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Woody biomass increases across three contrasting land uses in Hurungwe, mid-Zambezi 1 

Valley, Zimbabwe 2 

Abstract 3 

 4 

Globally, miombo woodlands store important quantities of carbon, with tree cover and 5 

carbon stocks strongly determined by human use. We assessed woodland cover and 6 

aboveground carbon stocks of miombo along a utilisation gradient on three different land use 7 

types i.e., a national park, through a buffer zone into a communal area. Woodland cover and 8 

carbon stock changes were assessed through mapping of aboveground carbon stocks (AGC) 9 

between 2007 and 2017 using Phased Array L- Band Synthetic Aperture Radar observations 10 

(ALOS-PALSAR 1 and 2). Woodland cover was higher in the national park and the buffer 11 

zone than in the communal area for both 2007 and 2017. In 2007, AGC stock was not 12 

significantly different (P > 0.05) across all three land use types. However, in 2017, mean AGC 13 

was significantly lower (P < 0.001) in the buffer zone and communal area than in the national 14 

park. In all three land use types, miombo woodland cover and AGC gains outweighed losses 15 

over the 10-year period. AGC gains were significantly higher (P < 0.001) in the national park 16 

compared to both the buffer zone and the communal area. Results of the study indicate that 17 

woodland cover and aboveground carbon increased in all three land use types despite the 18 

observed human disturbance over the study period.  Both variables recorded a lower increase 19 

with elevated utilisation. It is concluded that, sustainable resource utilisation is possible without 20 

loss of such ecosystem services as carbon sequestration and climate change mitigation. 21 

Keywords: Land use change, resource utilisation, disturbance, climate change, 22 

woodlands, sustainable use 23 



Introduction 24 

 There is increasing recognition of the role of forests and woodlands in climate change 25 

mitigation including in the Paris agreement of 2015 and more recently, the ‘Glasgow Leaders’ 26 

Declaration on Forests and Land Use’  (Pelletier et al. 2017; Nasi 2021). Previous studies have 27 

demonstrated that miombo ecosystems have tremendous potential to store carbon and act as a 28 

carbon sink (Munishi et al. 2010, Kuyah et al. 2016): Southern African woodlands including 29 

miombo store between 18.0 ± 1.8 PgC and 24.4 ± 2.4 PgC evenly distributed between woody 30 

vegetation and the soils (Ryan et al. 2016), comparable to the Congo basin forests. Thus, these 31 

woodlands contribute significantly to the global carbon cycle and regulation of climate change. 32 

Miombo biomass is usually linked to edaphic features, precipitation, and woodland cover 33 

change (Ribeiro et al 2021a). Woody biomass in undisturbed mature miombo ranges from 30–34 

70 Mg/ha in the dry miombo stands of Mozambique, Tanzania, and Zimbabwe (Ribeiro 35 

et al. 2013; Kachamba et al. 2016; Lupala et al. 2017) to 100–144 Mg/ha in old-growth wet 36 

miombo (Kalaba et al. 2013; Gonçalves et al. 2017). The most common disturbance agents in 37 

miombo woodlands are human activities, elephants and fire, all of which interact (Frost 1996, 38 

Mapaure and Moe 2009). Clearance of land for cultivation and selective harvesting of trees for 39 

various purposes including fuelwood, charcoal production and construction are the main 40 

human activities that directly affect woodlands (Dewees et al. 2010, Bruschi et al. 2014, 41 

Syampungani et al. 2014), often linked to urban and international markets (McNicol et al. 42 

2018). These disturbances eventually result in woodland cover loss (deforestation and forest 43 

degradation), with significant losses in aboveground carbon stocks. For example, Ribeiro et al 44 

2021a found that changing the regime from 3.3 to annual fire return intervals resulted in a 45 

miombo woodland shifting from a C sink to a C source in Niassa Reserve, Mozambique. In 46 

another study,  Williams et al. (2008) found that clearance for agriculture reduced stem wood 47 

