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Ver. 12 

Zuse's Thesis, Gandy's Thesis, and Penrose's Thesis 

Jack Copeland, Oron Shagrir, Mark Sprevak 
 

1. Introduction 
Computer pioneer Konrad Zuse (1910-1995) built the world's first working program-

controlled general-purpose digital computer in Berlin in 1941. After the Second 

World War he supplied Europe with cheap relay-based computers, and later 

transistorized computers. Mathematical logician Robin Gandy (1919-1995) proved a 

number of major results in recursion theory and set theory. He was Alan Turing's only 

PhD student. Mathematician Roger Penrose (1931- ) is famous for his work with 

Stephen Hawking. What we call Zuse's thesis, Gandy's thesis, and Penrose's thesis are 

three fundamental theses concerning computation and physics. 

Zuse hypothesized that the physical universe is a computer. Gandy offered a 

profound analysis supporting the thesis that every discrete deterministic physical 

assembly is computable (assuming that there is an upper bound on the speed of 

propagation of effects and signals, and a lower bound on the dimensions of an 

assembly's components). Penrose argued that the physical universe is in 

part uncomputable. We explore these three theses. Zuse's thesis we believe to be 

false: the universe might have consisted of nothing but a giant computer, but in fact 

does not. Gandy viewed his claim as a relatively apriori one, provable on the basis of 

a set-theoretic argument that makes only very general physical assumptions about 

decomposability into parts and the nature of causation. We maintain that Gandy's 

argument does not work, and that Gandy's thesis is best viewed, like Penrose's, as an 

open empirical hypothesis. 

2. Zuse’s thesis: the universe is a computer 
Zuse’s book Rechnender Raum ("Space Computes") sketched a new framework for 

fundamental physics (Zuse 1969). Zuse’s thesis states that the physical universe is a 

digital computer—a cellular automaton. 

The most famous cellular automaton is the Game of Life (GL), invented in 

1970 by John Conway (Gardner 1970). GL involves a grid of square cells with four 

transition rules, such as "If a cell is on and has less than two neighbors on, it will go 
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off at the next time step", and illustrates an interesting phenomenon: complex patterns 

on a large scale may emerge from simple computational rules on a small scale. If one 

were to look only at individual cells during the GL's computation, all one would see is 

cells switching on and off according to the four rules. Zoom out, however, and 

something else appears. Large structures, composed of many cells, grow and 

disintegrate over time. Some of these structures have recognizable characters: they 

maintain cohesion, move, reproduce, interact with each other. They are governed by 

their own rules. To discover these higher-order rules, one often needs to experiment, 

isolating the large structures and observing how they behave under various conditions. 

The behavior can be dizzyingly complex. Some patterns, consisting of 

hundreds of thousands of cells, behave like miniature universal Turing machines. 

Larger cellular patterns can build these universal Turing machines. Yet larger patterns 

feed instructions to the universal Turing machines to run GL. These in-game 

simulations of GL may themselves contain virtual creatures that program their own 

simulations, which program their own simulations, and so on. The nested levels of 

complexity that can emerge on a large grid are mind-boggling. Nevertheless, 

everything in GL is, in a pleasing sense, simple. The behavior of every pattern, large 

and small, evolves exclusively according to the four fundamental transition rules. 

Nothing happens in GL that is not determined by these rules. 

Zuse’s thesis is that our universe is a computer governed by a small number of 

simple transition rules. Zuse suggested that, with the right transition rules, a cellular 

automaton would propagate patterns, which he called Digital-Teilchen (digital 

particles), that share properties with real particles. More recently, Gerard ’t Hooft, 

Leonard Susskind, Juan Maldacena, and others have suggested that our universe 

could be a hologram arising from the transformation of digital information on a two-

dimensional surface (Bekenstein 2007). ’t Hooft says: "I think Conway’s Game of 

Life is the perfect example of a toy universe. I like to think that the universe we are in 

is something like this" (’t Hooft  2002). 

GL’s four transition rules correspond to the fundamental "physics" of the GL 

universe. These are not the rules of our universe, but perhaps other transition rules 

are—or perhaps the universe's rules are those of some other type of computer: David 

Deutsch and Seth Lloyd suggest that the universe is a quantum-mechanical computer 

instead of a classical cellular automaton (Deutsch 2003, Lloyd 2006). If Zuse’s thesis 
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is right, then all physical phenomena with which we are familiar are large-scale 

patterns that emerge from the evolution of some computation operating everywhere in 

the universe at the smallest scales. A description of that computation would be a 

unifying fundamental physical theory.  

Should we believe Zuse’s thesis? One can get an idea of how much credence 

to give it by considering what would need to be true for the thesis to command 

rational belief. There are three big problems that a defender of Zuse’s thesis needs to 

overcome. The first is the reduction problem: show that all existing physical 

phenomena, those with which we are familiar in physics, could emerge from a single 

underlying computation. The second is the evidence problem: provide experimental 

evidence that such an underlying computation actually exists. The third is the 

implementation problem: explain what possible hardware could implement the 

universe’s computation. 

Our focus is on the implementation problem (we discuss the reduction 

problem and the evidence problem in Copeland, Sprevak and Shagrir 2017). What is 

the hardware that implements the universe’s computation? A computation requires 

some hardware in which to occur. As we all know, the computations that a laptop 

carries out are implemented by electrical activity in silicon chips and metal wires. The 

computations in the human brain (if such there are) are presumably implemented by 

electro-chemical activity in neurons, synapses and their substructures. In Conway’s 

original version of GL, the computation is implemented by plastic counters on a Go 

board. Notably, the implementing hardware, the medium that every computation 

requires, must exist in its own right. The medium cannot be something that itself 

emerges from the computation as a high-level pattern. Conway’s plastic counters 

cannot emerge from GL: they are required in order to play GL in the first place. What 

then is the medium in the case of the universe? 

