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Abstract: This paper investigates the mechanical behavior and strain localization of 

methane hydrate bearing sediments (MHBS) at different temperatures and water 

pressures via the distinct element method (DEM). A thermo-hydromechanical contact 

model of MHBS has been employed in the DEM to simulate biaxial tests and 

mechanical behavior of MHBS is studied with different temperatures and water 

pressures. Three MHBS specimens are simulated at different temperature-pressure 

conditions to provide an insight on the evolution of macro and micro variables during 

strain localization of MHBS, as well as the geometric characteristics of shear band. 

The results show that MHBS appears to be strain-softening with dilatancy and the 

existence of MH will increase the cohesion but decrease the friction angle of MHBS. 

As temperature increases or water pressure decreases, the cohesion and friction angle 

of MHBS decrease with increasing dilatancy. The strain localization is closely related 

to bond breakage as well as localization of other micro and macro variables such as 

contact force chains, principal stress fields, particle velocity fields and average pure 

rotation rate distributions. As temperature and water pressure change, three different 

types of shear band can form. The thickness and inclination angle of these shear bands 

increase as the temperature increases or water pressure decreases. 

Keywords: methane hydrate; mechanical behavior; strain localization; distinct 

element method; temperature and water pressure 
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1 Introduction 

Methane hydrate (MH) is a solid clathrate compound in which large amounts of 

methane is trapped within the crystal structure of water. The storage of methane 

hydrate is twice that of petrol and methane, making MH a promising new potential 

energy in the 21st century. Methane hydrate bearing sediments (MHBS) are mixture 

containing soil skeleton with MH trapped in the voids. Improper extraction of MH 

may lead to failure of MHBS, causing serious geohazards, such as submarine 

landslide (Evans et al., 1996), seabed pipeline breakage (Wang et al., 2009), etc. 

Therefore it is crucial to study the mechanical behavior of MHBS to allow safe 

extraction of MH. 

In the past decade, the mechanical behavior of MHBS has been intensely studied 

using laboratory tests and numerical simulations. Kataoka et al. (2009) conducted 

several physical and mechanical tests of MHBS taken from the bottom of lake Balkal 

and found the MHBS samples slightly different from the ordinary soils on physical 

properties but significantly different on shear strength and modulus. Masui et al. 

(2005) and Hyodo et al. (2007) studied the mechanical behavior of synthesized 

MHBS specimens and showed that the existence of MH, as well as the increase of 

MH saturation increases the strength of MHBS greatly. Santamarina and Ruppel 

(2010) conducted tests on synthetic tetrahydrofuran hydrate bearing soils and found 

that the increase of hydrate saturation increased the effect on physical and mechanical 

properties of synthetic samples. There are also numerical simulations (Ayoub et al., 

2007; Ng et al., 2008) and research on the constitutive models (Yan et al., 2013; 
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Uchida et al., 2012) of MHBS. Since it is hard to conduct in-situ test on MHBS or 

take undisturbed samples of MHBS, the majority of the studies are based on 

synthesized specimens. Both in-situ tests and triaxial tests of synthesized specimens 

can capture the main mechanical behavior (i.e. strength and stress-strain relationship) 

of MHBS, and such behavior is also studied for MHBS at different MH saturations 

(Masui et al., 2005; Hyodo et al., 2007; Santamarina and Ruppel, 2010). The 

mechanical behavior of MHBS is deeply related to temperature and water pressure of 

MH (Li et al., 2012; Hyodo et al., 2013) which have not been deeply studied 

previously, though there are studies on MHBS with the effect of water pressure only 

(Jiang et al., 2015a). This limitation provides the first motivation for this paper. 

Strain localization leading to the formation of shear bands is a precursor of failure 

in soils associated with instability of embankments, slopes, dams and excavations in 

geotechnical engineering (Jiang et al., 2010). Previous studies appear to have focused 

on the mechanical response of MHBS without paying much attention to the process of 

gradual breakage of MHBS. There is thus a lack of understanding in the evolution of 

the stress and the ensuing breakage of MH bonds in the test specimens. In this paper, 

the distinct element method (DEM), originally developed by Cundall and Strack 

(1979), is adopted to investigate the micro and macro mechanical behavior as well as 

the strain localization of MHBS subject to triaxial testing condition. DEM models the 

soil as an assembly of particles, solving the Newton’s kinematic laws for particle 

motion and a constitutive law at particle contact. It computes the microscopic 

response of the assembly from which the macroscopic response can be calculated. 
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DEM has been proven to be a powerful tool in studying geotechnical problems, such 

as developing constitutive model and mechanical response of sandy grains (Jiang et 

al., 2005, 2014c; Zhou and Ooi, 2009), mechanism in penetration tests (Jiang et al., 

2006, 2014d), strain localization of cemented granules (Jiang et al., 2013b) or 

granular materials (Jiang et al., 2015b), strength theories of unsaturated soils (Jiang et 

al., 2004), mechanical behavior of lunar soils (Jiang et al., 2013a, 2014e; Chung and 

Ooi, 2008). As for DEM studies of MHBS, the strength, stiffness and dilatancy, along 

with the effect of MH saturation, have been studied previously (Jiang et al., 2014a; 

Jung et al., 2012; Holtzman, 2009; Brugada et al., 2010; Yu et al., 2012). Contact 

model of MHBS incorporating surface tension was proposed by Kreiter et al. (2007) 

to study the mechanical behavior where the influence of MH saturation was 

investigated thoroughly. In addition, submarine landslide of MHBS was simulated via 

a coupled approach with computational fluid dynamics (CFD) and DEM (Jiang et al., 

2015c). 

In the revised manuscript, the revision is included and highlighted in red font in 

Page 5-6. “The earlier study (Jiang et al., 2014a) presented a preliminary MH bond 

contact model that was based on bond contact experiments. However, the model only 

considered contact pairs where the particles were physically in contact; for those 

contact pairs where the particles were not in contact, no MH bond could form. The 

simpler model was further enhanced in Jiang et al. (2014b) where a “thickness” 

parameter was introduced allowing the MH bond to form when the gap between two 

particles was less than a critical length parameter. Therefore, the first objective of this 
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paper is to combine these two types of contacts and made a unified 

force-displacement interpretation (Eq. (2)) for the new DEM model adopted in this 

study. Furthermore in this study, we combined the temperature and water pressure to a 

unified parameter L for simplicity, compared with Jiang et al. (2014a, 2014b). The 

improved thermo-hydro-mechanical MH contact model in this study is then employed 

to conduct DEM simulations of biaxial tests on MHBS with different temperatures 

and water pressures using the PFC2D code (version 3.10) and to analyze the 

mechanical behavior as well as the micro and macro variables of MHBS specimens 

during strain localization. The results show that the basic mechanical properties 

predicted in the present DEM study correspond to those observed in laboratory tests. 