C stocks by 19.0 tC/ha. Thus, disturbances in miombo play an important role in determining 48 



local biomass variations (Ribeiro et al. 2008a), even though little is known about the impact of 49 

human disturbance on the miombo woodland cover, carbon stocks and their change over time. 50 

 In Zimbabwe, miombo woodlands are found in almost every land use category: national 51 

parks, communal and resettlement areas, and commercial farmlands (Forestry Commission 52 

2011). In national park areas, the Parks and Wildlife Act of 1975 restricts access to forest and 53 

woodland resources, hence, due to limited or the absence of human disturbance, national parks 54 

are viewed as important areas for conserving carbon stocks and maintaining intact woodland 55 

cover (Banda et al. 2006). Conversely, in communal areas, there are few restrictions on 56 

utilisation, and communities are allowed to access woodland resources according to the 57 

Communal Lands Forest Produce Act, of 1988. As a result, where communal areas are adjacent 58 

to national parks and their buffer areas, the potential for human disturbance increases with 59 

distance from the protected area to communal settlements, thereby creating a disturbance or 60 

utilisation gradient (Muposhi et al. 2016; Gotore et al. 2020). Therefore, woodland cover and 61 

aboveground carbon stocks are likely to change along the gradient (Banda et al. 2006; Chinuwo 62 

et al. 2010; Muposhi et al. 2016) due to differences in intensity of tree harvesting, tree density, 63 

and frequency of fires over time (Gotore et al. 2020). Despite this recognition, studies are 64 

limited, and the relative impacts of these land use types on aboveground carbon stocks and 65 

woodland cover are not well measured. 66 

Land use and land cover change information is important in carbon stock and emissions 67 

assessment. Studies have shown that,agriculture expansion has been an important driver of 68 

woodland loss in resettled areas  since Zimbabwe’s fast-track land reform program(Matavire 69 

et al. 2015; Nyelele et al. 2018) which redistributed more than 3000 commercial farms from 70 

white commercial farmers to retrenched farm workers and landless, poor households in 71 

overcrowded nutrient-poor-soil communal areas in 2000 (Scoones et al. 2010)  . However, 72 

abandoned agricultural areas in communal lands are regaining woodland cover (Scharsich et 73 



al. 2017). Studies in the region (Williams et al. 2007; Mwampamba and Schwartz 2011; Kalaba 74 

et al. 2013; McNicol et al. 2015; Gonçalves et al. 2017) have shown that miombo is resilient, 75 

regaining most of its floristic composition  and carbon stocks within10–20 years (Ribeiro et al 76 

2021b) after agriculture ceases. For example, aboveground carbon has been estimated to 77 

accumulate at about 0.7–0.8 MgC/ha/year in dry miombo fallows (Chidumayo 1990; Williams 78 

et al. 2008; McNicol et al. 2018), and 1 MgC/ha/year in wet miombo (Kalaba et al. 2013).While 79 

most studies in Zimbabwe focused on impacts of the fast-track land reform program and 80 

changes in different land use categories, there remains a need to understand woodland cover 81 

dynamics along human disturbance gradients given that land use change processes are 82 

predicted to drive ecosystems and service provision changes (Ryan et al. 2016).    83 

Generally, long-term studies using permanent plots measuring vegetation properties (e.g., 84 

height, diameter at breast height (dbh), or crown diameter, biomass, and diversity indices) 85 

overtime are commonly used to assess vegetation dynamics (Mugasha et al. 2017; Chidumayo, 86 

2019, Forest et al. 2021; SEOSAW, 2021). However, such studies are few within the southern 87 

and central tropical Africa due to limited expertise, high costs, technological advancement, and 88 

logistical challenges of accessing and sampling remote and large geographical areas 89 

