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Abstract

This paper introduces and summarises the
findings of a new shared task at the in-
tersection of Natural Language Process-
ing and Computer Vision: the generation
of image descriptions in a target language,
given an image and/or one or more de-
scriptions in a different (source) language.
This challenge was organised along with
the Conference on Machine Translation
(WMT16), and called for system submis-
sions for two task variants: (i) a transla-
tion task, in which a source language im-
age description needs to be translated to
a target language, (optionally) with addi-
tional cues from the corresponding image,
and (ii) a description generation task, in
which a target language description needs
to be generated for an image, (optionally)
with additional cues from source language
descriptions of the same image. In this
first edition of the shared task, 16 systems
were submitted for the translation task and
seven for the image description task, from
a total of 10 teams.

1 Introduction

In recent years, significant research has been done
to address problems that require joint modelling
of language and vision. Examples of popular ap-
plications involving both Natural Language Pro-
cessing (NLP) and Computer Vision (CV) include
image description generation and video captioning
(Bernardi et al., 2016), image retrieval based on
textual and visual cues (Feng and Lapata, 2010),
visual question answering (Yang et al., 2015),
among many others (see (Ramisa et al., 2016) for
more examples). With very few exceptions (Grub-
inger et al., 2006; Funaki and Nakayama, 2015;

Gao et al., 2015), these applications are inherently
monolingual and existing work explore mostly En-
glish data. In an attempt to push this interdis-
ciplinary field to incorporate a multilingual com-
ponent, we propose the first shared task on two
new applications: Multimodal Machine Transla-
tion and Crosslingual Image Description. Gener-
ally speaking, this shared task targets the gener-
ation of image descriptions in a target language,
given an image and one or more descriptions in a
different (source) language. More specifically, the
task can be addressed from two perspectives:

1. Task 1: a Multimodal Machine Translation
task, which takes a source language descrip-
tion and translates it into the target language,
where this process can be supported by infor-
mation from the image; see Figure 1, and

2. Task 2: a Crosslingual Image Description
task, which takes an image and generates
a description for it in the target language,
where this process can be supported by the
source language description; see Figure 2.

This shared task has the following main goals:

• To push existing work on multimodal lan-
guage processing towards multilingual mul-
timodal language processing.

• To investigate the effectiveness of informa-
tion from images in machine translation.

• To investigate the effectiveness of crosslin-
gual textual information in image description
generation.

The challenge was organised in the framework
of the well-established WMT series of shared
tasks.1 Participants were called to submit sys-
tems focusing on either or both of these task vari-
ants. The tasks differ in the training data and in

1http://www.statmt.org/wmt16/
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Source:
A brown dog is running after the black dog.

Ein brauner Hund ...

Gold Target:
Ein brauner Hund rennt dem schwarzen Hund
hinterher.

translate

evaluate

Figure 1: Multimodal Machine Translation (Task 1). English and translated German image descriptions
are grounded to an image.

English Descriptions:
A brown dog is running after the black dog.
Two dogs run towards each other on a ...
A brown dog is running after a black ...
Two dogs run across stones near a body ...
Two dogs playing on a beach.

Zwei Hunde ...

Gold German Descriptions:
Ein schwarzer und ein brauner Hund rennen ...
Zwei Hunde rennen über einen steinigen Platz.
Zwei Hunde spielen auf dem Strand.
Zwei Hunde rennen am Strand.
Zwei Hunde tollen in der Nähe des Meeres.

describe

evaluate

Figure 2: Multilingual Image Description (Task 2). The data consist of independently produced image
descriptions in English and German.

Sentences Types Tokens Avg. length

Task 1: Translations
English

31,014
11,420 357,172 11.9

German 19,397 333,833 11.1

Task 2: Descriptions
English

155,070
22,815 1,841,159 12.3

German 46,138 1,434,998 9.6

Table 1: Corpus-level statistics about the translation and the description data over 31,014 images.
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the way the target language descriptions are evalu-
ated: against one translation of the corresponding
source description (translation variant) or against
five descriptions of the same image in the tar-
get language, created independently from the cor-
responding source description (image description
variant). The data used for both tasks is an ex-
tended version of the Flickr30K dataset. Partici-
pants were also allowed to use external data and
resources for unconstrained submissions.

