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Enhancing Two-Stage Modelling Methodology for Loss Given Default with 

Support Vector Machines 

Xiao Yao a,*, Jonathan Crook b, Galina Andreeva c 

a, b, c Credit Research Centre, The University of Edinburgh Business School, 29 Buccleuch Place, 

Edinburgh EH8 9JS UK 

Abstract: We propose to incorporate least squares support vector machine technique into a 

two-stage modelling framework to predict recovery rates of credit cards from a UK retail bank. 

The two-stage model requires a classification step that discriminates the cases with recovery rate 

equal to 0 or 1 and a regression step to estimate recovery rates for the cases with recovery rates in 

(0, 1). The two-stage model with a support vector machine classifier is found to be advantageous 

on an out-of-time sample compared with other methods, suggesting that a support vector machine 

is preferred to a logistic regression as the classification technique. We further examine the 

predictive performances on a subset where recovery rate is bounded in (0, 1) and the empirical 

evidence demonstrates that support vector regression yields significant but modest improvement 

compared with other statistical regression models. When modelling on the whole sample, the 

support vector regression does not present any advantage compared with other techniques within 

the two-stage modelling framework. We suggest that the choice of regression models is less 

influential in prediction of recovery rates than the choice of classification methods in the first step 

of two-stage models. 

 

Keywords: Risk analysis, Loss given default modelling, Two-stage model, Support vector 

machine 

 

1. Introduction 

The Basel Accords require banks to develop their internal credit risk models for expected loss that 

is defined as 

 Expected Loss PD LGD EAD= ´ ´ , 

where probability of default (PD), loss given default (LGD) and exposure at default (EAD) are the 

key risk parameters to be estimated in the advanced internal rating based (AIRB) approach (Basel 

Committee, 2005a, 2005b). In Basel II an asymptotic single risk factor model has been established 

to estimate PD and asset correlation proposed by Vasicek (1987) based on Merton’s model (1974) 

with an analytical formula derived for the loss distribution under the infinite granular assumption 

for a given portfolio. However, under the Foundation Internal Rating Based (FIRB) approach 

LGD and EAD are values specified by regulators for different types of credit products. Therefore 

financial institutions are encouraged to develop their internal LGD model according to the 

requirements of the Advanced Internal Rating Based (AIRB) approach to reduce the amount of 
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regulatory capital they are required to hold. 

Together with PD modelling, LGD modelling has also arisen as a heated topic in quantitative 

credit risk management where extensive research has been conducted for both corporate bonds 

and bank retail loans. A major problem in constructing models to predict LGD is the common 

occurrence that the distribution of LGD values is bimodal with modes at 0 and 1. Thus two related 

modelling issues arise: how to transform covariates and which modelling algorithm to use. 

Parametric models have been widely applied to predict the LGD of retail loans and focus on 

identifying potential significantly useful predictors. Qi and Yang (2009) found that loan-to-value 

(LTV) was useful to segment risk, but updated loan-to-value (CLTV) was the single most 

important determinant of modelling residential mortgage LGD. Leow and Mues (2011) developed 

a probability of repossession model with three variables and showed that this model performed 

significantly better than the model with LTV at default alone. Khieu et al (2012) examined the 

determinants of bank loans recovery rates by applying both OLS and fractional response 

regression models. They found that loan characteristics were more significant than the borrower 

characteristics, and that macroeconomic variables also played a significant role. This finding was 

consistent with the conclusions in Qi and Yang (2009). Bellotti and Crook (2012) discussed the 

influences of application and macroeconomic variables, and they found that the inclusion of the 

interaction terms of application and macroeconomic variables did not necessarily lead to an 

improvement of model fit. They also proposed a two-stage model to handle the bimodal 

distribution of recovery rates for retail credit cards. This two-stage model framework was based on 

a decision tree algorithm and applied to split the whole sample into three groups according to the 

values of recovery rates: RR=0, 0<RR<1 and RR=1. Here the extreme cases with RR=0 and RR=1 

were separated by two substages such that RR=0 vs. RR>0 and RR=1 vs. 0<RR<1, and then the 

values in (0, 1) were fitted by an OLS regression model. The two-stage model in Bellotti and 

Crook (2012) showed rather robust predictive performances and outperformed many other 

complex models including Tobit and fractional response regression models. But the inclusion of 

macroeconomic variables only made a modest improvement in model fit. Bijak and Thomas (2015) 

proposed a Bayesian method which assumed that the LGD followed a mixture normal distribution 

with the weighted probability of loss following a Bernoulli distribution. This approach was able to 

simulate the bimodal distribution of LGD and was free of the problems discussed above. The 

model was estimated by a Markov Chain Monte Carlo (MCMC) procedure and applied to 

predicting LGD of retail unsecured loans of a UK bank. They found the estimates of the Bayesian 

model were very close to that estimated by the frequentist approach, and the predictive 

performances were also very close. Leow et al (2014) examined the effects of macroeconomic 

variables on two types of retail loans: residential mortgage loans and unsecured personal loans. 

For the mortgage loans the incorporation of economic indicators improved the model fit slightly 

and the LGD predictions for the loans during the economic downturn were better than for other 

periods, implying that macroeconomic conditions may be related to LGD non-linearly. However, 
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for personal loans most of the macroeconomic variables were not significant statistically and they 

brought no benefit for LGD predictions. They suggested the unsecured personal loans might be 

less affected than the mortgage loans by macroeconomic conditions. 

Other parametric distributions have also been applied to LGD modelling. Calabrese (2014a) 

applied inflated beta regression to modelling retail loans recovery rates from the Bank of Italy. 

This study showed the major advantage of inflated beta regression was that it is able to analyze the 

different influences of the same covariates on the extreme values of 0 or 1 and the recovery rates 

in the interval (0, 1). Compared with fractional response regression, inflated beta regression 

showed consistently better out-of-sample predictive accuracies across different forecasting periods 

and different sample percentages of the extreme values. Furthermore, Calabrese (2014b) proposed 

a mixture beta distribution to estimate downturn LGD. The model was estimated based on a 

portfolio of bank loans of an Italian bank, and the empirical evidence showed that this mixture 

distribution model was able to replicate the high concentration of the loss data and thus effectively 

avoided underestimating the downturn LGD. However no observable characteristics were 

incorporated in the model. 

 Semi-parametric and non-parametric models have also been employed to improve the 

predictive accuracies for recovery rates of bank loans which were shown to be more competitive 

than traditional parametric models. Calabrese and Zenga (2010) presented a non-parametric 

mixture beta kernel estimator which incorporates the clustered cases at boundaries to predict 

recovery rates of loans from the Bank of Italy. Based on Monte Carlo simulation results they 

showed that the proposed mixture beta kernel estimator was preferable to the original beta kernel 

estimator for fitting a LGD distribution. But no empirical evidence using bank data was presented 

in this study. Bastos (2010) showed that regression trees were a competitive method to predict 

bank loans recovery rates compared with fractional response regression models with either a logit 

or a complementary log-log link function. Zhang and Thomas (2010) investigated a group of 

algorithms and showed that OLS was as good as the other survival models including both 

semi-parametric Cox hazard models and parametric accelerated failure time models, which was 

consistent with the findings in Bellotti and Crook (2012) for credit cards. Tong et al (2013) 

proposed a zero-adjusted gamma regression model by reparameterizing the mean and dispersion 

parameters with additive non-parametric terms. This semi-parametric model provided a flexible 

structure for model interpretation and effectively avoided the black box drawback by including 

non-parametric splines. Loterman et al (2011) benchmarked a total of 24 methods including both 

statistical regression models and machine learning algorithms on six bank loans loss datasets. 

