
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loss of the Wnt receptor Frizzled7 in the gastric epithelium is
deleterious and triggers rapid repopulation in vivo

Citation for published version:
Flanagan, DJ, Barker, N, Nowell, C, Clevers, H, Ernst, M, Phesse, TJ & Vincan, E 2017, 'Loss of the Wnt
receptor Frizzled7 in the gastric epithelium is deleterious and triggers rapid repopulation in vivo', Disease
Models and Mechanisms. https://doi.org/10.1242/dmm.029876

Digital Object Identifier (DOI):
10.1242/dmm.029876

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Disease Models and Mechanisms

Publisher Rights Statement:
© 2017. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0This is an Open
Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any
medium provided that the original work is properly attributed.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 21. May. 2024

https://doi.org/10.1242/dmm.029876
https://doi.org/10.1242/dmm.029876
https://www.research.ed.ac.uk/en/publications/e80150d0-ef0c-4d68-97ad-9a9a501bb952


© 2017. Published by The Company of Biologists Ltd. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction 
in any medium provided that the original work is properly attributed. 

Loss of the Wnt Receptor Frizzled7 in the Gastric Epithelium is Deleterious and 

Triggers Rapid Repopulation In Vivo. 

 

Dustin J Flanagan1, Nicholas Barker2,3, Cameron Nowell4, Hans Clevers5, Matthias Ernst6, 

Toby J Phesse1,7*#, Elizabeth Vincan1,8*# 

 

1 University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty 

Institute of Infection and Immunity, Melbourne, VIC 3000, Australia 

2 Institute of Medical Biology, Singapore 138648, Singapore 

3 MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, 

UK 

4 Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia  

5 Hubrecht Institute for Developmental Biology and Stem Cell Research, 3584CT Utrecht, 

Netherlands  

6 Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia and La 

Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia. 

7 European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK. 

8 School of Biomedical Sciences, Curtin University, Perth, WA 6845, Australia  

* Authors contributed equally. 

#Corresponding authors; Toby J Phesse. Email; phesset@cardiff.ac.uk. Tel. +44 (0)2920688495 And 

Elizabeth Vincan, email; e.vincan@unimelb.edu.au. Tel. +61393429348 

  

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
dv

an
ce

 a
rt

ic
le

 http://dmm.biologists.org/lookup/doi/10.1242/dmm.029876Access the most recent version at 
DMM Advance Online Articles. Posted 9 June 2017 as doi: 10.1242/dmm.029876

mailto:phesset@cardiff.ac.uk
mailto:e.vincan@unimelb.edu.au
http://dmm.biologists.org/lookup/doi/10.1242/dmm.029876


 

SUMMARY STATEMENT: Here we functionally demonstrate that the Wnt receptor Fzd7 is 

required for homeostasis of the gastric epithelium and show that the stomach is able to 

repopulate following genetic insult.  

 

ABSTRACT: The gastric epithelium consists of tubular glandular units each containing 

several differentiated cells types, and populations of stem cells, which enable the stomach to 

secrete the acid, mucus and various digestive enzymes required for its function. Cell signalling 

provides cues to regulate development and homeostasis of adult tissues, however very little is 

known about which cell signalling pathways are required for homeostasis of the gastric 

epithelium. Many diseases, such as cancer, arise as a result of deregulation to signalling 

pathways that regulate homeostasis of the diseased organ. Therefore it is important to 

understand the biology of how normal conditions are maintained in a tissue to help inform the 

mechanisms driving disease in that same tissue, and identify potential points of therapeutic 

intervention. Wnt signalling regulates several cell functions including proliferation, 

differentiation and migration, and plays a critical role during homeostasis of several tissues, 

including the intestinal epithelium. Wnt3a is required in the culture medium of gastric 

organoids, suggesting it is also important for the homeostasis of the gastric epithelium, but this 

has not been investigated in vivo. Here we show that the Wnt receptor Frizzled7 (Fzd7), which 

is required for the homeostasis of the intestine, is expressed in the gastric epithelium and is 

required for gastric organoid growth. Gastric specific loss of Fzd7 in the adult gastric 

epithelium of mice is deleterious and triggers rapid epithelial repopulation, which we believe 

is the first observation of this novel function for this tissue. Taken together these data provide 

functional evidence of a critical role for Wnt signalling, via the Fzd7 receptor, during 

homeostasis of the gastric epithelium. 
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INTRODUCTION 

The Wnt signalling pathway regulates multiple cellular functions including proliferation, 

migration, differentiation and stem cell function (Clevers and Nusse, 2012), and is critical 

during embryonic development (van Amerongen and Nusse, 2009). The control of important 

cellular functions by Wnt signalling is maintained into adulthood, in which several organs 

require Wnt signalling for correct homeostasis, including the intestinal tract, hair follicle, 

mammary gland and liver (Clevers et al., 2014). Wnt signalling has to be tightly regulated 

during homeostasis, as deregulated Wnt signalling is often one of the earliest oncogenic events 

in several cancers (Polakis, 2012). 

 

Wnt signalling is divided into three broad pathways; canonical β-catenin, Planar Cell Polarity 

(PCP) and Calcium dependent signalling (Wnt/Ca2+) (Niehrs, 2012). The cytoplasmic signal 

transducers that regulate these pathways have been the subject of intense research interest, and 

in the case of the canonical β-catenin pathway, its role is well characterised in several biological 

contexts including development, homeostasis, regeneration and cancer, particularly in the 

intestine. 

 

The receptors that transmit Wnt signalling are beginning to be understood in more detail, with 

a complex model emerging in which Frizzled (Fzd) Wnt receptors associate with various co-

receptors to activate different Wnt pathways (Niehrs, 2012). To date, 19 Wnt ligands and 10 

Fzd receptors have been discovered in mammals, and the Wnt pathway is highly conserved 

from humans through to evolutionarily older organisms including Hydra (Nichols et al., 2006; 

Srivastava et al., 2008). 

 

The gastric epithelium is composed of parallel, glandular invaginations termed gastric units. 