(Chidumayo 2019; SEOSAW 2021). Thus, exploration of environmental and land use 90 

gradients provides an alternative approach (Williams et al 2008; Syampungani et al. 2016) to 91 

understand the resilience of miombo woodlands to human disturbance. In the present study we 92 

use remote sensing technology to understand land cover and carbon stock dynamics in miombo 93 

woodland along a human disturbance gradient from the national park through buffer zone to 94 

the communal area. 95 

Field-based methods have long been used for aboveground biomass studies in Zimbabwe’s 96 

miombo woodlands focusing on developing biomass models (Frost 1990; Mushove 1994; 97 

Grundy 1995). While field data provide a primary source of AGB estimates that are important 98 



for national reporting under UNFCCC and carbon projects such as REDD+, it has its challenges 99 

that include inaccessibility of field sample sites and high cost of data collection making it 100 

unfeasible at times (McRoberts et al. 2014; Næsset et al. 2016). Novel solutions to some of the 101 

field data sampling challenges are being addressed by remote sensing (RS) technologies 102 

through increased precision of inventory estimates and reduced costs of forest resource 103 

inventory and monitoring at landscape scales (McRoberts et al. 2014; Næsset et al. 2016; 104 

Esteban et al. 2020). Thus, RS products including optical (e.g., Landsat, Sentinel 2A, Lidar), 105 

synthetic aperture radar (SAR, e.g., Sentinel 1) data, or their combination are now commonly 106 

used in vegetation assessment and monitoring (Ribeiro et al. 2008b; Saatchi et al. 2011; 107 

Mitchard et al. 2011; Harris et al. 2012; Vibrans et al. 2013; Hansen et al. 2015; Macave et al. 108 

2022). Optical images are dependent on atmospheric conditions at the time of data acquisition 109 

(Lu et al. 2016). However, SAR are active sensors that emit radiation at wavelengths that are 110 

less susceptible to atmospheric backscattering and thus have high transmissivity through clouds 111 

(Lu et al 2016; Urbazaev et al. 2018).  The relationship between both types of RS data (optical 112 

and SAR) and field data is used to develop models that can predict AGB at the landscape level 113 

(McNicol et al. 2018; Macave et al. 2022). However, both optical and SAR are affected by data 114 

saturation at high AGB (greater than 80 Mg/ha (Ribeiro et al. 2008b; Lu et al 2016; Urbazaev 115 

et al. 2018).  116 

 Multi-temporal L-band (23 cm wavelength) radar imagery has proven to be effective in 117 

detecting aboveground carbon and forest cover in woodland ecosystems including the miombo 118 

(Ryan et al. 2011; Joshi et al. 2017; Mitchell et al. 2017; Macave et al. 2022). L-band 119 

normalised radar backscatter (γ0) can be used to model woody biomass (associated with its 120 

ability to penetrate the forest canopy) up to around 50 MgC/ha (Ryan et al. 2011). For example, 121 

work in the region has shown that γ0 has a strong correlation (r2 0.61 – 0.76, p < 0.0001) to 122 

biomass across several African landscapes (Mitchard et al. 2009, Ryan et al. 2011; McNicol et 123 



al. 2018). While advances have been made in the region in using RS techniques to estimate 124 

AGB (Ribeiro et al. 2008b; Ryan et al. 2011; McNicol et al. 2018; Macave et al. 2022), in 125 

Zimbabwe there are still a few studies which have applied optical and SAR imagery (Gara et 126 

al. 2016; Dube et al 2018) and the Phased Array L- Band Synthetic Aperture Radar is yet to be 127 

applied. Provided the potential of RS in estimating large-scale AGB, it has a very important 128 

role in nature-based climate change mitigation projects including REDD+, which necessitate 129 

exploration of its use in the country (Næsset et al. 2018). Thus, here we use L band backscatter 130 

to assess the effects of human disturbance on aboveground woody carbon stocks and cover of 131 

miombo woodland.  132 

The present study aimed at determining how woodland cover and aboveground carbon 133 

stocks varied along a utilisation gradient at the interface of Mana Pools National Park and 134 