They conducted a comprehensive study with multiple performance metrics and found that the 

non-linear machine learning algorithms significantly outperformed the traditional linear models. 

They proposed a hybrid model that combines linear and non-linear techniques and showed that it 

gave rather competitive predictive power while preserving the explanatory power of linear models. 

Tobback et al (2014) also studied the LGD of bank retail loans from two US datasets and 
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compared the performances of a collection of linear and non-linear models including linear 

regression, regression tree, support vector regression and a hybrid model similar to Loterman et al 

(2011). Different from the results in Loterman et al (2011), they found the best out-of-time 

performances were reported for the hybrid model combining a linear regression with a support 

vector regression on the error terms, and a regression tree showed the best out-of-sample 

forecasting performance for a consumer loan. They also documented the importance of 

incorporating macroeconomic variables, which improved the predictive performances and 

confirmed the impacts of business cycle on LGD that has been found in previous studies. Hwang 

et al (2016) proposed a similar two-stage probit model where an ordered probit model was used to 

predict recovery rate allocated into three categories including zero, one, and between zero and one, 

and a probit transformation regression was applied to estimating cases for the intermediate cases. 

Sun and Jin (2016) found an ensemble regression tree gave more accurate predictions than a 

simple regression tree or random forest but used a measure of discriminative power rathe than 

predictive accuracy to assess performance. Siao et al (2016) proposed a logistic quantile 

regression model and apply it to corporate bonds. Yao et al (2015) improved the least squares 

support vector regression (LS-SVR) model to account for the seniority heterogeneity and found 

the improved LS-SVR model outperformed the original SVR techniques and the traditional LGD 

regression models such as fractional response regression and linear regression. However, they did 

not consider a two-stage modelling method to estimate the zero or one recovery rate cases 

separately from the remaining cases. 

 Two-stage methods developed in the literature have the advantage that they address a serious 

problem in recovery rates modelling, which is how to model the extreme cases concentrating on 

the boundaries at 0 and 1. Single-stage models assume that all cases are generated from the same 

distribution while two-stage models have the advantage that they consider that the cases with 

recovery rates of 0 and 1 may be intrinsically distinct from the cases between 0 and 1 which 

should be separated first. We develop the hypothesis that the performances of two-stage model are 

disappointing owing to the probabilities generated from a logistic regression model are not 

accurate enough to separate the cases at boundaries from that in the interval (0, 1). 

In this paper we make three contributions. First, we propose a two-stage model where 0 and 1 

values are predicted using a support vector machine (SVM) classifier rather than a logistic 

regression model, with OLS to model intermediate values. Second, we show that this method 

gives more accurate predictions than other models using a large unique credit card data set. Third 

we find that that it is this innovation rather than the choice of algorithm to model the intermediate 

values that results in greater predictive accuracy. This distinguishes our work from papers that 

consider only one-stage models and those that consider two-stage models, the latter being Bellotti 

and Crook (2012) who used either logistic regression as the first stage classifier.  

 We seek to apply a least squares support vector classifier (LS-SVC) technique proposed by 

Suykens et al (1999, 2002) as an alternative method for the classification problem under the 
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two-stage modelling framework, and then the LS-SVC classification scores are transformed into 

probabilities by fitting a sigmoid form function using a maximum likelihood method proposed in 

Platt (1999). We choose LS-SVC for two reasons: First unlike the original SVC model proposed in 

Vapnik (1995, 1998), LS-SVC is more attractive for its low computational cost as it is equivalent 

to solving a linear system of equations instead of solving a quadratic programming problem as in 

SVC. Second LS-SVC was found to be consistently predictive in classifying good and bad payers 

on eight real-life credit scoring data sets in Baesens et al (2004) although they noted that other 

simple classifiers such as logistic regression also gave good performance. We consider the 

two-stage model in Bellotti and Crook (2012) as a benchmark for the purpose of comparison 

where a logistic regression was applied. We find that the two-stage model equipped with a 

LS-SVC method gives significantly improved predictive accuracy of recovery rates compared 

with the other single-stage models, which suggests that the two-stage model predictive 

performances rely on the choice of classification model. To further examine our hypothesis we 

compare the classification accuracies between LS-SVC and logistic regression methods and find 

that LS-SVC consistently outperforms logistic regression for both of the two substages. Finally we 

study how the regression method influences the two-stage framework by modelling on cases with 

recovery rates in [0, 1] and (0, 1) separately. We find that when modelling on the cases in (0, 1), 

the LS-SVR gives relatively close performances to an OLS model. But when LS-SVR is applied 

in the two-stage model, it is shown that the combination of LS-SVC and LS-SVR is significantly 

outperformed by the combination of LS-SVC and OLS statistically, although the margin is not 

remarkable. We conclude that the choice of regression methods plays a less crucial role than that 

for the classification methods. 

 The rest of this paper is organized as follows. Section 6.2 introduces the methodologies 

applied in the empirical study where the kernel based support vector machine techniques will be 

presented with more details. Empirical evidence will be demonstrated in Section 6.3 including the 

interpretations of parameters and discussions of the model performances, and Section 6.4 

concludes this chapter. 

 

2. Models 

2.1 Parametric models 

We study three parametric models that are commonly applied in LGD modelling including 

ordinary linear regression (OLS), fractional response regression and inflated beta regression 

methods. Both OLS and fractional response regression (Papke and Wooldridge, 1996) have been 

investigated extensively in LGD/recovery rates modelling for both corporate bonds and bank loans. 

Beta regression was proposed by Ferrari and Neto (2004) to fit the fractional response data with a 

beta distribution defined in (0, 1). The model is given as 

 1 (1 ) 1( )
( ; , ) (1 )

( ) ((1 ) )
f y y ymf m ff

m f
mf m f

- - -G
= -
G G -

, (1) 
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where m  and f  are the mean and precision parameters that can be reparameterized with respect 

to the predictors. However, the beta regression model defines the dependent variable y  in (0, 1) 

and thus neglects the boundary values 0 and 1 which are especially crucial to recovery rates 

modelling. To overcome this drawback Ospina and Ferrari (2010) proposed an inflated beta 

regression model to take the boundary values into consideration. It defines a mixture distribution 

for the dependent variable as a combination of a Bernoulli distribution and a beta distribution such 

that 

 01

(1 ) 0

( ; , , , ) 1

(1 ) ( ; , ) (0, 1)

if y

bi y if y

f y if y

p y

p y m f py

p m f

ìï - =ïïï= =í
ïïï - Îïî

. (2) 

The beta distribution assumption for recovery rates is first introduced by Gupton and Stein (2002) 

in Moody’s internal LGD modelling framework LossCalcTM. They suggested using a beta 

distribution to transform the recovery rates into a normally distributed space and then to employ 

OLS to fit the transformed dependent variable, and finally the fitted dependent variables were 

transformed back to the fitted recovery rates. This idea has been widely accepted and adopted in 

the research on LGD/recovery rates modelling (Loterman et al, 2011; Bellotti and Crook, 2012). 