Each gastric unit is composed of a pit, which is continuous with the surface epithelium and a 

flask shaped gland, which extends down further into the isthmus, neck and base areas. Distinct 

areas within individual gastric units are characterised by the residency of specialised cell types 

that regulate various aspects of digestion; gastric mucus cells that secrete protective mucus, 

parietal cells responsible for secreting hydrochloric acid, chief cells that release active pepsin 

and several types of endocrine cells that secrete an array of hormones that aid and regulate 

digestion and absorption including Ghrelin and Somatostatin (Mills and Shivdasani, 2011). 

Importantly, the precise architecture, cellular heterogeneity and turnover rate of the gastric 

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
dv

an
ce

 a
rt

ic
le



units varies markedly between the two major anatomical regions of the stomach, the antrum 

and corpus (Mills and Shivdasani, 2011). 

 

Several studies have implicated that Wnt signalling is important in the gastric epithelium, 

although its role is poorly understood in comparison to that of the intestinal epithelium. Gastric 

organoid cultures require Wnt3a in the culture medium in addition to the Wnt agonist R-

Spondin (Barker et al., 2010; Flanagan et al., 2016), demonstrating that Wnt is required for the 

gastric epithelium.  The R-Spondin receptor Lgr5 is expressed in cells that respond to Wnt 

signals and is a marker of stem cells in several organs including the gastric epithelium (Barker 

et al., 2010; de Lau et al., 2011), demonstrating Wnt responsive stem cells reside in the gastric 

epithelium. The Wnt pathway is more active in the antrum than the corpus, however, Troy+ 

cells in the corpus express Wnt target genes and stem cell signature genes (Stange et al., 2013). 

Experimental deregulation of Wnt signalling in the gastric epithelium can also result in 

tumourigenesis (Radulescu et al., 2013), similar to the intestinal epithelium (Sansom et al., 

2004).   

 

We have recently demonstrated that Fzd7 is the predominant Wnt receptor in regulating 

homeostasis in the intestinal epithelium, in which deletion of Fzd7 in either the whole 

epithelium or specifically in the Lgr5+ intestinal stem cells, triggered rapid repopulation 

(Flanagan et al., 2015). Here we show that Fzd7 is also expressed in the antrum of the gastric 

epithelium, and is required for the growth of gastric organoid cultures.  Deletion of Fzd7 in the 

gastric epithelium in vivo was deleterious and triggered rapid repopulation of the epithelium – 

the first time repopulation has been reported for the stomach following a genetic insult. These 

data identify that Fzd7 is critical for transmitting Wnt signalling to regulate homeostasis in the 

gastric epithelium. 

 

RESULTS 

Wnt signalling is required for gastric homeostasis 

Wnt signalling is critical for homeostasis of the small intestine (Clevers and Nusse, 2012; 

Flanagan et al., 2015), however, it is less well understood in the gastric epithelium. To examine 

the requirement for Wnt signalling in the gastric epithelium we established organoid cultures 

from the mouse antral gastric epithelium and exposed them to various Wnt pathway inhibitors 

and activators, which we validated via TOPFLASH assays (Molenaar et al., 1996) and Western 

blots for active β-catenin (van Noort et al., 2002) in HEK293 cells (Fig. S1A and B). Organoids 
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treated with either the porcupine inhibitor IWP-2, which prevents secretion of Wnt ligands 

(Chen et al., 2009), or the tankyrase inhibitor XAV939, which stabilises the β-catenin 

degradation complex and consequently inhibits Wnt signalling (Huang et al., 2009),  underwent 

rapid atrophy and organoid death. This was not observed in vehicle treated organoids, which 

continued to thrive (Fig. 1A). Conversely, gastric organoids treated with the selective Gsk3-β 

inhibitor, CHIR-99021 (CHIR), thereby activating Wnt signalling (Bennett et al., 2002), 

showed increased organoid size and viability (Fig. 1A-C). These observations were supported 

by an MTT assay showing marked reduction in cell viability in gastric organoids treated with 

either XAV939 or IWP-2, and conversely increased metabolism in organoids treated with Wnt 

agonist CHIR (Fig. 1B). Quantitative reverse transcriptase PCR (qRT-PCR) was then 

performed on total RNA extracted from the treated gastric organoids, identifying that Wnt 

target genes Sox9, Cd44 and c-Myc were significantly reduced following XAV939 or IWP-2 

treatment, and conversely upregulated following CHIR treatment (Fig. 1D). Interestingly, 

expression of Fzd genes is increased in organoids treated with IWP-2 or XAZ939, presumably 

as a mechanism to increase Wnt signalling in response to these compounds inhibiting the 

pathway, but as Wnt target genes are still reduced this response is insufficient to activate Wnt 

signalling and thus the organoids die (Fig S1C).  Collectively, these data demonstrate that Wnt 

signalling is critical for gastric organoid growth and maintenance and identify that Wnt ligands 

secreted from the epithelial cells of the gastric organoids are required cell autonomously for 

their growth and survival. This strongly implicates an integral role for Fzd receptors to transmit 

these essential Wnt signals in the gastric epithelial cells. 

 

Fzd7 is expressed in the gastric epithelium 

Little is known regarding the extent of Wnt signalling and the expression of Fzd receptors in 

the gastric epithelium. To investigate the expression of Fzd receptors in the gastric epithelium 

we extracted RNA from the antrum and corpus epithelium of wild-type (wt) mice and 

performed qRT-PCR. The expression of Fzd2 and Fzd7 were markedly higher in the antrum 

than the corpus, both comparatively (Fig. 2A), and in the raw data (Fig. S2A). Fzd7 is of 

particular interest as it’s required for embryonic stem cell activity (Melchior et al., 2008) and 

we have recently shown it to be the predominant Wnt receptor regulating homeostasis in the 

intestinal epithelium (Flanagan et al., 2015). The increase in Fzd7 expression, a Wnt target 

gene (Vincan et al., 2010), in the antrum is also associated with an increase in the expression 

of other Wnt target genes including c-Myc, CyclinD1, Cd44 and Lgr5 (Fig. 2B and Fig. S2B), 

suggesting Fzd7 is transmitting Wnt signalling in the isthmus and base of the antral glands. 
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Although the expression of Lgr5 is approximately 7-fold higher in the antrum to that of the 

corpus, its comparative expression to other Wnt targets in the antrum is relatively much lower, 

reflecting its function as a stem cell marker (Fig. S2B). To visualise the expression of Fzd7 in 

the gastric epithelium we performed X-gal stains on stomachs isolated from Fzd7nLacZ/+ mice 

which express the β-galactosidase gene under the control of the endogenous Fzd7 regulatory 

region (Yu et al., 2012).  Staining was observed from the base of the antral gastric glands to 

the isthmus, illustrating Fzd7 is expressed in these cells (Fig. 2C). 