According to Zuse’s thesis, all phenomena with which we are familiar in 

physics emerge from some underlying computation. The medium that implements this 

computation cannot be something that we already know in physics (for example, the 

movement of electrons in silicon) since, by Zuse’s thesis, that would be an emergent 

pattern from the underlying computation. The medium must be something outside the 

realm of current physics. But what could that be? In what follows we present four 

options. None leave us in a happy place. 
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The first option is weird implementers. This option boldly asserts that 

something outside the current catalogue of physical entities, and hence ‘weird’, 

implements the universe’s computation. In principle, a weird implementer could be 

anything: ectoplasm, angelic gloop, or the mind of God. A weird implementer could 

also emerge from another computation that has its own weird implementers, which in 

turn emerge from another computation, and so on. Different versions of the weird 

implementers response posit different specific entities to implement the universe’s 

computation. Weird implementers are objectionable not because we can already rule 

them out based on current evidence but because they offend principles of parsimony 

and the usual scientific standards on evidence. Positing a specific new type of entity 

should be motivated. If it can be shown that positing some specific type of entity does 

essential explanatory work for us – work that cannot be done as well any other way – 

that would be a good argument for its existence. But positing a specific weird 

implementer merely to solve the implementation problem seems ad hoc and 

unmotivated. 

An alternative version of the weird implementers response is to repurpose 

some non-physical entity, which we already know to exist (so avoiding the charge of 

adding to our ontology), as hardware for the physical universe. What would remain is 

to show that this entity does indeed stand in the implementation relation to the 

universe’s computation. Max Tegmark has a proposal along these lines (Tegmark 

2014). Tegmark’s ‘Mathematical Universe Hypothesis’ claims that the implementing 

hardware of the physical universe consists in abstract mathematical objects. The 

existence of abstract mathematical objects is, of course, controversial. But granted 

that one accepts (on independent grounds) that those objects exist, Tegmark’s idea is 

that those objects can be repurposed to run the universe’s computation. Among the 

mathematical objects are abstract universal Turing machines. Tegmark proposes that 

the physical universe is the output of an abstract universal Turing machine run on 

random input. A similar suggestion is made in Schmidhuber (2013). 

Many objections could be raised to this proposal. The most relevant for us is 

that abstract mathematical entities are not the right kind of entity to implement a 

computation. Time and change are essential to implementing a computation: 

computation is a process that unfolds through time, during which the hardware 

undergoes a series of changes (flip-flops flip, neurons fire and go quiet, plastic 
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counters appear and disappear on a Go board, and so on). Abstract mathematical 

objects exist timelessly and unchangingly. What plays the role of time and change for 

this hardware? How could these Platonic objects change over time to implement 

distinct computational steps? And how could one step "give rise" to the next if there is 

no time or change? Even granted abstract mathematical objects exist, they do not 

seem the right sort of things to implement a computation. 

The second solution is instrumentalism about the underlying computational 

theory. This replays Mach’s treatment of nineteenth-century atomic theories in 

physics. Mach argued that atomic theories, while predictively successful, do not aim 

at truth: the atom ‘exists only in our understanding, and has for us only the value of a 

memoria technica or formula’ (Mach 1911: 49). A scientific theory need not aim at 

giving a true description of the world. Its value may rather lie in the instrumental 

goods it delivers: making accurate predictions, unifying diverse results, aiding 

calculation, grouping phenomena together in perspicuous ways, and prompting useful 

future enquiries. 

If we are instrumentalists about the computational theory that underlies our 

universe then we avoid the implementation problem. An instrumentalist does not care 

about the computational theory being true, only about its instrumental utility. An 

instrumentalist sees no problem in positing things that do not exist (the Coriolis force, 

mirror charges, positively-charged holes, etc.) to achieve her ends. The implementers 

of the universe’s computation could therefore, for an instrumentalist, be anything real 

or imagined. The implementers could even be notional: assumed for the nonce to 

generate predictions. An instrumentalist would lose no sleep over the existence or 

non-existence of implementers as she has no investment in the theory being true.  

Instrumentalism may be a reasonable attitude to adopt towards some scientific 

theories (for example, geocentric planetary theories still used for navigation but 

known to be false). However, it takes a strong stomach to be an instrumentalist about 

a fundamental physical theory. Zuse’s thesis is usually couched as a claim about the 

true nature of the universe: the universe is a giant computer. Our question was why 

we should believe this. The instrumentalist responds by changing topic: not by 

showing that Zuse’s thesis is credible, but by arguing that it is useful (and even that 

much has not yet been shown). 
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The third solution is anti-realism about the fundamental physical theory. Anti-

realism is the idea that some features of the universe that may appear to be objective 

features are, in fact, mind dependent. Zuse’s thesis claims that a computation takes 

place. This claim is presumably made true by the implementers of the computation 

behaving one way rather than another—by them satisfying a specific pattern 

described by that computation. On a Go board with plastic counters, whether GL is 

taking place or not is made true by the implementers behaving in one way rather than 

another: if a plastic counter is on a specific square at a given moment, the cell is "on"; 

if it is not, the cell is "off". But what if there were no implementers and the decision 

about whether an implementer is behaving this way rather than that way lay inside the 

head of an agent? GL does not need to involve a Go board and plastic counters. It 

could for example take place by the agent keeping track of appropriate sequences of 

"yes" or "no" decisions that settle the question of whether a specific counter is on a 

specific square. Like Dr B in Stefan Zweig’s Schachnovelle, the agent might generate 

a sequence of decisions that implement GL in her head. This may not be easy or 

convenient, but there is no reason it could not be done. In this case, the hardware that 

implements the computation would be mind dependent. 

There is nothing problematic about this considered as a proposition about GL. 

The anti-realist tries to play the same trick for the computation postulated by Zuse’s 

thesis. John Wheeler’s "It from bit" doctrine can be viewed as a move in this 

direction: 

[T]hat which we call reality arises in the last analysis from the posing of yes-

no questions and the registering of equipment-evoked responses; … all things 

physical are information-theoretic in origin and … this is a participatory 

universe. (Wheeler 1990: 5) 

We are participators in bringing into being not only the near and here but the 

far away and long ago. (Wheeler 2006) 

The idea is that the fundamental informational "yes"/"no" states that underlie 

the physical universe are somehow generated by observers. It is not clear how broad 

the category of "observer" is: whether it includes simple devices like photographic 

plates as well as conscious humans. But no matter how broad or narrow this class, the 

anti-realist solution to the implementation problem should produce a sense of disquiet. 
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As was mentioned above, the hardware that implements a computation cannot emerge 

from that computation. But this is precisely what is required here. An anti-realist says 

that the implementation of the universe’s computation lies in the registering of a 

sequence of bits by agents or other observers. But the anti-realist solution also 

requires that those agents and other observers be physical parts of the universe—they 

need to be to interact causally with the rest of the universe. Therefore, agents and 

other observers play a dual role: implementing the universe’s computation and being 

among the high-level products that emerge from that computation. This contradicts 

our principle that the hardware that implements a computation cannot emerge as a 

high-level product from that computation. We have no model of how implementation 

could work in this case. Anti-realism about computations that take place inside the 

universe (such as GL) is unproblematic. Anti-realism about the computation that 

generates the entire physical universe (including all agents and other observers) seems 

mysterious and incoherent. At best, it would require significant reworking of existing 

ideas of implementation.  

