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ABSTRACT 

The use of big data in higher education has evolved rapidly with a focus on the practical application 

of new tools and methods for supporting learning. In this paper, we depart from the core emphasis 

on application and delve into a mostly neglected aspect of the big data conversation in higher 

education. Drawing on developments in cognate disciplines, we analyse the inherent difficulties in 

inferring the complex phenomenon that is learning from big datasets. This analysis forms the basis 

for a discussion about the possibilities for systematic collaboration across different paradigms and 

disciplinary backgrounds in interpreting big data for enhancing learning. The aim of this paper is to 

provide the foundation for a research agenda, where differing conceptualisations of learning become 

a strength in interpreting patterns in big datasets, rather than a point of contention. 
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Introduction 

While the use of big data in higher education is undoubtedly maturing, there is still 

some way to go before learning analytics, as an emerging discipline, reaches its 

potential as a collaborative endeavour. Siemens (2013, pg. 1382) described the 

definition of learning analytics as per the first conference on Learning Analytics 

and Knowledge (LAK) in 2011 thus:  

Learning analytics is the measurement, collection, analysis, and 

reporting of data about learners and their contexts, for the 



2 

purposes of understanding and optimizing learning and the 

environments in which it occurs.  

From this definition, one of the defining characteristics of learning analytics, 

particularly in comparison to educational data mining, is that it is not focussed 

solely on analytical techniques (Siemens & Baker, 2012) but on ‘understanding and 

optimising learning’. There is, therefore, need to consider what exactly learning is 

and how best to infer it from large datasets in order to attempt to optimise it. This 

has led some in the community to emphasise that learning analytics should be about 

learning primarily over the analytical techniques used to monitor and intervene 

(Authors, 2012; Rogers, 2015). Focussing on learning as the central emphasis of 

learning analytics is a crucial turn for the field (Authors, 2015). Difficulties that 

have arisen in similar multidisciplinary fields dealing with big and complex datasets 

such as educational neuroscience (Authors, 2017) highlight the critical necessity of 

monitoring and updating assumptions and conceptualisations that underpin the 

analysis and interpretation of big data. Although there has been some discussion of 

these issues in the learning analytics literature, this paper aims to extend on these 

debates by providing the basis for a transdisciplinary research agenda.  

 

We define transdisciplinarity, as per Nicolescu (2002), as a strategy for recognising 

the importance of what exists between and beyond disciplinary boundaries and for 

embracing the multiple levels of reality for a more holistic approach to 

understanding learning and teaching. This is important given the complexity 

inherent in learning theory (e.g. Jonassen & Land, 2012) and the difficulty in 

defining and inferring learning from big data. We will unpack some of this 

complexity to suggest ways that this holistic approach might be achieved. Diverse 

conceptions of complex phenomena like learning & diverse conceptions of 

teaching, have led to fundamental issues in other multidisciplinary activities, for 

example ?. Recognising and developing an appreciation for these differences is 

important for fields like learning analytics comprising an inherently collaborative 

effort. 
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Inferring learning from big data  

We begin our analysis of how learning has been inferred from data across 

disciplinary ontologies by first examining other areas where big data has been 

drawn on in an attempt to understand learning. While the availability of big data 

sets have created some opportunities for researchers and instructors that were not 

previously viable, that is not to say that there has not already been a concerted effort 

to use, particularly, behavioural, demographic and other data to understand the 

learning process. Psychological science, for example, has been undertaking the 

same task for over a century, with an emphasis on using behavioural data to infer 

cognitive and affective processes, making it a useful analogy for informing learning 

analytics. To date, there has been much focus on educational assessment (e.g. 

Knight, Buckingham Shum & Littleton, 2014), measurement theory (e.g. Milligan, 

2015) and psychometrics (e.g. Pardos, Baker, Gowda & Heffernan, 2011) in 

relation to big data in higher education. There has been less emphasis on the 

parallels with the trajectory other cognate fields have taken in the learning analytics 

literature (Authors, 2012). There is much to be learned from the course that these 

disciplines have taken over the last century. There is also value in attempting to 

understand what can be gleaned from these disciplines to inform and leverage 

transdisciplinary collaborations. 

