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Abstract
Many modern companies wish to maintain knowl-
edge in the form of a corporate knowledge graph
and to use and manage this knowledge via a knowl-
edge graph management system (KGMS). We for-
mulate various requirements for a fully-fledged
KGMS. In particular, such a system must be ca-
pable of performing complex reasoning tasks but,
at the same time, achieve efficient and scalable rea-
soning over Big Data with an acceptable computa-
tional complexity. Moreover, a KGMS needs inter-
faces to corporate databases, the web, and machine-
learning and analytics packages. We present KRR
formalisms and a system achieving these goals.

1 Introduction
The so-called knowledge economy, characteristic for the cur-
rent Information Age, is rapidly gaining ground. Accord-
ing to Amidon et al. [3], as cited in Wikipedia [37], “The
knowledge economy is the use of knowledge [...] to generate
tangible and intangible values. Technology, and, in partic-
ular, knowledge technology, help to transform a part of hu-
man knowledge to machines. This knowledge can be used
by decision support systems in various fields and generate
economic value.” The importance of knowledge as an es-
sential economic driving force has been evident to most cor-
porate decision makers since the late 1970s, and the idea of
storing knowledge and processing it to derive valuable new
knowledge existed in the context of expert systems. Alas, it
seems that the technology of those ‘early’ times was not suffi-
ciently mature: the available hardware was too slow and main
memory too tight for more complex reasoning tasks; database
management systems were too slow and too rigid; there was
no web where an expert system could acquire data; machine
learning, and, in particular, neural networks were ridiculed
as largely unsuccessful; ontological reasoning was in its in-
fancy and the available formalisms were much too complex
for Big Data applications. Meanwhile, there has been huge
technological progress, and also much research progress that
has led to a better understanding of many aspects of knowl-
edge processing and reasoning with large amounts of data.
Hardware has evolved, database technology has significantly
improved, there is a (semantic) web with linked open data,

companies can participate in social networks, machine learn-
ing has made a dramatic breakthrough, and there is a better
understanding of scalable reasoning mechanisms. Because
of this, and of some eye-opening showcase projects such as
IBM Watson [24], thousands of large and medium-sized com-
panies suddenly wish to manage their own knowledge graphs,
and are looking for adequate knowledge graph management
systems (KGMS).

The term knowledge graph originally only referred to
Google’s Knowledge Graph, namely, “a knowledge base used
by Google to enhance its search engine’s search results with
semantic-search information gathered from a wide variety of
sources” [38]. Meanwhile, further Internet giants (e.g. Face-
book) as well as some other very large companies have con-
structed their own knowledge graphs, and many more com-
panies would like to maintain a private corporate knowl-
edge graph incorporating large amounts of data in form of
facts, both from corporate and public sources, as well as rule-
based knowledge. Such a corporate knowledge graph is ex-
pected to contain relevant business knowledge, for example,
knowledge about customers, products, prices, and competi-
tors rather than mainly world knowledge from Wikipedia and
similar sources. It should be managed by a KGMS, i.e., a
knowledge base management system (KBMS), which per-
forms complex rule-based reasoning tasks over very large
amounts of data and, in addition, provides methods and tools
for data analytics and machine learning, whence the equation:

KGMS = KBMS + Big Data + Analytics

The word ‘graph’ in this context is often misunderstood to
the extent that some IT managers think that acquiring a
graph database system and feeding it with data is sufficient
to achieve a corporate knowledge graph. Others erroneously
think that knowledge graphs necessarily use RDF triple stores
instead of plain relational data. Yet others think that knowl-
edge graphs are limited to storing and analyzing social net-
work data only. While knowledge graphs should indeed be
able to manipulate graph data and reason over RDF and so-
cial networks, they should not be restricted to this. For exam-
ple, restricting a knowledge graph to contain RDF data only
would exclude the direct inclusion of standard relational data
and the direct interaction with corporate databases.

Not much has been described in the literature about the
architecture of a KGMS and the functions it should ideally



fulfil. In Section 2 we briefly list what we believe are the
main requirements for a fully fledged KGMS. As indicated in
Figure 1, which depicts our reference architecture, the central
component of a KGMS is its core reasoning engine, which
has access to a rule repository. Grouped around it are various
modules that provide relevant data access and analytics func-
tionalities (see Section 2 for details). We expect a KGMS to
fulfil many of these functions.