 

Fzd7 is required for the culture of gastric organoids 

A powerful tool to understand gene function in a particular tissue is to be able to conditionally 

delete it specifically in the tissue of interest. To drive genetic recombination in the gastric 

epithelium we used the tamoxifen inducible Tff1CreERT2 mouse (Thiem et al., 2016). These 

mice provide robust recombination in the antral glands, with recombined glands still observed 

at 30 days after tamoxifen induction demonstrating that recombination must occur in a stem 

cell population (Fig. S3). As previously reported, some cells are also recombined in the pit 

region of the corpus but these cells do not give rise to entire glands, suggesting recombination 

does not occur in a stem cell with the capacity to populate this tissue with all the differentiated 

lineages observed (REF Thiem et al) (Fig. S3). However, a few recombined cells are still 

observed long after the continuous renewal of the corpus has replenished the gland cell 

population, suggesting either a long-lived population of non-stem cells is recombined here, or 

alternatively, recombination occurs in a population of stem cells here which only gives rise to 

a small, restricted population of cells in the corpus.  

 

To investigate the requirement for Fzd7 in the gastric epithelium we grew gastric organoid 

cultures from the antrum of Tff1CreERT2/+; Fzd7flox/flox mice (Tff1Cre+; Fzd7fl/fl) to enable 

tamoxifen induced deletion of Fzd7. Five days after administration of 4-OHT (the 

metabolically processed version of tamoxifen) to the medium we observed widespread atrophy 

of gastric organoids derived from Tff1Cre+; Fzd7fl/fl mice, whereas gastric organoids derived 

from Tff1Cre+; Fzd7+/+ mice continued to thrive after administration of 4-OHT (Fig. 3A). 

These observations were supported by an MTT assay, which showed a significant reduction in 

organoid viability following Fzd7 deletion (Fig. 3B), and no changes in gastric organoids 

treated with vehicle only (Fig. S4). To confirm robust deletion of Fzd7 we performed a PCR 

on genomic DNA (gDNA) isolated from organoids 3 days after 4-OHT, when organoids were 

still alive (Fig. 3C). The recombined Fzd7 allele (Fzd7Δ) showed a very strong amplified 
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product in the organoids derived from Tff1Cre+; Fzd7fl/fl mice, and was undetectable in 

organoids derived from Tff1Cre+; Fzd7+/+ mice (Fig. 3C). This data demonstrates robust 

deletion of Fzd7 which was confirmed by performing qRT-PCR at the same 3 day time point 

showing ~80% reduction of Fzd7 and down regulation of Wnt target genes c-Myc and Cd44 

(Fig. 3D). Previously we have observed upregulation of Fzd1 and Fzd2 expression to partially 

compensate for the experimental deletion of Fzd7 during intestinal regeneration (Flanagan et 

al., 2015). Expression analysis of Fzd genes revealed that Fzd1, Fzd2 and Fzd3 were elevated 

in gastric organoids following Fzd7 deletion, although only Fzd3 was significantly different in 

expression (Fig. 3E). As the organoids still undergo atrophy and die 3 days post deletion of 

Fzd7, this suggests that these elevated Fzd receptors are unable to compensate for the loss of 

Fzd7 in this system. Together these data demonstrate that Wnt signalling is required for the 

maintenance of gastric epithelial cells ex-vivo via the Wnt receptor Fzd7. 

 

Deletion of Fzd7 in the gastric epithelium in vivo is deleterious and triggers repopulation 

Deletion of Fzd7 in organoids derived from the intestinal epithelium resulted in widespread 

crypt atrophy and organoid death (Flanagan et al., 2015). Interestingly, when Fzd7 was deleted 

in the intestinal epithelium in vivo, it did not result in denuding of the epithelium, which might 

have been expected, but instead triggered repopulation of the entire epithelium with non-

recombined Fzd7 proficient cells (Flanagan et al., 2015). Although this has been observed 

previously with deletion of other important genes in the intestinal epithelium including c-Myc 

(Muncan et al., 2006) and Chk1 (Greenow et al., 2009), repopulation has never been observed 

in the gastric epithelium. To determine the requirement for Fzd7 in the gastric epithelium in 

vivo we conditionally deleted Fzd7 using Tff1Cre+; Fzd7fl/fl; Rosa26LacZLSL mice in which we 

could track the fate of recombined cells in the stomach over time. At 3 days after tamoxifen 

induction Tff1Cre+; Fzd7+/+; Rosa26LacZLSL mice displayed lineage tracing throughout the 

glands of the antrum, however, Tff1Cre+; Fzd7fl/fl; Rosa26LacZLSL mice had slightly less 

recombination at this time point in the base of the glands (Fig. 4A). At 5 days after tamoxifen 

induction, Fzd7 deleted Tff1Cre+; Fzd7fl/fl; Rosa26LacZLSL mice had markedly less recombined 

cells in the lower halves of the glands, whilst Tff1Cre+; Fzd7+/+; Rosa26LacZLSL mice 

continued to contain recombined cells throughout the glands (Fig. 4A). The replacement of 

Fzd7 recombined cells with non-recombined cells continued over time until the entire 

epithelium was repopulated by non-recombined (pink) cells (Fig. 4A). Enumeration of this 

event shows a rapid loss of recombined (blue) glands from 5 days after tamoxifen induction, 

leading to total repopulation of the epithelium at 30 days (Fig. 4B). 

