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Abstract:

Purpose of review

Nuclear envelope links to a wide range of disorders including several myopathies and
neuropathies over the past two decades has spurred research leading to a completely changed
view of this important cellular structure and its functions. However, the many functions now
assigned to the nuclear envelope make it increasingly hard to determine which functions
underlie these disorders.

Recent findings

New nuclear envelope functions in genome organization, regulation, and repair, signaling, and
nuclear and cellular mechanics have been added to its classical barrier function. Arguments
can be made for any of these functions mediating pathology in nuclear envelope disorders and
data exists supporting many. Moreover, transient and/or distal nuclear envelope connections
to other cellular proteins and structures may increase the complexity of these disorders.
Summary

Although the increased understanding of nuclear envelope functions has made it harder to
distinguish specific causes of nuclear envelope disorders, this is because it has greatly
expanded the spectrum of possible mechanisms underlying them. This change in perspective
applies well beyond the known nuclear envelope disorders, potentially implicating the nuclear

envelope in a much wider range of myopathies and neuropathies.
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Introduction

The nuclear envelope (NE) is a structurally complex double membrane system
perforated by nuclear pore complexes that encloses the genome in eukaryotic cells (Fig. 1).
The outer nuclear membrane (ONM) is continuous with the endoplasmic reticulum (ER) [1].
It contains both ER proteins and several NE transmembrane (NET) proteins, some both
interacting with cytoskeletal proteins and connecting across the lumen to inner nuclear
membrane (INM) proteins {2, 3]. The INM contains many NETs and is underlaid by an
intermediate filament meshwork of nuclear lamins [4, 5]. Mutations in both NETs and lamins
are linked to over two-dozen disorders ranging from muscular dystrophies to neuropathies,
dermopathies, lipodystrophies and premature aging syndromes [6", 7] (Table 1).

The discovery that emerin, the first gene linked to Emery-Dreifuss muscular dystrophy
(EDMD) [8], is a NET [9] raised a central question: how can disruption of NE functions cause
myopathies? Subsequent findings that lamin A mutations cause another EDMD variant [10]
and emerin binds lamin A [11] suggested that functions disrupted in EDMD are supported by
larger protein complexes. Searching for functions shared by emerin and lamin A quickly led
to newly identified NE functions in cell cycle regulation, signaling, and genome regulation
[12-15]. As lamins are intermediate filaments, cytoskeletal mechanics was also investigated,
finding weakened mechanical stability of nuclei and cells for both lamin and emerin
disruption [16, 17]. While these discoveries were being made several other NE proteins were
linked to EDMD [18, 19®%, 20], further complicating the task of determining the NE functions
most important for driving EDMD pathology.

Concomitant with the expansion of EDMD-linked genes, a wide variety of other
diseases were being linked to NE proteins, collectively termed laminopathies — primary
laminopathies for mutations in lamins and secondary laminopathies for mutations in
associated proteins. These included other muscle diseases such as a variant of limb-girdle

muscular dystrophy (LGMDIB) [21], and familial cardiomyopathy with conduction defect



[22], but also included disorders affecting different tissues. A variant of Charcot-Marie Tooth
Neuropathy (CMT-2B) was linked to other lamin A mutations [23] while another brain
disorder affecting myelin was linked to lamin B1 mutations [24] and cerebellar ataxia to the
NET nesprin 1 [25]. Several lipodystrophies [26, 27], dermopathy [28], osteopoikilosis and
melorheostosis [29], Greenberg-Skeletal dysplasia [30], Pelger-Huet anomaly [31], and
several progeroid syndromes [32, 33] were also linked to lamin and NET mutations.
Mutations in lamin A are responsible for several of these disorders affecting separately
muscle, fat, skin and neurons, which prompted another central question for the field: how do
mutations in widely expressed proteins cause distinct tissue specific diseases?

LGMD and CMT are, like EDMD, both genetically heterogeneous diseases. However,
whereas EDMD is linked to just NE protein-encoding genes, LGMD and CMT are linked to
genes encoding proteins from all over the cell. Nonetheless, 40% of proteins are estimated to
have multiple cellular locations [34] and roughly a third of LGMD-linked genes encode
proteins found in proteomic analyses of the NE [35-37"]. This raises the final question: are
these seemingly disparate proteins physically or functionally connected to yield the same
disease pathologies? Recent publications have begun to shed some light on all three of the

above questions.

Novel NE functions in the context of myopathy and neuropathy
NE-directed genome organization

The quest for emerin links to chromatin quickly revealed that emerin, like the NET
LAP2f [38], binds barrier-to-autointegration factor [39], a protein involved in compacting
chromatin [40]. Other more specific chromatin-associated emerin binding partners include

splicing factor YT521-B [41], transcriptional repressors Btf and germ cell-less [14, 42], and

the Lmo7 transcription factor [43].