Participants were encouraged to make use of
both the sentences and the images as part of their
submissions but they were not required to do so.
The baseline systems for the translation task were
a text-only Moses phrase-based statistical machine
translation (SMT) model (Koehn et al., 2007) and
the GroundedTranslation multilingual image de-
scription model (Elliott et al., 2015) (in particu-
lar, the MLM→LM variant). The baseline sys-
tem for the description generation task was also
the GroundedTranslation model.

In this paper we describe the data, image fea-
tures and participants of the shared task (Sections
2 and 3), present its main findings (Section 4), and
discuss interesting issues and directions for future
research (Section 5).

2 Datasets and image features

We created a new dataset for the shared task by ex-
tending the Flickr30K dataset (Young et al., 2014)
into another language. The Multi30K dataset (El-
liott et al., 2016) contains two types of multilin-
gual data: a corpus of English sentences translated
into German (used for Task 1), and a corpus of
independently collected English and German sen-
tences (used for Task 2). For the translation cor-
pus, one sentence (of five) was chosen for pro-
fessional translation such that the final dataset is
a combination of short, medium, and long length
sentences. The second corpus consists of crowd-
sourced descriptions gathered from Crowdflower,2

where each worker generated an independent de-
scription of the image. We used a translation of
the original instructions used to gather the En-
glish sentences, in order to ensure as much sim-
ilarity across the German and English descriptions
as possible. Table 1 presents an overview of the
data available for each task.

The images are publicly available3 but to en-

2http://www.crowdflower.com
3http://illinois.edu/fb/sec/229675

courage participation we released two types of fea-
tures extracted from the images. The use of such
features was not mandatory, and participants could
also extract image features from the original im-
ages in the Flickr30K dataset using their own al-
gorithms. We released features extracted from the
VGG-19 Convolutional Neural Network (CNN),
as described in (Simonyan and Zisserman, 2015),
from the FC7 (relu7) and CONV5,4 layers. We
extracted these image features using Caffe RC24

with the matlab features reference code
from NeuralTalk.5

3 Participants

Ten teams submitted a total of 23 systems for the
two tasks. The teams are listed in Table 2. In what
follows, we summarise the participating systems.

CMU (Task 1) The approach incorporates
global and regional visual features with textual
features from English (source) and German (tar-
get) to jointly train a Recurrent Neural Network
(RNN). Visual features extracted from a region-
based convolution neural network (RCNN) are de-
signed to be appended in the head/tail of the tex-
tual feature or dissipated in parallel long short
term memory (LSTM) threads to assist the LSTM
reader in computing a representation. For re-
scoring, an additional bilingual dictionary is used
to select the best sentence from candidates gen-
erated by five different models. The submission
is thus unconstrained, with the German-English
Dictionary from GLOSBE6 used as additional re-
source.

CUNI (Tasks 1 and 2) The method is a sys-
tem combination which implements the attentive
neural Machine Translation (MT) (Bahdanau et
al., 2014). The input of the decoder is a lin-
ear combination of the image features obtained
from the penultimate layer of the VGG16 convo-
lutional network (Simonyan and Zisserman, 2015)
and two recurrent encoders coding the source sen-
tence and its translation obtained from the Moses
system. The Moses system uses the with addi-
tional language models based on coarse bitoken
classes (Stewart et al., 2014).

4http://github.com/BVLC/caffe/releases
/tag/rc2

5http://github.com/karpathy/neuraltalk
/tree/master/matlab_features_reference

6https://glosbe.com/en/de/
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ID Participating team
CMU+NTU Carnegie Melon University (Huang et al., 2016)

CUNI Univerzita Karlova v Praze (Libovický et al., 2016)
DCU Dublin City University (Hokamp and Calixto, 2016)

DCU-UVA Dublin City University & Universiteit van Amsterdam (Calixto et
al., 2016)

HUCL Universität Heidelberg (Hitschler et al., 2016)
IBM-IITM-Montreal-NYU IBM Research India, IIT Madras, Université de Montréal & New

York University
LIUM Laboratoire d’Informatique de l’Université du Maine (Caglayan

et al., 2016)
SHEF University of Sheffield (Shah et al., 2016)
UPC Universitat Politècnica de Catalunya (Rodrı́guez Guasch and

Costa-jussà, 2016)
UPCb Universitat Politècnica de Catalunya

Table 2: Participants in the WMT16 multimodal machine translation shared task.