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
dv

an
ce

 a
rt

ic
le



 

To genetically monitor the repopulation event we isolated gDNA from the antral epithelium at 

5 and 30 days post tamoxifen induction and performed PCR for the genetic product of the 

deleted recombined Fzd7 allele (Fzd7Δ) and also the non-recombined Fzd7 flox allele 

(Fzd7flox). At 5 days after tamoxifen injection there was a large amplification of the Fzd7Δ 

product in the Tff1Cre+; Fzd7fl/fl mice, that was undetectable in the Cre negative Tff1Cre-; 

Fzd7fl/fl mice at the same time point. This indicates that the Fzd7 flox allele had undergone 

robust recombination only in tamoxifen treated Tff1Cre+; Fzd7fl/fl mice (Fig. 4C). This was 

confirmed by a weak non-recombined product for the Fzd7flox allele in the Tff1Cre+; Fzd7fl/fl 

mice (some non-recombined product is still present due to the recombination not occurring in 

100% of the cells of the gastric antrum [Fig. 4B]), compared to a strong non-recombined 

Fzd7flox product in the Tff1Cre-; Fzd7fl/fl mice 5 days after tamoxifen (Fig. 4C). At 30 days after 

tamoxifen the Fzd7Δ product is almost undetectable in Tff1Cre+; Fzd7fl/fl mice, which coincides 

with a marked increase of the non-recombined Fzd7flox product, demonstrating the repopulation 

of the gastric epithelium with non-recombined, Fzd7 proficient cells (Fig. 4C). Conversely, the 

non-recombined Fzd7flox product remains strong, and unchanged at 5 days and 30 days after 

tamoxifen in the Tff1Cre-; Fzd7fl/fl mice, indicating no recombination of this allele and thus no 

deletion of Fzd7 (Fig. 4C). These data molecularly demonstrate that deletion of Fzd7 in the 

antrum of the gastric epithelium is a deleterious event and triggers rapid repopulation with Fzd7 

proficient cells.   

 

To investigate if repopulation could be triggered by deletion of a different Fzd receptor we 

deleted Fzd5 in the gastric epithelium (Fig. S5A). In contrast to deletion of Fzd7, we did not 

observe any repopulation after tamoxifen induction in Tff1Cre+; Fzd5fl/fl; Rosa26LacZLSL mice, 

with recombined cells still present 30 days after deletion (Fig. S5A). Deletion of Fzd5 was 

confirmed by qRT-PCR on cDNA isolated from the antral gastric epithelium which showed a 

significant reduction of Fzd5 expression, but no change in the expression of canonical Wnt 

target genes, CyclinD1, c-Myc, Cd44 and Lgr5 (Fig. S5B). These data demonstrate that Fzd5 

is not required for gastric homeostasis and suggests that the phenotype observed when we 

delete Fzd7 is not a generic event triggered by deletion of any Wnt receptor from the stomach. 
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Fzd7 regulates differentiation and cell position in the gastric antral epithelium 

Three days after deletion of Fzd7 in the gastric epithelium we observe downregulation of Fzd7 

expression 2 days before repopulation is apparent at day 5 (Fig. 5A and 4A). We therefore 

analysed the gastric epithelium to determine the phenotype of deleting Fzd7 in this tissue. 

Caspase 3 immunohistochemistry revealed a marked increase in the number of apoptotic cells 

after Fzd7 deletion (Fig. 5B and C), which is consistent with our observations in gastric 

organoid cultures, demonstrating deletion of Fzd7 triggers apoptosis in gastric epithelial cells. 

 

Immunohistochemical (IHC) staining for Muc5a revealed that deletion of Fzd7 resulted in the 

dramatic reduction of mucus secreting cells (Fig. 5B), which was associated with a significant 

reduction in the expression of Wnt target gene Muc5a (Mucenski et al., 2005) (Fig. 5D), 

suggesting that Fzd7 regulates Muc5a expression and thus the differentiation of mucus 

secreting cells. IHC for Gastrin showed that G cells were mislocalised along the length of antral 

glands following Fzd7 deletion compared to their usual position toward the base of antral 

glands in control mice (Fig. 5B). Scoring the number of Gastrin positive cells revealed no 

significant difference in their numbers in each antral gland, which is consistent with the 

unchanged expression levels of Gastrin transcript between Fzd7 deleted and control mice (Fig. 

5D and E). To further investigate if deletion of Fzd7 was altering the differentiation and 

function of G-cells we performed immunohistochemistry to visualise expression of the gastric 

hormones Ghrelin and Somatostatin. The expression of both hormones was consistent between 

Fzd7 deleted and Fzd7 proficient mice in the antrum, strongly suggesting that the mislocalised 

G-cells are still functional (Fig. S6).  These data suggest that Fzd7 regulates differentiation of 

mucus secreting cells and also the localisation of G cells along the gastric gland.  

 

Gastric repopulation is characterised by a transient increase in Wnt signalling 

To monitor the activation of the Wnt pathway during the gastric repopulation event triggered 

by Fzd7 deletion we examined the expression of several Wnt target genes in the antrum at 

different time points. All Wnt target genes examined were down regulated 3 days after Fzd7 

deletion concordant with a reduction in Fzd7 expression (Fig. 6A), suggesting that Fzd7 is 

required to transmit Wnt signalling in this tissue. Surprisingly, at 5 days after Fzd7 deletion, 

the expression of Fzd7 and the other Wnt target genes is significantly upregulated, and 

expression continues to remain high until repopulation has resolved at 14 days (Fig. 6A).  
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Wnt signalling has been demonstrated to regulate cell proliferation in many tissues and we 

therefore performed IHC for the cell proliferation marker PCNA. Scoring for PCNA positive 

cells per gland identified a transient increase in proliferation 5 days and 7 days after Fzd7 

deletion, and a return to wild-type levels of proliferation as repopulation was resolved (Fig. 6B 

and C). This is consistent with the general gene expression profiles of the Wnt target genes 

analysed which shows that Wnt signalling is elevated during this period of repopulation and 

was restored to wild-type levels by 30 days post Fzd7 deletion.   