The reasoning core of a KGMS needs to provide a lan-
guage for knowledge representation and reasoning (KRR).
The data format for factual data should, as said, match the
standard relational formalism so as to smoothly integrate cor-
porate databases and data warehouses, and at the same time
be suited for RDF and graph data. The rule language and
reasoning mechanism should achieve a careful balance be-
tween expressive power and complexity. In Section 3 we
present VADALOG, a Datalog-based language that matches
this requirement. VADALOG belongs to the Datalog± fam-
ily of languages [5; 9; 10; 11; 12; 22] that extend Data-
log by existential quantifiers in rule heads, as well as by
other features, and restricts at the same time its syntax so
as to achieve decidability and tractability. The core of the
VADALOG language corresponds to Warded Datalog± [5;
22], which captures plain Datalog as well as SPARQL queries
under the entailment regime for OWL 2 QL [20], and is able
to perform ontological reasoning tasks. Reasoning with core
VADALOG is computationally efficient and scalable.

After presenting the logical core of VADALOG and its ben-
eficial properties in Section 3.1, we describe in Section 3.2
several features that have been added to it for achieving more
powerful reasoning and data manipulation capabilities. To
give just one example here, the language is augmented by
monotonic aggregations [35], which permits the use of ag-
gregation (via summation, product, max, min, count) even in
the presence of recursion. This enables us to swiftly solve
problems such as the company control problem (studied e.g.
in [14]) as explained in the following example, which will
serve as a running example throughout the paper.
Example 1.1 (Running Example.) Assume the ownership
relationship among a large number of companies is stored
via facts (i.e., tuples of a database relation) of the form
Own(comp1 , comp2 , w) meaning that company comp1 di-
rectly owns a fractionw of company comp2 , with 0 ≤ w ≤ 1.
A company x controls a company y if x directly owns more
than half of the shares of y or if x controls a set S of com-
panies that jointly own more than half of y. Computing a
predicate Control(x, y) expressing that company x controls
company y, is then achieved in VADALOG by two rules:

Own(x, y, w), w > 0.5 → Control(x, y)

Control(x, y),Own(y, z, w),

v = msum(w, 〈y〉), v > 0.5 → Control(x, z).

Here, for fixed x, the aggregate construct msum(w, 〈y〉)
forms the sum over all values w such that for some company
y, Control(x, y) is true, and Own(y, z, w) holds, i.e., com-
pany y directly owns fraction w of company z. �
In Section 4 we introduce the VADALOG KGMS, which builds
on the VADALOG language and combines it with existing

Figure 1: KGMS Reference Architecture.

and novel techniques from database and AI practice such as
stream query processing, dynamic in-memory indexing and
aggressive recursion control. The VADALOG system is Ox-
ford’s contribution to the VADA (Value Added Data Systems)
research project [1; 18; 26], which is a joint effort of the uni-
versities of Edinburgh, Manchester, and Oxford. An outlook
on future research and developments is given in Section 5.

2 Desiderata for a KGMS
We proceed to briefly summarize what we think are the most
important desiderata for a fully-fledged KGMS. We will list
these requirements according to three categories, keeping in
mind, however, that these categories are interrelated.

2.1 Language and System for Reasoning
There should be a logical formalism for expressing facts and
rules, and a reasoning engine that uses this language, which
should provide the following features.
Simple and Modular Syntax: It should be easy to add and
delete facts and to add new rules. As in logic programming,
facts should conceptually coincide with database tuples.
High Expressive Power: Datalog [14; 25] is a good yardstick
for the expressive power of rule languages. Over ordered
structures (which we may assume here), Datalog with very
mild negation captures PTIME; see, e.g., [16]. A rule lan-
guage should thus ideally be at least as expressive as plain
recursive Datalog, possibly with mild negation.
Numeric Computation and Aggregations: The basic logical
formalism and inference engine should be enriched by fea-
tures for dealing with numeric values, including appropriate
aggregate functions.
Probabilistic Reasoning: The language should be suited for
incorporating appropriate methods of probabilistic reasoning,
and the system should propagate probabilities or certainty
values along the reasoning process, that is, compute proba-
bilities or certainty values for derived facts, and make adjust-
ments wherever necessary. Appropriate probabilistic models