 

One area that is of potential import is the ways in which cognate disciplines have 

dealt with the kinds of inferences that can be made about learning through varied 

methodological approaches. What is perhaps most notable for the process of 

inferring learning from big data is the so-called ‘replication crisis' in psychological 

science (Maxwell, Lau & Howard, 2015). The inability of researchers to replicate 

widely known and ostensibly robust observations highlights issues of statistical 

significance and inference. Even though experimental psychology is well-

established as a sub-discipline with rigorous and reputable methodologies, there are 

still fundamental problems with the kinds of inferences that can be made based on 

the data collected. The aim of psychological experiments is to determine cause and 

effect relationships. In an educational context, this aligns with the goal of 

determining whether educational aims, interventions, designs or learning activities 

lead to changes in behaviour, memory or thinking. In other words, the aim is also 

to ‘understand and optimise learning’. The central issue here is the impact of 
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methodological and contextual issues on inference, an issue shared across analytic 

approaches to learning. Concerns related to sampling, generalisability, 

measurement error and power all speak to the underlying methodological and 

contextual factors that impact on learning and other psychological phenomena. 

More is not necessarily better; not more people, nor more variables. This has 

implications when analysing big data sets. More people can inflate power and make 

it appear that there is a meaningful (and statistically significant) effect being 

observed, but there may be no corresponding influence on the size of the effect 

(Wise & Shaffer, 2015). Similarly, adding more variables increases the likelihood 

of covariance between the factors of interest and raises the possibility that 

constructs are not being adequately assessed. Operationalisation of variables in this 

context becomes increasingly difficult, particularly when seen through the lens of 

a specific discipline. On the one hand, highly specific studies examining individual 

variables in subgroups have limited generalisability that can be artificially inflated 

due to increases in power without associated increases in effect size. On the other 

hand, increasing the number of variables introduces substantial noise and 

covariance. This tension between rigour and relevance is common across research 

on educational technologies (e.g. Reeves, 2006). 

 

The dilemma that psychological science currently finds itself in has implications 

for the interpretation of big data in higher education. Learning analytics offer the 

potential for large-scale analysis, particularly in MOOCs (Milligan, 2015). Large 

numbers allow for multilevel analysis across many variables and temporal, 

situational and event-related contexts. The power inherent in these enormous 

sample sizes and potentially substantial numbers of variables across time, location 

and settings carry an additional conceptual problem that cannot only be solved by 

statistical methods alone. As such, we cannot appropriately justify data-driven 

inference. How does one ensure meaningful inferences are made from data that are 

more likely to be significant based on the power within the statistical model? Power 

is often considered a source of measure of acceptance or establishing of the 

generalisability of the findings of research. This statistical argument is insufficient 

in regular research, as other pertinent issues also compound the criteria for 

generalisability, for example, sampling bias. The limitations of statistical models 

for determining what is occurring in the mind are therefore becoming apparent and 



5 

do not lend themselves to being easily resolved by increasing sample sizes or the 

number of variables being examined. Data-driven inference, therefore, does not 

appear to be sufficient to provide a clear picture of psychological & social 

phenomena such as learning. This complication has implications when considering 

the use of big data for enhancing learning in higher education, particularly given 

that researchers with different disciplinary backgrounds will interpret the same data 

in different ways. 

 

Learning: process or outcome, or both? 

The issues evident in psychological science provide the basis to delve deeper into 

the problems around inferring learning from big data. Even if we are to accept the 

assumption that learning occurs in the mind (which is controversial enough), the 

fundamental construct is multi-dimensional, content specific and context-

dependent. This includes both the context in which the data is collected and the 

epistemic context through which a researcher attempts to make sense of the data. 

De Houwer, Barnes-Holmes and Moors (2013) are critical of research examining 

learning, making the argument that it is often not even clear in research whether 

learning is being treated as a process or outcome. Following this, Sodestrom and 

Bjork (2015) contend that what is often conceptualised as learning in research and 

practice is, in reality, performance. While educationally, learning has been 

traditionally seen as a developmental process, in recent times this idea has also been 

conflated with performance. The increased emphasis on graduate attributes and 

work-ready skills suggests a shift towards performance in higher education, such 

an interpretation of learning is some way from how a psychological or learning 

scientist would view learning. University graduates are now being assessed on what 

they can do (in real or simulated settings), rather than who they are or how they 

have and will continue to develop as emerging professionals, scientists or scholars. 