In addition, the microscopic features inside and outside of shear band are studied in 

detail. Different types of MH bond breakage have also been revealed in this study, 

which is considered to be probably the reason for different types of shear bands that 

appeared in previous experimental (Yoneda et al., 2011) and numerical studies (Jiang 

et al., 2014a; Stegmann et al., 2011). This paper provides a new insight into strain 

localization of MHBS, which constitutes another innovation. More details will be 

described in our contact model below. 

2 Thermo-hydro-mechanical contact model of MH 

2.1 Formation habits of MH 

Santamarina and Ruppel (2010) have reported on different types of MH formation 

in MHBS. Figure 1 is a Scanning electron microscopy (SEM) image of MHBS, in 
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which MH forms between soil particles and bonds them together – cementation. Other 

forms of MH also exist such as pore-filling, particle coating and load bearing as 

illustrated in Figure 2 (Kumar Saw et al., 2013; Waite et al., 2009; Winters et al., 2004; 

Brugada et al., 2010; Dai et al., 2004). Experimental results of Masui et al. (2005) and 

Hyodo et al. (2007, 2013) show that the MH bonds play a pivotal role in the 

mechanical response of MHBS; hence we adopt a bond contact model in DEM 

analysis to capture the bulk strength and strain-softening response of MHBS with MH 

cementation. 

2.2 Generalized force-displacement relationship and strength criterion of the 

contact model 

The thermo-hydro-mechanical bond contact model originates from Jiang et al. 

(2014b), and has been advanced in this study. In this model, there are two situations of 

the bond contact, one when the particles are in contact and the other when the 

particles are not in contact (Figure 3). The overlap of a contact pair, nu , could be 

expressed as: 

1 2nu r r d                                (1) 

where 1r  and 2r  are radii of the two particles and d  is the distance between 

centers of the particles. Therefore, 0nu   refers to a contacted pair and 0nu    

refers to non-contact pair in which the length of the bond if one exists is given by 

nl u  . The MH bonds are generated within particle pairs distanced less than a 

specific value, which we call critical distance crl . The critical length of the bond, crl , 

was based on the observations from SEM images of MHBS in previous laboratory 
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studies (Zhou, 2009). Seeking the largest gap of the MH bonds in the SEM images, 

the largest bond length was considered as the critical MH bond length. Zhou (2009) 

observed from the images that crl  is affected by MH saturation. The relationship 

between critical MH bond length and MH saturation from Zhou (2009) is shown in 

Figure 4. After the non-bonded specimen has been created, MH bonds will form at 

contacts where  (including those contacted particle pairs). 

The force-displacement relationship of the model is applicable for both situations. 

This model considers the transmission of forces at contact as a combination of two 

parts: one is particle contact part and the other is MH bond part, which could be 

expressed as follows: 

b p

n n nF F F                             (2a) 

b p

s s sF F F                             (2b) 

 b pM M M                            (2c) 

where nF , sF  and M  are total normal force, shear force and moment transmitted 

at each particle contact, respectively; b

nF , b

sF  and bM  are normal force, shear 

force and moment from MH bond part, respectively; p

nF  , p

sF   and pM  are those 

from particle contact part, respectively. 

For particle contact part, when the two particles do not contact at MH formation, 

the forces, including normal force, shear force and moment, are all zero: 

0p

nF  , 0p

sF  , 0pM       0nu                     (3) 

when 0nu  , the mechanical response could be written as follows, based on the 

rolling resistance model by Jiang et al. (2005). The shear force and bending moment 

crl l
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are incremental; that is to say, during each time step in calculation, they are refreshed 

by the former value added by incremental displacement/rotation multiplying 

corresponding stiffness. 

p p

n n nF k u    0nu                           (4a) 

p p p p

s s s s

p p p

s n

F k u F

F F 

   



  0nu                      (4b) 

/ 6

p p p p

m

p p p

n

M k M

M F r





    



  0nu                      (4c) 

where p

su , p  are the relative shear displacement and the relative rotation 

between the particles, respectively; p

nk , p

sk , p

mk  are the normal, shear and rotational 

stiffness, respectively; r  is the average radius of the particles: 1 2 1 22 / ( )r rr r r  ; 

p  is the friction coefficient between particles and p  is the coefficient of rolling 

resistance as described in Jiang et al. (2005). 

For the MH bond part, the mechanical response could be written as follows: 

not failure

0  failure

b b

b n n

n

k u
F


 
   

     
                (5a) 

( )

not failure

failure

b b b b

s s s s

b b b

s resid n

F F k u

F F

  


   
       

          (5b) 

(resid)

not failure

/ 6 failure

b b b b

m

b b b

n

M M k

M F r





   


   
      

           (5c) 

where b

nu  is the compressive deformation of MH bond, which could be determined 

by the expression below:  

0

b

n n nu u u                                (5d) 
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 is particle overlap when MH bond forms. Therefore,  equals to 
nu when a 1 

MH bond forms at an existing particle contact; if a MH bond forms between two 2 

particles not in contact (satisfying ), the  is -1 times the particle gap.   3 

and   are the incremental shear displacement and rotation of the bond, 4 

respectively. The normal, shear and rotational bond stiffness, b

nk , b

sk
 
and b

mk , are 5 

all adopted from Jiang et al. (2014b) and shown below.  6 

 

 /b

nk BE l
                    

           (6a) 

/1.5b b

s nk k                               (6b) 