The fourth solution to the implementation problem is epistemic humility about 

the implementers. This is the suggestion that we trim our ambitions regarding 

knowledge of the implementers. We know that something must implement the 

universe’s supposed computation, but according to this response we say that we know 

nothing—and can know nothing—about that shadowy substratum. Our proper aim 

should be to describe the universe’s computation; we should remain silent about the 

nature of the implementing medium. Unlike the weird implementers option, epistemic 

humility makes no positive claim about the specific nature of the implementers other 

than that some implementer must exist. Unlike instrumentalism, epistemic humility 

says that Zuse’s thesis aims at delivering truth and not just instrumental benefits. 

Unlike anti-realism, epistemic humility makes no claim that minds or observers are 

part of the implementing medium.  

There are precedents for this kind of humility. Henri Poincaré argued that 

science can tell us only about the "true relations" between "real objects which Nature 

will hide forever from our eyes" (Poincaré 1902: 161). Bertrand Russell argued that 

science can tell us only about the structure of matter, not about its "intrinsic character" 

(Russell 1927: 227). These expressions of epistemic humility share the idea that the 

world contains some sort of shadowy substratum (although neither author says that 
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that the substratum implements a computation). Following this line of thought, an 

advocate of Zuse's thesis might argue that we should not be troubled about 

committing to the view that a substratum exists—even if knowledge of the nature of 

that substratum is forever beyond us. 

The problem with epistemic humility is that it does not so much answer the 

implementation problem as admit that we cannot answer it. If one was motivated by 

the implementation problem at all, one is unlikely to find this a satisfying solution. If 

the universe is a computer, one might feel that we should be able to say something 

positive about the implementing medium. Epistemic humility requires that we 

surrender all ambitions on this score.  

Epistemic humility deals with the implementation problem by saying that we 

can never solve it, instrumentalism changes the topic from truth to usefulness, anti-

realism is of dubious coherence, and proponents of weird implementers either 

shoehorn unsuitable entities into the role of implementers or else indulge in 

unjustified speculation. These options are not meant to be exhaustive and the 

considerations raised are not intended to refute Zuse’s thesis. But we have at least put 

some hard questions on the table (and we say more in Copeland, Sprevak and Shagrir 

2017). 

One potential route forward for advocates of Zuse's thesis is to combine 

instrumentalism, anti-realism and epistemic humility in a way described by Dennett 

(1991) and Wallace (2003).1 On such a view, whether something counts as real or not 

depends on how useful it is to admit it into our ontology. If a computational theory in 

fundamental physics were to prove sufficiently useful, then, on this view, we should 

regard the computation described by the theory as real and adopt an attitude of 

epistemic humility towards the implementing medium. It remains to be seen, of 

course, how useful Zuse's thesis will prove in fundamental physics. 

Even if the universe is not a computer it may nevertheless be computable. We 

turn next Gandy's thesis. 

3. Gandy's thesis: Turing computability is an upper bound on the computations 

performed by discrete deterministic mechanical assemblies 

                                                
1o for this suggestion.Thanks to Michael Cuffar 
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In his 1980 article "Church's Thesis and Principles for Mechanisms", Gandy advanced 

and defended a proposition that he termed "Thesis M": "What can be calculated by a 

machine is computable" (1980: 124). 

Gandy said that by computable he means "computable by a Turing machine", 

and he takes the objects of computation to be functions over the integers (or other 

denumerable domains). It is less clear what he meant by calculation and computation 

(we ourselves will use these terms interchangeably) and by machine. He said that he 

was using "the fairly nebulous term 'machine'" for the sake of "vividness", and he 

made it evident that discrete deterministic mechanical assemblies are his real target, 

where the "only physical presuppositions" made about a mechanical system are that 

there is "a lower bound on the linear dimensions of every atomic part" and "an upper 

bound (the velocity of light) on the speed of propagation of changes" (1980: 126). We 

will refer to discrete deterministic mechanical assemblies as DDMAs. Gandy 

emphasized that the arguments in his paper apply only to DDMAs and not to 

"essentially analogue" systems, nor systems "obeying Newtonian mechanics" (1980: 

126, 145). His thesis—which we call Gandy's thesis—is that the functions able to be 

computed by DDMAs are Turing computable. 

Like his teacher Turing, Gandy took an axiomatic approach to characterizing 

computation. But whereas Turing's classic 1936 paper gave an analysis of human 

computation (Turing 1936; see further Copeland 2004, 2017), Gandy's aim was to 

provide a wider analysis. He pointed out that Turing's analysis does not apply to 

machines in general: Turing assumes, for instance, that the computer (a human being) 

"can only write one symbol at a time", an assumption that clearly does not apply to 

parallel machines, since these can change "an arbitrary number of symbols 

simultaneously" (1980: 124-5). Gandy formulated the general concept of a DDMA in 

terms of precise axioms, which he called Principles I – IV. These four axioms define a 

set of mechanisms—"Gandy machines"—and Gandy proved that the computational 

power of these mechanisms is limited to Turing computability (a simplified version of 

the proof is provided by Sieg and Byrnes 1999). 

Principle I, which Gandy referred to as giving the "form of description", sets 

out a format for describing DDMAs. A DDMA is described by an ordered pair <S,F>, 

where S is a potentially infinite set of states and F is a state-transition operation from 

Si to Si+1 (for each member Si of S). Gandy chose to define the states in terms of 
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subclasses of the hereditarily finite sets (HF) over a potentially infinite set of atoms 

(closed under isomorphic structures). These subclasses are termed "structural classes"; 

and the state-transition operation is defined in terms of structural operations over such 

classes. Putting aside the technicalities of Gandy's presentation, Principle I can be 

approximated as: 

Principle I: Any DDMA M can be described by an expression <S,F>, where S 

is a structural class, and F is a transformation from Si to Sj. Thus, if S0 is M's 

initial state, then F(S0), F(F(S0)),… are its subsequent states. 

Each (non-atomic) state Si of S is assembled from parts, and these can be 

assemblies of other parts, etc. Principles II and III place boundedness restrictions on 

the structure of the states. They can be expressed informally as: 

Principle II: For each machine, there is a finite bound on the complexity of the 

structure of its states. (In Gandy's terminology, this comes down to the 

requirement that the states of a machine are members of a fixed initial segment 

of HF.) 