may range from simple triangular norm operators (T-norm –
cf [23]) over probabilistic database models [36] to Markov
Logic networks [32].
Ontological Reasoning: The possibility of ontological rea-
soning and query answering should be provided. We have two
yardsticks here. First, ontological reasoning to the extent of
tractable description logics such as DL-LiteR should be pos-
sible. Recall that DL-LiteR forms the logical underpinning
of the OWL 2 QL profile of the Web Ontology Language as
standardized by the W3C. Second, the language should also
be expressive enough to cover all queries over RDF datasets
that are expressible in SPARQL under the entailment regime
for OWL 2 QL [20].
Low Complexity: Reasoning should be tractable in data com-
plexity (i.e. when the rules are assumed to be fixed and the
fact base is considered the input). Whenever possible, the
system should recognize and take profit of rule sets that can
be processed within low space complexity classes such as
NLOGSPACE (e.g. for SPARQL) or even AC0 (e.g. for tra-
ditional conjunctive database queries).
Rule Repository, Rule Management, and Ontology Editor: A
library for storing recurring rules and definitions should be
provided, as well as a user interface for comfortable rule man-
agement in the spirit of the ontology editor protégé [30].
Dynamic Orchestration: For larger applications, there must
be a master module to allow the orchestration of complex data
flows. For simple systems, the process must be easily specifi-
able. For complex systems, the process must be dynamically
controllable through intelligent reasoning techniques or ex-
ternal control facilities and tools (e.g. BPM).

2.2 Accessing and Handling Big Data
Big Data Access: The system must be able to provide effi-
cient access to Big Data sources and systems as well as fast
reasoning algorithms over Big Data. In particular, the possi-
bility of out-of-memory reasoning must be given in case the
relevant data does not fit into main memory. Integration of
Big Data processing techniques should be possible where the
volume of data makes it necessary (see e.g. [34]).
Database and Data Warehouse Access: Seamless access to
relational, graph databases, data warehouses, RDF stores, and
major NoSQL stores should be granted. Data in such reposi-
tories should be directly usable as factual data for reasoning.
Ontology-based Data Access (OBDA): OBDA [13] allows a
system to compile a query that has been formulated on top
of an ontology into a query that acts directly on the database.
OBDA should be made possible whenever appropriate.
Multi-Query Support: Where possible and appropriate, par-
tial results from repeated (sub-)queries should be evaluated
once [33]. The system should be optimized in this regard.
Data Cleaning, Exchange and Integration: Integrating, ex-
changing and cleaning data should be supported both directly
(through an appropriate KRR formalism that is made avail-
able through various applications in the knowledge reposi-
tory), and by allowing integration of third-party software.
Web Data Extraction, Interaction, and IoT: A KGMS should
be able to interact with the web by (i) extracting relevant web

data (e.g. prices advertised by competitors) and integrating
these data into the local fact base, and (ii) exchanging data
with web forms and servers that are available through a web
interface. One way to achieve this will be discussed in Sec-
tion 3.2. Similar methods can be used for interacting with the
IoT through appropriate network accessible APIs.

2.3 Embedding Procedural and Third-Party Code
Procedural Code: The system should have encapsulation
methods for embedding procedural code (proprietary and
third party) written in a variety of programming languages
and offer a logical interface to it.
Third-Party Packages for Machine Learning, Text Mining,
NLP, Data Analytics, and Data Visualization: The system
should be equipped with direct access to powerful existing
software packages for machine learning, text mining, data
analytics, and data visualization. Given that excellent third-
party software for these purposes exists, we believe that a
KGMS should be able to use a multitude of such packages
via appropriate logical interfaces.

3 The VADALOG Language
As said before, VADALOG is a KR language that achieves
a careful balance between expressive power and complexity,
and it can be used as the reasoning core of a KGMS. In Sec-
tion 3.1 we introduce the logical core of VADALOG and some
interesting fragments of it, while in Section 3.2 we discuss
how this language can be extended with additional features
that are much needed in real-world applications.

3.1 Core Language
The logical core of VADALOG is a member of the Datalog±
family of knowledge representation languages, which we call
Warded Datalog±. The main goal of Datalog± languages is
to extend the well-known language Datalog with useful mod-
eling features such as existential quantifiers in rule heads (the
symbol ‘+’), and at the same time restrict the rule syntax in
such a way that the decidability and data tractability of rea-
soning is guaranteed (the symbol ‘-’). Before introducing
Warded Datalog±, let us first recall the theoretical founda-
tions underlying Datalog± languages.

