 0.21 mL) was added and the dark brown solution was stirred 

for an hour before the reaction was filtered. Dark brown crystals of 6, 

suitable for single-crystal X-ray diffraction studies, were grown by 

slow evaporation of the mother liquor. Yield (based on TBC[4]): 45 

mg, 22%. C124.5H158N6.5Mn8O24.5: calcd. C 57.24; H 6.10; N 3.48 

found C 56.16; H 6.57; N 4.88%. This difference is attributed to sol-

vent loss and disorder within the crystal, precluding accurate calcula-

tion of the former. Crystal data (CCDC 1555665): 

C125.5H161.5ClMn8N6.5O24.5, M =2628.07 g/mol, monoclinic, space 

group C2/c (no. 15), a = 40.676(3) Å, b = 20.8282(13) Å, c = 

41.694(3) Å, β = 118.037(2)°, V = 31179(4) Å3, Z = 8, 122376 reflec-

tions measured, 29591 unique (Rint = 0.0557) which were used in all 

calculations. The final R1 was 0.1027 (I > 2σ(I)) and wR2 was 0.3360 

(all data) 

[MnIII
7MnII(TBC[4]-4H)2(III2-)3(4-O

2-)2(3-O
2-)(dmf)3(2-MeO-

)2(NO3
-)(MeOH)]∙3MeCN, 7: TBC[4] (100 mg, 0.154 mmol), 2-

hydroxypropiophenone oxime (51 mg, 0.308 mmol) and 

Mn(NO3)2·4H2O (232 mg, 0.924 mmol) were dissolved in dmf / 

MeOH (8mL / 8mL) and the mixture was stirred for 10 minutes. Tri-

ethylamine (1.54 mmol, 0.21 mL) was added and the dark brown 

solution was stirred for an additional hour. The reaction mixture was 

filtered and dark brown crystals of 7, suitable for single-crystal X-ray 

diffraction studies, were grown by slow evaporation of the mother 

liquor. Crystalline samples were contaminated with III, precluding 

calculation of an accurate yield and the study of the magnetic proper-

ties. Although this is the case, the structure of 7 has been included 

here to aid discussion of the steric factors in determining cluster type. 

Crystal data (CCDC 1555666): C134H172.5Mn8N10.5O26, M =2785.83 

g/mol, triclinic, space group P-1 (no. 2), a = 15.616(10) Å, b = 

19.216(12) Å, c = 25.249(16) Å, α = 104.65(3)°, β = 96.962(17)°, γ = 

110.556(13)°, V = 6676(7) Å3, Z = 4, 99265 reflections measured, 

26232 unique (Rint = 0.0447) which were used in all calculations. The 

final R1 was 0.0648 (I > 2σ(I)) and wR2 was 0.2006 (all data) 

[MnIII
7MnII(TBC[4]-4H)2(III2-)3(4-O

2-)2(3-O
2-)(dmf)2(2-MeO-

)2(Cl-)(MeOH)2]∙2MeCN, 8: TBC[4] (100 mg, 0.154 mmol), 2-

hydroxypropiophenone oxime (46 mg, 0.308 mmol) and MnCl2·4H2O 

(183 mg, 0.924 mmol) were dissolved in dmf / MeOH (8mL / 8mL) 

and the mixture was stirred for 10 minutes. Triethylamine (1.54 

mmol, 0.21 mL) was added and the dark brown solution was stirred 

for an additional hour. The reaction mixture was filtered and dark 

brown crystals of 8, suitable for single-crystal X-ray diffraction stud-



 

ies, were grown by slow evaporation of the mother liquor. Crystalline 

samples were contaminated with III, precluding calculation of an 

accurate yield and the study of the magnetic properties. Although this 

is the case, the structure of 8 has been included here to aid discussion 

of the steric factors in determining cluster type. Crystal data (CCDC 

1555667): C129H165ClMn8N7O23, M =2656.64 g/mol, triclinic, space 

group P-1 (no. 2), a = 14.04(2) Å, b = 16.52(3) Å, c = 28.99(5) Å, α = 

83.39(4)°, β = 76.11(5)°, γ = 75.48(5)°, V = 6308(17) Å3, Z = 

2, 60768 reflections measured, 16823 unique (Rint = 0.0810) which 

were used in all calculations. The final R1 was 0.0769 (I > 2σ(I)) 

and wR2 was 0.2109 (all data) 

[MnIV
2MnIII

2(X-2H)6(X(imine)2-)2]·dmf·6MeOH, 9: Method (A): 

TBC[4] (100 mg, 0.154 mmol), 3,5-di-tert-butyl-salicylaldoxime (154 

mg, 0.616 mmol) and Mn(NO3)2·4H2O (77 mg, 0.308 mmol) were 

dissolved in a mixture of dmf / MeOH (8mL / 8mL). After stirring for 

10 minutes, Et3N (1.54 mmol, 0.21 mL) was added and the resulting 

dark green solution was stirred for a further hour. The reaction was 

filtered and dark green crystals of 9 were grown by slow evaporation 

of the mother liquor over several days. Method (B) 3,5-di-tert-butyl-

salicylaldoxime (100 mg, 0.401 mmol) and Mn(NO3)2·4H2O (50 mg, 

0.200 mmol) was stirred for 10 minutes in a solution of MeOH (6 

mL) and dmf (6 mL). Et3N (0.07 mL, 0.5 mmol) was added via sy-

ringe and the dark green solution was stirred for a further 1 hour. 

Dark green blocks of 9 were obtained, after several days after slow 

evaporation of the reaction mixture. Yield (based on 3,5-di-tert-butyl-

salicylaldoxime): 52 mg, 40%. C132H208N10Mn4O22: calcd. C 63.24; H 

8.05; N 5.59; found C 63.41; H 8.07; N 5.62%. Crystal data (CCDC 

1555668): C132H208Mn4N10O22, M =2506.84 g/mol, triclinic, space 

group P-1 (no. 2), a = 15.220(17) Å, b = 15.342(17) Å, c = 

19.40(2) Å, α = 66.84(3)°, β = 72.55(2)°, γ = 60.488(14)°, V = 

3592(7) Å3, Z = 1, 51995 reflections measured, 13735 unique (Rint = 

0.0405) which were used in all calculations. The final R1 was 0.0651 

(>2sigma(I)) and wR2 was 0.1897 (all data). 
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TOC Synopsis 

The assembly of multi-component calix[4]arene / salicylaldoxime supported polymetallic clusters is modulated by the ste-

ric imposition of a series of substituents on the latter ligand type (complementary interactions between ligands shown in fig-

ure). In this way, both structural and magnetic properties of the resultant clusters can be modified, while maintaining the ex-

pected coordination chemistry of the respective ligands. 

 