Muscle-specific gene expression was altered in EDMD patients and an emerin
knockout mouse: specifically disruption of MyoD pathways important for muscle
differentiation and regeneration [44, 45]. This could partly be explained by recent f”mdings
that emerin inhibits binding of the Lmo7 transcription factor to promoters for important
myogenic genes Pax3 and MyoD [46], presumably by sequestering Lmo7 at the NE.

Finally, genome organization is disrupted in EDMD patient cells, with a visible
redistribution of peripheral heterochromatin away from the NE {47, 48]. These defects were
observed in both lamin and NET-linked EDMD and also in lamin A-linked cardiomyopathy
[49]. The past few years have seen great strides in understanding NE-directed spatial genome
organization. General NE-heterochromatin interactions are driven by the NET LBR together
with lamin A [50, 51]. However, other NETs LAP2( and emerin also contribute by recruiting
the histone deacetylase HDAC3 to promote heterochromatin formation at the NE [52, 53].
Thus both lamin A and emerin contribute to NE-heterochromatin interactions.

Specific gene targeting to the NE is also regulated by NETs. A complex with LAP2,
HDACS3, lamin B1 and the transcriptional repressor cKrox maintains the IgH and Cyp3a loci
at the NE in fibroblasts [54]. A likely similar complex containing emerin and HDAC3 was
subsequently found to affect the expression and nuclear positions of the MyoD, Myf5 and
Pax7 genes important for myogenesis [55]. However, other proteins likely contribute to both
complexes as the specific targeting and release from the periphery in certain cell types cannot
be explained by the players thus far identified. This function may be assumed by several
tissue;speciﬁc NETSs that reposition genes and chromosomes to the NE in fibroblasts and are
required for their normal positioning in tissues [35, 56, 57®]. Specifically in myogenesis,
three muscle-specific NETs, NET39, Tmem38a and WFS1, direct important gene
repositionings that enhance muscle-gene regulation [57®]. Genes under this regulation tend to
require tight temporal regulation because their products are needed early in myogenesis, but

are inhibitory at later stages. Several such as Efna5, Cxcll and Ptn are also reactivated upon



muscle damage [58, 59]. Each of the three muscle NETS largely affects distinct gene subsets,
but together they affect 37% of all genes normally changing in myogenesis. Importantly,
individual NET knockdowns did not block myogenesis while their combined knockdown
almost completely blocked myotube formation [57®"]. Thus, the potential involvement of
these muscle NETS in protein complexes linked to EDMD is consistent with the initial normal
muscle development, then appearance of muscle wasting and contractures as children become
more physically active. Such tissue-specific gene regulation defects could explain all NE
disorders as similar genome organization disruption has been recently linked to limb

development diseases [607%].

NE Mechanical connections and tensegrity

As lamins are intermediate filaments, another proposed mechanism towards EDMD
pathology is nuclear mechanical defects. Accordingly, lamin A knockout fibroblasts have
reduced resistance to mechanical stress and exhibit defects in cell migration {16, 61]. Emerin
knockout also alters NE elasticity [17] and emerin has an additional role in capping actin
filaments [62]. Nonetheless, the strongest argument for the mechanical hypothesis was the
additional linking of nesprin and SUN mutations to EDMD [18, 19™%]. Nesprins and SUN
proteins are NETs that connect across the lumen of the NE with a triple helical interface {63,
64]. Nesprins in the ONM further connect to cytoplasmic filament systems [65-69%] while
SUNSs in the INM connect to the lamin polymer [70, 71]. The protein complex containing
SUNSs and nesprins is named LINC for linker of gucleo- and cytoskeleton {3].

Nesprin-nesprin interactions are proposed to form a scaffold on the ONM, providing
further mechanical stability [72]. SUN1 and 2 are partially redundant [73] and nesprin 1 and 2
may be also [74, 7572, but each can likely fulfill separate tissue specific functions. SUN2
forms distinct LINC complexes during meiosis [76"] and distinctive LINC complexes

containing either nesprin 1 or the SUN1 isoform SUNI1n appear during sperm development



[77]. Tellingly, the dist?nct LINC complexes localize to opposite poles of the spermatid [77].
Other LINC complexes characterized by the additional partner NETS (TMEM201/Sampl)
associate with TAN-lines that serve as tracks for nuclear migration and positioning within the
cell [78]. Tissue-specific isoforms of NETS and nesprins have been identified [56, 79, 80].