Foundations of Datalog±. Let C, N, and V be disjoint
countably infinite sets of constants, (labeled) nulls and (regu-
lar) variables, respectively. A (relational) schema S is a finite
set of relation symbols (or predicates) with associated arity.
A term is a either a constant, null or variable. An atom over
S is an expression of the form R(v̄), where R ∈ S is of arity
n > 0 and v̄ is an n-tuple of terms. An instance over S is a
(possibly infinite) set of atoms over S that contain constants
and nulls, while a database over S is a finite set of atoms
over S that contain only constants. The active domain of an
instance I , denoted dom(I), is the set of terms in I .

The core of Datalog± languages consists of rules known as
existential rules or tuple-generating dependencies, which es-
sentially generalize Datalog rules with existential quantifiers
in rule heads; henceforth, we adopt the term existential rule.
Such a rule is a first-order sentence of the form

∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄))



where ϕ (the body) and ψ (the head) are conjunctions of
atoms with constants and variables. For brevity, we write this
existential rule as ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) and use comma in-
stead of ∧ for conjoining atoms. The intuitive meaning of
such a rule is as follows: if the atoms ϕ(t̄, t̄′) occur in an in-
stance I , then there exists a tuple t̄′′ of constants and nulls
such that the atoms ψ(t̄, t̄′′) are also in I . Formally, the se-
mantics of a set of existential rules Σ over a database D, de-
noted Σ(D), is defined via the well-known chase procedure.
Roughly, the chase adds new atoms to D (possibly involv-
ing null values used for satisfying the existentially quantified
variables) until the final result Σ(D) satisfies all the existen-
tial rules of Σ. Notice that, in general, Σ(D) is infinite. Now,
given a pair Q = (Σ,Ans), where Σ is a set of existential
rules and Ans an n-ary predicate, the evaluation of Q over
a database D, denoted Q(D), is defined as the set of tuples
Q(D) = {t̄ ∈ dom(D)n | Ans(t̄) ∈ Σ(D)}.

The main reasoning task that we are interested in is tuple
inference: given a database D, a pair Q = (Σ,Ans), and a
tuple of constants t̄, decide whether t̄ ∈ Q(D). This problem
is computationally very hard; in fact, it is undecidable, even
when Q is fixed and only D is given as input [9]. This has
led to a flurry of activity for identifying restrictions on ex-
istential rules that make the above problem decidable. Each
such restriction gives rise to a new Datalog± language. No-
tice that as soon as we have an algorithm for solving the tuple
inference problem under a certain Datalog± language L, then
we have an algorithm for computing the certain answers to
a conjunctive query over a database and set of rules Σ in L,
assuming that adding a conjunctive query to Σ, the obtained
set of rules is still in L. This is the case for Warded Datalog±.

Warded Datalog±: The Logical Core of VADALOG. The
logical core of VADALOG relies on the notion of wardedness,
which gives rise to Warded Datalog± [22]. In other words,
VADALOG is obtained by extending Warded Datalog± with
additional features of practical utility such as data types, ag-
gregation, etc., which are discussed in the next section. Ward-
edness applies a restriction on how the “dangerous” variables
of a set of existential rules are used. Roughly, a “dangerous”
variable is a body-variable that can be unified with a labeled
null value during the construction of the chase instance, and it
is also propagated to the head of the rule. For example, given
the set Σ consisting of the existential rules

P (x)→ ∃z R(x, z) R(x, y)→ T (y),

the variable y in the body of the second rule is “dangerous”
(w.r.t. Σ) since starting, e.g., from the database D = {P (a)},
the chase will apply the first rule and generateR(a, ν), where
ν is a null value that acts as a witness for the existentially
quantified variable z, and then the second rule will be applied
with the variable y being unified with ν that is propagated to
the obtained atom T (ν). The goal of wardedness is to tame
the way null values are propagated during the construction of
the chase instance by forcing (1) all the “dangerous” variables
to coexist in a single body-atom α, while (2) α can share only
“harmless” variables with the rest of the body, where a “harm-
less” variable is a variable that is unified only with database
constants during the construction of the chase. To formalize
these two conditions we need to recall some auxiliary notions.