   2b b

m nk k B /12                              (6c) 

where E  is the elasticity modulus of the MH bond and B  is the width of MH bond, 

as shown in Figure 3. The stiffness ratio of MH bond could be derived from Poisson’s 

ratio of MH. The stiffness ratio 1

b b
b n

s b

n s

k

k





  , where 

1

b  and b

s  are axial and shear 

strain of MH, respectively. In addition, 
1 3 1 (1 )b b b b b

s        , in which 
b  is 

Poisson’s ratio of MH. Then we can derive the relationship between b  and 
b  as 

1

1

1

(1 ) 1

b
b

b b b




  
 

 
. Experimental data (Huo et al., 2011) show that the Poisson’s 

ratio of MH is around 0.3. Adopting 
b  as 0.3, then 1.43b  . Thus we adopt 

stiffness ratio of MH bond as 1.5. b  is the sliding friction coefficient when MH 

bond is broken and /b B r   is the rolling resistance coefficient of MH bond (Jiang 

et al., 2005). b , or B , is related to MH saturation MHS  (Jiang et al., 2014b): 

0nu
0nu

crl l 0nu
b

su

b
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2
2 2 2

1

[2 2 arcsin( ) 1 ]
2 4

26.4%

b bn
b b

i
MH

v

r r r

S
V

 
 



  

 


           (7) 

where vV  is the total volume of voids in the MHBS. 

There are two main criteria for MH bond failure: (a) tension / compression failure, 

when the normal force of an MH bond exceeds its tensile or compressive strength; (b) 

shear-moment failure, when the combined shear force and moment reaches the 

strength envelope of the bond, which is put forward by Jiang et al. (2012a, 2012b). 

The two criteria could be described in these expressions: 

not failure

, failure

b

tb n cb

b b

n tb n cb

R F R

F R F R

   


  
                     (8a) 

2 2

2 2

1       not failure

1    critical state

1             failure

s

sb rb

F M

R R




 


                      (8b) 

where tbR , cbR , sbR  and rbR  are the tensile, compressive, shear and rotational 

resistance of the MH bond, respectively: 

tb tMHR B                              (9a) 

cb cMHR B                              (9b) 

[1 (ln ) ]s

b
fb n tb cb tb

sb cb s b

cb tb n tb

F R R R
R R g

R R F R


 
    

 
               (9c) 

[1 (ln ) ]
6

r

b

fn tb cb tb

rb r b

cb tb n tb

b

cb F R R R
R g

R R F R

r R  
   

 
               (9d) 

where cMH , tMH  are the compressive and tensile strength of pure MH bond 

respectively, which are related to temperature and water pressure and will be 

discussed further. Since there are few test results of resistance on MH bond, we have 

to seek some alternatives. Ice is considered very similar to MH in physical and 
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mechanical behavior (Dvorkin et al., 2003; Choi and Koh, 2009); moreover, 

comparison of strength envelope of Portland cement (Helmut et al., 1969; Hussein 

and Marzouk, 2000), resin (Ellyin and Xia, 2006) and ice (Nadreau and Michel, 1986) 

has shown that the strength envelope of ice is very close to that of Portland cement. 

Hence, we consider interpreting the resistance of MH bond by referring to the 

previous experimental results on Portland cement bond (Jiang et al., 2012a). Fitting 

the shear and rotational resistance envelope of the cement (Figures 5 and 6), it is 

found that the fitting function is as described in Eq. (9c) and (9d), respectively, with 

fitting parameters sf , sg , rf , rg  that are related to the critical length of the bond, 

crl , which is the maximum gap between two particles where a MH bond will form. For 

gap larger than crl , MH bond will not form. The values of sf , sg , rf , rg  are 

shown in Tables 1 and 2 with critical bond length 0.6mm, 1.0mm and 1.5mm, 

respectively. Then we can derive Eq. (10) by fitting sf , sg , rf , rg , which is shown 

in Figure 7. 

2cr 1.069
0.824 0.364exp[ 0.5( ) ]

0.353
s

l
f


                 (10a) 

2cr 1.236
2.876 1.623exp[ 0.5( ) ]

0.506
s

l
g


                 (10b) 

2

cr cr1/ (2.719 3.207 1.442 )rf l l                   (10c) 

2

cr cr3.068 7.347 6.358)rg l l                    (10d) 

2.3 The effect of temperature and water pressure on mechanical behavior of MH 

The Young’s modulus (E) and the strength of MH bond (i.e., cMH  and tMH ) are 

influenced by temperature and water pressure, according to Hyodo et al. (2013). Thus 

this model consists of one unified temperature-water pressure parameter L, referring 
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to the minimum distance between the MH state point (the point with coordinates of 

temperature and water pressure in the phase equilibrium of MH (Sun et al., 2014)) and 

phase line. All the mechanical parameters of pure MH could be linked to parameter L 

to reflect the effect of both temperature and water pressure. 

From experimental observations, they can be correlated to these environmental 

conditions and density as follows (Jiang et al., 2014b): 

*7840 ( , ) 8620 4890 ( , ) 0

0 ( , ) 0

w w

a w

L T L TE

p L T

  



   
 


             (11a) 

*

, 715 ( , ) 186 133 ( , ) 0

0 ( , ) 0

c MH w w

a w

L T L T

p L T

   



   
 


               (11b) 

*

, 715 ( , ) 186 133 ( , ) 0

0 ( , ) 0

t MH w tMH w tMH

a w tMH

L T L T

p L T

     

 

     
 

 
          (11c) 

where w  is water pressure; T is temperature; *  is the density of MH normalized 

by the density of water under 4°C and L is the minimum distance from the current 

thermo-hydro state point to the phase equilibrium line of MH. 

The phase equilibrium of MH is shown as a relationship between temperature and 

water pressure in Figure 8, where the parameter L is the distance from the 

temperature-pressure state point to the MH phase line. There are several studies of the 

phase equilibrium line which are broadly in agreement (Sun et al., 2014; Chin et al., 

2013; Hyodo et al., 2002). In this study, the line proposed by Hyodo et al. (2002) has 

been adopted. We can draw an expression of L by fitting to the data: 

* 2 * 2

* *

* *

2 ( 0.9890) ( 1.0711) if (I)

( , ) |11.9198 11.0636| /11.9617  if (II)

  if (III)| 426.7615 484.9765| /426.7627

T P

L T P T P

T P









   

  

 

            (12a) 
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2 * *

* 2 * 2

8.3894 10 0.9881 0
(I) 

( 0.9890) ( 1.0711) 4

T P

T P





   

   
                  (12b) 

2 * *

* *

* *

8.3894 10 0.9881 0

(II) 17.8560 414.8010 1079.5990 0

11.9189 11.0636 0

T P

T P

T P







   

  

  

                (12c) 

* *

* *

17.8560 414.8010 1079.5990 0
(III) 

426.7615 484.9765 0

T P

T P





  

  
               (12d) 

where * / 243KTT   and 
* /1MPaP P  refer to normalized temperature and water 

pressure respectively. Eq. (11) also indicates that the strength of MH bond increases 

with L that characterizes the combined effect of temperature and water pressure, 

which is one of the characteristics of the model. 