The partial redundancy and many SUN and nesprin isoforms make it hard to
distinguish the roles of each protein in disease, but mouse models show tissue specific effects.
LINC complexes are particularly critical for neurogenesis [81] with nesprin 1/2 double
knockout mice failing to recruit synaptic nuclei to the neuromuscular junction [82] while
SUN1/2 double knockout mice have abnormal synaptic nuclei [73]. Nesprin-1 disruption
alone in mice yields an EDMD-like phenotype [83]. This complexity may also explain why
different EDMD mutations yield distinct tissue culture phenotypes [84] and the extreme
clinical variability for EDMD [19"%, 85]. Accordingly mutations in nesprin 1 have been
associated with cerebellar ataxia [25], EDMD [18] and another similar muscular dystrophy
[86%] and the same will likely apply for other NETSs.

Nuclear/cellular mechanics could also affect gene expression through mechanosignal
transduction. An EDMD-cansing LMNA mutation disrupted nuclear mechanical responses
specifically in muscle nuclei [87%]. Cells from lamin-A/C knockout mice have impaired
nuclear translocation and downstream signaling of the mechanosensitive transcription factor
MKL1 [88]. Moreover, the Yes-associated Protein (YAP), a transcriptional coactivator, failed
to relocate to the nucleus upon nesprin knockdown [89] and LMNA mutant myoblasts were
unable to reactivate YAP after cyclic stretch [90%]. Thus, lamins and NETs are involved in

mechanical signaling pathways and disruption of either could yield similarities in phenotypes.

NE Signaling defects
Emerin functions intersect with the Wnt/B-catenin pathway [12], raising the possibility

that non-mechanical signaling defects could also underlic NE disease pathology. Further



evidence comes from a recent study where depletion of emerin in mouse ES cell-derived
cardiomyocytes caused hyper-activation of Wnt/B-catenin signaling, negatively affecting
cardiac differentiation [91%"]. Another NET involved in Wnt signaling is nesprin 2 by
interaction with a-catenin [92]. An ortholog of nesprin 1 and 2 in C. elegans regulates axon
termination and synapse formation, likely through Wnt/B-catenin signaling [93"®]. Several
other NETs intersect with signaling pathways including NET59/Ncln (antagonizing Nodal
signaling and TGFB pathways, [94]), MANI1 (Smad/BMP/TGFp-signaling [95, 96]), and
NET25 (Lem2) (negatively regulating the ERK1/2 pathway [97]). NET25 is required for
efficient myoblast differentiation and complements emerin’s role in myogenesis [97]. NET309,
which is principally expressed in heart and skeletal muscle [98], acts on the mTOR pathway
in myogenesis [99].

Lamin A is involved in several signaling pathways including MAP kinase {100] and
Wnt/B-catenin during early mesenchymal stem cell differentiation [101]. Elevated ERK1/2
signaling in LMNA linked cardiomyopathy is modulated by TGF-B/Smad signaling [37"] and
myopathic lamin A mutations activate the nrf2/keap-1 pathway [102]. For the Ilatter,
cytoplasmic lamin aggregates induced by reductive stress correlate with elevated levels of the
autophagy adaptor p62/SQSTMI that binds the cytoplasmic nrf2 interactor keap-1, thus
allowing nrf2 nuclear translocation and target gene activation [102%]. Finally, Akt/mTOR
signaling is hyper-activated in hearts of mice carrying an EDMD-causing LMNA mutation
[36].

Thus, several signaling pathways are regulated by NE proteins. Due to the availability
of existing drugs targeting these pathways, they are a promising avenue for treatment of the
heart effects in NE-linked myopathies [103]. However, most of these pathways are active in a

wide range of cell types and so other factors may contribute to tissue specificity in

pathologies.



Tissue specific functioning of the NE in myopathies and neuropathies
NE Tissue specificity

One way to explain how mutations in ubiquitously expressed proteins yield tissue-
specific defects is if larger complexes including tissue-specific proteins are required for the
functions affected. Several studies over the past 5 years have demonstrated that each tissue
sampled has a distinct subset of NETs [35, 104, 105]. Tissue transcriptomic comparisons with
the tissues thus far sampled by NE proteomics indicates that other tissues such as brain and
skin likely have completely distinct NE proteomes [6®]. Therefore it may be necessary to
determine NE proteomes for each tissue where pathology is observed before all NE diseases
can be fully explained.

Thus far, muscle-specific NETs have been identified with functions in cytoskeletal
organization [104] that fit with the mechanical instability hypothesis while those affecting
genome organization [57%"] fit with the gene regulation hypothesis. Mechanical stress is less
likely to underlie neuropathies and lipodystrophies. However, a fat-specific NET that affected
genome organization [56] was required for adipogenesis [106%], suggesting that tissue-

specific NETs in genome regulation could apply for all NE-linked disorders.