Given a predicate P , a position P [i] identifies the i-th at-
tribute of P , and we write αP for the arity of P . Given a
set of existential rules Σ, where S is the set of predicates oc-
curring in Σ, the set of positions of Σ, denoted pos(Σ), is
the set {P [i] | P ∈ S and i ∈ {1, . . . , αP }}. The set of
affected positions of Σ, denoted by affected(Σ), which is a
subset of pos(Σ), is inductively defined as follows: (i) if there
exists σ ∈ Σ such that at position π an existentially quanti-
fied variable occurs, then π ∈ affected(Σ); (ii) if there exists
σ ∈ Σ, and a variable v in the body of σ only at positions of
affected(Σ), and v appears in the head of σ at position π, then
π ∈ affected(Σ). We denote by nonaffected(Σ) the set of
positions (pos(Σ) \ affected(Σ)), i.e., the set of non-affected
positions of Σ. The notion of the (non-)affected position al-
lows us to classify the body-variables of an existential rule
into harmless, harmful and dangerous. Let Σ be a set of ex-
istential rules. Fix a rule σ ∈ Σ and a variable v in the body
of σ. Then: (i) v is Σ-harmless if at least one occurrence of
it appears in the body of σ at a position of nonaffected(Σ);
(ii) v is Σ-harmful if it is not Σ-harmless; and (iii) v is Σ-
dangerous if it is Σ-harmful and appears in the head of σ.
Let harmless(σ,Σ) and dangerous(σ,Σ) be the set of body-
variables of σ that are Σ-harmless and Σ-dangerous, respec-
tively. We are now ready to introduce Warded Datalog±.

A set of existential rules Σ is called warded if, for each
σ ∈ Σ, either dangerous(σ,Σ) = ∅, or there exists an atom
α in the body of σ, called ward, such that:

1. each variable of dangerous(σ,Σ) occurs in α, and
2. for each variable v in α that occurs in at least one body-

atom of σ other than α, v ∈ harmless(σ,Σ).

Warded Datalog± consists of all the (finite) sets of existential
rules that are warded. It is clear that the above two conditions
capture the intuition underlying wardedness described above,
with the aim of taming the way null values are propagated
during the construction of the chase.

At this point, let us clarify that Warded Datalog± is a re-
finement of Weakly-Frontier-Guarded Datalog±, which is de-
fined in the same way but without the condition (2) given
above [7]. Weakly-Frontier-Guarded Datalog± is highly in-
tractable in data complexity; in fact, it is EXPTIME-complete.
This justifies Warded Datalog±, which is a (nearly) maximal
tractable fragment of Weakly-Frontier-Guarded Datalog±.

Warded Datalog± enjoys several favourable properties that
make it a robust core towards more practical languages:

- Our main reasoning task under Warded Datalog± is data
tractable; in fact, it is PTIME-complete when the query
and the set of rules are fixed.

- Warded Datalog± captures Datalog without increasing
the complexity. Indeed, a set Σ of Datalog rules is triv-
ially warded since there are no Σ-dangerous variables.

- Warded Datalog± generalizes central ontology lan-
guages such as the OWL 2 QL profile of OWL, which
in turn relies on the description logic DL-LiteR.

- Warded Datalog± is suitable for querying RDF graphs.
In particular, by adding stratified and grounded negation
to Warded Datalog±, we obtain a language, called TriQ-
Lite 1.0 [22], that can express every SPARQL query un-
der the entailment regime for OWL 2 QL.



Other Swift Logics. Although polynomial time data com-
plexity is desirable for conventional applications, it can be
prohibitive for “Big Data” applications; in fact, this is true
even for linear time data complexity. This raises the question
whether there are fragments of Warded Datalog± that guar-
antee lower data complexity, but at the same time maintain
the favourable properties discussed above. Of course, such a
fragment should be weaker than full Datalog since Datalog
itself is already PTIME-complete in data complexity. On the
other hand, such a fragment should be powerful enough to
compute the transitive closure of a binary relation, which is
a crucial feature for reasoning over graphs, and, in particular,
for capturing SPARQL queries under the entailment regime
for OWL 2 QL. Therefore, the complexity of such a refined
fragment is expected to be NLOGSPACE-complete.