 

These data strongly suggest that Wnt signalling, via Fzd7, plays an important role during the 

process of gastric repopulation following Fzd7 deletion. To investigate the functional 

requirement for Wnt signalling downstream of Fzd7, we deleted Fzd7 from gastric organoids 

and treated them with the Wnt agonist CHIR. The atrophy and cell death observed when Fzd7 

was deleted in gastric organoids, was completely rescued when these organoids were 

additionally treated with CHIR (Fig. 6D). An MTT assay confirmed that the loss of cell 

viability observed when Fzd7 was deleted, which was completely rescued if we then activated 

the Wnt pathway downstream of the receptor using CHIR treatment (Fig. 6E). Analysis of Wnt 

target genes Fzd7, Sox9 and Cd44 by qRT-PCR showed that they were dramatically up-

regulated in response to CHIR treatment (Fig. 6F). Conversely, these genes were 

downregulated when Fzd7 was deleted. However, in Fzd7 deleted organoids treated with 

CHIR, which do not display the atrophy of Fzd7 deletion alone, the level of these Wnt target 

genes remained not significantly different from those of the untreated organoids, demonstrating 

that loss of Wnt signalling is the mechanism responsible for the atrophy and organoid death 

when Fzd7 is deleted.  

 

DISCUSSION 

Here we show for the first time a functional requirement for Wnt signalling in the gastric 

epithelium via the Wnt receptor Fzd7, and that deletion of Fzd7 specifically in the gastric 

epithelium can trigger repopulation of this tissue, which until now has not been reported. 

 

Embryonic development of the corpus (fundus in humans) requires active Wnt signalling, 

whilst inhibition of Wnt results in antral development (McCracken et al., 2017), however, in 

the adult gastric epithelium Wnt signalling is active in different areas.  The Axin2-LacZ mouse 

shows that Wnt signalling is highest in the base and isthmus of antral glands (Barker et al., 

2010) (Stange et al., 2013), which is consistent with our data here where we also observe 
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expression of Fzd7 in this area of the antrum. Also, Wnt3a is required in the culture medium 

for gastric organoids suggesting an important role for Wnt receptors during gastric 

homeostasis. While genetic aberrant activation of Wnt signalling can lead to tumourigenesis 

(Radulescu et al., 2013), there have been no functional experiments to inhibit the Wnt pathway 

and examine the consequences to gastric homeostasis. To investigate the requirement for Wnt 

signalling in gastric epithelial cells we first treated gastric organoids with Wnt inhibitors, IWP-

2 or XAV939, which resulted in reduced organoid cell viability. Interestingly we have 

previously shown that removal of Wnt3a from the culture media results in organoid death 

(Barker et al., 2010). However, as IWP-2 is a Porcupine inhibitor and thus prevents cells from 

secreting all Wnt ligands, this strongly suggests that gastric epithelial cells require cell 

autonomously secreted Wnt in addition to supplemental Wnt3a provided by the culture media. 

Thus, our new data implicates a role for both epithelial and underlying stromal cells as a source 

of Wnt ligands regulating gastric homeostasis in vivo. Indeed, deletion of Fzd7, which is 

expressed in the gastric antrum, resulted in cell atrophy and organoid death, similar to 

organoids treated with Wnt pathway inhibitors. Fzd7 deletion also resulted in the death of 

intestinal organoids (Flanagan et al., 2015), suggesting a common role for this receptor in both 

of these tissues to regulate homeostasis. Interestingly, treatment of gastric organoids with IWP-

2 or XAV939 resulted in earlier death of organoids than deletion of Fzd7. This could be due to 

the significant upregulation of Fzd3 following deletion of Fzd7 which is then able to partially, 

and transiently compensating for the loss of Fzd7, which would be ineffective in organoids 

treated with IWP-2 or XAV939 since they block the Wnt pathway at the level of Wnt secretion 

or β-catenin respectively (Fig. S1C). This is similar to the situation we previously reported in 

the small intestine in which deletion of Fzd7 is partially compensated for by upregulation of 

Fzd1 and Fzd2 during intestinal regeneration (Flanagan et al., 2015). 

 

Surprisingly, when we deleted Fzd7 from the gastric epithelium in vivo, we did not observe 

widespread atrophy and denuding of the epithelium as might be expected. However, using 

lineage tracing of recombined, Fzd7 deficient cells, we were able to track a repopulation event 

in the gastric epithelium for the first time, in which non-recombined, Fzd7 proficient cells 

replaced the Fzd7 deficient cells over the course of 7-10 days. This is consistant with previous 

lineage tracing showing full glands could be generated from Lgr5+ cells in the same in 7-10 

days (Barker et al., 2010). Repopulation does not occur from a denuded epithelium, as in 

regeneration, and therefore does not preclude that at large apoptotic event is associated with it. 

We and others have previously reported that the intestinal epithelium is able to repopulate after 
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deletion of critical genes such as c-Myc (Muncan et al., 2006), Stat3 (Matthews et al., 2011) or 

Chk1 (Greenow et al., 2009). Indeed, we also recently observed repopulation when we deleted 

Fzd7 in the intestinal epithelium, again suggesting a common role for this receptor in gastric 

and intestinal homeostasis. This mechanism of repopulation is an important adaptation to allow 

these epithelial layers to rapidly respond to damaging molecular events which could otherwise 

disrupt the delicate homeostasis of these tissues resulting in possible pathologies including 

colitis/gastritis and neoplasia (Clevers et al., 2014). Repopulation of the gastric epithelium with 

bone marrow derived cells (BMDCs) has been previously reported in vivo, but only 30 weeks 

after experimental infection with the Helicobacter, which eventually resulted in the 

development of gastric tumours, with no repopulating cells observed at earlier time points 

(Houghton et al., 2004). This then represents a very different kind of repopulation to the rapid 

event we describe here, which results in the gastric epithelium returning to a normal 

homeostatic state after the repopulation event, rather than any associated pathology as observed 

with the slow BMDC repopulation. Epithelial damage and gastric ulceration are common 

pathologies associated with radiotherapy in humans (Coia et al., 1995; Henriksson et al., 1999). 

This suggests that manipulation of the Wnt pathway following irradiation could be of 

therapeutic benefit for patients receiving radiotherapy, as has been suggested in the intestine 

(Ashton et al., 2010; Phesse and Sansom, 2013; Zhou et al., 2013).  