In GL, for example, the grid can be arbitrarily large but the complexity of the 

structure of each state is very simple and can be described as a list of pairs of cells—

or, more generally, as a list of lists of cells, since each listed pair of cells is itself a list 

of cells. In general we can picture a Gandy machine as storing information in a 

hierarchical way, such as lists of lists (Gandy 1980: 131), but Principle II lays down 

that for each machine there is always a finite bound on the structure of this hierarchy.  

Principle III: There is a bound on the number of types of basic parts (atoms) 

from which the states of the machine are uniquely assembled. 

For example, the grid of GL can be assembled from pairs of consecutive cells and 

their symbols (e.g. ('on', 'off'), ('on', 'on'), etc). We need only a limited number of pairs 

like these to construct any configuration of the grid.  

Principle IV puts restrictions on the structural operations that can be involved 

in state transitions: each state transition must be determined by the local environments 

of the parts of the assembly that change in the transition. Gandy called this the 

"principle of local causation" and described it as "the most important of our 

principles" (1980: 135). He explained that the axiom's justification lies in the two 

"physical presuppositions" governing mechanical assemblies (mentioned above). If 

the propagation of information is bounded, then in bounded time an atom can transmit 
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and receive information in a bounded neighborhood; and if there is a lower bound on 

the size of atoms, then the number of atoms in this neighborhood is bounded. Taking 

these together, we can informally express the principle as follows: 

Principle IV: The parts from which F(Si) is assembled are causally affected 

only by their bounded "causal neighbourhoods": the state of each part is 

determined solely by its local neighbourhood. 

For example, in GL the grid is assembled from parts—cells—each of which is either 

'on' or 'off' at any given moment. A cell's state—'on' or 'off'—is determined only by 

the bounded causal neighbourhood consisting of its eight adjacent cells. 

Gandy's proof that any assembly satisfying Principles I – IV is Turing 

computable goes far beyond the (relatively trivial) textbook reduction of the actions 

of some number of Turing machines working in parallel to the action of a single 

Turing machine. There are Gandy machines with arbitrarily many processing parts 

that work on the same regions (e.g. printing on the same region of tape), and also 

Gandy machines whose state-transitions involve simultaneous changes in an 

unbounded number of parts. In GL, for example, there is no upper bound on the 

number of cells that are simultaneously updated.  

To what extent does Gandy's analysis capture machine computation? Wilfried 

Sieg contends that Gandy provided "a characterization of computations by machines 

that is as general and convincing as that of computations by human computors given 

by Turing" (Sieg 2002: 247). We challenge Sieg's contention. It is doubtful that 

Gandy's analysis even encompasses all cases of physical computation, not to mention 

computation carried out by other, notional, machines. Moreover, even Gandy himself 

thought that not all physical computing machines lie within the scope of his 

characterization; and for this reason he explicitly distinguished between "mechanical 

devices" and "physical devices", saying that he was considering only the former 

(Gandy 1980: 126). As we explained above, Gandy said that his analysis aims only at 

machines conforming to the principles of Relativity, and he expressly excluded some 

machines that obey Newtonian mechanics—e.g. machines involving "rigid rods of 

arbitrary lengths and messengers travelling with arbitrary large velocities, so that the 

distance they can travel in a single step is unbounded" (1980: 145). 

More importantly still, we argue that Gandy's characterization does not even 

cover all cases of computation that are in accord with the principle of local causation 
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and his two overarching physical presuppositions (an upper bound on the speed of 

propagation of effects and signals, and a lower bound on the dimensions of the 

assembly's components). We consider discrete mechanical systems that infringe 

Thesis M in the next section, but we begin with some general considerations about 

physical computation. 

4. Is the physical world computable? 

The issue of whether every aspect of the physical world is Turing computable was 

raised by several authors in the 1960s and 1970s, and the topic rose to prominence in 

the mid-1980s. In 1985, Wolfram formulated a thesis that he described as "a physical 

form of the Church-Turing hypothesis": this says that the universal Turing machine 

can simulate any physical system (1985: 735, 738). In the same year David Deutsch 

(who laid the foundations of quantum computation) formulated a principle that he 

also called "the physical version of the Church-Turing principle" (Deutsch 1985: 99). 

Other formulations were advanced by Earman (1986), Pour-El and Richards (1989), 

Pitowsky (1990), and Blum et al. (1998). 

 In the 1990s Copeland coined the term "hypercomputer" for any system—

notional or real, natural or artefactual—that computes functions, or numbers, that the 

universal Turing machine cannot compute (Copeland and Proudfoot 1999, Copeland 

2002). A processing system—either a computing system, or a system of some other 

sort—is said to be "hypercomputational" if the information-processing that it 

performs cannot be done by the universal Turing machine (Copeland 2000). Scott 

Aaronson has suggested (in correspondence) that the physical Church-Turing thesis 

be called simply the anti-hypercomputation thesis. The term "physical Church-Turing 

thesis" is far from ideal, since the Church-Turing thesis as Turing and Church put it 

forward concerned only the scope and limits of human computation (Copeland 1996, 

2017); however, we will continue to use the term here (since many do use it). 

We use the term physical to refer to systems whose operations are in accord 

with the actual laws of nature. These include not only actually existing systems but 

also idealized physical systems (systems that operate in some idealized conditions) 

and physically possible systems that do not actually exist, but that could exist, or did 

exist (e.g. in the universe's first moments), or will exist. Of course, there is no 

consensus about exactly what counts as an idealized or possible physical system, but 

this is not our concern here. 
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Gualtiero Piccinini distinguishes between what he calls "bold" and the 

"modest" versions of the physical Church-Turing thesis (2011, 2015). (The distinction 

applies equally to versions of the anti-hypercomputation thesis.) Bold versions 

concern physical systems and processes in general, while modest versions are about 

systems that themselves compute and processes that themselves qualify as 

computation. Wolfram's thesis is an example of a bold version: 

Wolfram's bold physical Church-Turing thesis: "[U]niversal computers are 

as powerful in their computational capacities as any physically realizable 

system can be, so that they can simulate any physical system." (Wolfram 

1985: 738) 

The formulations of Deutsch and others are also bold: their formulations concern 

physical systems in general and not just computing systems. (Piccinini emphasizes, 

though, that the bold versions proposed by different writers are often "logically 

independent of one another", and exhibit "lack of confluence" (2011: 747-748).) 