The implication of these trends is that there is an emphasis on a snapshot of 

performance as a means of determining student learning rather than seeing learning 

for what it is, a developmental process leading to an (ongoing) outcome. The 

confusion in even this most foundational definition of learning highlights the 

potential mismatch in the kinds of interpretations different researchers with 

different disciplinary backgrounds will make on the basis of the same data. 
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This misguided focus on performance over learning therefore masks a deeper issue 

about what learning is. Jacobson, Kapur and Reimann (2016) discuss a shift in the 

focus of educational research on learning towards more complex, systems-based 

conceptualisations. This change is an attempt to move the debate forward from the 

clear divide between cognitive and social/situated conceptions of learning. Their 

premise is that complex, systems-based models can incorporate both. Nathan and 

Alibali (2010) further argue that the learning sciences should be engaged in 

complementary activities featuring both elemental (foundational cognitive 

psychology-type work) and systematic work that addresses more complex, situated 

issues. Their reasoning for making this argument is that learning occurs across 

multiple spatial and temporal dimensions. In both articles, the authors highlight the 

difficulty in conceptualising and attempting to enhance learning. These are 

fundamentally complex tasks, particularly due to the difficulty in translating basic 

learning processes up to authentic and socially complex learning environments, as 

encountered in real-world and immersive contexts.  

 

The complications inherent in trying to infer learning from data are due to both the 

distal nature of the phenomenon in question from the instruments attempting to 

measure it and the large variability in processes and outcomes. There is, therefore, 

great difficulty in using analytic approaches that have proven useful for making 

meaning from big data in other industries. For example, both marketing models (in 

Business fields) and epidemiological models (arising from Medicine) have 

advantages in that they can rely on the use of natural experiments (see Dunning, 

2008) to infer causal, moderating and mediating factors underpinning economic or 

health phenomena. However, while those contexts have been drawn on to think 

about education settings, both provide poor analogies for interpreting big data in 

higher education. Marketing as a model for learning analytics fails because of the 

dualist nature of the outcome (buy/do not buy – click/do not click etc.). Similarly, 

epidemiological analogies do not work because the disease model tends to shift the 

outcome focus in two dimensions; morbidity and mortality. Again, the results on 

both dimensions tend to be binary; people are ill or not ill, dead or not dead. In 

higher education contexts, we mitigate against binaries that may cause to polarise, 

segregate and stereotype learners and their learning.  
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Attempting to model and make decisions based on binary outcome data like this 

has been most famously criticised as an example of the ‘McNamara fallacy' (Basler, 

2009). This fallacy is named after a Vietnam War era US Secretary of Defence who 

over-relied on crude quantifications such as total numbers of casualties to determine 

progress in the war. These crude measures did not adequately capture the 

complexity of the war, and ineffective strategies were employed thus. Similarly, 

learning is multidimensional, complex and requires the preparation of graduates for 

an unknowable future (Barnett, 2004). This complexity is apparent in ongoing work 

in assessment design and psychometrics. Both areas have an extensive body of 

literature aimed at determining how best to tell whether students have learned and 

whether they are developing the knowledge, skills and abilities for their future 

needs. Furthermore, there is heated debate about whether the sorts of outcomes 

being achieved by college students are adequate for the future workforce (Arum & 

Roksa, 2011), and whether indeed, such outcomes should be the purpose of higher 

education at all (Authors, 2016). If learning outcomes were easy to operationalise 

and measure, there would be less need for such work or critique.  

 

While there is a danger inherent in attempting to infer a phenomenon as complex 

as learning from simple data in big datasets, there is a second aspect of these 

inferences that warrants mention here. Simplifying complex outcomes into 

relatively straightforward measures also risks invoking Campbell’s law (Nichols & 

Berliner, 2007). This law is captured most concisely in the saying ‘teaching to the 

test' that was applied to standardised national testing in primary and secondary 

education. In other words, simplified output measures become the goal of education 

rather than the earlier focus on teaching for quality learning. This perversion of the 

purpose of learning creeping into university settings is particularly problematic as 

it perpetuates an industrialised version of education. Students as graduates risk 

being seen as products for industry, the measures used to monitor their performance 

give a sense of how well they are prepared to work, rather than how they have 

developed and can contribute a critical disposition as educated citizens. As 

Rowntree (1987) argues, inherent in both the McNamara fallacy and Campbell's 

law are bias towards quantification that implies that anything that cannot be 

measured is not worthwhile. The measures we currently have do not capture the 
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complexities and multidimensional nature of learning, despite the nascent potential 

of large datasets. The issues humanity faces in the 21st Century, therefore, require 

more sophisticated approaches to learning as ongoing development, rather than 

what can most easily be quantified to the satisfaction of economic rationalism and 

other interests. 

 

It is perhaps a truism to argue that learning as a construct ranges from repetition to  

higher order, complex phenomena, and must always  be considered within the 

interplays of all historical, cultural, political, economic and social contexts that it 

occurs in. Beyond this however, that there is seemingly no consensus whether 

learning should be considered as a process or outcome, or both,  suggestive that 

there are many (conflicting) assumptions teachers, researchers and practitioners 

bring to learning analytics as they do to cognate endeavours attempting to 

understand and enhance learning. These assumptions are untapped, currently not 

routinely explored, which may create a barrier for genuine transdisciplinary 

thinking and actions within learning analytics research. 