 

Gastric repopulation is not observed until 5 days following Fzd7 deletion. Therefore, before 

this time point we can analyse the requirement for Fzd7 in the gastric epithelium. At 3 days 

post deletion we could demonstrate robust deletion of Fzd7 from the gastric epithelium, 

observed perturbed differentiation of Muc5a+ mucus secreting cells, which was also previously 

reported in mice with hyperactive Notch signalling (Demitrack et al., 2015). However, neither 

inhibition nor hyperactivation of Notch signalling triggered repopulation in the gastric 

epithelium suggesting this mechanism is exquisitely sensitive to loss of Wnt signalling. These 

data suggest that Notch and Wnt signalling work in parallel to regulate gastric homeostasis, 

with distinct functions from one another. In support of this, proliferation is also altered in the 

gastric epithelium in response to modulated Notch signalling (Demitrack et al., 2015; Kim and 

Shivdasani, 2011), which we did not observe in the Fzd7 deficient gastric epithelium at 3 days 

after Fzd7 deletion. Transient changes in proliferation were only observed during the gastric 

epithelial repopulation event, which was characterised by the return of Fzd7 proficient cells 

and increased Wnt activation. A small increase in the number of apoptotic cells per gland was 

also observed following Fzd7 deletion. These apoptotic events were located in the isthmus of 
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antral glands, which is the location of a population of stem cells marked by either Lrig1, Sox2 

or CCKBR (Hayakawa et al., 2016). This suggests deletion of Fzd7 may be deleterious to these 

stem cells, and consequently triggers repopulation, which will be important to investigate in 

future studies. Furthermore, Lgr5+ cells are located in the base rather than the isthmus of the 

antrum suggesting that, in contrast to the intestine, Fzd7 may be regulating a population of stem 

cells which are not expressing Lgr5.   

 

Regulation of differentiation by Wnt signalling is also observed in the intestinal epithelium, 

where activation or inhibition of the pathway can result in perturbed differentiation and 

mislocalisation of Paneth cells (Phesse et al., 2008; Sansom et al., 2004). Indeed, G cells are 

mislocalised throughout the gastric antral glands after Fzd7 deletion, rather than located at their 

usual position at the base of the glands. These data strongly suggest a conserved function for 

Wnt signalling in regulating the location of differentiated cells within the gastric and intestinal 

epithelium. 

 

Deletion of Fzd7 perturbs gastric organoid viability, in contrast, treatment of gastric organoids 

with the Wnt pathway activator CHIR, which inhibits Gsk3-β, increases Wnt target gene 

expression and cell viability. These data identify Wnt as an important regulator of gastric 

epithelial cell function. Intriguingly, the deletion of Fzd7 in these gastric organoids prevents 

CHIR treatment from activating Wnt target genes to the levels observed in Fzd7 proficient 

organoids. These results demonstrate that modulation of Wnt/Fzd receptor interactions can still 

influence the outcome of cells in which the cytoplasmic, downstream signal transducers of the 

pathway have been mutated. This is consistent with previous findings in which we and others 

have shown that Wnt pathway activity can still be modulated in colon cancer cells with mutant 

APC (Caldwell et al., 2004; Suzuki et al., 2004; Vincan et al., 2007; Vincan et al., 2005).  As 

the Wnt pathway is also deregulated in gastric cancer (Phesse et al., 2016), these data also 

suggest that Fzd receptors could be a target for therapeutic intervention for this disease.     
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MATERIALS & METHODS 

Mice 

The BAC transgenic Tg(Tff1CreERT2) (Thiem et al., 2016), Fzd7fl/fl (Flanagan et al., 2015), 

Fzd7nLacZ (Yu et al., 2012),  Fzd5fl/fl (van Es et al., 2005) and Rosa26LacZLSL (Soriano, 1999) 

have all been previously described. Mice were interbred to generate compound mice with 

appropriate alleles. All mice were co-housed, and with the exception of Fzd7nLacZ mice, all 

mice were on an inbred C57Bl/6 genetic background, using males and females and appropriate 

littermates as controls. The Fzd7nLacZ mice were on a mixed C57Bl/6 x Sv129 background. All 

animal experiments were approved by the Animal Ethics Committee, Office for Research 

Ethics and Integrity, University of Melbourne.  

 

Tamoxifen administration 

Short term in vivo Cre induction (<7 days post induction) was performed in 6-10 week old mice 

with a single intraperitoneal (i.p) injection of 2mg of tamoxifen permouse.. Long term in vivo 

Cre induction (>14 days post induction) was performed in 6-10 week old mice with a single 

daily ip injection of 2mg of tamoxifen per mouse per day over four consecutive days.  

 

β-galactosidase (X-gal) staining 

Freshly isolated stomachs were cut along the greater curvature, washed with PBS and 

immediately fixed (1% formaldehyde, 0.2% gluteraldehyde, 0.02% NP-40 in PBS) for 2hrs at 

4C. The fixative was removed and stomachs were washed in PBS. Stomachs were incubated 

in β-galactosidase detection substrate (5mM K3Fe(CN)6, 5mM K4Fe(CN)6.3H20, 2mM MgCl2, 

0.02% NP-40, 0.1% sodium deoxycholate, 1mg/ml X-gal in PBS) in the dark overnight at room 

temperature. The detection substrate was removed the following day and stomachs were 

washed in PBS, followed by an overnight incubation in 4% PFA at 4C in the dark. The PFA 

was removed and stomachs were washed in PBS. Stained stomachs were placed into 

histological cassettes, paraffin embedded, sectioned at 5m, mounted onto slides and 

counterstained with neutral red.  

 

Tissue collection and histological analysis 

Freshly isolated mouse stomachs were flushed with PBS and fixed overnight at 4C in 10% 

neutral buffered formalin (NBF) and washed twice in 70% ethanol at room temperature. 

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
dv

an
ce

 a
rt

ic
le



Tissues were placed into histological cassettes, paraffin embedded, sectioned at 5m and 

mounted onto slides as described in (Flanagan et al., 2015). Paraffin sections were de-waxed, 

re-hydrated, blocked and incubated in primary antibody overnight at 4°C. Sections were 

washed and incubated in secondary antibody (polymer horse-radish peroxidase conjugated 

mouse/rabbit/goat) for 30mins at room temperature. Sections were rinsed in and bound 

peroxidase was detected and developed by adding diaminobuteric acid substrate (DAB) at 

room temperature. Slides were washed in MilliQ water and nuclei counterstained with Mayers 

haemotoxylin. Antibodies used were mouse anti-Muc5aC (1:400, Thermoscientific #MS-

145B0), rabbit anti-PCNA (1:300, Santa Cruz #SC-7907), rabbit anti-Caspase-3 (1:1000, R&D 

systems #AF-835) and goat anti-Gastrin-C20 (1:400, Santa Cruz #SC-7783).       