Calcium signaling at the NE

The muscle NE proteome was enriched in Ca?* signaling and ion transport proteins
[104]. Though many of these proteins are not tissue-specific, they are only at the NE in
muscle, suggesting tissue-specific targeting could also explain NE-linked tissue-specific
pathologies. Some proteins mutated in other muscular dystrophies are involved in calcium
transport, including dystrophin and calpain 3 [107, 108%, 109®-111]. Calpain 3 knockout mice
have attenuated Ca*" release and Ca**/calmodulin signaling, resulting in a failure to transmit

loading-induced Ca®* mediated signals, necessary to up-regulate expression of muscle

adaptation genes [112"7].



Functional connections of multi-compartmental proteins

Several proteins historically linked to other cellular compartments are now directly
shown to be also associated with the NE and many of these have links to related diseases, For
example, plectin is a cytoplasmic filament-crosslinking protein linked to LGMD [113].
Plectin was identified in NE proteomes and associates with nesprin 3 in the ONM [67, 105].
Loss of plectin isoform Pl yields altered nuclear morphology, mechanotransduction,
chromatin modifications and gene expression [114"]. POPDC proteins, originally thought to
be at the plasma membrane, were also found in muscle NE proteomes and have been
confirmed at the NE [104]. POPDC1 was recently linked to LGMD [115"]. POPDCI has also
been identified in the NE. The best example of how characterized plasma membrane proteins
can also function in the nucleus is caveolin. While LGMD-linked caveolin 3 is only found in
muscle, caveolin 1 and 2 are ubiquitously expressed. Caveolin 2 translocates to the nucleus
and interacts with lamin A thereby disengaging repressed promoters from lamin A/C through
epigenetic regulation of histone H3 modifications [116"]. In all roughly 1/3 of LGMD-linked
proteins were found in NE proteomics datasets (Table 2); so many more variants than lamin-
linked LGMD may yield pathology through NE functions.

The same concept likely accounts for proteins linked to Bethlem myopathy, a disease
similar to EDMD and potentially many other diseases. Mutations in the valosin-containing
protein (VCP) gene caunse inclusion body myopathy and VCP was recently found to be
involved in nuclear envelope reconstruction [117]. The DNA/RNA binding protein matrin-3
linked to inherited myopathy [118] fails to interact with lamin AA303, a myopathic LMNA
mutation [119%]. A member of the dystrophin-associated protein complex - a-dystrobrevin -
that is central to cytoskeletal organization, has also been recently found in the nucleus [120].
There it interacts with lamin B1 and knockdown resulted in morphological defects of the NE

[121%]. The reverse direction also holds with NE proteins extending their reach into the



cytoplasm: NE-associated endosomes deliver surface proteins to the nucleus depending on
SUNI1 and SUN2 {122""]. All the above examples show how connections between NE
proteins and proteins from other cellular compartments or the compartments themselves can

provide functional links that may explain NE-linked myopathies and neuropathies.

Conclusions:

While hopes of identifying a single causative mechanism for NE-linked myopathies and
neuropathies have dwindled due to the explosive increase in NE functions, the expansion of
data supporting various distinct mechanisms may also reflect the existence of multiple
mechanisms to pathology (Fig. 2). The genome regulation, signaling and mechanical stability
hypotheses all continue to gain support for NE-linked myopathies and neuropathies. However,
all of these mechanisms still fail to fully explain the tissue-specificity of pathologies. While
many candidate tissue-specific partners exist for muscle, it will likely be necessary to

determine the brain NE proteome to answer such questions about the mechanism underlying

NE-linked neuropathies.

Key points:
e Evidence for cell mechanics, gene regulation and signaling all continue to accumulate
as potential mechanisms to pathology for nuclear envelope-linked myopathies and

neuropathies, making determination of central causes difficult.

o Tissue-specific partners of proteins mutated in nuclear envelope-linked myopathies
may mediate their muscle-specific pathologies as they impact on the mechanisms
thought to underlie these diseases.

e Nuclear envelope functions discovered for proteins linked to related myopathies
suggest both that these proteins may play roles in the nuclear envelope disease and

that other myopathies and neuropathies might be linked to the nuclear envelope.
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Figure Legends

Figure 1. Schematic representation of the nuclear envelope. ONM: outer nuclear membrane,
INM: inner nuclear membrane. The LINC complex consists of certain nesprin isoforms in the

ONM and SUN proteins in the INM. Additional proteins in the INM are displayed.

Figure 2. What is the underlying cause of NE-linked myopathies? Scientists have gained
evidence for many fundamentally distinct mechanisms that could underlie the pathologies of
NE-linked myopathies. The jury is still out on whether this reflects multiple independent
molecular mechanisms that can cause disease or if they are all part of the same interconnected
mechanism. Links between mechanical signal transduction, signaling pathways and gene
regulation described here could all be different ways of looking at the same integrated

function.
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