 

Complex phenomenon – complex model? 

One possible account for the complex mix of conceptualisations of learning is to 

consider using much more sophisticated models that attempt to capture better the 

complexity of learning from large datasets. Jacobson et al. (2016) argue that to 

continue to make progress in understanding and enhancing learning, it is indeed in 

complexity science that answers are to be found. A complex phenomenon requires 

a paradigm that has complexity at its core. Intelligent tutoring systems (ITS) 

provide a good example demonstrating how difficult and complex it is to create 

efficient statistical models of student learning (Mislevy & Gitomer, 1996). 

Intelligent tutoring systems have been in development for decades since the 

pioneering work of Newell (1990). The design of these systems, while impressive, 

is still some way off providing truly intelligent and adaptive tutoring. Holland, 

Holyoak, Nisbett, and Thagard (1986) made the argument that it is challenging to 

codify the inferential processes that humans are capable of into a machine. More 

recently, Baker (2016) pointed out that ITS remain ‘stupid' in comparison to the 
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people they are designed to assist. Instead, Baker argues that systems should be 

built to augment, rather than supplant human capabilities.   

 

Although modelling approaches used to infer learning from big datasets use a 

combination of inductive and deductive logic, there is always, intrinsically, an 

inferential gap between human and machine. Statistical prediction cannot, no matter 

how large or complex the dataset, remove the need for inference and interpretation 

(see also Holland et al., 1986). This requirement means that there are limited options 

concerning how to progress with these predictions. One is to continue to tweak the 

model through iterations. This process occurs already measurement models, 

predictive analytics and so on. Iterative cycling through model updating (or 

learning) is foundational for neural network models (particularly Hebbian-based 

models) and machine learning (Strickland, 2014). There are undoubtedly significant 

advances being made in increasingly complex and adaptive models and algorithms, 

that is not in dispute. Whether these sophisticated modelling approaches can 

seamlessly bridge the gap between data-driven inference and complex, messy 

reality is unclear. So long as there remains a gap, there will also be alternative 

interpretations about how best to infer across the gap. The issue about the 

assumptions being made about this meaning making process therefore remain an 

issue. 

 

Alternative methods for predictive modelling try to understand better the 

assumptions being made by referring to theory (Authors 2012a). Conversations and 

ongoing collaboration between the technical and theoretical communities will help 

to bridge the research and practice gap and lead to better inferences. Ideally, though, 

both the iterative improvement of models and the benchmarking of the models 

against complex reality are used in unison. Whether that has been true of the field 

of learning analytics is up for debate. To date, there has been more focus on 

educational practice, intervention and the interface between big data, analytics and 

design (ethical issues aside). It is fair to say that there has been less focus on 

determining what it is that is the actual phenomenon of analysis – learning (Liu, 

Rogers & Pardo, 2015; Authors, 2012) and what kinds of assumptions about how 

best to infer learning researchers from different disciplines and traditions bring to 

that analysis. 
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Inference and translation of big data in practice 

Learning analytics as a field can learn much from the well-worn path that 

psychological science, educational neuroscience and to an extent, educational 

technology (see Jones & Kennedy, 2011) have taken when attempting to use data 

to inform practice. While there may be no replication crisis of the sort psychological 

science is experiencing in the use of big data in higher education, it can reasonably 

be expected that there will be due challenges and upheavals ahead. Like the 

replication crisis, these will inevitably link to fundamental issues of rigour and 

validity due to  the diversity of approaches different researchers bring to the field 

based on their academic and contextual backgrounds. Learning analytics as a 

developing field, may not be well prepared to address these changes due to the 

emphasis to date on the practical aspects of learning analytics implementation, as 

has often been the case in similar interdisciplinary projects. 

 

Since its inception, learning analytics as an educational science field has been 

inextricably linked to educational practice. Learning analytics is a transdisciplinary 

area of research by default, as it is grounded in  transdisciplinary educational 

practices. With growing availability and access to digital big data sources, 

universities and educators increasingly see the lure of its affordance in enhancing 

student retention, learning experiences, and instructional practices. This attraction 

has resulted in the increasingly emerging view that the integration of learning 

analytics in industry-wide educational practice (from classroom levels to 

institutional, to national levels) as impending or inevitable (Authors, 2014). This 

perception seems to have occurred despite there being no established path forward 

for translation of basic research into practice and vice-versa. Whilst there are and 

may be many paths, a research-informed approach necessitates the breaking down 

of barriers between levels of analysis, to allow  translation to flourish .  