 

Isolation and culture of gastric organoids  

The stomachs from mice were dissected out, cut along the greater curvature and flushed in ice 

cold PBS, then incubated in a (50mM EDTA pH 8.0 in PBS) chelating solution for 1hr on a 

roller at 4C. Stomachs were then transferred to tubes containing PBS and vigorously shaken 

to dissociate gastric glands from the underlying stroma (Flanagan et al., 2016). Isolated gastric 

gland suspension was filtered through a 70µM cell strainer (BD Biosciences #352350), which 

was collected and counted using a haemocytometer. The gastric glands resuspended in Matrigel 

(~100 glands/50µl of Matrigel) and plated onto a 24 well tissue culture plate. Once the matrigel 

had set at 37C, organoids were covered with 500µl of gastric culture medium previously 

described (Barker et al., 2010; Flanagan et al., 2016) Gastric medium containing growth factors 

was replenished every other day and cultures were passaged and split once a week. In vitro Cre 

recombinase was activated by treating gastric organoid cultures with 100nM 4-

hydroxytamoxifen (4-OHT) as previously described (Barker et al., 2010; Flanagan et al., 2016). 

Organoid cultures were imaged on a Nikon Ti-E microscope using DIC (differential 

interference contrast) with a 4× PlanApo NA 0.3 objective. A focal stack of images was 

collected 10µm apart and processed through the “Best Focus” function of MetaMorph v7.7.7 

(Molecular Devices) to generate the final image of individual organoids as previously 

described (Flanagan et al., 2015; Phesse et al., 2014). 

 

RNA extraction and analysis  

Gastric glands were homogenised in TRizol and total RNA was purified and DNAse treated 

on Qiagen columns (Promega, Madison, WI, USA) and quantified using a DNA/RNA 
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nanodrop spectrophotometer. Four micrograms of each RNA sample was reverse transcribed 

using anchored oligodT primers (Promega) and Moloney Murine Leukemia Virus Reverse 

Transcriptase (M-MLV RT, Promega, #M1705), following the manufacturers’ instructions, in 

a final volume of 100 l as previously described (Vincan et al., 2007). Real-time RT–PCR was 

performed using the SYBR green PCRmaster mix and the ABI PRISM 7500 sequence 

detection system (Applied Biosystems, Foster City, CA, USA) on cDNA synthesized from 

DNase-treated total RNA as previously described (Flanagan et al., 2015). Gene expression 

levels were calculated relative to the house-keeping gene 18S. The 2-CT method (Bustin et 

al., 2009) was used to calculate the fold change as previously described (Phesse et al., 2008; 

Vincan et al., 2007) Primer sequences are available on request.  

 

MTT assay 

Following treatment, gastric organoids were mechanically dissociated, washed with ADF, 

counted, resuspended in fresh matrigel and seeded in a flat bottom 96 well tissue culture plate 

and incubated for 24hrs at 37C in 5% CO2 chamber. Organoids were incubated with MTT 

(Thiazolyl Blue Tetrazolium Bromide, Sigma #M2128) for 4hrs at 37C in 5% CO2 chamber. 

Gastric culture medium was removed from organoids and replaced with lysis buffer (50% 

DMF, SDS, acetic acid + 2.5% 1M HCl), incubated overnight at 37C. 100µl of solution was 

transferred to a clean flat bottom 96-well plate and optical density determined using BMG 

lumistar plate reader (Hansen et al., 1989).  

 

Statistical analysis 

Data are expressed as mean ± SEM, where mean represents number of mice (≥ 3 per genotype) 

or number of independent experiments (≥3). Statistical tests used are Mann-Whitney with 

Prism7 (GraphPad software) where P values of ≤ 0.05 were considered significant. 
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Figures 

 

 

Fig. 1. Wnt signalling is required for gastric epithelial cell growth. A. Organoids cultured 

from antral epithelium of wild-type mice treated with vehicle (DMSO), Tankyrase inhibitor 

(XAV939), Porcupine inhibitor (IWP-2) or Gsk3-β inhibitor (CHIR-99021). Organoids were 

cultured for 3 days and treated for 48 hours before pictures were taken. Green arrows indicate 

live organoids, red arrows identify dead/dying organoids (scale bars = 200µM). B. MTT, cell 

viability assay of the organoids described in A. Three mice were used per experimental 

condition, and each experiment was performed separately three times using six replicates of 

each condition (*= p<0.05, mean ±SEM, n=3 mice, Mann-Whitney). C. Measurement of wild-

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

D
M

M
 •

 A
dv

an
ce

 a
rt

ic
le



type gastric organoids following treatment with compounds as described in A. Measurements 

were performed using ImageJ analysis software (***= p<0.001, mean ±SEM, n=3 mice, 

minimum of 100 organoids measured per mouse, Mann-Whitney). D. qRT-PCR for Wnt/β-

catenin target genes from organoids described in A (*= p<0.05, mean ±SEM, n=3 mice, Mann-

Whitney).  
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Fig. 2. Fzd7 is expressed in the gastric epithelium. A. qRT-PCR of Fzd receptors in the 

antrum and corpus epithelium of the adult mouse stomach (*= p<0.05, mean ±SEM, n=4 mice, 

Mann-Whitney). B. qRT-PCR of Wnt/β-catenin target genes indicated in the antrum and corpus 

epithelium of the adult mouse stomach (*= p<0.05, mean ±SEM, n=4 mice, Mann-Whitney).  