DCU (Task 1) Both submissions from DCU are
neural MT systems with an attention mechanism
on the source-side representation (Bahdanau et al.,
2014). The first submission is text-only, and the
second submission includes the FC7 image fea-
tures in the target-side decoder initial state. The
FC7 features are passed through a 3-layer fully-
connected feedforward network with Tanh non-
linearities, and then summed with the final state of
the source-side representation. This summed rep-
resentation is passed through another feed-forward
layer, and becomes the initial state for the de-
coder recurrent transition. The main novelty of
our system is that we use a minimum-risk training
objective to directly optimise the model for Me-
teor, instead of the word-level cross entropy loss
function which is currently standard for NMT sys-
tems. This idea comes from (Shen et al., 2016),
although our implementation is somewhat differ-
ent than the idea outlined in that work. To opti-
mise for expected Meteor, we take up to 100 sam-
ples from our model, compute an expectation over
these samples, and use Stochastic Gradient De-
scent to directly optimise the model on this ex-
pected score.

DCU-UVA (Task 1) The approach integrates
separate attention mechanisms over the source
language and the CONV5,4 visual features in a
single decoder. The source language was rep-
resented using a bidirectional RNN with Gated
Recurrent Units (GRU); the images were repre-
sented as 196x512 matrix from the pre-trained
VGG-19 convolutional network. A separate, time-

dependent context vector was constructed for the
source sentence and the visual features, which
were merged into a single multimodal context vec-
tor. This time-dependent multimodal context vec-
tor was input into the target language decoder,
along with the previous hidden state and the previ-
ously emitted word. Throughout, 300D word em-
beddings, 1000D hidden states, and 1000D con-
text vectors were used; the source and target lan-
guages were estimated over the entire vocabular-
ies.

HUCL (Task 1) The submitted system for the
constrained task extends a standard SMT pipeline
by a re-ranking component that makes use of mul-
timodal information. The cdec decoder (Dyer et
al., 2010) was used to produce hypothesis lists,
which were re-scored by comparison with simi-
lar image captions from the training corpus us-
ing the pivoting approach described in Hitschler
et al. (2016), with some minor differences: Be-
cause all data for the shared task was parallel,
a constrained model was built by employing a
source side matching approach inspired by stan-
dard translation memories, instead of retrieving
matching captions in the target language by piv-
oting on larger image-caption data as described
by Hitschler et al. (2016), which would have re-
sulted in an unconstrained model. That is, the
submission resorted to textual similarity (as mea-
sured by the TF-IDF score (Spärck Jones, 1972))
on the source language side as well as visual sim-
ilarity (as measured by the Euclidean distance be-
tween the feature values of the FC7 layer of the
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VGG16 deep convolutional model (Simonyan and
Zisserman, 2015), supplied by the task organisers)
for retrieval of matches. The retrieval model ar-
chitecture was identical to that in Hitschler et al.
(2016). Instead of TF-IDF, a modified version of
BLEU (Papineni et al., 2002) was used in order to
re-score hypotheses based on the target-language
text of retrieved captions. Fixed settings were used
for some parameters (d = 90, b = 0.01 and
km = 20), while kr and λ were optimised on the
validation set (parameters as defined in (Hitschler
et al., 2016)).

IBM-IITM-Montreal-NYU (Tasks 1 and 2)7

The approach for Task 1 is similar to that of (El-
liott et al., 2015) with two differences. First, in-
stead of using a RNN based encoder for the source
(English) sentence, a simple bag of words encoder
is used. In other words, the representation of the
source sentence is simply a sum of the represen-
tations of the words in it. These word represen-
tations are randomly initialised and then learned
during training. Second, unlike (Elliott et al.,
2015), the image and source sentence representa-
tion are fed at every timestep to the target RNN
decoder. The approach for Task 2 is same as that
for Task 1, except that now instead of having a sin-
gle source sentence representation, the representa-
tions of all the five source sentences are concate-
nated. This is then further concatenated with the
image representation and the result is fed at every
timestep to the target decoder. The FC7 features
for images as provided by the task organisers are
used and tuned during training. The source and
target RNNs contain 512 hidden neurons and the
word embeddings are also of size 512. The models
for both the tasks are trained for 10 epochs. For
the unconstrained setup, the MSCOCO dataset,
which contains English captions for images, was
explored. These English captions were translated
into German using IBM’s translation services and
then these pseudo Image-English-German tuples
were used as additional training data, together
with the training data provided by the task organ-
isers. These are referred to as pseudo tuples since
the German captions were machine translated and
not human generated.