Chundu Communal Lands in northeast Zimbabwe. Specific objectives of the study were (a) to 135 

map woodland cover, aboveground biomass, and their changes between the years 2007 and 136 

2017, (b) to quantify aboveground woody carbon stocks along the utilisation gradient over a 137 

10-year period, and (c) to assess the utility of L-band radar for operational forest monitoring in 138 

Zimbabwe. It was hypothesised that miombo aboveground carbon stocks and their change vary 139 

significantly along a utilisation gradient over time. 140 

Methods and materials 141 

Study area 142 

The research was carried out at the interface of the Chundu Communal Lands, Ward 8 143 

of Hurungwe District, and Mana Pools National Park, a protected wildlife area about 260 km 144 

west of Harare (Figure 1). The study area has a mean annual rainfall of 750 to 1000 mm, 145 

concentrated between mid-November and the end of March (Anderson et al. 1993). Soils vary 146 

from loamy sand to sandy clay loam soils under typical miombo woodland vegetation 147 



dominated by Brachystegia and Julbernardia species (Chivuraise et al. 2016). Subsistence 148 

agriculture is the primary source of livelihood, with maize, groundnuts, cotton and tobacco  as 149 

the major crops, and cattle, goats, and sheep as the major livestock (Ncube 2011).  150 

The area represents a gradient from the national park where there is no formal access 151 

to forest resources, to the communal area with complete but controlled resource access. The 152 

study area was divided into three land use types following Muposhi et al. (2016): a national 153 

park (within the park boundary), a buffer zone (2.5 km from the park boundary) and a 154 

communal area (5 km from the park boundary) (Figure 1). The national park zone is 9,802.2 155 

ha, the buffer zone 11,741.4 ha, and the communal area 9,798.6 ha.  156 

The three land use types demonstrate a gradient in access of woodland resources given 157 

their different management regimes. Mana Pools National Park which is a UNESCO World 158 

Heritage Site since 1984 and core of the Middle Zambezi Biosphere Reserve, is managed by 159 

the Zimbabwe Parks and Wildlife Authority. Its resource management plan for fauna and flora 160 

includes early season burning to avoid severe late season fires and management of wildlife 161 

populations (Matsa et al. 2022). The buffer zone is predominantly a wildlife woodland area 162 

managed by the Rural District Council (RDC) on behalf of the communities. The RDC, 163 

however, has no clear management plan for this area except its reservation as wilderness area. 164 

In the past, the RDC would use the area for hunting concessions issued through the Communal 165 

Areas Management Programme for Indigenous Resources (CAMPFIRE) (Frost and Bond 166 

2008). Plans are being revived for these activities. Population growth mostly as consequence 167 

of immigration from the southern parts of Zimbabwe, resulted an increase in communal 168 

settlements that now extend beyond the 5 km park buffer zone to about 1 km from the park 169 

boundary. Residents of the buffer zone are considered illegal settlers by local authorities.  The 170 

communal area is made up of several land use types that support livelihoods of the 171 

communities, including crop lands, pasture lands, and settlements. Most of the inhabitants of 172 



this area were resettled by the Government of Rhodesia from the Zambezi valley for the 173 

creation of Mana Pools National Park. The first inhabitants were resettled around the 174 

Chitindiva area (Figure 1) in the 1970s, some 20 km from the park boundary (Dzingirai and 175 

Mangwanya 2015).  The population of Chundu grew from over 15,388 people and more than 176 

3,293 households in 2012 to almost 18.765 people in nearly 4,198 households in 2022, with an 177 

average household of 4.5 people (ZimStat 2022). 178 

In a related study, Gotore et al. (2020) found anthropogenic disturbance in the study 179 

area to significantly differ with land use type for tree cutting (number of stumps) and observed 180 

fire counts (fire frequency per year). However, these differences in disturbance did not have a 181 

significant impact on the species composition and structure of the miombo woodlands. The 182 

present study evaluates the impact of anthropogenic disturbance on aboveground biomass 183 

across the three contrasting land use types. 184 

 185 

L band processing, woodland cover, and aboveground carbon stock data  186 

A combination of wall-to-wall mapping and random sampling approaches was used to 187 

assess aboveground carbon stocks and cover of miombo woodlands. Aboveground carbon 188 

stock maps of 2007 and 2017 were generated from twenty-five m horizontal send vertical 189 

receive (HV) polarisation pre- processed mosaic product of 2007 and 2017 radar backscatter 190 

images of the Phased Array L- Band Synthetic Aperture Radar sensor on-board JAXA’s Land 191 