3 DEM modeling of biaxial test and sample parameters 

The thermo-hydro-mechanical bond contact model described above was used to 

simulate the biaxial tests of MHBS. The initial unbonded specimen with 24,000 

particles was generated using the multi-layer compaction method proposed by Jiang et 

al. (2003). This achieves a homogeneous simulated specimen with an initial planar 

void ratio of 0.27 for the biaxial test simulation. A previous study has found that 6,000 

particles are adequate to obtain a bulk behavior representation (Jiang et al., 2014b) 

whilst 24,000 particles were found to provide a good representation of strain 

localization phenomenon (Jiang et al., 2011, 2014a). Therefore, in this study we kept 

the number of particles at 24,000. The sample parameters are given in Table 3 and the 

DEM particle size distribution is shown in Figure 9. Such size distribution was kept 

the same as our previous studies (Jiang et al., 2005, 2014a, 2014b) for comparison. 
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The particle size adopted in this paper is 100 times larger than that in laboratory tests 

(Masui et al., 2005), in which the particle size ranged from 0.01-0.1mm. The scaling 

up of particle size has been shown to work whilst providing computational efficiency, 

as long as the number of particles is large enough to provide a stable bulk mechanical 

response (Jiang et al., 2014a, 2014b). All of the numerical MHBS specimens are given 

the same initial structure, with a maximum particle overlap of 2.3% of the average 

radius. The particle contact stiffness parameters, along with the particle friction 

coefficient, were adopted from the previous DEM study (Jiang et al., 2014a, 2014b). 

They are determined by trial-and-error and are chosen to match the mechanical 

behavior of the host sand in triaxial tests. The particle rolling resistance coefficient 

(relating to the irregularity of particle surface (Jiang et al., 2005)) is chosen as 0.5 

through trial and error to match the bulk friction angle of MHBS as measured in the 

experiments (Zhang et al., 2012). The local damping was set at 0.7 which is the 

default value in PFC2D version 3.10 (Itasca, 2004). No viscous damping was needed 

since it was a quasi-static condition. The upper and lower boundaries for biaxial tests 

are two rigid walls and there is no friction between the rigid boundary and soil 

specimen. In this study, we adopt MH with density of 0.9g/cm3 to match the 

experimental conditions (Hyodo et al., 2005). The MH rolling resistance coefficient 

b  is assumed to be the same at all particle contacts and is related directly to the MH 

saturation (Eq. (7)), as long as the particle assembly is kept unchanged. For MH 

saturation of 50-55%, b  is close to 1.0 in this study. Therefore, we adopt b =1.0 

at all contacts for simplicity, giving a corresponding MH saturation of 53.2%. From 
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Figure 4, the critical distance crl  is about 0.075 times the average particle size 50D  

(7.6mm). Thus crl  could be calculated as 0.6mm which was adopted in this study. 

We adopt flexible boundaries made up from grains at the side and colored the 

specimen in a mosaic style (Figure 10) to make shear band formation clear. After the 

confining pressure is balanced, the top boundary undergoes a 5%/min compression 

strain rate which is a quasi-static loading speed. The presence of a quasi-static regime 

could be determined as follows (O’Sullivan 2011):   

1
m

p

•



                           (13) 

where 
•

 is strain rate, m is particle mass and p is confining pressure. In this study 7 


•

 is 8.33
410  Hz, m=

2

50

4

D
 =0.118kg, p=106 Pa. Then 72.86 10 1

m

p

•

   . 8 

So this study is quasi-static. For quasi-static condition, the critical time increment cdt  9 

can be calculated as follows: 10 

2c

m
dt

k
                               (14) 11 

where k is particle normal contact stiffness and m is particle mass, respectively. In this 12 

study cdt  is calculated as 8.81
510 s. We usually use a time increment that is a 13 

fraction of cdt , therefore the time increment of 10-5s adopted in this study is 14 

appropriate. Measurement circles (a feature of PFC2D) are used to compute the macro 15 

and micro variables in the specimen. 16 
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4 Macro mechanical behavior of MHBS from DEM simulation 

4.1 Effect of temperature on MHBS loading response 

In this sub-section, we shall report on the biaxial test simulations of MHBS at three 

different temperatures: 274K, 278K and 283K respectively (T*=1.128, 1.144 and 

1.165 respectively) whilst keeping the water pressure and the effective confining 

pressure constant at 10MPa and 1MPa respectively. The temperatures chosen in this 

study were representative temperature of MH formation and adopted by previous 

MHBS experiments (Hyodo et al., 2013). Figure 11 presents the deviatoric stress-axial 

strain relationship as well as the volumetric strain-axial strain relationship. Figure 11 

shows that after peak failure, the MHBS shows characteristic of strain-softening, with 

the deformation resulting in dilatancy and shear band formation. This result is in 

agreement with experimental observations by Masui et al. (2005), in which MHBS 

shows vast strain-softening as MH saturation 55.1% that is close to 53.2% in this 

study. Although the post-peak stress in our study goes down more rapidly that Masui 

et al. (2005), a qualitative agreement exists. As temperature increases, the peak 

deviatoric stress decreases. That is because the parameter L decreases with increasing 

temperature at a constant water pressure, leading to weakened strength of MH bond. 

However, the volume increase (dilatancy) after the peak failure that is associated with 

the shear band formation does not appear to follow any particular trend with 

increasing temperature. Further investigation reveals that this is due to different shear 

band modes. Samples for 274K and 278K produce localized shear bands which 

initiate at the bottom specimen boundary whereas the sample at 283K has localized 
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shear band at the mid height of the sample (away from both top and bottom 

boundaries). The different shear band locations will be discussed later considering all 

60 simulations presented in this paper. What is clear is that volumetric change post 

peak failure is sensitive to the location of the shear band in the sample. 