In contrast, Calabrese (2014a) empirically studied the recovery rates of bank loans of the Bank of 

Italy showing that the inflated beta regression model demonstrated better out-of-time predictive 

accuracies compared with fractional response regression models, and that it was preferable for 

different forecasting periods of time and for different sample percentages of the extreme values of 

recovery rates. In our following study we adopt the same methodology from Calabrese (2014a) to 

examine whether the inflated beta regression remains an advantage on our data. 

 

2.2. Support vector machine 

The support vector machine was proposed by Vapnik (1995, 1998) and it has been increasingly 

attractive technique in multiple areas. Compared to other statistical models support vector models 

have an edge on solving non-linear problems due to the application of kernel functions. The idea 

of the kernel function is to map the data vectors from a low-dimension space to a high-dimension 

space where it is not necessary to represent the mapping function explicitly. This allows support 

vector models to transform a non-linear problem into a very high dimensional linear problem that 

gives more accurate predictions. Based on that the more recent proposed least squares support 

vector methods in Suykens and Vandewalle (1999) and Suykens et al (2002) have shown more 

excellent prediction performance with low computational cost. In this section we introduce least 

squares support vector methods for both classification and regression problems respectively. 

Classification 

Suykens and Vandewalle (1999) developed a least squares support vector classifier (LS-SVC) 

where the cost function was defined as the sum of squared error terms. One of the advantages of a 

LS-SVC is that it only needs to solve a linear system of equations instead of a quadratic 
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programming problem as in the standard SVM models. Given a dataset 
1{( , )}Ni i iD s == x , 

m
i RÎx  denote the covariates of i-th observation with the related labels is  defined as 

{ 1, 1}is Î - . The LS-SVC is given as 

 

2 2

1

1
min ( , ; )

2 2

. . ( ( ) ) 1 , 1, ...,

N

i i
i

T
i i i

C
J b

s t s b i N

x x

j x
=

= +

+ = - =

åw w

w x

, (3) 

where w  denotes the parameter vector of the associated covariates and b  is the intercept term. 

Here error terms, 2
ix , are scaled by a regularized parameter C, and ( )ij x  represents the kernel 

function that maps the data from original data space to a higher dimensional space. This model is 

then solved by its dual form problem derived from a Lagrangian function 

 ( ; , , ) ( , ) ( ( ( ) ) 1 )T
i i i i i i i

i

L b J s ba x x a j x= - + - +åw w w x ,  

where ia  is the Lagrangian multiplier. Based on Karush-Kuhn-Tucker conditions (KKT) which 

are the first order sufficient conditions for an optimal solution of a non-linear mathematical 

programming where there is a non-linear objective function subject to a number of constraints 

(Boyd and Vandenberghe, 2004), we have the following equations such that  

 

( ) 0 ( )

0

0
i

w i i i i i i

i i

b i i
i

i
i i i

L s s

L s

L C
C

x

a j a j

a

a
a x x

ìïïï Ñ = - = Þ =ïïïïï Ñ = =í
ïïïïïï Ñ = - = Þ =ïïî

å å

å

w x w x

. (4) 

After inserting the optimal conditions (4) back into the Lagrangian function, a linear system of 

equations is formulated as follows 

 
α

00 T bæ öæ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç=÷ ÷ ÷ç ç ç÷ ÷ ÷ç ÷ ÷ç ç÷ç è ø è øè ø

s

es H
, (5) 

where {
1

(1, ...,1)T

N ´

=e ,
1( , ..., )TNs s=s ,α 1( , ..., )TNa a= ,

1

C
= +H H I， ( , )ij i j i js s x x=H K , and 

( , )i jx xK  defines the inner product of a pair of kernel functions as ( , ) ( ) ( )i j i jx x j j= ×K x x . 

Notice that the use of kernel functions allows the use of the inner product of the mapping function 

following Mercer’s theorem (Mercer, 1909), without stating the mapping function explicitly, 

which greatly simplifies the computation. 

Denote the fitted classifier as f̂  and its predicted output as ˆ( )if x . In the following we use 

ˆ
if  for short. To map SVM outputs to predicted probabilities Platt (1999) proposed a parametric 

model to fit ˆ
if  using a sigmoid distribution, and the posterior probabilistic output ˆ( 1 | )i iP s f=  

is given such that 
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1ˆ( 1 | )
ˆ1 exp( )

i i

i

P s f
A f B

= =
+ +

, (6) 

where A  and B  are the unknown parameters to be estimated. The underlying assumption of 

this method is inspired by observing the discontinuities in the conditional densities ˆ( | 1)i iP f s = ± , 

and a sigmoid form function is applied to fit such discontinuities. To estimate the parameters we 

first redefine the target variables as 

 
1

2

i
i

s
t

+
= , 

and then the estimates can be obtained by minimizing the negative log likelihood of the training 

data iteratively defined as a cross-entropy error function such that 

 min log( ) (1 ) log(1 )i i i i
i

t p t p- + - -å , (7) 

where ˆ( 1 | )i i ip P s f= = . 

Regression 

The least squares support vector regression (LS-SVR) is formulated in a similar form such that 

 

2 2

1

1
min ( , ; )

2 2

. . ( ) , 1, ...,

N

i i
i

T
i i i

C
J b u u

s t y b u i Nj
=

= +

= + + =

åw w

w x

, (8) 

where iy  denotes the recovery rate and we repeat the above procedure to derive the Lagrangian 

function such as 

 
1

( , , ; ) ( , ) ( ( ) )

N
T

i i i i i i i
i

L b u J u b u ya a j
=

= - + + -åw w w x , 

where ia  is the Lagrangian multiplier. According to the KKT conditions, the solution of the dual 

form is equivalent to solving the following linear equation systems 

 
α

00 T bæ öæ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç=÷ ÷ ÷ç ç ç÷ ÷ ÷ç ÷ ÷ç ç÷ç è ø è øè ø

e

ye K
, (9) 

where {
1

(1, ...,1)T

N´

=e ,
1( , ..., )TNy y=y ,α 1( , ..., )TNa a= ,

1

C
= +K K I , where K  is the kernel 

matrix and I  is the identity matrix. The closed form solution is obtained as 

 

α 1

1

1

( )

T

T

b

b

* - *

-
*

-

ìï = -ïïï
í
ï =ïïïî

K y e

e K y

e K e

. (10) 

Finally the fitted regression model is given as below 

 

 

* *ˆ( ) ( , )i i
i

g ba= +åx K x x

. (11) 
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2.3. Two-stage model 

We briefly introduce the two-stage modelling framework proposed by Bellotti and Crook (2012). 

First define the following notations such that† 

 

( 0)

(0 1 | 0)

( 1 | 0)

a
i

b
i

c
i

P P RR

P P RR RR

P P RR RR

= >

= < < >

= = >

, (12) 

and then the predicted recovery rate given by a two-stage model is defined such as 

 ( )two stage a c b reg
i i i i iRR P P P RR- = ´ + ´ , (13) 

where reg
iRR  denotes the predicted value by a regression model in the interval (0, 1). A diagram 

of two-stage modelling framework is shown in Figure 1. 

Figure 1. Two-stage modelling framework 

 

 Bellotti and Crook (2012) suggested that it was normal to see that a customer in default either 

paid back a full proportion of the outstanding debt or paid back nothing. We believe the predictive 

performance of two-stage models depends on the choice of the classification methods at the final 

stage and thus propose to apply LS-SVC as an alternative classification method into the two-stage 

framework. For the regression methods we also investigate several different techniques besides 

OLS including fractional response regression, beta regression and LS-SVR techniques. Note that 

the inflated beta regression can be regarded as a hybrid model that incorporates a logistic 

regression and a beta regression which is analogous to a two-stage model. The difference between 

the two methods lies in the estimation procedure: an inflated beta regression can be estimated by 

solving the likelihood function in a single step and the two-stage model has to be implemented 

                                                        
† Please note that probabilities Pi

a, Pi
b and Pi

c may be equal to 0 or 1 although this is unusual. 