LIUM (Tasks 1 and 2) All sub-
missions from LIUM are constrained.

7Systems submitted by Amrita Saha, Mitesh M. Khapra,
Janarthanan Rajendran, Sarath Chandar, Kyunghyun Cho

LIUM 1 MosesNMTRnnLMSent2Vec C and
LIUM 1 MosesNMTRnnLMSent2VecVGGFC7 C
are phrase-based systems based on Moses (14
standard features plus operation sequence models.
They include re-scoring with several models
and more particularly with a continuous space
language model (CSLM) and a neural MT system
(see TextNMT system). The CSLMs can use
image feature maps as auxiliary data, in order to
provide some context to the probabilities. The
LIUM 1 TextNMT C and LIUM 2 TextNMT C
systems are monomodal (text-only) fully neural
MT systems similar to the one proposed by
DL4MT school.8 They are made of a bidirection-
nal recurrent encoder followed by a conditional
Gated Recurrent Unit decoder which embeds an
attention mechanism. The difference between
the two systems is the training and development
data, as provided by the organisers. Finally, the
LIUMCVC 1 MultimodalNMT C and LIUM-
CVC 2 MultimodalNMT C are an extension of
the previous systems, where an additional input is
given: the convolutional feature maps extracted
with a very deep ResNet (up to 152 layers)
from the images (He et al., 2015). The attention
mechanism is shared across the two modalities
(with softmax activations remaining distinct). The
architecture of the decoder is the same as before.
The difference between the two systems is again
the training and development data.

SHEF (Task 1) Both submissions from the
Sheffield team are constrained, each focusing on
one language direction: SHEF 1 en-de-Moses-
rerank C cover the official task direction (English-
German), while SHEF 1 de-en-Moses-rerank C
covers the opposite direction (German-English).
Our proposed systems are standard phrase-based
statistical MT systems based on the Moses de-
coder, trained on the provided data. We investi-
gate how image features can be used to re-rank
the n-best output of the SMT model, with the aim
of improving performance by grounding the trans-
lations on images. Image features from a CNN
are used to re-rank the n-best list along with stan-
dard Moses features. We also propose an alterna-
tive scheme for the German-to-English direction,
where terms in the English image descriptions
are matched with 1,000 WordNet synsets, and the
probability of these synsets occurring in the image
estimated using CNN predictions on the images.

8http://dl4mt.computing.dcu.ie/
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The aggregated probabilities are then used to re-
rank the n-best list, with the intuition that the best
translations should contain these entities. Our sub-
missions to re-rank the n-best translations with im-
age vectors are able to marginally outperform the
strong, text-only baseline Moses system for both
directions.

UPC (Task 1) Bidirectional Recurrent Neu-
ral Networks (BiRNNs) have shown outstanding
results on sequence-to-sequence learning tasks.
This architecture becomes especially interesting
for multimodal machine translation task, since
BiRNNs can deal with images and text. On most
translation systems the same word embedding is
fed to both BiRNN units. In our submission, we
enhance a baseline sequence-to-sequence system
(Elliott et al., 2015) by using double embeddings.
These embeddings are trained on the forward and
backward directions of the input sequence. The
system was trained, validated and tested using the
task’s dataset only.

UPCb (Task 2)9 The two submissions
from UPCb use the same method with dif-
ferent training data, one is constrained
(UPC 2 MNMT C), while the other is un-
constrained (UPC 2 MNMT2 U). Captions are
generated from two different directions. One
caption is generated through translating the
captions in the source language directly using
the method proposed in (Bahdanau et al., 2014).
The other one is generated based on the image
feature using method proposed in (Vinyals et al.,
2015). After that, an SVM-based model decides
which one is better according to the sentence’s
score from a language model and the score from
the model that generated the sentence. The only
difference between the two submissions is that
the unconstrained one used Task 1 dataset in the
training of text translator.

Baseline - GroundedTranslation (Tasks 1 & 2)
This method follows (Elliott et al., 2015):10 A
source language multimodal RNN model is ini-
tialised with a visual feature vector (i.e., a mul-
timodal model for the source language). The fi-
nal hidden state is then used to initialise a target

9Systems submitted by Zhiwen Tang and Marta Ruiz
Costa-jussà; code available: https://github.com/Z
-TANG/re-scorer.