Observation Satellite (ALOS-PALSAR 1 and 2, respectively). The mosaic product has terrain 192 

and radiometric corrections applied (McNicol et al. 2018).The radar data obtained from 193 

Shimada and Ohtaki (2010) were used to estimate aboveground carbon stock and woodland 194 

cover assessments following the methods presented by McNicol et al. (2018).  195 



Calibration of the PALSAR mosaic involved converting integer values to units of radar 196 

backscatter (decibels) using the raster calculator tool in QGIS. This was done by applying the 197 

following equation (Shimada and Ohtaki, 2010): 198 

𝛾0 = 10 log10 𝐷𝑁2 − 83.0 199 

where γ0 is th backscatter in decibels and DN is the image in integer values. 200 

The image in decibels was further converted to natural units to provide for arithmetic 201 

and not geometric means in subsequent analyses (Ryan et al. 2012) using the following 202 

formula: 203 

𝛽0 = 10 (
γ0

10
⁄ ) 204 

where 𝛽0 is the backscatter image in natural units and γ0 is the backscatter image in 205 

decibels 206 

It was observed that there are systematic differences in the level of backscatter observed 207 

by ALOS-1 and ALOS-2 even where tree cover remained stable, perhaps because of 208 

differences in acquisition geometry and sensor characteristics. A correction factor was 209 

developed, based on a comparison of pseudo-stable locations from 2007 (ALOS-1) and 2017 210 

(ALOS-2). A regular grid of points was generated across Southern Africa (every 0.5 degrees; 211 

n = 1416), removing points with observations of forest cover loss (Hansen et al. 2013), on steep 212 

slopes (Farr et al. 2007), or on wetlands (ESA GlobCover 2009 Project) to maximise 213 

consistency between measurements (remaining n = 1001). ALOS-1 and 2 HV backscatter were 214 

extracted and compared using orthogonal regression (i.e., assuming errors on both axes). This 215 

provided a model to adjust the backscatter from ALOS- 2 to match that expected from ALOS-216 

1 (Figure 2). The resulting model (RMSE = 0.0207) was applied to the 2017 image in natural 217 

units. 218 



𝛽0∗
𝐴2

= (0.6559 × 𝛽0
𝐴2

) + 0.00345 219 

Where 𝛽0∗
𝐴2

 is the adjusted 2017 backscatter image in natural units and 𝛽0
𝐴2

 is the 220 

2017 backscatter image before correction in natural units. 221 

Finally, AGC maps were generated by applying the following regional general model 222 

(r2 = 0.57; cross validation RMSE = 8.5 MgC ha−1; bias = 1.1 MgC ha−1) of McNicol et al. 223 

(2018) which was developed in miombo woodlands of Mozambique, Tanzania, and Malawi 224 

for ALOS PALSAR 1: 225 

𝐴𝐺𝐶 = 715.65 × 𝛽0 − 5.97 226 

Where AGC is aboveground carbon in MgC/ha and  𝛽0 is HV backscatter in natural units.  227 