All Cases 

RR=0  RR>0 

0<RR<1 RR=1 

a
iP  

c
iP  b

iP  

reg
iRR  

( )two stage a c b reg
i i i i iRR P P P RR- = ´ + ´  
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step by step. 

 

3. Empirical results 

3.1. Data description and setup 

A data set of credit cards used in the analysis containing recovery rates information that was 

provided by a major UK credit card lender. The data set consists of around 1,600,000 

monthly-customer observations from March 2009 to February 2010. For the purpose of 

convenience the 24 months post-default recovery rate is used as the outcome variable where 

overdue fees and accrued interest rate are included in the recovery rate calculation‡. Therefore it is 

possible for the observed recovery rate to be less than 0 or greater than 1 for some observations. 

Without losing generalization we drop the cases with the recovery rates outside the range [0, 1]. 

Figure 2 presents a histogram of recovery rates of the whole sample. It is very clear to observe that 

large numbers of cases concentrate at the boundaries 0 and 1. 

We have nearly 40 candidate predictors for recovery rates modelling recorded one year prior 

default. However, some of them have similar definitions and are highly correlated. We first 

generate the correlation matrix for all of the continuous variables and drop out the redundant ones 

if a correlation value is higher than 0.6 among several variables. The selected candidate variables 

include the account balance sheet and behavioural information. The outliers are defined as the 

values outside the interval between the 5 and 95 percentile of each variable and the observations 

with outliers are deleted. In total there are less than 5% of the total observations dropped from the 

total sample which will not affect the model estimates and predictions. Finally we have 13 account 

level variables for recovery rates models as are listed in Table 1 Panel A. Some candidate variables 

have been demonstrated to be important on LGD/RR modelling in literature. Bellotti and Crook 

(2012) showed that both Time on Book and Time with Bank had significant positive effects on 

recovery rate, and that Balance at Observation was negatively related to recovery rate. There are 

also some new variables that have never been investigated in literature. For example, the binary 

variable Return on Order identifies if a customer returned to order at any point in the last 12 

months. It is expected to see that more outstanding debt can be recovered if the customer was 

shown to return. Another potentially useful predictor is whether a customer is on a repayment plan 

or not. It can be inferred that a customer that is on a repayment plan should have a stronger will to 

repay their debt than a customer that is not. Customer level information such as marital status, 

educational background or family income is not provided in the sample. 

Macroeconomic variables are also incorporated to study the economic impacts on retail 

lending recovery risk. The influence of including macroeconomic variables on modelling recovery 

rates of unsecured retail loans is less evident than that of mortgage loans. Bellotti and Crook (2012) 

incorporated three variables including UK retail bank base interest rates, UK unemployment rate 

and UK earning index, and they found that the inclusion macroeconomic variables increased 

                                                        
‡ Loss given default equals to one minus recovery rate. 
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model fit and improves out-of-time forecasts on recovery rates, although the authors have 

mentioned that the data in this study spanned from 1999 to 2005 which did not cover an entire 

business cycle. Leow et al (2014) investigated a collection of variables from annually to quarterly 

and monthly indices to study the macroeconomic effects on LGD, and found that it was beneficial 

to incorporate macroeconomic variables for modelling the LGD of mortgage loans, but the 

estimates of them were almost all statistically insignificant when it comes to personal retail loans. 

Khieu et al (2012) explored the determinants of bank loans from Moody’s database and included 

both economic and industry indicators, where both annual GDP growth rate and the industry 

distress indicator were found to affect the recovery rate significantly. Given that our data consists 

of monthly observations, here only monthly macroeconomic variables including UK 

unemployment rate, Consumer Price Index (CPI) and Housing Price Index (HPI) are included§. 

All of them are monthly data and are incorporated one month lag for each observation at default. 

Because of the short time period covered in our data it would not be sensible to incorporate any 

quarterly or yearly data. The Bank of England base interest rate is not included either because 

there is little change since 2008. 

Figure 2. Distribution of Recovery rates** 

 

 

The forecast accuracy of recovery rates models can be measured by the distance between the 

actual and predicted values, namely Root Mean Squared Errors (RMSE) and Mean Absolute 

Errors (MAE). R Square (R2) is also reported that measures the proportion of the variance that is 

explained by the model and thus considered as an alternative performance measure fit of LGD 

models in literature including Qi and Zhao (2011) and Loterman et al (2011). All performance 

metrics are defined in (14). To test the robustness of each algorithm a cross-validation method is 

applied which repeatedly draws a 0.1 percent sample of the total customers randomly to create a 

sub-sample. The procedure is repeated for 1000 times to validate the robustness of the algorithms 

                                                        
§ Macroeconomic information is sourced from Office for National Statistics (ONS). https://www.ons.gov.uk/ 
** We deliberately mask the values of Y-axis of this figure due to the confidentiality of the commercial data. 

https://www.ons.gov.uk/
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sufficiently. To assess the out-of-time predictions each sub-sample is divided into a training set 

from March 2009 to November 2009 and a testing set from December 2009 to February 2010. We 

then report the mean and standard deviations of the performance metrics for each model. 
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3.2. Multivariate analysis 

An explanatory analysis is performed on the whole sample using a linear regression model. Here 

two regression models are estimated: 1) with account level variables only, 2) with both account 

and macroeconomic variables. The outputs of parameters estimates and model fit are reported in 

Panel A and B of Table 1 respectively. To show the degree of multi-colinearity the VIF values for 

each parameter are also reported. It should be noticed that no variable has a VIF value greater than 

5, which indicates that the model estimates are not significantly affected by multi-colinearity. 

Table 1 shows that with the inclusion of macroeconomic variables improves R2 modestly from 

0.1508 to 0.1515 although all three macroeconomic variables are statistically significant. It is 

observed that all the account level variables remain significant at 0.01 confidence level with the 

inclusion of macroeconomic variables, indicating all account level variables are conditionally 

correlated with recovery rates. 

Some straightforward conclusions on estimates of parameters can be taken from Table 1. For 

example, the number of months the account was with the bank (Time in months) and the number 

of months that the customer has held the credit card (Time on book) both positively influence the 

recovery rate, showing that the longer a customer stays with the bank, a higher proportion of its 

debt will be recovered after default. According to Bellotti and Crook (2012), these two variables 

are the indicators of customer stability which are expected to lead to a lower recovery risk. 

Balance at Observation is shown to be negatively correlated with recovery rate, which indicates 

that the more outstanding debt a customer has, the more difficult it is to recover. It can be 

observed that the longer the customer is in arrear, the more will be repaid to the bank according to 

Table 1. One would expect that a bank would take more actions to urge the customer to pay back 

its debt if it finds the customer has been in default for a long time. For the repayment behaviours it 

shows that the number of post-default payments made in last 12 months positively affects 

recovery rate, and as expected the average payment as percentage of balance also positively 

influences the recovery rate. It is also expected to observe a higher recovery rate if a customer 

makes a higher payment most recently. There are three binary variables relating to the status of 

recovery process. Specifically a higher recovery rate is expected if a customer returned to order in 

the last 12 months which is shown in Table 1. However, contrary to expectation that a customer is 
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on a repayment plan influences the recovery rate negatively, we suggest it is because the customer 

who is assumed not to be able to repay its debt may be forced to join the repayment plan and is 

less capable of repaying debt. It can be found that a customer that has spent 1-5 months in arrears 

appears to repay more debt than otherwise. 