Modest versions of the physical Church-Turing thesis, on the other hand, concern 

physical systems that themselves compute, and assert that the computational power of 

any physical computer is bounded by Turing computability. Gandy's thesis is an 

example. His Thesis M is about calculating machines and his talk about functions that 

are calculated (or computed) by machines—DDMAs—implies that the mediating 

processes are calculations (computations). 
Nevertheless, Gandy's result implies a bold version: since DDMAs are 

physical systems, Gandy proved that the behaviour of a certain broad class of physical 

systems is bounded by Turing computability. First, though, we will discuss the 

modest thesis. Is it true? Given that Gandy proved that Turing computability is an 

upper bound on the computational powers of DDMAs, the pertinent question is 

whether computing systems other than DDMAs are able to compute functions that are 

not Turing computable. 

There have been several attempts to cook up constructions of highly idealized 

physical machines that compute functions that no Turing machine is able to compute. 

Perhaps the most interesting ones have been of "supertask" machines—machines that 

complete infinitely many computational steps in a finite span of time. Among such 

machines we find accelerating machines (Copeland 1998a, 2002b, Copeland and 
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Shagrir 2011), shrinking machines (Davies 2001), and relativistic machines (Pitowsky 

1990, Hogarth 1994, Andréka et al. this volume). 

Relativistic machines operate in spacetime structures having the property that 

the entire endless lifetime of one machine is included in the finite chronological past 

of another machine (called “the observer”): thus the first machine could carry out an 

infinite computation, such as calculating every digit of p, in what is from the 

observer's point of view a finite timespan, say one hour. (Such structures, sometimes 

called Malament-Hogarth spacetimes,  are in accord with Einstein's General Theory 

of Relativity.) 

A relativistic machine RM consists of a pair of communicating Turing 

machines TA and TB: TA, the observer, is in motion relative to TB, a universal machine. 

RM is able to "compute" the halting function. When the input (m,n)—asking whether 

the mth Turing machine (in some enumeration of the Turing machines) halts or not 

when started on input n—enters TA, TA first prints 0 (meaning "never halts") in its 

designated output cell and then transmits (m,n) to TB. TB simulates the computation 

performed by the mth Turing machine when started on input n and sends a signal back 

to TA if and only if the simulation terminates. If TA receives a signal from TB, it deletes 

the 0 it previously wrote in its output cell and writes 1 there instead (meaning "halts"). 

After one hour, TA's output cell shows 1 if the mth Turing machine halts on input n and 

shows 0 if the mth machine does not halt on n. 

RM is of interest since arguably it complies with Gandy's principles. RM is 

discrete, since it consists of two standard digital computers in communication; and (as 

a relativistic machine) the speed of signal propagation in RM is bounded by the speed 

of light. Nonetheless, RM cannot be a Gandy machine if it computes a function that 

no Gandy machine is able to computes. So what is going on? Our answer is that RM 

violates an implicit assumption that underlies Gandy's Principle I (Copeland and 

Shagrir 2007). Principle I requires that the process can be described as a sequence S0, 

F(S0), F(F(S0)),… (where S0 is the initial state and F is the state-transition function). 

But it is also assumed that the configuration of each stage a + 1, described by Si+1, is 

to be uniquely determined by the configuration of the previous stage, a, described by 

Si (i.e. that Si+1 = F(Si)). We will call this the assumption of Gandy determinism. 

However, this assumption is not necessarily satisfied by RM. Consider the end-stage 

of TA: if TA receives a signal from TB, then its subsequent behavior is Gandy-
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deterministic; but if it receives no signal from TB, its behavior is no longer Gandy 

deterministic. To count as Gandy-deterministic, the end-stage of TA-halting-on-0 

should be determined, in part, by the no-signal message of the last stage of TB. 

However, TB, a non-halting Turing machine, does not have a last stage: there is no 

stage of TB that is the one coming just before the end-stage of TA-halting-on-0 (since 

after each stage of TB, there are infinitely many others at which no signal is sent to TA). 

Thus the stage of TA-halting-on-0 is not Gandy-deterministic.  

This implicit assumption is the weak point in Gandy's argument, since not 

every deterministic assembly need be Gandy-deterministic. Moreover there is an 

extremely reasonable account of determinism according to which RM is deterministic. 

It is deterministic in that the end-stage of TA-halting-on-0 is uniquely determined by 

the initial stage of the machine. This is because the end-stage of TA-halting-on-0 is a 

limit of previous stages of TB (and TA), of which the relevant feature is their not 

sending a signal to TA. This sense of determinism is in good accord with physical 

usage where a system or machine is said to be deterministic if it obeys laws that 

invoke no random or stochastic elements. TA's halting on 0 is completely determined 

by the fact that it initially wrote 0 in its designated output cell and the fact that at no 

stage of the computation was a signal sent by TB. 

RM is not a Gandy machine but it is a DDMA (although not a Gandy-

deterministic DDMA). Is it a counter-example to the modest thesis? This depends on 

whether the machine is physical and on whether it really computes the halting 

function. 

Is RM physical? Németi and his colleagues provide the most physically 

realistic construction, locating machines like RM in setups that include huge slow 

rotating Kerr black holes (Andréka et al. this volume) and emphasizing that the 

computation is physical in the sense that “the principles of quantum mechanics are not 

violated” and RM is “not in conflict with presently accepted scientific principles” 

(Andréka, Németi and Németi 2009: 501). They suggest that humans might "even 

build" their relativistic computer “sometime in the future” (Andréka, Németi and 

Németi 2009: 501). Naturally all this is controversial. Earman and Norton (1993), 

Aaronson (2005), Piccinini (2011), and others, argue that this relativistic physical 

setup faces serious problems: however, Németi and his colleagues reply resourcefully 
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to these objections (Etesi and Németi (2002), Németi and Dávid (2006), Andréka et al. 

(2009) and Andréka et al. (this volume); see also Shagrir and Pitowsky (2003)). 

Does RM compute the halting function? The answer depends on what is 

included under the heading physical computation. We cannot possibly cover here the 

array of differing accounts of physical computation found in the current literature. But 

we can say that RM computes in the senses of "compute" staked out by several of 

these accounts: the semantic account (Shagrir 2006, Sprevak 2010), the mechanistic 

account (Milkowski 2013, Fresco 2014, Piccinini 2015), the causal account (Chalmers 

2011), and the BCC (broad conception of computation) account (Copeland 1997a: 

695). According to all these accounts, RM counterexamples the modest thesis if RM is 

physical. However, RM does not compute if computation is construed as the 

execution of an algorithm in the classical sense. The classical notion of an algorithm 

does not accommodate the limit stages found in relativistic computation (although it 

does accommodate all sorts of nondeterministic processes, e.g. probabilistic 

processes).  