The miombo woodlands of Mozambique, Tanzania and Malawi are similar to dry miombo 228 

woodland (MAP < 1000mm) found in Zimbabwe dominated by species of genera Brachystegia 229 

and Julbernardia (Gotore et al. 2020; Ribeiro et al. 2021a). Proportional random sampling 230 

points were established in each land use (national park = 94, buffer zone = 112, and communal 231 

area = 94) in a GIS environment from which aboveground carbon stock data was extracted 232 

from both the 2007 and 2017 maps using the point sampling plugin in Quantum GIS (QGIS) 233 

version 3.0.0.  234 

Woodland cover for both 2007 and 2017 was based on the mapped AGC stock with 235 

reference to a woodland definition of > 10 MgC/ha per pixel which was observed to be more 236 

or less consistent with other international forest definitions (McNicol et al. 2018). Zimbabwe’s 237 

working definition for woodland comprises an area with trees with a minimum height of 5m 238 

and a minimum canopy cover of 20% (Kwesha and Drieser 1998). This definition aligns very 239 

well with the FAO definition of forest under Forest Resources Assessment Reporting (FAO 240 

2020). The raster calculator tool in QGIS version 3.0.0. was used to calculate the woodland 241 



cover, loss, and gains between 2007 and 2017. Woodland area loss and gain were defined as 242 

area lost/gained divided by the wooded area in 2007. 243 

Statistical analysis 244 

A Kolmogorov-Smirnov test for normality was conducted for the AGC data (2007, 245 

2017 and change) and only the AGC change data had normally distributed residuals (P = 246 

0.301), while residuals for 2007 and 2017 AGC data were non-normal (P<0.05).  A one-way 247 

analysis of variance at a 95% confidence interval was conducted to test for differences in AGC 248 

change while a Kruskal Wallis test was conducted to test differences in 2007 and 2017 AGC 249 

between the national park, buffer zone and communal area.  250 

Results 251 

Woodland cover 252 

Figure 3 illustrates the spatial distribution of woodland cover in 2007 and woodland cover 253 

gains and losses by 2017 across land use types. Woodland cover for both 2007 and 2017 was 254 

higher in the buffer zone (42% and 43%, respectively) and the national park (37% and 57%, 255 

respectively) than in the communal area (27% and 31%, respectively) (Table 1). Woodland 256 

loss between 2007 and 2017 was highest in the buffer zone (12%), followed by the communal 257 

area (9%), then the national park (7%) (Table 1). Conversely, the woodland cover gain was 258 

highest in the national park (23%) followed by the buffer zone (14%) and the communal area 259 

(14%) (Table 1). In all land use types, the woodland cover gain was higher than woodland loss 260 

over the 10-year period with a positive net change of 16% in the national park, 2% in the buffer 261 

zone and 5% in the communal area (Table 1).  262 



Aboveground carbon stocks 263 

The spatial distribution of aboveground carbon stocks (AGC) is illustrated in Figure 4. In 264 

2007, mean AGC was 8.3±0.6 MgC/ha in the national park, 7.5±0.7 MgC/ha in the buffer zone 265 

and 6.1±0.7 MgC/ha in the communal area. AGC stock was significantly higher (P = 0.005) in 266 

the national park than in the communal area but not different to the buffer zone. In 2017, AGC 267 

had changed and was 17.1±0.7 Mg C/ha in the national park, 12.0±0.8 MgC/ha in the buffer 268 

zone and 9.8±0.95 MgC/ha in the communal area, significantly lower in the buffer zone and 269 

communal area than the national park (P < 0.0001) (Table 2). Over the study period, there was 270 

a net gain in AGC in all land use types (Table 2). AGC gain was significantly higher (P < 271 

0.0001) in the national park (8.9±0.4MgC/ha/10 years) than in the buffer zone 272 

(4.5±0.5MgC/ha/10 years) and communal area (3.8±0.6MgC/ha/10 years) (Table 2).  273 

Discussion 274 

Findings of the study, fail to support the rejection of the hypothesis that miombo 275 

aboveground carbon stocks and their change vary significantly along a utilisation gradient over 276 

time. The dynamics of aboveground carbon stocks differed among the three land use types. 277 

Over a 10-year period, aboveground carbon stock increased significantly in all land use types. 278 