Such a fragment of Warded Datalog±, dubbed Strongly-
Warded, can be defined by carefully restricting the way re-
cursion is employed. Before giving the formal definition, let
us first recall the standard notion of the predicate graph of a
set Σ of existential rules, which essentially encodes how the
predicates in Σ interact. The predicate graph of Σ, denoted
PG(Σ), is a directed graph (V,E), where the node set V con-
sists of all the predicates occurring in Σ, and we have an edge
from a predicate P to a predicate R iff there exists σ ∈ Σ
such that P occurs in the body of σ and R occurs in the head
of σ. Consider a set of nodes S ⊆ V and a node R ∈ V . We
say that R is Σ-reachable from S if there exists at least one
node P ∈ S that can reach R via a path in PG(Σ). We are
now ready to introduce strong-wardedness.

A set of existential rules Σ is called strongly-warded if Σ
is warded, and, for each σ ∈ Σ of the form

ϕ(x̄, ȳ) → ∃z̄ P1(x̄, z̄), . . . , Pn(x̄, z̄),

there exists at most one atom in ϕ(x̄, ȳ) whose predicate is
Σ-reachable from {P1, . . . , Pn}. Strongly-Warded Datalog±
consists of all the (finite) sets of existential rules that are
strongly-warded. Intuitively, in a strongly-warded set of exis-
tential rules, each rule σ is either non-recursive, or it employs
a mild form of recursion in the sense that an atom generated
by σ during the construction of the chase instance can affect
exactly one body-atom of σ. Let us clarify that the additional
syntactic condition posed on warded existential rules in order
to obtain strongly-warded existential rules, is the same as the
condition underlying Piecewise Linear Datalog; see, e.g., [2].

It can be shown that our main reasoning task of tuple
inference under Strongly-Warded Datalog± is NLOGSPACE-
complete in the data complexity.1 Moreover, this refined lan-
guage remains powerful enough for capturing OWL 2 QL,
and, extended by a mild form of negation, can express every
SPARQL query under the entailment regime for OWL 2 QL.
As already explained above, the NLOGSPACE data complex-
ity immediately excludes full Datalog. However, Strongly-
Warded Datalog± includes some important and well-studied
fragments of Datalog: (i) Non-Recursive Datalog, where the
underlying predicate graph is acyclic, and (ii) IDB-Linear

1More details about the NLOGSPACE upper bound, as well as
additional results on Strongly-Warded Datalog±, which is still under
investigation, will be announced soon in a forthcoming paper.

Datalog, where each rule can have at most one intensional
predicate (which appears in the head of at least one rule) in
its body, while all the other predicates are extensional.

A lightweight fragment of Strongly-Warded Datalog± that
is FO-Rewritable is Linear Datalog±, where each existential
rule can have exactly one body-atom [10]. FO-Rewritability
means that, given a pair Q = (Σ,Ans), we can construct a
(finite) first-order queryQFO such that, for every databaseD,
Q(D) coincides with the evaluation ofQFO overD. This im-
mediately implies that tuple inference under Linear Datalog±
is in AC0 in data complexity. Despite its simplicity, Linear
Datalog± is expressive enough for expressing every OWL 2
QL axiom. However, it cannot compute the transitive closure
of a binary relation, which is unavoidable if we want to en-
sure FO-Rewritability. This makes it unsuitable for querying
RDF graphs under the entailment regime for OWL 2 QL.

Additional Modeling Features. The Datalog± languages
discussed above, namely Warded, Strongly-Warded and Lin-
ear Datalog±, can be enriched with useful modeling features
without paying a price in complexity. In fact, we can consider
negative constraints of the form ∀x̄(ϕ(x̄)→ ⊥), where ϕ is a
conjunction of atoms, and ⊥ denotes the truth constant false .
We can also consider equality constraints (a.k.a. equality-
generating dependencies) of the form ∀x̄(ϕ(x̄) → xi = xj),
where ϕ is a conjunction of atoms, and xi, xj are variable
of x̄, as long as they do not interact with the existential rules.
This class of equality constraints is known as non-conflicting;
see, e.g., [12]. Notice that if we consider arbitrary equality
constraints, without any restrictions, then our main reasoning
task becomes very quickly undecidable [15].