Figure 12 shows the predicted strength envelope of the MHBS specimens at the 

three temperatures. The simulations were performed at effective confining pressure of 

0.5MPa, 1MPa and 2MPa, which are close to the stress levels experienced by MHBS 

in a deep seabed. The predicted cohesion at peak state, the peak friction angle and the 

residual friction angle are summarised in Table 4. Both the peak strength and the 

residual strength of MHBS decrease with increasing temperature. In addition, MHBS 

exhibits a significant cohesion value at peak state but no cohesion at residual state; 

and a lower friction angle at peak state than at residual state. In other words, the 

existence of MH bonds will increase the bulk cohesion while decreasing the friction 

angle of the MHBS. This finding from the DEM model corroborates with the 

laboratory observations on MHBS (Zhang et al., 2012). In addition, results of Zhang 

et al. (2012) show cohesion and friction angle of MHBS 1.16MPa and 12.4◦ , 

respectively, as MH saturation is 48.9%~51.3%, which is closest to that in this study. 

The data in Tables 4 and 5 correspond to such result, showing the efficiency of 

discrete element simulation in reflecting bulk behavior of MHBS. 

4.2 Mechanical behavior of MHBS under different water pressures 

In this sub-section, we shall present specimens with MH at three different water 
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pressures: 5MPa, 10MPa and 20MPa while keeping the temperature at 274K and the 

effective confining pressure at 1MPa. The deviatoric stress-axial strain relationship as 

well as the volumetric strain-axial strain relationship is shown in Figure 13. As water 

pressure increases, the peak stress of MHBS increases due to the increase of the 

parameter L and hence the increase of MH bond strength. Significant dilatancy is 

predicted to occur immediately after reaching the peak strength which is associated 

with the shear band formation. The overall dilatancy appears to be similar for the two 

specimens at 10MPa and 20MPa but noticeably smaller when the water pressure is the 

lowest at 5MPa, for less MH bonds break finally as water pressure increases. 

Figure 14 shows the strength envelope of MHBS specimens at the three water 

pressures. The specimens are tested with effective confining pressure 0.5MPa, 1MPa 

and 2MPa, respectively, just the same as testing of MHBS at different temperatures. 

The computed cohesion at peak state, the peak friction angle and the residual friction 

angle are shown in Table 5. Both the peak friction angle and the residual friction angle 

increase with water pressure. Again, the MHBS exhibits a significant cohesion value 

at peak state but no cohesion at residual state. 

5 Strain localization of MHBS at varying temperature and water pressure 

The results above show that the strength of MHBS increases with increasing water 

pressure and decreasing temperature, which is the result of the change in the micro 

MH bond strength with temperature and water pressure. To study the 

micro-mechanical phenomena, we focus on three temperature-water pressure 
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conditions in this section: (a) T=274K, w=5MPa; (b) T=274K, w=10MPa; (c) 

T=283MPa, w=10MPa. The comparison of (a) and (b) refers to the effect of 

increased water pressure, while the comparison of (b) and (c) reflects the effect of 

increased temperature. The effective confining pressures all remain at 1MPa. 

5.1 Deformation pattern 

The stress-strain response of MHBS is shown at six stages which are marked in 

Figures 11(a) and 13(a) with points O-E, which refer to starting point (O), initial yield 

point (A), peak stress point (B), strain-softening point (C), steady point (D) and end 

point of simulation (E), respectively. Figure 15 provides the deformation patterns of 

the three specimens mentioned in last sub-section at the six points under the effective 

confining pressure of 1MPa. The results show that shear band appears after peak 

stress is reached (point B) and becomes more distinct as axial strain increases. It is 

interesting is that as temperature and water pressure change, different types of shear 

band appear. To shed light on this occurrence, a total of 60 biaxial tests are simulated 

under different temperature and water pressure conditions while keeping the same 

effective confining pressure of 1MPa. The temperature-water pressure combinations 

explored and the resulting type of shear band in each simulation are shown in Figure 

16. The three types of shear band have been depicted in Figure 15 above. These shear 

band formations arise from the microscopic phenomena which will be discussed 

further below. 
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5.2 Bond breakage fields and rates 

It is known that strain localization of MHBS is deeply related to its bond breakage, 

according to Jiang et al. (2014a). The bond breakage field of MHBS with three 

different temperature-water pressure conditions is shown in Figure 17. It is observed 

that there is little bond breakage before peak stress (point A). At the peak stress (point 

B), the criss-cross pattern of shear band is starting to emerge throughout the specimen 

before developing into a distinct concentrated shear band where the bond breakages 

concentrate largely in the shear band (point C). The result is in corroboration with 

previous studies (Jiang et al., 2013, 2014a), reflecting that strain localization of 

MHBS is related to bond breakage in the specimens. 

Figure 18 shows the rate of bond breakage of the three MHBS specimens. The rate 

of bond breakage N
•

 could be described as: 

1

N
N



• 



                                 (13) 

where 1  is axial strain and N is the number of broken bonds. The stress-strain 

relationships are also plotted for comparison. The bond breakage rate reaches 

maximum just before the peak deviatoric stress and stays at a high breakage rate 

before dropping off as peak state is reached. The bond breakage evolution is close to 

that of stress-strain relationship, which is similar to Jiang et al. (2014a). 

In section 2, we have discussed the two criteria of failure of MH bond: 

tension/compression failure and shear-moment failure. The combination of these 

criteria may lead to four types of bond failure: tension failure, compression failure, 
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shear-moment failure where the bond is in tension and shear-moment failure where 

the bond is in compression. Figure 19 shows the build-up of the four bond breakage 

modes during the axial loading of MHBS specimens at the three temperature-water 

pressure conditions. Under 274K/5MPa and 274K/10MPa, bond failures are mostly in 

the shear-moment mode in tension, whilst under 283K/10MPa, bonds fail mainly in 

simple compression. Looking into the result of different types of shear band, we 

observe predominant bond failures in shear-moment whilst in tension form shear band 

Type 1 and 2 and predominant bond failures in compression form shear band Type 3. 