 Turning to macroeconomic variables we notice that both CPI and HPI are both negatively 

and significantly related to recovery rate, which implies that when price inflation increases 

customers are less capable of paying back their outstanding debts. The puzzling sign of the 

estimate of unemployment rate conflicts with the finding in Bellotti and Crook (2012), where the 

unemployment rate was shown to be negatively correlated to recovery rate. They also found that 

the inclusion of macroeconomic variables generally improves the recovery rates predictions across 

test quarters modestly. However, our sample data spans only one year and a data set with a longer 

time window is needed to investigate the impacts of macroeconomic conditions on modelling 

unsecured loans recovery rates. 
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Table 1. Explanatory analysis 

Table 1 shows the model estimates, variance inflation factor (VIF) and goodness-of-fit of a linear 

regression fitting on recovery rates on the whole sample. Panel A shows the regression outputs 

with account characteristics included only, and Panel B presents the outputs with both account and 

macroeconomic factors. 

 

 

Panel A. Modelling with account variables 

 Estimate p value VIF 

Intercept 
0.4586 *** 

(0.0030) 
<.0001 0 

Time in months 
0.0054 *** 

(0.0008) 
<.0001 1.1881 

Time on book 
0.0002 *** 

(0.0000) 
<.0001 1.2708 

Sum of transactions across all current accounts 
0.0064 *** 

(0.0001) 
<.0001 1.0342 

Number of months in arrears six months ago 
0.0327 *** 

(0.0003) 
<.0001 1.5260 

Balance at observation 
-0.0136 *** 

(0.0002) 
<.0001 1.1486 

Worst delinquency status in days across all products 
-0.0001 *** 

(0.0000) 
<.0001 1.0397 

Number of payments made last 12 months 
0.0025 *** 

(0.0003) 
<.0001 2.2370 

Average payment as percentage of balance in default 

summed over last 6 months 

8.5094 *** 

(0.0852) 
<.0001 2.0001 

Status on if a customer returned to order 
0.0029 * 

(0.0016) 
0.0719 2.1807 

Status on if a customer has spent 1-5 months in arrears 
0.0189 *** 

(0.0012) 
<.0001 2.0147 

Status on if a customer is on a repayment plan 
-0.1664 *** 

(0.0019) 
<.0001 1.9355 

Most recent payment received 
0.0052 *** 

(0.0011) 
<. 0001 1.5109 

F value 24653.0 <.0001  

R2 0.1500   

Adj R2 0.1500   

RMSE 0.3297   
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Panel B. Modelling with account and macroeconomic variables 

 Estimate p value VIF 

Intercept 
0.6255 *** 

(0.0595) 
<.0001 0 

Time in months 
0.0054 *** 

(0.0003) 
<.0001 1.1894 

Time on book 
0.0002 *** 

(0.0000) 
<.0001 1.2717 

Sum of transactions across all current accounts 
0.0064 *** 

(0.0000) 
<.0001 1.0355 

Number of months in arrears six months ago 
0.0326 *** 

(0.0002) 
<.0001 1.5391 

Balance at observation 
-0.0136 *** 

(0.0000) 
<.0001 1.1518 

Worst delinquency status in days across all products 
-0.0001 *** 

(0.0000) 
<.0001 1.0474 

Number of payments made last 12 months 
0.0025 *** 

(0.0001) 
<.0001 2.2429 

Average payment as percentage of balance in default 

summed over last 6 months 

8.5050 *** 

(0.0387) 
<.0001 2.0101 

Status on if a customer returned to order 
0.0021 *** 

(0.0008) 
0.0051 2.1852 

Status on if a customer has spent 1-5 months in arrears 
0.0192 *** 

(0.0008) 
<.0001 2.0151 

Status on if a customer is on a repayment plan 
-0.1650 *** 

(0.0009) 
<.0001 1.9469 

Most recent payment received 
0.0050 *** 

(0.0006) 
0.0018 1.5120 

Monthly unemployment rate 
0.0899 *** 

(0.0033) 
<.0001 1.0229 

Monthly CPI 
-0.0035 *** 

(0.0003) 
<.0001 1.8726 

Monthly HPI 
-0.0009 *** 

(0.0000) 
<.0001 1.8577 

F value 19822.1 <.0001  

R2 0.1507   

Adj R2 0.1507   

RMSE 0.3296   

 

3.3. Out-of-sample predictions 

To investigate the effects of classification and regression in two-stage models we propose to 

model the cases with RR in [0, 1] and (0, 1) separately. Single-stage and two-stage models are all 

compared in [0, 1] and only single-stage models are benchmarked in (0, 1). Four methods are 
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investigated to be single-stage models including OLS, fractional response regression, inflated beta 

regression and LS-SVR. For the two-stage models two classification methods are applied 

including logistic regression and LS-SVM, and there are four regression methods employed for 

the second stage that are the same as single-stage models except that the inflated beta regression is 

replaced by a beta regression model. In total we have eight combinations for the two-stage models 

(See Table 2). In the following the abbreviations of two-stage models names are used for 

convenience††. For example, the combination of LS-SVM and fractional response regression is 

abbreviated as SVM+Frac. 

We first analyze the predictive performances of the cases with RR in [0, 1] and report the 

outputs in Table 2‡‡. To compare model performances the two sample t-test is applied to RMSE 

and MAE and both the differences between each pair of models and the p values are reported in 

Table 3. It should be noted that OLS outperforms the other generalized linear models including 

fractional response regression and inflated beta regression models in terms of out-of-sample 

prediction performances. Such evidence is expected although the empirical recovery rates 

distribution is far from a Gaussian distribution. Both Zhang and Thomas (2010) and Bellotti and 

Crook (2012) have reported that the OLS regression model gave better predictions than other 

generalized linear models. Empirical evidence in Zhang and Thomas (2010) suggested that the 

flexibility of survival regression did not necessarily give better predictions because it was difficult 

to separate from the zero recovery rates cases for the accelerated failure time models. In our study 

inflated beta regression, which is designed to accommodate the cases at the boundaries 0 and 1, 

does not show any advantages compared with OLS and fractional response regression. It is clear 

that SVR yields better model fit and predictive accuracy for both in-sample and out-of-sample 

tests. This result is also consistent with the findings in Loterman et al (2011) which showed SVR 

and neural networks significantly outperformed the other linear models for LGD prediction 

implying a strong non-linear relationship between LGD and its predictors. 

Performances of two-stage models are more straightforward. The two-stage logistic+OLS 

method proposed in Bellotti and Crook (2012) gave slightly better out-of-sample predictions than 

the single-stage OLS model. We replace the OLS with other techniques and find no noticeable 

improvement for either logistic+Frac or logistic+Beta. Instead logistic+OLS gives significantly 

better out-of-sample predictive accuracy than those. Furthermore it is noticed that logistic+SVR 

has significantly lower R2 and MAE and an insignificant improvement in terms of RMSE 

compared with logistic+OLS according to Table 3 Panel B. It indicates that the non-linear methods 

are not shown to improve the performances of two-stage models.  