We conclude that Gandy's principles do not provide a general and 

comprehensive analysis of machine computation. We do not wish to downplay the 

contribution that his analysis has made to the current understanding of machine 

computation; but it is important to realize that his analysis is limited in its scope. In 

fact, its scope is more limited than is suggested by Gandy's own exclusion of 

analogue machines and some types of discrete Newtonian machines: his analysis does 

not even cover all instances of non-hypercomputational discrete physical computation. 

For instance, his Principle I does not directly apply to probabilistic algorithms and 

asynchronous algorithms (Gurevich 2012, Copeland and Shagrir 2007). 

We turn now to the bold thesis, which says in effect that the behaviour of 

every physical system can be simulated (to any required degree of precision) by a 

Turing machine. Speculation that there may be physical processes whose behaviour 

cannot be calculated by the universal Turing machine stretches back over several 

decades (for a review see Copeland 2002a). Early papers by Scarpellini (1963), 

Komar (1964) and Kreisel (1965, 1967) made this point. Georg Kreisel stated "There 

is no evidence that even present day quantum theory is a mechanistic, i.e. recursive 

theory in the sense that a recursively described system has recursive behaviour" 

(1967: 270). More concretely, Marian Pour-El and Ian Richards (1981) showed that 
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the familiar three-dimensional wave equation produces non-Turing-computable 

output sequences for some Turing computable input sequences. But their result is at 

the mathematical level: it is an open question whether the requisite input sequences 

can obtain physically. RM (if physical) provides another counterexample to the bold 

theses (since the bold thesis implies the modest). 

To summarize the discussion so far: the bold thesis is clearly an empirical 

hypothesis, and at the present stage of physical enquiry it is unknown whether this 

hypothesis is true. However, it can at least be said that to date there is no empirical 

evidence against the hypothesis (so far as we know). The modest thesis also seems to 

be an empirical hypothesis, although here matters are more complex, since a 

conceptual issue also bears on the truth or falsity of the thesis—the issue of what 

counts as physical computation. As with the bold thesis, it is currently unknown 

whether the modest thesis is true or false. 

Next we introduce a new, stronger, form of the physical Church-Turing thesis 

and examine some recent work on undecidability in physics. We call this new form 

the "super-bold" physical Church-Turing thesis. Unlike the bold thesis, it concerns not 

only the ability of the universal Turing machine to simulate the behaviour of physical 

systems (to any required degree of precision) thesis but also concerns further physical 

questions about this behaviour. Examples are decidability questions such as: "Is the 

solar system stable?" and "Is the motion of a given system, in a known initial state, 

periodic?" (Pitowsky 1996).  

The super-bold physical Church-Turing thesis: Every aspect of the 
behaviour of any physical system is Turing computable (to any desired 
degree of accuracy).  

In 1986 Robert Geroch and James Hartle argued that undecidable physical 

theories "should be no more unsettling to physics than has the existence of well-posed 

problems unsolvable by any algorithm have been to mathematics"; and they suggested 

that such theories may be "forced upon us" in the quantum domain (Geroch and 

Hartle 1986: 534, 549). Arthur Komar raised "the issue of the macroscopic 

distinguishability of quantum states" in 1964, asserting that there is no effective 

procedure "for determining whether two arbitrarily given physical states can be 

superposed to show interference effects" (Komar 1964: 543-544). More recently Jens 

Eisert, Markus Müller and Christian Gogolin showed that "the very natural physical 

problem of determining whether certain outcome sequences cannot occur in repeated 
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quantum measurements is undecidable, even though the same problem for classical 

measurements is readily decidable" (Eisert, Müller and Gogolin 2012: 260501-1). 

This is an example of a problem that refers unboundedly to the future but not to any 

specific time (as in Itamar Pitowsky's examples mentioned earlier). Eisert, Müller and 

Gogolin suggest that "a plethora of problems" in quantum many-body physics and 

quantum computing may be undecidable (2012: 260501-1 -  260501-4). 

Dramatically, a 2015 Nature article by Toby Cubitt, David Perez-Garcia, and 

Michael Wolf outlined their proof that "the spectral gap problem is algorithmically 

undecidable: there cannot exist any algorithm that, given a description of the local 

interactions, determines whether the resultant model is gapped or gapless" (Cubitt et 

al. 2015: 207). Cubitt describes this as the "first undecidability result for a major 

physics problem that people would really try to solve" (in Castelvecchi 2015). 

The spectral gap, an important determinant of a material's properties, refers to 

the energy spectrum immediately above the ground energy level of a quantum many-

body system (assuming that a well-defined least energy level of the system exists): the 

system is said to be gapless if this spectrum is continuous and gapped if there is a 

well-defined next least energy level. The spectral gap problem for a quantum many-

body system is the problem of determining whether the system is gapped or gapless, 

given the finite matrices describing the local interactions of the system. 

In their proof Cubitt et al. encode the halting problem in the spectral gap 

problem, so showing that the latter is at least as hard as the former. The proof 

involves an infinite family of 2-dimensional lattices of atoms; but they point out that 

their result also applies to finite systems whose size increases: "Not only can the 

lattice size at which the system switches from gapless to gapped be arbitrarily large, 

the threshold at which this transition occurs is uncomputable" (Cubitt et al. 2015: 210-

211). Their proof offers an interesting countermodel to the super-bold thesis, 

involving a physically relevant example of a finite system of increasing size such that 

there exists no Turing computable procedure for extrapolating the system's future 

behavior from (complete descriptions of) its current and past states. (For discussion of 

such systems, see Geroch and Hartle 1986 and Copeland 2002, 2004.) 

It is debatable whether any of these quantum models corresponds to real-world 

quantum systems. The Komar model involves a system with an infinite number of 

degrees of freedom; and Cubitt et al. admit that the model invoked in their proof is 
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highly artificial, saying "Whether the results can be extended to more natural models 

is yet to be determined" (Cubitt et al. 2015: 211). There is also the question of 

whether the spectral gap problem becomes computable when only local Hilbert spaces 

of realistically low dimensionality are considered. Nevertheless, these results are 

certainly suggestive. The super-bold thesis cannot be taken for granted—even in a 

finite quantum universe. 