 

Challenges to institutional adoption aside, herein lay the issue: the growth in use of 

big data in practice parallels that of the growth in big data research – a double-edged 

sword in evidence-based educational practice. While practitioners are eager to 

adopt big data to enhance student learning and teaching practices, the co-
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development of an emerging evidence base to inform practice effectively means 

that there are immediate challenges to translation for practice. It is clear that 

analytics can, has, and will open doors for process level analyses in digital learning 

and education. Like other learning science methods, and theories of practice 

(REFs), learning analytics is not impervious to considerations of design rigour and 

relevance to facilitate causal inferences. While the ease of access to the learning 

analytics (raw source log data, transformed, aggregated, or algorithmic) has 

relatively increased, it simply is not a substitute for deep thinking across different 

perspectives. Rather, critical reflection in using big data in higher education practice 

contexts becomes even more necessary. 

 

With the affordances that the analysis and interpretation of big data bring therefore 

come significant translational, inferential and implementation challenges. The 

impact of inferential implications is more pronounced given the temporal, 

conceptual, and logistical proximity to practice in higher education. There are a few 

specific issues of concern relating to the challenges with inferences about 

behaviours from learning analytics that directly impact educational practice. 

Learning analytics is conceptualised as a sense-making and actionable science in 

practice (Authors, 2015; Siemens, 2013). That is, once you have access to data, 

whether visualised or analysed, this should lead to better understanding of the 

learning processes in question and subsequently, design of actions to improve 

student learning or instructional practice in that domain. The issues of inference, 

therefore, become fundamental to the transdisciplinary, translational processes in 

sense-making. While critical discussions of translational issues in inferences made 

from big data have emerged (Reimann, 2016; Wise & Shaffer, 2015), learning 

analytics as a practice-focussed field could further benefit from the lessons learnt 

in the health and clinical sciences, which have been able to achieve a significant 

level of transdisciplinarity. Considerations are evident for valid inferences, 

translation, and implementation in practice to facilitate our progress in bridging 

research and practice. Green and Glasgow (2006) suggested that over-reliance on 

decontextualised implementation of clinical research have limited the rate of 

integration of evidence into health practice. Consequently, they have recommended 

evaluation criteria for researchers and practitioners in a bid to facilitate the 

translation of research to practice (i.e., RE-AIM, Reach, Effectiveness, Adoption, 
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Implementation, Maintenance). The framework has also been demonstrated as a 

useful means to conduct systematic reviews and meta-analyses across complex and 

broad health science research (e.g., Blackman et al., 2013; Laranjo et al., 2014). 

Equally important is the assessment of evidence-based practice. For example, while 

an evaluation framework has been developed, used widely, and demonstrated to be 

useful in facilitating successful implementation of evidence-based practice (Kitson, 

Harvey & McCormack, 1998). The evaluation of the efficacy of such frameworks, 

nor the capacity to refine the frameworks have yet been realised (Kitson et al., 

2008). As a genuinely transdisciplinary research and practice field such as learning 

analytics, two-way communication between researchers and practitioners is crucial 

to advance empirical and theoretical development in complex, collaborative 

research and practice contexts.  

 

Another implication of inferential challenges for the use of big data in higher 

education is towards actionable science. Inherent in linking learning analytics to 

action in practice is the impact of learning analytics practice on students; for their 

experiences, learning, motivation, engagement and their lives in general. These 

complex considerations that need to be factored in when making inferences lie in 

addition to issues identified in a related field, data-driven decision making in 

schools (Datnow & Hubbard, 2016; Farrell & Marsh, 2016). That is, in driving 

action, data is sometimes viewed as evidence in and of itself and thus may be 

perceived as sufficient in justifying directions for actions. This illusion of 

objectivity of data or analytics is a cognitive fallacy (Burger & Berry, 1988), and 

can result in a false sense of rigour (Dover & Schultz, 2016) and potential 

misapplication of sense-making and actions (Cohen, 1994). This perception of data 

as unquestionably objective has been shown to be problematic in other domains. 

For example, the claimed objectivity of big data mining in drug safety has been 

demonstrated to be a barrier to effective pharmacological clinical judgement. 