To examine the hypothesis developed above the logistic regression model is replaced by a 

LS-SVC technique under the two-stage modelling framework, and it shows that the two-stage 

                                                        
†† The term of reference of all model names is given in Table 7. 
‡‡  Depending on the computer specification it takes between 15 and 25 minutes to run a 1000 times 

cross-validation for a two-stage model logistic+OLS, for SVC+Frac it takes between 60 and 90 minutes, and for 

SVC+SVR it takes between 90 and 120 minutes. Please note the computation times given above are for reference 

only. 
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models SVC+OLS and SVC+Frac significantly outperform all the other models. As can be seen 

from Table 3 there are insignificant differences between SVC+OLS and SVC+Frac in terms of R2 

and RMSE although SVC+Frac shows a slightly significant better MAE. Note that neither 

SVC+Beta nor SVC+SVR show better predictive accuracies than SVC+OLS or SVC+Frac. Also 

it is observed that the SVC+Beta model is much less competitive than any other two-stage method 

with a SVC technique. But SVC+Beta significantly outperforms the other single-stage statistical 

models, which implies that the cases with RR in (0, 1) may have a linear relationship between 

recovery rate and its predictors. Combined with the consistently poor performances of the inflated 

beta regression model, it indicates that a beta distribution is not proving to be a superior model for 

recovery rates as expected. Yet when the SVC technique is applied as the classification method, all 

two-stage models present noticeable improvements compared with those using a logistic 

regression, suggesting that the probabilities of recovery rates being 0 or 1 generated in equation 

(12) from SVC techniques are more accurate than that from logistic regression models. 
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Table 2. Model performances on cases with RR in [0, 1] 

Table 2 presents the out-of-sample predictive accuracy for single-stage and two-stage models 

respectively. All models are indexed from Model1 to Model12 as follows: Model1: Ordinary 

linear regression (OLS), Model2: Fractional response regression, Model3: Inflated beta regression, 

Model4: LS-SVR, Model5: Logistic regression+OLS, Model6: Logistic regression+Fractional 

response regression, Model7: Logistic regression+Beta regression, Model8: Logistic 

regression+LS-SVR, Model9: LS-SVC+OLS, Model10: LS-SVC+Fractional response regression, 

Model 11: LS-SVC+Beta regression, Model12: LS-SVC+LS-SVR. 

 

Panel A. Single-stage models 

 

  In sample Out of sample 

  R2 RMSE MAE R2 RMSE MAE 

Model1 

 

0.2014 

(0.0393) 

0.2449 

(0.0326) 

0.3176 

(0.0187) 

0.0882 

(0.0694) 

0.3424 

(0.0213) 

0.2634 

(0.0266) 

Model2 

 

0.2030 

(0.0458) 

0.3173 

(0.0329) 

0.2413 

(0.0192) 

0.0778 

(0.0707) 

0.3443 

(0.0217) 

0.2678 

(0.0273) 

Model3 

 

0.0690 

(0.0318) 

0.3431 

(0.0333) 

0.2721 

(0.0252) 

0.0179 

(0.0146) 

0.3556 

(0.0221) 

0.2864 

(0.0284) 

Model4 

 

0.6471 

(0.0310) 

0.2112 

(0.0283) 

0.1541 

(0.0126) 

0.1214 

(0.0570) 

0.3363 

(0.0213) 

0.2538 

(0.0219) 

 

Panel B. Two-stage models 

  In sample Out of sample 

  R2 RMSE MAE R2 RMSE MAE 

Model5 

 

0.2302 

(0.0481) 

0.3118 

(0.0335) 

0.2316 

(0.0194) 

0.1018 

(0.0723) 

0.3398 

(0.0221) 

0.2549 

(0.0266) 

Model6 

 

0.2194 

(0.0542) 

0.3203 

(0.0682) 

0.2355 

(0.0191) 

0.0894 

(0.0698) 

0.3417 

(0.0220) 

0.2509 

(0.0246) 

Model7 

 

0.2207 

(0.0452) 

0.3131 

(0.0164) 

0.2351 

(0.0197) 

0.0880 

(0.0736) 

0.3423 

(0.0220) 

0.2513 

(0.0251) 

Model8 

 

0.2871 

(0.0483) 

0.2938 

(0.0191) 

0.2099 

(0.0219) 

0.0825 

(0.0709) 

0.3389 

(0.0222) 

0.2616 

(0.0240) 

Model9 

 

0.4794 

(0.0430) 

0.2553 

(0.0142) 

0.1707 

(0.0220) 

0.1710 

(0.0607) 

0.3256 

(0.0215) 

0.2534 

(0.0359) 

Model10 

 

0.4771 

(0.0493) 

0.2550 

(0.0151) 

0.1726 

(0.0141) 

0.1744 

(0.0654) 

0.3263 

(0.0182) 

0.2509 

(0.0202) 

Model11 

 

0.4534 

(0.0475) 

0.2612 

(0.0137) 

0.1874 

(0.0226) 

0.1329 

(0.0787) 

0.3349 

(0.0217) 

0.2605 

(0.0375) 

Model12 

 

0.5476 

(0.0465) 

0.2378 

(0.0156) 

0.1483 

(0.0209) 

0.1628 

(0.0767) 

0.3278 

(0.0219) 

0.2444 

(0.0245) 

 

 



 19 

Table 3. Out-of-sample comparisons on [0, 1] 

Table 3 presents the absolute differences of RMSE and MAE between the model of a related row 

and the model of a related column. Two sample t-test is conducted with p-values reported in 

parenthesis. A positive t-value indicates that the model performance metric of related row is higher 

than the model of related column and vice versa. Symbols such as ***, ** and * indicate the 

significance at 0.01, 0.05 and 0.1 confidence level respectively. 

 

All models are indexed from Model1 to Model10 as follows: Model1: OLS, Model2: Fractional 

response regression, Model3: Inflated beta regression, Model4: LS-SVR, Model5: Logistic 

regression+OLS, Model6: Logistic regression+Fractional response regression, Model7: Logistic 

regression+Beta regression, Model8: Logistic regression+LS-SVR, Model9: LS-SVC+OLS, 

Model10: LS-SVC+Fractional response regression, Model 11: LS-SVC+Beta regression, Model12: 

LS-SVC+LS-SVR. 

 

Panel A. RMSE 

 Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 Model9 Model10 Model11 Model12 

Model1 

 
- 

           

           

Model2 

 

0.0019 ** 

(0.0483) 
- 

          

          

Model3 

 

0.0132 *** 

(0.0000) 

0.0113 *** 

(0.0000) 
- 

         

         

Model4 

 

-0.0061 *** 

(0.0000) 

-0.0080 *** 

(0.0000) 

-0.0193 *** 

(0.0000) 
- 

        

        

Model5 

 

-0.0026 *** 

(0.0075) 

-0.0045 *** 

(0.0000) 

-0.0158 *** 

(0.0000) 

0.0035 *** 

(0.0003) 
- 

       

       

Model6 

 

-0.0007 

(0.4698) 

-0.0026 *** 

(0.0079) 

-0.0139 *** 

(0.0000) 

0.0054 *** 

(0.0000) 

0.0019 * 

(0.0542) 
- 

      

      

Model7 

 

-0.0001 

(0.9178) 

-0.0020 ** 

(0.0408) 

-0.0133 *** 

(0.0000) 

0.0060 *** 

(0.0000) 