We turn next to Penrose's speculations concerning physical uncomputability. 

5. Penrose's thesis: uncomputability and the brain 

Penrose's thesis is the claim that the action of the brain is hypercomputational 

(Penrose 2013: xxxiii). Penrose holds that the brain's uncomputability is key to 

explaining the phenomenon of consciousness (Penrose 1989, 1990, 1994, Hameroff 

and Penrose 2014). According to Penrose, the brain's hypercomputational action, and 

the role this plays in generating conscious experience, will not be fully understood 

until the advent of what he calls the New Theory in physics: he says that 

"hypercomputational actions" in the brain are the "non-computable effects of [the] 

New Theory" (Penrose 2013: xxxiii). This "presumed New Theory", he says, goes 

"beyond current quantum mechanics": it is "presently unknown in detail" and 

involves "hitherto undiscovered laws" (2013: xxxii, xxxiii). 

 Penrose's argument for his thesis is based on Gödel's incompleteness 

theorems, which he "regard[s] as providing a strong case for human understanding 

being something essentially non-computable"—understanding being "one 

manifestation of human consciousness" (Penrose 2013: xxviii, 2011: 347). This 

general line of argument, made famous in an article by the philosopher John Lucas 

(Lucas 1961), is often called the "Gödel Argument", although in fact it was 

anticipated by Emil Post as early as 1921 (Post 1965: 417). Penrose calls it the 

"Gödel-Turing Argument" (e.g. in his 2011); and Turing himself dubbed it the 

"Mathematical Objection" (1950: 450), giving the following elegant summary of it: 

Recently the theorem of Gödel and related results ... have shown 

that if one tries to use machines for such purposes as determining 

the truth or falsity of mathematical theorems and one is not willing 

to tolerate an occasional wrong result, then any given machine will 

in some cases be unable to give an answer at all. On the other hand 

the human intelligence seems to be able to find methods of ever-
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increasing power for dealing with such problems "transcending" 

the methods available to machines. (Turing 1948: 410-11.) 
 Turing by no means endorsed the "Gödel-Turing Argument". His subtle 

objection to it, involving what we call his "multi-machine theory" of mentality, is 

described in Copeland and Shagrir (2013)—and is very different from the objection 

that Penrose imputes to Turing, in our view mistakenly (e.g. in his 1997: 112). We 

shall return briefly to Turing's views below. 

 Gödel's view, as he expressed it in his 1951 Gibbs lecture, was that the 

incompleteness results establish a disjunction: either "there exist absolutely 

unsolvable diophantine problems" (where, Gödel explained, "the epithet 'absolutely' 

means that they would be undecidable, not just within some particular axiomatic 

system, but by any mathematical proof the human mind can conceive"), or else "the 

human mind … infinitely surpasses the powers of any finite machine" (Gödel 1951, p. 

310). (For a fuller study of Gödel's views, see Copeland and Shagrir 2013). 

 Later, at the beginning of the 1970s, Gödel in effect recast this disjunction into 

an implication: 

If my result [incompleteness] is taken together with the rationalistic 

attitude which Hilbert had and which was not refuted by my results, then 

[we can infer] the sharp result that mind is not mechanical. This is so, 

because, if the mind were a machine, there would, contrary to this 

rationalistic attitude, exist number-theoretic questions undecidable for the 

human mind. (Gödel in Wang 1996: 186-187) 

What Gödel called Hilbert's "rationalistic attitude" was summed up in the latter's 

celebrated remark that "in mathematics there is no ignorabimus"—there is no 

mathematical question that in principle the mind is incapable of settling (Hilbert 

1902: 445). 

 Gödel's position, then, was that his incompleteness results do not entail that 

the mind is not mechanical; but, if these are coupled with the rationalistic attitude that 

there are no absolutely undecidable problems—an attitude that, he emphasized, 

"remains entirely untouched" by his negative results (Gödel 193?, p.164)—then it 

does indeed follow that the mind is not mechanical. In a note written in 1963 (Fig. 1) 

Gödel explained where he sat in this debate (at any rate at that time). Referring to his 



 21 

1951 disjunction he said: "I believe, on ph[ilosophical] grounds, that the sec[ond] 

alternative is more probable & hope to make this evident".2  

PLACE FIGURE 1 NEAR HERE 

Caption: Extract from Gödel's draft letter of 1963, addressed to TIME Inc.3 

Credit: Firestone Library, Rare Books and Special Collections 

 

 Clearly the success of the Gödel Argument turns on whether this "rationalistic 

attitude" could ever be established to be correct—i.e. whether it could ever be 

established that there are no absolutely undecidable problems. It is, to be sure, 

difficult to see how this could ever be done. But, in any case, Gödel's "sharp result" is 

undercut by Turing's rebuttal of the Mathematical Objection (see Copeland and 

Shagrir 2013). Moreover, numerous other objections have been raised to the Gödel 

Argument, and to the detailed formulation of it endorsed by Penrose (see for example 

Penrose 1990 and the commentaries that follow). Rather than attempting to survey 

these many objections here, we will focus on what seems to us to be the absolutely 

central difficulty with Penrose's argument, namely that the argument appears to 

reduce to absurdity (Copeland 1998b, Copeland and Proudfoot 2007). 

The reductio ad absurdum is this. Let us suppose Penrose's argument does 

successfully establish that (as he puts it) human mathematicians do not use a 

knowably sound Turing-machine algorithm in order to ascertain mathematical truth. 

If so, then his argument shows with equal success that human mathematicians, in 

ascertaining mathematical truth, do not use any knowably sound procedure that is 

capable of being executed by an oracle machine. Turing's oracle machines (or o-

machines) are the result of equipping a universal Turing machine with at least one 

additional basic operation that no Turing machine proper can simulate (Turing 1939). 

Turing called these new basic operations "oracles", saying that oracles work by "some 

unspecified means" (1939: 156). 

As Turing explained, oracle machines form a hierarchy that extends ever 

upwards. Let the first-order o-machines be those whose oracle produces the values of 

the Turing-machine halting function H(x,y). The second-order o-machines are those 

with an oracle that can say whether or not any given first-order o-machine eventually 

                                                
 1963 note. Gödel'sfor a discussion of  2003)(van Atten and Kennedy See  2 

Thanks to Juliette Kennedy for assistance in locating this note. 3 
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halts if set in motion with such-and-such a number inscribed on its tape; and so on for 

third-order and in general a-order o-machines. Penrose's argument was originally 

marketed as showing that human understanding does not consist in any process that a 

Turing machine can execute (see e.g. Penrose 1994, ch. 2); but his argument is so 

powerful that it equally supports the conclusion that human understanding does not 

consist in any process that the richly hypercomputational oracle machines can execute. 