Outcomes from different software systems and vendor tools were deemed to be 

discrepant simply through differential data transformation and computation 

methods (Hauben, Reich, Gerrits & Younus, 2007). This result, therefore, prompted 

the critical role of collaborative communication between the technical and 

functional subdomains, facilitating more realistic perceptions of the data. This 

approach was beneficial for informing clinical analysis and decision making to 
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realise the advantageous utility of the algorithmic support system. Acknowledging 

the role of relative subjectivity and complexity in making inferences could not only 

open the way for more accurate and appropriate judgement and decision making 

but also recognises the realities of the complexities of measurement and meaning 

making. Thus, understandably, the focus on issues about ethics in using learning 

analytics is prevalent in affecting educational practice (e.g., Ferguson, Hoel, 

Scheffel & Drachsler, 2016; Prinsloo & Slade, 2016). How do issues in making 

inferences from big datasets impact on ethics? We propose that understanding these 

inferential issues in complexity and being more explicit about the assumptions and 

potential biases beneath the inferences is fundamental to ethical learning analytics 

practice and application. Increased attention to the assumptions beneath the 

complexity necessitates more rigorous judgements of the defensibility of the 

inferences and proposed or designed actions. Buckingham Shum and Crick (2016) 

suggest that engaging with this complexity is inevitable for the sector to achieve the 

unique challenges learning analytics as a field is working towards overcoming.    

 

Practitioners have the added responsibility of critically considering the 

consequences of their actions beyond intended improvements in learning, teaching, 

or retention, to that of impact on individuals and groups, as well as the emergent 

ecological consequences. While data-driven action is often well-intentioned, 

fundamental attribution or inferential errors made when analysing big data in 

practice can impede positive transformational change in application. That is, 

interventions or actions designed based on incorrect inference arguably would 

result in lower likelihoods of implementation success as the assumptions underlying 

the model are flawed, thereby limiting the potential benefit of learning analytics in 

enhancing educational practice. By the same token, when care is taken with the 

inferences made, the potential of learning analytics in improving practice becomes 

tangible. Recent evidence suggests that the power of evidence-based, well-informed 

actions and interventions does not simply end with individuals; people who have 

benefited can improve their social environments thereby helping others indirectly 

(Powers et al., 2016). Thus, prioritising considerations for shared transdisciplinary 

approaches and deliberate inferential processes over the impetus for obligation to 

act, would facilitate the successful implementation of well-designed interventions. 
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A transdisciplinary approach to interpreting big data 

So far in this paper, we have attempted to delve into some of the fundamental issues 

about how learning is conceptualised and inferred broadly about big data and what 

this means in practice. We have also highlighted some of the unresolved issues 

related to inference that could be considered more deeply by the community. We 

now turn our attention forward. Our aim in doing so is to attempt to move beyond 

the theoretical quagmire towards practical means of enhancing communication and 

cooperation between the different ways of being brought to the community by 

various disciplinary groups. Careful consideration of disciplinary differences in 

ontology and epistemology has also been problematic in other cognate fields such 

as educational neuroscience. However, a concerted effort to bridge the laboratory 

and the classroom (see Authors, 2017a) is beginning to move educational 

neuroscience towards a transdisciplinary research agenda. Previous attempts at 

constructive collaboration between computer science, psychology and philosophy 

such as the pioneering work of Holland and colleagues (1986) have been 

highlighted as indicative of the substantial benefits on offer when diverse 

disciplines work in harmony rather than in opposition (Smoliar, 1987). We hope to 

provide a stimulus here towards the same goal in the interpretation of big data for 

enhancing learning in higher education.  

 

One difficulty in working across disciplines that is evident for example in 

educational neuroscience is that there are multiple layers of interpretation and 

analysis of learning from small parts of the brain over minute timeframes to the 

whole student over a lifetime (see Authors, 2017). By framing levels of analysis 

and action into abridged conceptual models, a possible way forward towards 

bridging these layers can be proposed. The primary means of allowing for 

meaningful translation and transdisciplinary collaboration is to make explicit the 

assumptions underpinning the inferences being made about learning on the basis of 

the data. Borrowing from the progress that has been made in educational 

neuroscience, there appear to be two main options for then explicating these 

assumptions and inferences across different levels of analysis. The first is to 

continue to assume a linear, hierarchical structure and cut down level of inference 

by conducting research and carefully interpreting the results incrementally between 

layers or levels of interpretation. This approach is similar in many regards to that 
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represented in Bloom’s revised taxonomy (Krathwohl, 2002). Using Ackoff’s 

(1989) representation of the path from data to wisdom, what this means is that each 

stage of the process involves a deliberate process of inference, translation and 

meaning-making (see figure 1). 