Furthermore, it is noted in Figure 16 that when the temperature increases beyond 

281K, the MHBS becomes more unstable which tends to result in Type 3 type failure 

in biaxial loading. To the left side of the dashed line where MH is stable and MH bond 

is stronger, Types 1 or 2 shear band modes prevail. Therefore, it is probable that 

different types of bond breakage lead to different types of shear band. In addition, 

Type 3 shear band is at the middle of the specimen, while Types 1 and 2 both hit the 

lower boundary. Thus, the bond breakage type may have an impact on position of 

shear band. 

5.3 Contact force chains, principal stress fields, particle velocity fields, and APR 

distributions 

Figure 20 presents the evolution of contact force chains, principal stress, particle 

velocity and average pure rotation (APR) of the MHBS simulations at the three 

temperature and water pressure conditions. They are depicted at the six points of O to 

E as in Figures 11 and 13. 
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Force chain is shown by representing each normal contact force with a line 

connecting the centers of the two contacted granules with the line thickness 

representing the magnitude of the force. Denser force chains mean stronger particle 

contact forces. In addition, blue force chains refer to compressive contact forces and 

red chains are tensile. From the figure we can find that after peak stress and shear 

band appearance, the force chains become more and more concentrated due to the 

masses of bond breakage and the re-distribution of contact forces, which is in 

corroboration with the stress field below; at the same time, regions with very few and 

weak force chains emerge. Such phenomenon is not so obvious in the specimen with 

temperature of 274K and stress of 5MPa due to the effects of lower boundary on 

granular contact forces at the shear bands. 

The stress field is computed at many positions in the specimen using measurement 

circle with a radius of 0.08m and calculating the principal stress at the center of each 

measurement circle. The longer line of the cross refers to the major principal stress 

and the shorter line refers to the minor principal stress. The direction of each line 

refers to the direction of the stress while the length refers to the magnitude. From the 

figure we can find that after peak stress, the principal stress at the position of shear 

band starts to rotate while that outside shear band keeps unchanged. This result is in 

corroboration with previous studies (Jiang et al., 2011, 2014a). The major principal 

stress rotates corresponding to the force chain, reflecting the relationship between 

macro and micro mechanical responses of MHBS. 

The velocity field is conducted by calculating velocities of all particles (velocity is 
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obtained by particle displacement over time period) and drawing a line of each 

particle with a proper length to represent the value of velocity. Larger length means 

higher velocity of the particle. This method has been adopted in virtualization of 

previous DEM studies (Jiang et al., 2006; Chin et al., 2013). From the figure we can 

find that after peak stress, the particles at shear bands start to move outwards to the 

shear band, leaving the velocity field blank at the position of the shear band. This 

result correlates with previous study (Jiang et al., 2014a). As temperature increases or 

water pressure decreases, the area of the blank increases due to the decrease of 

strength of MH bond and more particles spreading out after bond breakage. 

Now let’s turn to particle rotation. The average pure rotation rate (APR) is put 

forward by Jiang et al. (2005) and could be used as one of the kinematic 

characteristics of granules during loading. The APR in each measurement circle is 

calculated as follows: 
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where  is APR, N is number of particle contacts,  is the average radius of the 

two contacted particles at each contact,  and  are radii of the two particles at 

each contact, respectively and  and  are the pure rotation rates of the two 

particles at each contact. Then a contour of the APR is shown. From the figure we can 

find that after peak stress, the APR tends to concentrate within the shear band regions, 

which corroborates with previous study (Jiang et al., 2014a). It is noted that in the 

specimen 274K/5MPa, the APRs in the two shear bands have different colors. That is 

because the particles at the two regions have opposite rotational directions. As 
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temperature increases or water pressure decreases, the area with significant changes in 

APR increases due to the increasing instability of MH bonds. 

All the micro variables above have shown the micro characteristics of MHBS 

during strain localization. That is, the strain localization of MHBS is accompanied by 

localization of all the micro valuables of MHBS, and such localization turns more 

obvious as temperature and water pressure conditions weaken the MH bonds. 

5.4 Evolution of void ratio and pure rotation value inside and outside of a shear 

band 

Here, we explore the difference of macro and micro variables inside and outside of 

a shear band. Figure 21 shows the measurement circles set inside and outside the 

shear band of each of the three specimens described above. The measurement circles 

in the shear band are marked 1 to 3 while those outside the shear band are marked 5 to 

8. Figure 22 shows the relationships of the void ratio and the pure rotation value with 

the axial strain for the three MHBS specimens. The pure rotation value is the time 

integral of APR in each measurement circle: 

0 0
0

0
1

 (if  is small and )
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

                    (15) 

where 0  is pure rotation value at time 0t , 
i  is APR at time it , t  is 

incremental time and n  is an integer, respectively. The legend of the figure shows 

the number of the measurement circle. It is evident that before peak stress (point B), 

both void ratio and pure rotation value are largely similar and follow similar trends 

irrespective of the measurement positions; however, after peak stress and shear band 
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appearance, the void ratio inside the shear band starts to increase rapidly (dilation) 

before decreasing over further axial straining with intermittent sharp changes arising 

from local failure events. It is noted that the increase of void ratio within the shear 

band is very rapid for the 274K/5MPa case, which becomes less so when the stress 

level increases to 10MPa and more rapid again for the 283K/10MPa case. This is 

because the 274K/10MPa is the most stable condition where lighter bond breakage 

and inflation happen, compared to other conditions. Outside the shear band, the void 

ratio typically increases slightly immediately after reaching peak state and stays 

largely constant thereafter. Within the shear band, the pure rotation value increases (or 

decreases depending on the direction of the shear band) continually during the axial 

straining but remains largely constant outside the shear band. These observations are 

in corroboration with the previously reported study (Jiang et al., 2014a). 

5.5 Geometric characteristics of shear bands of MHBS 

The thickness and inclination angle of shear band are two main aspects in analyzing 

the progressive failure, as proposed in Jiang et al. (2014a). Figures 15, 17 and 20 can 

all be used to evaluate the thickness and inclination angle. In this study, we adopt the 

deformation pattern, the stress field, the distributions of bond breakage and APR 

distribution as evaluation criteria following the methodologies adopted in Jiang et al. 