10https://github.com/elliottd/Grounded
Translation

language model, which generates the target lan-
guage description. The source language multi-
modal RNN language model was trained until the
loss stopped falling on the validation data. The
target model was initialised with the final hidden
state transferred from the source model and trained
until the loss stopped falling on the validation data.
The source model and target models were param-
eterised with 300D word embeddings and 1000D
GRU hidden states; the source model was ini-
tialised with the 4096D FC7 visual feature vector;
for Task 1, the target model was initialised with a
1000D source model feature vector; for Task 2 the
feature vectors corresponding to each source lan-
guage description were summed into a 1000D fea-
ture vector. For both tasks, we found the optimal
combination of target model language generation
timesteps and beam width size using grid search.

Baseline - Moses (Task 1) This baseline system
uses text-only information. It is a standard phrase-
based SMT system built using the Moses toolkit
(Koehn et al., 2007). The models were trained
using the extended version of Flickr30K parallel
dataset provided for the task only (29, 000 sen-
tence pairs), and tuned with the official validation
dataset (1, 014 segment pairs). Default settings
and features in Moses were used, with a 4-gram
language model trained on the target side of the
parallel data.

4 Results

Tables 3 and 4 present the official results for the
Multimodal Machine Translation and Crosslingual
Image Description tasks. We evaluated the sub-
missions based on Meteor (Denkowski and Lavie,
2014) (primary), BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006) using MultEval
(Clark et al., 2011)11 with default parameters.

4.1 Task 1

Table 4 shows the final results for the Multimodal
Machine Translation task on the official test set,
where systems are ranked by their Meteor scores.
Meteor, BLEU and TER were computed based on
the single reference (human translation) provided
for the test set. For Meteor, we replaced the de-
fault version by the latest version of the metric
(Meteor Version 1.5). Both reference and system
submissions were first normalised for punctuation.

11https://github.com/jhclark/multeval
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System submissions that preserved casing or had
been tokenised were further processed for lower-
casing and detokenisation.12 For all of these pre-
processing steps, we used Moses scripts.13

It is interesting to note that while the three eval-
uation metrics do not fully agree on the ranking of
participating systems, their overall Pearson’s cor-
relation (English-German direction) is very high:
0.98 between Meteor and BLEU, and -0.97 be-
tween Meteor and TER.

The three winning submissions from the LIUM
and SHEF teams are heavily based on the output
of a standard phrase-based SMT system (Moses)
built using only the shared task data. This is a
remarkable result, given the size of the dataset:
29,000 parallel segments. They all use additional
features to re-rank the k-best output of a text-only
phrase-based system, including visual features, al-
though these seem to play a minor role and lead to
only marginally better results.

Submissions based on the output of a Moses
translation model – like the main baseline
(1 en-de-Moses C) – have very similar Meteor
scores. In fact, SHEF 1 en-de-Moses-rerank C
and CMU+NTU 1 MNMT+RERANK U are not
considered significantly different from this base-
line Shah et al. (2016) provide some analysis
on the differences between SHEF 1 en-de-Moses-
rerank C and 1 en-de-Moses C. They show that
the output of these systems differ in 260 out of the
1,000 segments. However, despite differences in
the actual translations, the Meteor scores for many
of these cases may be the same/close.

Disappointingly, truly multimodal systems,
which in most cases use neural MT approaches
(e.g. CUNI 1 MMS2S-1 C, DCU 1 min-risk-
multimodal C) do not fare as well as the text-only
SMT systems (or those followed by multimodal-
based translation rescoring), except when addi-
tional resources are used for rescoring translations
(CMU 1 MNMT+RERANK U).

Only two submissions made use of additional
data (unconstrained submissions, U) and in both
cases it proved helpful in comparison with the con-
strained submissions by the same teams.

12We note that MultEval does not perform any normali-
sation of the segments. Scores with tokenised texts would be
consistently higher.

13https://github.com/moses-smt/mosesde
coder/blob/master/scripts/

4.2 Task 2: Crosslingual Image Description

Table 4 presents the final results for the Crosslin-
gual Image Description task. Meteor is the pri-
mary evaluation measure because it has been
shown to have a much stronger correlation with
human judgements than BLEU or TER for this
task (Elliott and Keller, 2014). The data for this
task was lowercased and had punctuation removed
where necessary.