 

Figure 1. Representation of the Data, Information, Knowledge, Wisdom framework (adapted from 

Ackoff, 1989) 

 

When compared with the research and translation process that has been suggested 

for educational neuroscience, it is then possible to begin to see what a linear 

translation process might mean for interpreting big data in higher education. The 

process for educational neuroscience has been adapted from Horvath and Donoghue 

(2016). Like that of Ackoff (1989) the aim here is to make explicit the assumptions 

leading to the level of inferences being made, then break down the inferential 

distance into closer steps (see figure 2). So, a finding from a neuroimaging study 

can have impact on teaching practice in the classroom if it is adequately interpreted 

at the level of the brain and mind, through the behavioural level and again 

reinterpreted for teaching practice. Such a research agenda involves neuroscientists, 

cognitive psychologists, educational psychologists and teachers all working 

together across levels of data collection and interpretation. 
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Figure 2. Representation of linear translation process in educational neuroscience (adapted from 

Horvath & Donoghue, 2016) 

 

Building on an earlier version of a similar translational hierarchy (Authors, 2012), 

it is possible to extend on these previous models and come up with a version for 

situating big data analysis in the context of higher education research. Such a 

hierarchy is presented in figure 3. Again, this depiction highlights the need to make 

meaning of data collected through research conducted at each level for the other 

levels. The aim is presented here as having an impact on students as individuals as 

they exist in the world.  

 

Figure 3. Representation of a linear translation process for big data interpretation (adapted from 

Authors, 2012) 

 

We will not dwell on the ontological nature of the hierarchy as we have constructed 

it, a fuller discussion of the reasons why it is important to impact on both higher 

cognitive skills, like metacognition and on student being in the world can be found 
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in Authors (2012). The aim here is simply to suggest a possible linear translation 

and analysis approach for research on learning and how it can help interpretation of 

big datasets. To assist with that aim, we have also added to this figure an indication 

of where the information at each level is to be found. This model, therefore, 

underpins a possible agenda for research into aspects of learning in higher education 

where a particular aspect of learning. For example, student misconceptions, can be 

examined in small-scale, controlled environments, and then extended to more 

realistic settings. The small-scale studies, in this case, would generate hypotheses 

about what kinds of behaviours are most likely to indicate that a student has a 

misconception. Translation of this sort means that the inferences being made about 

the patterns evident in large real-life datasets are grounded in empirical evidence 

from laboratory studies. Therefore, any inferential gaps emerging from the 

interpretation of big data alone can be explicitly tested under controlled conditions. 

 

The linear translation approach is one way of systematically creating a framework 

for collaboration across levels of inference in learning analytics. A second option, 

however, is to implement something akin to an ecosystem model. A representation 

of this notion is presented in figure 4.  

 

 

Figure 4. Representation of an ecosystem model of evidence for big data interpretation 

 

This approach would involve a meta-model of learning where many inferences are 

made and triangulated. This model has been advocated in the emerging field of 

psychoinformatics (Yarkoni, 2012). A feature of this approach is that, rather than 
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treating different forms of information as hierarchical in time and space, all 

indicators and conceptualisations are treated as broadly equal and indicative of the 

central and holistic meta-construct. While this ecological approach may suggest 

some issues about conceptual confusion, many of these matters are dealt with using 

measurement models and sophisticated statistical inference. Bayesian modelling 

and machine learning are already making inroads in this regard. Diverse forms of 

evidence can be built into these models, and they can be refined over time as more 

information is passed through the system. Weightings can be manipulated based on 

what seems to be impacting on the outcomes the most. From this, a more 

sophisticated model of learning can be developed that provides improved fit to the 

data.  

 

In practice, this model could inform the application of learning analytics across 

levels of analysis and a diverse set of researchers with different methods for 

interpreting data. As we have alluded to in thus far, the key here is that all members 

of a transdisciplinary project discuss and make explicit their conceptual resources: 

that is, their definition of learning, where they see learning occurring and the 

methods by which they infer learning from the outset. A hierarchical model belies 

an assumption that some forms of evidence are more rigorous or relevant than 

others. While this may be true to an extent, it does not help resolve fundamental 

differences in the approach that researchers form different disciplines to make sense 

of data. While our ecological model is not designed to be an exact representation of 

reality, it does provide a way of thinking about evidence that moves beyond a notion 

that some forms of evidence are superior to others.  