0.0025 ** 

(0.0113) 

0.0006 

(0.5420) 
- 

     

     

Model8 

 

-0.0035 *** 

(0.0003) 

-0.0054 *** 

(0.0000) 

-0.0167 *** 

(0.0000) 

0.0026 *** 

(0.0076) 

-0.0009 

(0.3637) 

-0.0028 *** 

(0.0047) 

-0.0034 *** 

(0.0006) 
- 

  -  

    

Model9 

 

-0.0168 *** 

(0.0000) 

-0.0187 *** 

(0.0000) 

-0.0300 *** 

(0.0000) 

-0.0107 *** 

(0.0000) 

-0.0142 *** 

(0.0000) 

-0.0161 *** 

(0.0000) 

-0.0167 *** 

(0.0000) 

-0.0133 *** 

(0.0000) 
- 

   

   

Model10 

 

-0.0161 *** 

(0.0000) 

-0.0180 *** 

(0.0000) 

-0.0293 *** 

(0.0000) 

-0.0100 *** 

(0.0000) 

-0.0135 *** 

(0.0000) 

-0.0154 *** 

(0.0000) 

-0.0160 *** 

(0.0000) 

-0.0126 *** 

(0.0000) 

0.0007 

(0.4321) 
- 

  

  

Model11 

 

-0.0075 *** 

(0.0000) 

-0.0094 *** 

(0.0000) 

-0.0207 *** 

(0.0000) 

-0.0014 

(0.1456) 

-0.0049 *** 

(0.0000) 

-0.0068 *** 

(0.0000) 

-0.0074 *** 

(0.0000) 

-0.0040 *** 

(0.0000) 

0.0093 *** 

(0.0000) 

0.0086 *** 

(0.0000) 
- 

 

 

Model12 

 

-0.0146 *** 

(0.0000) 

-0.0165 *** 

(0.0000) 

-0.0278 *** 

(0.0000) 

-0.0085 *** 

(0.0000) 

-0.0120 *** 

(0.0000) 

-0.0139 *** 

(0.0000) 

-0.0145 *** 

(0.0000) 

-0.0111 *** 

(0.0000) 

0.0022 ** 

(0.0235) 

0.0015 * 

(0.0959) 

-0.0071 *** 

(0.0000) 
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Model1: OLS, Model2: Fractional response regression, Model3: Inflated beta regression, Model4: 

LS-SVR, Model5: Logistic regression+OLS, Model6: Logistic regression+Fractional response 

regression, Model7: Logistic regression+Beta regression, Model8: Logistic regression+LS-SVR, 

Model9: LS-SVC+OLS, Model10: LS-SVC+Fractional response regression, Model 11: 

LS-SVC+Beta regression, Model12: LS-SVC+LS-SVR. 

 

Panel B. MAE 

 Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 Model9 Model10 Model11 Model12 

Model1 

 
- 

           

           

Model2 

 

0.0044 *** 

(0.0003) 
- 

          

          

Model3 

 

0.0230 *** 

(0.0000) 

0.0186 *** 

(0.0000) 
- 

         

         

Model4 

 

-0.0096 *** 

(0.0000) 

-0.0140 *** 

(0.0000) 

-0.0326 *** 

(0.0000) 
- 

        

        

Model5 

 

-0.0085 *** 

(0.0000) 

-0.0129 *** 

(0.0000) 

-0.0315 *** 

(0.0000) 

0.0011 

(0.3128) 
- 

       

       

Model6 

 

-0.0125 *** 

(0.0000) 

-0.0169 *** 

(0.0000) 

-0.0355 *** 

(0.0000) 

-0.0029 *** 

(0.0054) 

-0.0040 *** 

(0.0005) 
- 

      

      

Model7 

 

-0.0121 *** 

(0.0000) 

-0.0165 *** 

(0.0000) 

-0.0351 *** 

(0.0000) 

-0.0025 ** 

(0.0177) 

-0.0036 *** 

(0.0019) 

0.0004 

(0.7190) 
- 

     

     

Model8 

 

-0.0018 

(0.1123) 

-0.0062 *** 

(0.0000) 

-0.0248 *** 

(0.0000) 

0.0078 *** 

(0.0000) 

0.0067 *** 

(0.0000) 

0.0107 *** 

(0.0000) 

0.0103 *** 

(0.0000) 
- 

    

    

Model9 

 

-0.0100 *** 

(0.0000) 

-0.0144 *** 

(0.0000) 

-0.0330 *** 

(0.0000) 

-0.0004 

(0.7636) 

-0.0015 

(0.2885) 

0.0025 * 

(0.0694) 

0.0021 

(0.1297) 

-0.0082 *** 

(0.0000) 
- 

   

   

Model10 

 

-0.0125 *** 

(0.0000) 

-0.0169 *** 

(0.0000) 

-0.0355 *** 

(0.0000) 

-0.0029 *** 

(0.0021) 

-0.0040 *** 

(0.0002) 

0.0000 

(1.0000) 

-0.0004 

(0.6947) 

-0.0107 *** 

(0.0000) 

-0.0025 * 

(0.0551) 
- 

  

  

Model11 

 

-0.0029 ** 

(0.0462) 

-0.0073 *** 

(0.0000) 

-0.0259 *** 

(0.0000) 

0.0067 *** 

(0.0000) 

0.0056 *** 

(0.0001) 

0.0096 *** 

(0.0000) 

0.0092 *** 

(0.0000) 

-0.0011 

(0.4347) 

0.0071 *** 

(0.0000) 

0.0096 *** 

(0.0000) 
- 

 

 

Model12 

 

-0.0190 *** 

(0.0000) 

-0.0234 *** 

(0.0000) 

-0.0420 *** 

(0.0000) 

-0.0094 *** 

(0.0000) 

-0.0105 *** 

(0.0000) 

-0.0065 *** 

(0.0000) 

-0.0069 *** 

(0.0000) 

-0.0172 *** 

(0.0000) 

-0.0090 *** 

(0.0000) 

-0.0065 *** 

(0.0000) 

-0.0161 *** 

(0.0000) 
- 

 

 We further explore the advantages of SVC techniques by comparing the classification 

accuracies of logistic regression and SVC models in terms of AUC (Area under curve). AUC is a 

statistics related to a ROC (Receiver Operating characteristic) curve to measure the overall 

performance of the classifier scores. A simple method of AUC calculation of a classifier G was 

presented in Hand and Till (2001) as equation (14). 
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where 0n  and 1n  are the numbers of positive and negative cases respectively§§, and ir  denotes 

the rank of i-th positive case in the ranked list of the predictive values from the logistic regression. 

In two stage models there are two classification events involved. Event1: RR=0 vs. RR>0; Event2: 

RR=1 vs. 0<RR<1. The same scheme is applied as we did for recovery rates prediction to generate 

the classification predictions repeatedly for 1000 times and report both the means and the standard 

errors of both in-sample and out-of-sample performances in Table 4 for both events respectively. A 

two sample t-test is employed for out-of-sample predictions comparisons. It shows that SVM 

models excel in general for both events in terms of in-sample and out-of-sample AUC. It is also 

noticed that both logistic regression and SVM perform fairly well for Event1 with an AUC higher 

than 0.85 with mild advantage shown by SVM. SVM gives a better performance on Event2 with 

significant improvement on AUC. Table 5 confirms the expectations that the SVM technique is 

able to generate more accurate predicted probabilities than logistic regression. It should be noted 

that it is more difficult to separate the cases with RR in (0, 1) from that with RR=1, suggesting 

that the customers who are willing to repay all debts are more difficult to be separated compared 

with those who are unable to repay any debt. 