The strongest performing constrained submis-
sion (LIUM 2 TextNMT C) does not use any
visual features. Including multimodal features
(i.e., LIUM 2 MultimodalNMT C) results in a 2.8
Meteor drop in performance for that model type.
The baseline system 2 GroundedTranslation C
outperformed all but these two systems. In gen-
eral, there is a wide range of performances, and an
intriguing discrepancy between Meteor and BLEU
rankings. This discrepancy was much larger than
the one observed in Task 1, where the overall rank-
ing trend for all metrics is similar. We believe the
difference between metrics in Task 2 is due to the
different ways in which these metrics use multi-
ple references (which are only available for Task
2). While Meteor (and TER) will match the single
closest reference (the entire sentence) to the sys-
tem output, BLEU allows n-grams from different
references to be used for its n-gram matching.

Only two groups submitted uncon-
strained runs, marked in grey and with
U in Table 4. The IBM-IITM-Montreal-

NYU 2 NeuralTranslation U submission resulted
in a small improvement over the IBM-IITM-
Montreal-NYU 2 NeuralTranslation C submis-
sion, but the UPC 2 MNMT U resulted in a small
decrease compared to the analogous constrained
submission UPC 2 MNMT C.

5 Discussion

Although the Multimodal Machine Translation
and Crosslingual Description tasks are based on
the same collection of images, there are a number
of important differences in the textual data, out-
lined below, which lead to different patterns of re-
sults for both tasks.

The nature of the sentences The sentences in
Task 1 are professional translations, whereas the
sentences in Task 2 are independent descriptions.
The differences between translations and descrip-
tions may affect the performance of image de-
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System ID Meteor ↑ BLEU ↑ TER ↓
English-German

•LIUM 1 MosesNMTRnnLMSent2Vec C 53.2 34.2 48.7
•LIUM 1 MosesNMTRnnLMSent2VecVGGFC7 C 53.2 34.1 48.7

•*SHEF 1 en-de-Moses-rerank C 52.6 32.8 49.8
1 en-de-Moses C 52.5 32.5 50.2

*CMU 1 MNMT+RERANK U 51.9 33.6 52.4
HUCL 1 RROLAPMBen2de C 51.5 32.2 51.1

CMU 1 MNMT C 50.8 35.1 49.2
DCU 1 min-risk-baseline C 49.7 31.8 52.6

LIUM 1 TextNMT C 49.2 32.5 51.6
DCU 1 min-risk-multimodal C 48.4 32.5 49.8

CUNI 1 MMS2S-1 C 46.5 29.7 53.5
DCU-UVA 1 doubleattn C 46.4 27.4 59.7

LIUMCVC 1 MultimodalNMT C 45.0 27.8 57.3
DCU-UVA 1 imgattninit C 44.1 26.5 60.1

IBM-IITM-Montreal-NYU 1 NeuralTranslation U 39.1 21.8 61.9
UPC 1 SIMPLE-BIRNN-DEMB C 37.7 22.1 60.4

IBM-IITM-Montreal-NYU 1 NeuralTranslation C 31.1 16.0 69.4
1 GroundedTranslation C 24.7 9.4 77.2

German-English
•*SHEF 1 de-en-Moses-rerank C 36.5 39.8 41.0

•1 de-en-Moses C 36.2 38.1 40.8
HUCL 1 RROLAPMBde2en C 35.1 37.0 42.4

Table 3: Official results for the WMT16 Multimodal Machine Translation task. The baseline results
are underlined. Systems with grey background indicate use of resources that fall outside the constraints
provided for the shared task. The winning submissions are indicated by a •. These are the top-scoring
submission and those that are not significantly different (based on Meteor scores) according the approx-
imate randomisation test (with p-value <= 0.05) provided by MultEval. Submissions marked with a
* indicate those that are not significantly different from the main baseline (1 Moses C) according to the
same test.

scription models relative to the translation mod-
els. This can be seen by comparing the re-
sults of teams that submitted the same systems
(but separately trained) to both tasks: LIUM,
IBM-IITM-Montreal-NYU, and the Grounded-
Translation baseline. The LIUM and IBM-IITM-
Montreal-NYU submissions seem to benefit from
training over translation data instead of the de-
scription data, as suggested by the higher Me-
teor scores achieved in Task 1 (1 reference) vs.
Task 2 (5 references); the GroundedTranslation
submissions exhibit the opposite effect (this may
be explained by the fact that this submission is
an image description model and not a translation
model). We hypothesize that the differences in
performance may originate from the possibility
that (a) the description data is merely a compara-
ble corpus instead of a parallel corpus leading to

noisier pairing of source-target pairs, and/or (b) in
the description task the training data is less com-
patible with the test data than in the translation
task. This demands further exploration.