(2011, 2014a). The MHBS specimens at post peak points C, D and E are evaluated. 

Table 6 (a) and (b) show the thickness and inclination angle of shear band in the 

three MHBS specimens, respectively. For the 274K/5MPa specimen, the two shear 
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bands are evaluated separately. The results show that (1) as axial strain increases, the 

thickness of shear band increases gradually, while the inclination angle remains stable; 

(2) the average thickness of shear band is 9-20 times the average particle dimension, 

which is in corroboration with Jiang et al. (2013b); the average inclination angle of 

shear band is in the range of 47°-51°; (3) as temperature increases or water pressure 

decreases, both the thickness and inclination angle of shear band increase. 

6 Conclusion 

This study presents a DEM study of the mechanical behavior and strain localization 

of methane hydrate bearing sediments (MHBS) at different temperatures and water 

pressures. A thermo-hydro-mechanical contact model of MHBS has been adopted in 

simulations of several biaxial tests in which the mechanical behavior of MHBS under 

the influence of temperature and water pressure has been studied. Three simulated 

MHBS specimens at different temperature-water pressure conditions have been 

investigated thoroughly to provide insights on the evolution of the macro and micro 

variables, including deformation patterns, bond breakage rate and field, principal 

stress fields, contact force chains, particle velocity fields and APR distributions, 

during the strain localization of MHBS. Geometric characteristics of shear band have 

also been studied. The results show that: 

(1) MHBS exhibits a peak strength followed by strain-softening with dilatancy 

concentrated in the shear band. The existence of MH increases the cohesion but 

decreases the friction angle of MHBS, which is in corroboration with previous study 



28 

 

(Zhang et al., 2012). As temperature increases or water pressure decreases, both the 

cohesion and friction angle of MHBS decrease but dilatancy increases, as a result of 

weaker MH bonds. 

(2) Shear band develops largely after the peak stress with the great majority of bond 

breakage occurring in the region of shear band. The relationship between bond 

breakage rate and axial strain follows the trend of the stress-strain relationship. Other 

micro and macro variables such as contact force chains, principal stress fields, particle 

velocity fields and APR distributions are also localized during strain localization. 

Though temperature and water pressure change, the appearance of localization of 

these variables still remains similar. These results are in corroboration with previous 

study (Jiang et al., 2014a). 

(3) Three different forms of shear band emerge as temperature and water pressure 

changes. Moreover, a new insight has been made about strain localization of MHBS 

that this phenomenon probably results from different types of bond breakage as the 

temperature-water pressure condition of MH is not so stable (the state point of MH is 

close to the equilibrium line) where the position of shear band is at the central 

specimen, while shear band occurs at the boundary when MH is relatively stable, in 

which bond breakage differs. 

(4) As temperature increases or water pressure decreases, both the thickness and 

inclination angle of shear band increase. 
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Figure 1. SEM image of MHBS (Saw et al., 2013). 
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(a) Pore-filling                (b) Load-bearing 

 

 

 

(c) Coating                  (d) Cementation 

 
Figure 2. Formation habits of MH. 
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(a) Particles in contact                  (b) Particles not in contact 
 

Figure 3. Illustration of MH bond contact model. 
  

   B 

MH bond Particle 

  

   B 

MH bond Particle 

l 

 r1 
r2 

r2 
r1 



4 
 

 
 
 
 
 
 
 
 
 
 

20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

0.10

0.12

MH saturation SMH-SMH0 (%)
 

 

Cr
iti

ca
l d

ist
an

ce
 l c

r (
D

50
)

 
Figure 4. Relationship between critical MH bond length and MH saturation (Zhou, 2009). 
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(b) Critical bond length 1.0mm 
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(c) Critical bond length 1.5mm 

Figure 5. Shear strength envelope of cement bond. 
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(c) Critical bond length 1.5mm 

Figure 6. Rotational strength envelope of cement bond. 
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(b) Rotation 

Figure 7. Fitting of strength envelope parameters. 
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Figure 8. Phase equilibrium of MH (Sun et al., 2014). 
  



9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

5 6 7 8 9 10
0

20

40

60

80

100

 

 

Pe
rc

en
ta

ge
 o

f g
ra

in
s 

w
ith

 lo
w

er
 d

ia
m

et
er

 (%
)

Grain diameter d (mm)  
 

Figure 9. Grain size distribution for non-bonded soil specimens. 
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Figure 10. Flexible grain boundary in DEM and mosaic-style coloring. 
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(a) Stress-strain relationship 
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(b) Volumetric strain-axial strain relationship 
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(c) Stress-strain relationship of MHBS acquired from experiments by Masui et al. (2005) 

Figure 11. Variation of deviatoric stress and volumetric strain with axial strain for MHBS under 
different temperatures 
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Figure 12. Strength envelope of MHBS under different temperatures. 
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(a) Stress-strain relationship 
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(b) Volumetric strain-axial strain relationship 

 
Figure 13. Variation of deviatoric stress and volumetric strain with axial strain for MHBS under 

different water pressures. 
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Figure 14. Strength envelope of MHBS under different water pressures. 
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Figure 15. Deformation response during deviatoric loading for the three MHBS specimens. 
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Figure 16. Different types of shear bands 
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(a) T=274K, wσ =5MPa (Type 1) 
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Figure 17. Bond breakage fields of three MHBS specimens. 