C. X-gal staining of the antral stomach of Fzd7nLacz/+ mice. Dotted box indicates magnified 

region (scale bars =50µM).  
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Fig. 3.  Fzd7 is required for gastric organoid survival and maintenance. A. Organoids 

grown from indicated genotypes treated with 4-OHT (tamoxifen) at day 0 (d0) and day 5 (d5) 

after treatment. Green arrowheads indicate viable organoids, red arrowheads identify 

dead/dying organoids (scale bars = 200µM). B. MTT, cell viability assay of the organoids 

described in A. Three mice were used per experimental condition, and each experiment was 

performed separately three times using six replicates of each condition (*= p<0.05, mean 

±SEM, n=3 mice, Mann-Whitney). C. Conventional PCR to detect deleted product of Fzd7 

(Fzd7Δ) of organoids from genotype indicated three days after treatment with 4-OHT. D. qRT-

PCR for Wnt/β-catenin target genes from organoids described in A five days after 4-OHT 

treatment (*= p<0.05, mean ±SEM, n=3 mice, Mann-Whitney). 
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Fig. 4. Deletion of Fzd7 triggers epithelial repopulation in the antral stomach. A. X-gal 

staining on antral sections of mice of genotypes indicated over the course of one month (d = 
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days post induction with tamoxifen). Bars indicate the extent of repopulation (scale bars = 

200µM) B. Enumeration of recombined gastric glands in the genotypes indicated over time 

following tamoxifen injection. Minimum of 40 glands were scored per mouse (*= p<0.05, 

mean ±SEM, n=4 mice, Mann-Whitney). C. PCR to detect recombined product of Fzd7 

(Fzd7Δ) and un-recombined Fzd7flox allele (Fzd7flox) from gDNA isolated from antral 

epithelium from mice of genotypes and time points indicated.  
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Fig. 5. Deletion of Fzd7 results in aberrant homeostasis of the antral gastric epithelium. 

A. qRT-PCR on cDNA isolated from the antral epithelium of genotypes indicated 3 days after 

tamoxifen (*= p<0.05, mean ±SEM, n=4 mice, Mann-Whitney). B. Immunohistochemical 

staining for Caspase3 (apoptosis), Muc5a (mucous secreting cells), Gastrin (endocrine G cells) 

on sections from the antral stomach from genotypes indicated 3 days following tamoxifen 

injection. Inset box shows magnified region. Black arrowheads identify positively stained cells 

(scale bars = 100µM). C. Enumeration of Caspase3 positive cells from mice indicated in A. 

Minimum of 40 glands were scored per mouse (*= p<0.05, mean ±SEM, n=4 mice, Mann-

Whitney). D. qRT-PCR for genes indicated on cDNA isolated from mice of genotypes 

indicated 3 days after tamoxifen injection (*= p<0.05, mean ±SEM, n=4 mice, Mann-Whitney). 

E. Enumeration of Gastrin positive cells from mice indicated in A. Minimum of 40 glands were 

scored per mouse (*= p<0.05, mean ±SEM, n=4 mice, Mann-Whitney).  
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Fig. 6. Wnt signalling regulates gastric repopulation. A. qRT-PCR of Wnt/β-catenin target 

genes from genotypes and time points indicated (dpi=days post induction) (*= p<0.05, mean 

±SEM, n=4 mice, Mann-Whitney). B. Immunohistochemical staining for PCNA (proliferation) 

on sections from the antral stomach from genotypes and time points indicated. Brackets 

indicate stained proliferative zone (scale bars = 100µM). C. Enumeration of 

immunohistochemistry in 6B (*= p<0.05, mean ±SEM, n=4 mice, Mann-Whitney). D.  
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Organoids cultured from the antral epithelium of genotypes indicated and treated with both 4-

OHT and vehicle or 4-OHT and CHIR. Green arrows indicate live organoids, red arrows 

identify dead/dying organoids (scale bars = 100µM). E. MTT, cell viability assay of the 

organoids described in D. Three mice were used per experimental condition, and each 

experiment was performed separately three times using six replicates of each condition (*= 

p<0.05, mean ±SEM, n=3 mice, Mann-Whitney). F. qRT-PCR for Wnt/β-catenin target genes 

on cDNA isolated from organoids described in D (*= p<0.05, mean ±SEM, n=3 mice, Mann-

Whitney).  
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Fig. S1. Validation of Wnt pathway modulators. A. TOPflash assay performed in 

HEK293 cells following treatment with compounds: Vehicle (DMSO), tankyrase inhibitor 

(XAV939), porcupine inhibitor (IWP-2) and Gsk3-β inhibitor (CHIR). 8 experimental 

replicates were used and experiments were performed twice (*= p<0.05, mean ±SEM, 

Mann-Whitney). B. Western blot for total and active (non-phosphorylated) β-catenin in 

HEK293 cells treated with compounds described in A. C. qRT-PCR for Fzd genes 

indicated from cDNA isolated from gastric organoids treated with compounds listed in A 

(*= p<0.05, mean ±SEM, n=3 mice, Mann-Whitney).   
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Fig. S2. Raw data of Fzd and Wnt/β-catenin target gene expression in the antrum and 

corpus, associated with Figure 2A and 2C. A. qRT-PCR for Fzd genes indicated from 

cDNA isolated from antral and corpal epithelium (n=3). B. qRT-PCR or Wnt/β-catenin 

target genes genes indicated from cDNA isolated from antral and corpal epithelium (n=3). 
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Fig. S3. Recombination in Tff1Cre BAC transgenic mice. X-gal staining of wholemount 

stomachs from genotypes indicated 30 days after tamoxifen injection. 
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Fig. S4. Tamoxifen vehicle is not cytotoxic to gastric organoids. Gastric organoid 

cultures derived from Tff1Cre+; Fzd7+/+ and Tff1Cre+; Fzd7fl/fl mice do not show any 

phenotypic alterations 5 days after treatment with vehicle (Ethanol) used to dissolve 4-

OHT (scale bars = 50µM).  
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3d 

30d 

X-gal (LacZ) 

A 

B 

Fig. S5. Conditional deletion of Fzd5 does not trigger epithelial repopulation in the 

antral stomach. A. X-gal staining of genotypes indicated 3 and 30days after tamoxifen 

injection (scale bars = 100µM). B. qRT-PCR on cDNA isolated from antral epithelium 

from mice in Supp Fig. 5A.  Note downregulation of Fzd5 (*= p<0.05, mean ±SEM, n=3 

mice, Mann-Whitney).   
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Fig. S6. Hormone expression in Fzd7 deleted antrum. Immunohistochemistry for 

Ghrelin and Somatostatin in indicated genotypes 3 days after injection with tamoxifen.    
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