The increase in woodland cover and aboveground carbon stocks declined with elevated 279 

utilisation. 280 

In 2017, woodland cover and aboveground carbon stock decreased with increased 281 

utilisation from the national park through the buffer zone into the communal area. Similar 282 

observations were made in Tanzania  (Jew et al. 2016; Mganga et al. 2017)() and Zambia 283 

(Sichone et al. 2019). Anthropogenic disturbance in the form of tree cutting, fire and vegetation 284 

clearing (Munishi et al. 2010; Gotore et al. 2020; Zinyowera et al., 2021), driven mostly by an 285 

expansion of tobacco fields and high demand for fuelwood for tobacco curing (Dzingirai and 286 



Mangwanya 2015, Chivuraise et al. 2016) resulted in decreased carbon stock. This observation 287 

collaborates earlier findings  (Chidumayo 2013, Jew et al. 2016, Mganga et al. 2017).  The 288 

present findings, however, are at variance with findings that recorded no direct relationship 289 

between disturbance and carbon stocks (Pelletier et al. 2017).These studies related carbon 290 

stocks to tree diversity (Pelletier et al. 2017, Amara et al. 2019). In general, studies in the region 291 

have shown that activities related to slush and burn agriculture, including subsistence use of 292 

miombo woodlands, do not have much impact on carbon stocks as regeneration commonly 293 

offset carbon losses (Chidumayo 1990; Williams et al. 2008; Kalaba et al. 2013; McNicol et 294 

al. 2018). 295 

The study observed increasing woodland cover in utilised areas between 2007 and 2017. 296 

This observation is not consistent with findings in the Mafungautsi forest in the Midlands 297 

Province of Zimbabwe that indicated decreased woodland cover outside the protected area 298 

(Mapedza et al. 2003). Neither does it collaborate findings of a study in  southern highlands of 299 

Tanzania where miombo woodland cover increased with reduced forest utilisation (Lupala et 300 

al. 2015) and in Luanshya District of the Copperbelt Province of Zambia where woodlands 301 

were shown to be generally declining in extent though with  regrowth limiting this decline 302 

(Lembani et al. 2019).  Several studies on land cover change in Zimbabwe attributed woodland 303 

cover loss to agriculture and settlement expansion (Kamusoko and Aniya 2007, Matavire et al. 304 

2015, Nyelele et al. 2018).Findings of the present study correspond to observations made in 305 

Matobo National Park, south-western Zimbabwe and surrounding areas, where forest area 306 

outside the national park increased by about 7% (Scharsich et al. 2017). This is attributed to 307 

regrowth in abandoned croplands (Scharsich et al. 2017). Further, since 2011 the study area 308 

has been placed under the Kariba REDD + project (Dzingirai and Mangwanya 2015), which 309 

may have influenced the current increase in woodland cover. Most studies in the region, 310 

however, have demonstrated a general decline in forest cover over time (Kamusoko and Aniya 311 



2007, Matavire et al. 2015, Kiruki et al. 2016, Mekonen et al. 2018), though this is offset by 312 

regrowth (McNicol et al. 2018). 313 

Aboveground carbon stocks increased significantly in all land use types between 2007 and 314 

2017. This points to the potential of miombo woodland for carbon sequestration. Studies across 315 

the region have alluded to a positive potential of REDD + in the miombo, with some pilot 316 

projects indicating positive results (Munishi et al. 2010, Lusambo and Lupala 2016, Lupala et 317 

al. 2017, Sichone et al.2019). AGC estimates in the study area were within the range of 318 

estimates by Guy (1981) at Sengwa Wildlife Research Area (ranging between 12.58 t/ha – 319 

23.03 t/ha, between 1972 and 1976) and Dube et al (2018) at Mukuvisi woodlands (ranging 320 

from 7.4 to 56.1 Mg C/ha), but lower than estimates by Zimudzi and Chapano (2016) at 321 

Ngomakurira Mountain ( 34.5 to 65.1 t/ha) and a regional average of about 55 Mg/ha (27.5 Mg 322 