  



19 
 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
 

D
ev

ia
to

ric
 st

re
ss

 σ
1-σ

2 (
M

Pa
)

 Deviatoric stress

0
2
4
6
8
10
12
14
16
18
20

 Bond breakage rate

B
on

d 
br

ea
ka

ge
 ra

te
 N

 (1
05 /ε

)

Axial strain εa (%)

•

 

(a) T=274K, wσ =5MPa 
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(b) T=274K, wσ =10MPa 
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(c) T=283K, wσ =10MPa 

Figure 18. Stress-strain relationship and bond breakage-strain relationship of three MHBS 
specimens. 
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(a) T=274K, wσ =5MPa (Type 1) 
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(b) T=274K, wσ =10MPa (Type 2) 
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(c) T=283K, wσ =10MPa (Type 3) 

Figure 19. Number of bond failures in different modes for the three MHBS specimens. 
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Figure 20. Contact forces, principal stress fields, particle velocity fields and APR distributions of 

three MHBS specimens. 
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Figure 21. Measurement circles in the three MHBS specimens. 
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(i) T=274K, wσ =5MPa (Type 1) 

0 2 4 6 8 10
0.24

0.26

0.28

0.30

E

D

C

B

O
 

 

Pl
an

ar
 v

oi
d 

ra
tio

Axial strain εa (%)

 Circle 3 (in)
 Circle 6 (out)
 Circle 7 (out)

A

 

(ii) T=274K, wσ =10MPa (Type 2) 
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(iii) T=283K, wσ =10MPa (Type 3) 

(a) Void ratio 
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(i) T=274K, wσ =5MPa (Type 1) 
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(ii) T=274K, wσ =10MPa (Type 2) 
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(iii) T=283K, wσ =10MPa (Type 3) 

(b) Pure rotation value 
Figure 22. Evolution of void ratio and pure rotation value inside and outside the shear band in the 

three MHBS specimens. 
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Table 1. Values of fitting parameters of shear resistance envelope of Portland cement bond. 

Critical bond length 0.6 mm 1.0 mm 1.5 mm 

gs 

fs
 

2.140 
0.975 

1.421 
1.181 

1.459 
0.997 
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Table 2. Values of fitting parameters of shear resistance envelope of Portland cement bond. 

Critical bond length 0.6 mm 1.0 mm 1.5 mm 

gr 

fr 

3.054 
0.761 

2.079 
1.048 

2.241 
0.867 
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Table 3. Sample parameters. 

 
Size of the sample (mm, mm) 820 × 1640 

Number of particles 24000 
Planar void ratio ep 0.27 

Particle density sρ  (kg/m3) 2600 

Particle normal stiffness p
nk  (N/m) 6.0×108 

Particle shear stiffness p
sk  (N/m) 4.0×108 

Particle friction coefficient pµ  0.5 
Boundary friction coefficient 0.0 

Boundary normal stiffness (N/m) 3.0×1010 
Particle rolling resistance coefficient 0.5 

Local damping coefficient 0.7 
Viscous damping coefficient 0 

MH density ρ  (g/cm3) 0.9 

MH elastic modulus E 
Function of T and wσ  see Eq. 

(11a) 

MH compression strength cMHσ  
Function of T and wσ  see Eq. 

(11b) 

MH tension strength tMHσ  
Function of T and wσ  see Eq. 

(11c) 
MH bond friction coefficient bµ   0.5 

MH bond rolling resistance coefficient 
bβ   

1.0 

Critical length of MH bond crl  (mm) 0.6 
MH saturation (%) 53.2 
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Table 4. Cohesion and friction angle of MHBS with different temperatures. 
 

Water 
pressure 
(MPa) 

Temperature 
(K) 

Cohesion at 
peak state 

(MPa) 

Peak 
friction 
angle 

(°) 

Residual 
friction 

angle (°) 

 
274 1.05 15.21 20.61 

10 278 1.01 13.13 18.69 

 
283 0.69 12.35 17.83 
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Table 5. Cohesion and friction angle of MHBS with different water pressures. 

Temperature 
(K) 

Water 
pressure 
(MPa) 

Coheasion 
(MPa) 

Peak 
friction 

angles(°) 

Residual 
friction 

angles(°) 

 
5 0.93 14.34 17.14 

274 10 1.05 15.21 20.61 

 
20 1.21 16.41 21.09 
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Table 6. Thickness and inclination angle of shear band in the three MHBS specimens. 
 

(a) Thickness 
 

Temperature 
and water 
pressure 
(Type) 

Evaluation criteria 

Thickness (d50) 
C: axial strain 

aε =2% 

D: axial strain 

aε =6% 

E:axial strain 

aε =10% 

T=274K, 

wσ =5MPa 

(Type 1) 

Deformation pattern 11.91 / 10.96 13.72 / 13.47 15.66 / 17.48 
Stress field 11.92 / 11.72 14.39 / 14.03 16.16 / 17.18 

Distribution of bond 
breakage 

12.05 / 11.73 15.12 / 14.73 15.24 / 17.60 

Distribution of APR 11.84 / 11.38 14.53 / 14.13 16.05 / 17.78 
Average thickness 11.93 / 11.45 14.44 / 14.09 15.78 / 17.51 

T=274K, 

wσ =10MPa 

(Type 2) 

Deformation pattern 9.30  10.27  12.32  
Stress field 9.05  10.98  13.10  

Distribution of bond 
breakage 

9.90  10.39  12.16  

Distribution of APR 9.62  10.49  12.73  
Average thickness 9.47  10.53  12.58  

T=283K, 

wσ =10MPa 

(Type 3) 

Deformation pattern 13.58  14.97  19.31  
Stress field 14.02  15.08  18.70  

Distribution of bond 
breakage 

10.66  14.57  17.39  

Distribution of APR 12.24  14.13  17.81  
Average thickness 12.63  14.69  18.30  
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(b) Inclination angles 
 

Temperature 
and water 
pressure 
(Type) 

Evaluation criteria 

Inclination with respect to horizontal direction 
(deg.) 

C: axial strain 

aε =2% 

D: axial strain 

aε =6% 

E:axial strain 

aε =10% 

T=274K, wσ

=5MPa 
(Type 1) 

Deformation pattern 49 / 48 47 / 48 51 / 49 
Stress field 49 / 48 47 / 48 52 / 52 

Distribution of bond 
breakage 

49 / 48 47 / 48 50 / 48 

Distribution of APR 49 / 48 47 / 48 50 / 47 
Average inclination 49 / 48 47 / 48 50.75 / 49 

T=274K, wσ

=10MPa 
(Type 2) 

Deformation pattern 47 48 46 
Stress field 47 47 47 

Distribution of bond 
breakage 

46 47 48 

Distribution of APR 47 46 50 
Average inclination 46.75 47 47.75 

T=283K, wσ

=10MPa 
(Type 3) 

Deformation pattern 49 49 49 
Stress field 48 49 52 

Distribution of bond 
breakage 

48 49 51 

Distribution of APR 49 49 48 
Average inclination 48.5 49 50 
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