 

While there is immense promise in discussions that allow for all forms of evidence 

to be considered, they have not necessarily helped to resolve problems in 

neuroscience, in behavioural economics or medicine. When all data are treated as 

qualitatively equal and allowed to drive the process, there is less space left for the 

data to have meaning to teachers or students. When implemented back into the 

complex social milieu the process ceases to be effective, however, some progress 

can at least be made towards breaking down disciplinary boundaries. 
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There are challenges with implementing either a linear or ecosystem-like approach 

to systematic, collaborative research outlined here. These problems lend credence 

to the argument made by Jacobson et al. (2016) that systems-based approaches may 

be a better option. The difficulty in adopting a systems-based approach is that it 

requires a level of expertise in systems thinking. Validity will continue to be an 

issue in interpreting big data in higher education no matter how collaboration 

occurs, whether that be within a linear, ecosystem or system-based framework. 

There is also some uncertainty as to whether different conceptualisations of learning 

create an insurmountable hurdle to systematic collaboration. For example, situated 

views of cognition and learning look to the complex physical and social context in 

which learning occurs to determine how it happens (Anderson, Reder & Simon, 

1996). Cognitivist views focus on what takes place in the mind of the individual. 

Equating these two different notions about the location of learning make working 

across these differing interpretations difficult despite the arguments made by 

Jacobson et al. and Nathan and Alibali (2010). Both paradigms look for evidence 

of learning in very different places. We have attempted here to provide some 

guidance as to how these sites may relate to each other. 

 

There are clear benefits of a research agenda that involves the explicit discussion 

about the assumptions that researcher make about learning when interpreting 

learning analytics data. A more systematic means of translation and implementation 

from each of the various views on the location and mechanisms of learning enables 

multiple affordances within a complex system (as per Holland et al., 1986). In 

educational neuroscience, this is beginning to allow for the inferences being made 

to have an impact from the laboratory to the classroom and online learning 

environment and back again (Authors, 2017). To date, learning analytics has 

predominantly focussed on click streams and log data that are relatively easy to 

collect but have limited utility in understanding learning deeply (Liu et al., 2015). 

Having a systematic way of fostering these conversations both builds on and 

generates the affordances of multiple pathways for understanding learning. We are 

therefore in agreement with Nathan and Alibali (2010) that any endeavour broadly 

characterised as the learning sciences should involve complementary systematic 

and elemental aspects. In other words, translation goes both ways; research 

systematically informs practice and practice routinely informs research. Referring 
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to our earlier example, misconceptions observed ‘in the wild’ through big data in 

MOOCs or learning management systems can help to inform the kinds of studies 

carried out on misconceptions in the laboratory. These studies, in turn, provide a 

sharper focus for the exploration of patterns evident in big datasets. This 

translational approach may not resolve any issues surrounding the conceptual 

complexity of the phenomenon. However, it may at least give everyone attempting 

to infer learning from big data, no matter their discipline or role, a means to 

converse about the kinds of inferences we can make about data and what they tell 

us about student learning. 

 

CONCLUSION 

The issues we have discussed in this article are not unique to learning analytics. In 

the learning sciences, there is continuing debate about what learning is and how 

best to infer it. Theoretical and methodological isolation of work does not 

productively engage researchers in much-needed transdisciplinary approaches. In 

an attempt to resolve these debates, researchers and practitioners cannot operate 

solely in their disciplinary silos. To move the learning analytics field forward, a 

transdisciplinary approach needs to be crafted, exploited and adopted where 

differences in ways of thinking, being, doing and valuing become points of strength, 

rather than points of contention. Critical to this will be an ongoing testing of the 

assumptions that are made about the validity of the data collected and what it is 

each individual and sub-discipline are actually referring to when speaking of 

learning and their conceptions of teaching. The lessons of psychological science 

and educational neuroscience suggest that privileging particular forms of knowing, 

or specific professions over others in this endeavour risk overextending the 

inferences made based on the data at hand.  

 

While it might be ideal for each person engaged in researching or implementing 

learning analytics to have expertise across all the relevant areas, this is not realistic 

at this point. Although aspirational, it may also be difficult for systems-based 

models of learning to underpin the ongoing collaboration between stakeholders 

attempting to make sense of big datasets in the higher education context. The 

complexity of our task means that more efficient ways of coming together and 
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facilitation that moves the conversation forward are needed. This initiative includes, 

and indeed is premised on, being mindful of the epistemological and ontological 

realities of collaborators, researchers and practitioners in the field. While each may 

not all see learning in the same way, and try to infer learning using different 

methodologies, we have attempted in this paper to provide necessary ground to 

move the transdisciplinary conversation forward and provide a basis for a 

multidimensional research agenda including deliberate sense-making and 

translation across levels of inference. 
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