C/ha, Desanker et al. 1997). AGC estimates in miombo region are known to be variable 323 

depending on estimation method, sampling effort and land use history (Guy 1981; Desanker et 324 

al. 1997; Ryan et al. 2012; Ribeiro et al. 2013).  Findings from the present study, however, 325 

indicate that overall increases in aboveground carbon stocks declined with increased utilisation, 326 

thus the need to consider anthropogenic disturbance as one major factor that negatively impacts 327 

miombo carbon sequestration (Munishi et al. 2010). For example, future mitigation actions 328 

must therefore seriously consider anthropogenic factors by diversifying income sources, and 329 

market linkages and promoting sustainable utilisation, together, of course with climate change.  330 

The observation of increasing AGC despite a growing population and ongoing disturbance 331 

in the study area is unusual. There are two possible interpretations of this finding: (i) that AGC 332 

is increasing across the three land use types, or (ii) that biases introduced by L-band data 333 

acquisition (e.g., soil moisture variation, data processing artefacts in the ALOS PALSAR 334 

mosaic product, residual differences in the characteristics of ALOS-1 and ALOS-2) are mis-335 

interpreted as widespread biomass increase. Distinguishing between these possibilities would 336 



require the collection of high-quality longitudinal reference data (e.g., through a field 337 

campaign, SEOSAW 2021) to validate the result of increasing biomass (Mitchard et al. 2009). 338 

Whilst there remains uncertainty in the overall increase in biomass that was observed, more 339 

confidence can be placed in the relative impacts between land use types. Even where there is a 340 

bias in one or both maps, the differences in losses/gains between areas would be expected to 341 

be robust, and therefore these results maintain relevance to assessing the relative impacts of 342 

woodland management regimes in Zimbabwe. 343 

Carbon stocks in miombo woodlands are not permanent as the miombo is a dynamic 344 

ecosystem with naturally varying amounts of tree cover and biomass over time. For example, 345 

the conversion of these woodlands to short-duration crop agriculture was projected to release 346 

large amounts of carbon dioxide into the atmosphere, as much as 50 MgC/ha of aboveground 347 

carbon stocks (Desanker et al. 1997). Though aboveground carbon stocks in miombo are highly 348 

susceptible to anthropogenic and natural disturbance, studies have demonstrated that they can 349 

recover within 20 to 30 years (Williams et al. 2008; McNicol et al. 2015; Gonçalves et al. 350 

2017). Further, studies globally have suggested that a widespread increase in biomass growth 351 

in African woodlands may be a result of elevated carbon dioxide (CO2), which in savannahs 352 

favour trees, especially in the more open, frequently burnt areas (Bond and Midgley 2012). 353 

However, other drivers including reduced burnt area, warmer and wetter climate and 354 

anthropogenic activity were observed to account for most of the biomass growth (Venter et al. 355 

2018).  356 

In general, the present study demonstrates the potential for L band radar imagery in 357 

woodland cover and biomass mapping. It also identifies the need for high-quality reference 358 

data for calibration and validation of results. Woodland cover and aboveground carbon stocks 359 

were both found to be sensitive to land use types of protection, buffer zones and communal 360 

land, with the more restrictive land management practices generally associated with more 361 



woodland cover and higher average biomass. A general increase in both woodland cover and 362 

biomass over the past decade points towards the resilience of miombo woodland ecosystems, 363 

their capacity to co-exist with dynamic anthropogenic use, as well as their potential for climate 364 

change mitigation. These results provide the means to model the impact of management 365 

changes on woodland cover and carbon sequestration and point toward the value of monitoring 366 

biomass with L-band radar in African woodlands. 367 

Conclusion 368 

Aboveground carbon stocks vary along a utilisation gradient and have increased 369 

significantly over the past 10-year period in all land use types. These findings show that 370 

sustainable resource management is possible without the loss of such ecosystem services as 371 

carbon sequestration and climate change mitigation. 372 
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