(This applies even to the "cautious oracles" that Penrose introduces in his 2016.) 

Penrose's argument moves relentlessly up through the orders, stopping nowhere. 

 Penrose noted this difficulty in his 1994 book Shadows of the Mind (p. 380). 

He also suggested a way out: 

 [I]t need not be the case that human mathematical understanding is 

in principle as powerful as any oracle machine at all. ... Thus, we 

need not necessarily conclude that the physical laws that we seek 

reach, in principle, beyond every computable level of oracle 

machine (or even reach the first order). We need only seek 

something that is not equivalent to any specific oracle machine. 

(1994: 381.) 

What does Penrose mean here? It is customary in recursion theory to say that 

problems of equal "hardness" are of the same degree: problems that are solvable by 

Turing machines are said to be of degree 0. Penrose seems to be suggesting that 

physical laws occupy a position in between degree 0 and degree 1, the degree of 

problems that are solvable by a first-order oracle machine but not by Turing machine. 

It is indeed known that there are degrees between 0 and 1 (Friedberg 1957, Sacks 

1964) and this seems to make sense of what Penrose is suggesting: for some degree 

between 0 and 1, the "physics of mind" is exactly that hard. This is certainly a 

coherent position—and for all that anyone presently knows, it may in fact be true. 

However, this suggestion does not prevent the reductio ad absurdum that we 

are discussing (Copeland 1998b). Let i (for "intermediate") be a degree between 0 and 

1 and let I be the class of o-machines that are able to solve problems of degree i (and 

no harder problems). Do mathematicians use, in ascertaining mathematical truth, a 

knowably sound procedure able to be executed by a machine in I? Not if Penrose's 

argument is sound, since it applies equally to the o-machines in I. To borrow a phrase 

of Penrose's (from his 2013: xxxiv), the Gödel Argument involves a "never-ending 
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capability of being able to 'stand back' and contemplate whatever structure had been 

considered previously": whatever structure—whatever physical system—is 

contemplated, the argument deems it not to be the mind. 

In his more recent work Penrose does not repeat the suggestion just discussed. 

But nor does he offer any way of avoiding the reductio ad absurdum that he noted in 

his 1994 book. Commenting on the fact that, no matter what device D is specified, the 

Gödel Argument entails that the mind is more powerful than D, Penrose says only that 

the mind is "something very mysterious" and that its theory must involve "something 

very subtle" (Penrose 1996, sect. 13.2, Penrose 2013: xxxiv). John Lucas was happy 

to conclude from the Gödel Argument that "no scientific enquiry can ever exhaust 

the ... human mind" (Lucas 1961: 127), and Gödel thought that the brain must be "a 

computing machine connected with a spirit" (Gödel in Wang 1996, p. 193). Unlike 

Gödel and Lucas, Penrose seems to think that there must be a fully physical account 

of consciousness, but he has failed to make it clear what physical conception of 

consciousness can possibly remain for one who endorses the Gödel Argument. 

It is a pity that Penrose chose to support his thesis by means of the Gödel 

Argument, since the argument is ultimately a distraction and moreover tends to mask 

the fact that Penrose's thesis is—like the various forms of the physical Church-Turing 

thesis considered above—a thoroughly empirical thesis. It is a serious hypothesis that, 

far from requiring a radical New Theory, might even be consistent with current 

quantum mechanics, as the undecidability of the spectral gap problem tends to 

indicate. There is, so far as we aware, not a shred of empirical evidence for Penrose's 

thesis, but this situation might change in the future. One can only keep an open mind. 

We conclude with a comment on the relationship between Penrose's view of 

the brain and Turing's. Penrose says: "It seems likely that he [Turing] viewed physical 

action in general—which would include the action of a human brain—to be always 

reducible to some kind of Turing-machine action" (Penrose 1994: 21). Penrose even 

named this claim Turing's thesis. Yet Turing never endorsed this thesis and was aware 

that it might be false. Turing was in fact an important forerunner of the modern debate 

concerning the possibility of uncomputability in physics and uncomputability in the 

action of the human brain (as was first pointed out in Copeland 1999 and Copeland 

and Proudfoot 1999). In a 1951 lecture on BBC radio Turing suggested that it may not 

be possible for a computer to simulate the human brain because of the brain's 
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quantum-mechanical nature (Turing 1951, Copeland 1999: 448, 451-2). Far from 

subscribing to what Penrose called Turing's thesis, Turing in this lecture contemplated 

the possibility that the physics of the brain might be uncomputable. (Even Andrew 

Hodges, who used to maintain that Turing claimed "that the action of the brain must 

be computable" (Hodges 2003: 51), now seems to have accepted that his previous 

view of Turing was wrong (Hodges 2012).) 

6. Summary 
We have discussed a number of theses concerning the relationship between physics 

and computation. We began with the thesis that the physical universe is a computer 

(Zuse's thesis) and moved on to the thesis that the behaviour of all discrete 

deterministic mechanical assemblies is Turing computable (Gandy's thesis) and then 

the more general physical Church-Turing thesis (which is also known as the "anti-

hypercomputation thesis"). We distinguished three versions of the physical Church-

Turing thesis: the modest, the bold, and the super-bold versions. We ended with the 

thesis that some actions of a specific physical system—the human brain—are not 

Turing computable (Penrose's thesis). 

These are all exciting hypotheses, but we conclude that none of them is 

empirically validated. Zuse's thesis has not yet proved sufficiently useful in 

fundamental physics for us to wish to embrace its racy ontological commitments. 

Gandy's thesis turns out to be confined to discrete mechanical assemblies that are 

deterministic in a very specific sense, which we dub Gandy deterministic, and fails to 

apply to assemblies that are deterministic in other familiar senses. Whether the 

behaviour of those deterministic assemblies also is bounded by Turing computability 

remains an open question. In particular, Gandy's thesis fails to rule out relativistic 

computation. Other physical versions of the Church-Turing thesis—bold and super-

bold—are more general, but their validity is also questionable. Penrose's thesis, too, 

emerges as an interesting speculation for which evidence is currently wanting. 
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