The number of training examples Submis-
sions for Task 1 are trained over 29,000 parallel
instances (one sentence pair per image), whereas
submissions for Task 2 are trained over 145,000
(five independent sentences per language per im-
age). The number of training examples for each
task further complicates the analysis of the differ-
ence in performance between the two tasks, as the
larger-data scenario in Task 2 does not lead to a
straightforward improvement in performance. The
type and the quality of the parallel translation data
– despite its small size – makes it relatively easy
to train high-performing translation models, as we
can see by comparing the absolute Meteor scores
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System ID Meteor ↑ BLEU ↑ TER ↓ Visual
Features?

English-German
• LIUM 2 TextNMT C 35.1 23.8 62.1 —

LIUM 2 MultimodalNMT C 32.3 19.2 70.0 ResNet
2 GroundedTranslation C 31.2 15.8 76.4 FC7

IBM-IITM-Montreal-NYU 2 NeuralTranslation U 29.5 9.7 89.0 FC7

IBM-IITM-Montreal-NYU 2 NeuralTranslation C 29.1 17.8 60.0 FC7

CUNI 2 MMS2S-2 C 13.1 1.2 73.3 FC7

UPCb 2 MNMT C 12.1 1.5 63.1 FC7

UPCb 2 MNMT U 11.7 1.0 82.2 FC7

Table 4: Official results for the WMT16 Crosslingual Image Description task. The baseline results are
underlined. Systems with grey background indicate use of resources that fall outside the constraints
provided for the shared task. The winning submission, indicated by a •, is significantly different from all
other submissions based on Meteor scores. Submissions marked with a * are not significantly different
compared to the baseline (2 GroundedTranslation C).

in Tables 3 and 4. In fact, it is quite remarkable
that both statistical and neural MT approaches per-
formed so well with only 29,000 sentence pairs for
training, particularly for English→German trans-
lation. In different text domains (e.g. Europarl,
News), this language pair and direction is well
known as a challenging case. The two languages
are structurally distant and the target language –
German – is morphologically richer than English,
which poses a problem in machine translation par-
ticularly when not enough training instances are
available with examples of the various morpho-
logical variants of target words. The fact that the
performance for Task 1 was so high seems to indi-
cate that the data for this task is much simpler and
probably significantly more repetitive than data
used in other shared tasks, for example, the News
translation task at WMT (Bojar et al., 2015).

The amount of evaluation data Task 1 submis-
sions are evaluated against one reference transla-
tion and Task 2 submissions are evaluated against
five independent sentences. The larger number of
references for Task 2 should make it easier for sub-
missions to achieve high Meteor scores but this
is not borne out in the results. One reason for
this could be that each independently collected de-
scription had a free choice in what to describe and
how to describe it (Elliott and Keller, 2014). This
has led to collected descriptions that are not trans-
lations of their English counterparts. We could
collect five professionally translated references for
each image to study this issue. We would expect
the absolute Meteor scores for Task 1 to increase

with more references (Dreyer and Marcu, 2012);
however, we should also bear in mind that the im-
age descriptions are quite simple and there is likely
to be very high similarity among translations.

Further research is needed to determine whether
having more parallel translation data or more ref-
erences for evaluation will lead to better perfor-
mance for both tasks. However, this data would
be very expensive to collect. Collecting more
independent descriptions would be significantly
cheaper.

Use of visual information The use of visual in-
formation had very different effects in the two
tasks. While for Task 1 this information only
proved marginally useful in indirect ways (i.e.
rescoring k-best translations), visual information
featured prominently in submissions for Task 2:
six submissions used the FC7 features, one sub-
mission used features extracted from the ResNet-
50 network, and one submission used no visual
features. The submission with ResNet-50 features
outperformed all submissions with FC7 features,
which is not surprising given the difference in ob-
ject categorisation performance between the mod-
els (4.49% top-5 error on the ILSVRC validation
data (Russakovsky et al., 2014) compared to 7.1%
error). However, the submission without visual
features achieved the best performance for Task 2.

In light of our aim of furthering multimodal re-
search with multilingual multimodal data, this is
a somewhat disappointing result. However, we
believe that it only reinforces the call to develop
more robust models that can integrate visual and
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linguistic features into a single model. Building
more realistic and challenging datasets is also an
interesting direction for future research.
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