 

Table 4. AUC comparisons of classification 

Event1: RR=0 vs. RR>0; Event2: RR=1 vs. 0<RR<1. 

 

  In-sample Out-of-sample 

  Event 1 Event 2 Event 1 Event 2 

Logistic Regression 

 

0.9089 

(0.0248) 

0.8152 

(0.0311) 

0.8671 

(0.0406) 

0.7648 

(0.0544) 

LS-SVC 

 

0.9245 

(0.0300) 

0.9549 

(0.0116) 

0.8725 

(0.0443) 

0.8013 

(0.0572) 

t value 

 
  

-2.84 *** 

(0.0045) 

-4.61 *** 

(0.0000) 

 

 According to above it could be suggested that non-linear models including both statistical 

and machine learning techniques do not exhibit advantages over OLS in the two-stage frameworks 

no matter whether a logistic regression or a SVC technique is used as the classification method. To 

examine the effects of regression models four methods are applied to estimating RR in (0, 1) 

including OLS, fractional response regression, beta regression and a SVR technique. The 

performance metrics and model comparison results are reported in Tables 5 and 6 respectively. 

According to Table 6 the SVR technique outperforms the other methods significantly in terms of 

out-of-sample MAE, but it presents an insignificant advantage compared with OLS in terms of R2 

and RMSE. It suggests that the SVR is considered to be as accurate as OLS when modelling RR in 

                                                        
§§ In this study for the first stage the cases with RR=0 are positive and RR>0 are negative, and for the second 

stage the cases with RR=1 are positive and 0<RR<1 are negative. 
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(0, 1), and both of them are significantly better than the fractional response and beta regression 

models. This is consistent with the evidence presented above and it can be concluded that 

SVC+OLS and SVC+SVR give similarly accurate out-of-sample predictions. Similarly 

Logistic+OLS shows marginal advantage over Logistic+SVR in terms of R2 and MAE. 

 

Table 5. Performances of single-stage models in 0<RR<1 

Table 5 presents the in-sample and out-of-sample performances of single-stage model on the 

sample with recovery rate between (0, 1). All models are indexed from Model1 to Model4 as 

follows: Model1: OLS, Model2: Fractional response regression, Model3: Inflated beta regression, 

Model4: LS-SVR. 

 

 

   In sample Out of sample 

  R2 RMSE MAE R2 RMSE MAE 

Model1 

 

0.1951 

(0.0567) 

0.1564 

(0.0165) 

0.1072 

(0.0114) 

0.0792 

(0.0944) 

0.2037 

(0.0270) 

0.1480 

(0.0215) 

Model2 

 

0.1705 

(0.0547) 

0.1589 

(0.0166) 

0.1097 

(0.0117) 

0.0513 

(0.0906) 

0.2069 

(0.0272) 

0.1476 

(0.0205) 

Model3 

 

0.0633 

(0.1073) 

0.1686 

(0.0192) 

0.1180 

(0.0161) 

0.0277 

(0.0726) 

0.2179 

(0.0306) 

0.1538 

(0.0282) 

Model4 

 

0.6579 

(0.0370) 

0.1015 

(0.0113) 

0.0691 

(0.0076) 

0.0828 

(0.0827) 

0.2035 

(0.0265) 

0.1363 

(0.0160) 

 

Table 6 Comparisons of single-stage models 

Table 6 presents the absolute differences of RMSE and MAE between the model of related row 

and the model of related column. Two sample t-test is conducted with p values reported in 

parenthesis. A positive t-value indicates that the model performance metric of related row is higher 

than the model of related column and vice versa. Symbols such as ***, ** and * indicate the 

significance at 0.01, 0.05 and 0.1 confidence level respectively. 

 

All models are indexed from Model1 to Model4 as follows: Model1: OLS, Model2: Fractional 

response regression, Model3: Inflated beta regression, Model4: LS-SVR. 

 

Panel A. RMSE 

 Model1 Model2 Model3 Model4 

Model1 

 
- 

   

   

Model2 

 

0.0032 *** 

(0.0083) 
- 

  

  

Model3 

 

0.0142 *** 

(0.0000) 

0.0110 *** 

(0.0000) 
- 

 

 

Model4 

 

-0.0002 

(0.8672) 

-0.0034 *** 

(0.0047) 

-0.0144 *** 

(0.0000) 
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Panel B. MAE 

 Model1 Model2 Model3 Model4 

Model1 

 
- 

   

   

Model2 

 

-0.0004 

(0.6703) 
- 

  

  

Model3 

 

0.0058 *** 

(0.0000) 

0.0062*** 

(0.0000) 
- 

 

 

Model4 

 

-0.0117 *** 

(0.0000) 

-0.0113 *** 

(0.0000) 

-0.0175 *** 

(0.0000) 
- 

 

Table 7 Term of reference 

Table 7 presents the abbreviations and full names of the models in this study. 

 

Models Abbreviations Full names 

Model1 OLS Ordinary Linear Regression 

Model2 Frac Fractional Response Regression 

Model3 Inflated Beta Inflated Beta Regression 

Model4 SVR Least Squared Support Vector Regression 

Model5 Logistic+OLS 
Logistic Regression and Ordinary Linear 

Regression 

Model6 Logistic+Frac 
Logistic Regression and Fractional Response 

Regression 

Model7 Logistic+Beta Logistic Regression and Beta Regression 

Model8 Logistic +SVR 
Logistic Regression and Least Squared Support 

Vector Regression 

Model9 SVC+OLS 
Least Squared Support Vector Classification and 

Ordinary Linear Regression 

Model10 SVC+Frac 
Least Squared Support Vector Classification and 

Fractional Response Regression 

Model11 SVC+Beta 
Least Squared Support Vector Classification and 

Beta Regression 

Model12 SVC+SVR 
Least Squared Support Vector Classification and 

Least Squared Support Vector Regression 
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4. Conclusions 

This paper evaluates the performances of a group of statistical and machine learning techniques to 

predict the recovery rates of a large sample of UK bank credit cards, and shows that machine 

learning techniques are an effective supplement to statistical regression models to improve the 

recovery rates predictions. The kernel based least squares support vector machine techniques are 

applied in two ways. First the recovery rates are modelled with support vector regression directly 

which demonstrates better predictions than the other linear or generalized linear models in terms 

of both in-sample and out-of-sample predictive metrics on average, although the improvements of 

RMSE and MAE are not as remarkable as R2. Second the support vector machine is incorporated 

into a two-stage modelling framework where the cases with zero and one recovery rates are 

separated by a least squares support vector classifier, and then the cases in the interval (0, 1) are 

modelled with other regression models. It can be concluded that the combination of LS-SVC and 

OLS gives the best out-of-sample predictive accuracies in terms of out-of sample RMSE and 

MAE. It is also noticed that this two-stage model outperforms the single-stage support vector 

regression model significantly in terms of the out-of-sample R2. For the other combinations of 

two-stage models, where the OLS is replaced by other statistical or machine learning methods, the 

predictive performances are not as good as the SVC+OLS model. We suggest that choice of 

algorithm at the separation stage of the two-stage model plays an evidently crucial role in the 

predictive accuracy of recovery rates modelling while the choice of algorithms at the regression 

stage in (0, 1) is less important. 
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