3.2 Extensions

In order to be effective for real-world applications, we extend
the core language described above, i.e., Warded Datalog±,
with a set of additional features of practical utility. Although
the theoretical properties of the language are no longer guar-
anteed, our preliminary evaluation has shown that the prac-
tical overhead for many of these features remains reasonable
in our streaming implementation. In the future, we plan to
perform a more thorough complexity analysis and isolate sets
of features for which beneficial complexity upper bounds are
met and runtime guarantees are given.
Data Types: Variables and constants are typed. The language
supports the most common simple data types: integer, float,
string, Boolean, date. There is also support for composite
data types, such as sets.
Expressions: Variables and constants can be combined into
expressions, which are recursively defined as variables, con-
stants or combinations thereof, for which we support many
different operations for the various data types: algebraic sum,
multiplication, division for integers and floats; containment,
addition, deletion of set elements; string operations (contains,
starts-with, ends-with, index-of, substring, etc.); Boolean op-
erations (and, or, not, etc.). Expressions can be used in rule
bodies (1) as the left-hand side (LHS) of a condition, i.e.,
the comparison (>,<,>=,<=,<>) of a body variable with
the expression itself; (2) as the LHS of an assignment, i.e.,



the definition of a specifically calculated value, potentially
used as an existentially quantified head variable. In our run-
ning example, variable v is calculated with the expression
msum(w, 〈y〉) and used in the condition v > 0.5.
Skolem Functions: Labeled null values can be suitably cal-
culated with functions defined on-the-fly. They are assumed
to be deterministic (returning unique labeled nulls for unique
input bindings), and to have disjoint ranges.
Monotonic Aggregations: VADALOG supports aggregation
(min, max, sum, prod, count), by means of an extension to the
notion of monotonic aggregations [35], which allows adopt-
ing aggregation even in the presence of recursion while pre-
serving monotonicity w.r.t. set containment. The company
control example shows the use of msum, which calculates
variable v, as the monotonically increasing sum of the quota
w of company z owned by y, in turn controlled by x. The sum
is accumulated so that above the threshold 0.5, we have that x
controls z. Recent applications of VADALOG in challenging
industrial use cases showed that such aggregations are very
efficient in a range of real-world Big Data settings.
Data Binding Primitives: Data sources and targets can be
declared by adopting input/output annotations, a.k.a. bind-
ing patterns. Annotations are special facts augmenting sets
of existential rules with specific behaviours. The unnamed
perspective used in VADALOG can be harmonized with the
named perspective of many external systems by means of
bind and mapping annotations, which also support projection.
A special query bind annotation also supports binding pred-
icates to queries against inputs/outputs (in the external lan-
guage, e.g., SQL-queries for a data source or target that sup-
ports SQL). In our example, the extension of the Own predi-
cate is our input, which we denote with an @input(“Own”)
annotation. The actual facts then may be derived, e.g., from a
relational or graph database, which we would respectively ac-
cess with the two following annotations (the latter one using
neo4j’s cypher graph query language):

@bind(“Own”, “rdbms”, “companies.ownerships”).

@qbind(“Own”, “graphDB”,
“MATCH (a)-[o:Owns]->(b)
RETURN a,b,o.weight”).

A similar approach is also used for bridging external machine
learning and data extraction platforms into the system. This
uses binding patterns as a form of behaviour injection: the
atoms in rules are decorated with binding annotations, so that
a step in the reasoning process triggers the external compo-
nent. We give a simple example using the OXPath [17] large-
scale web data extraction framework – an extension of XPath
that interacts with web applications to extract information ob-
tained during web navigation. In our running example, let us
assume that our local company ownership information is only
partial, while more complete information can be retrieved
from the web. In particular, assume that a company regis-
ter acts as a web search engine, taking as input a company
name and returning, as separate pages, the owned companies.
This information can be obtained as follows:2

2Concretely, the first position of the Own predicate is bound to
the $1 placeholder in the OXPath expression.

@qbind(“Own”, “oxpath”,
“doc(′company_register.com/ownerships′)
/descendant::field()[1]/{$1}
/following::field()[1]/{click}
/(/descendant
::span:<name=(.)>
::span:<percentage=(.)>
::a:<Link=(@href)>[.#=’Next’]/
{click}) ∗ ”).

The above examples show a basic bridging between the tech-
nologies. Interesting interactions can be seen in more sophis-
ticated scenarios, where the reasoning process and external
component processing is more heavily interleaved.

Probabilistic Reasoning: VADALOG offers support for the ba-
sic cases in which scalable computation can be guaranteed.
Facts are assumed to be probabilistically independent and a
minimalistic form of probabilistic inference is offered as a
side product of query answering. Facts can be adorned with
probability measures according to the well-known possible
world semantics [36]. Then, if the set of existential rules re-
spects specific syntactic properties that guarantee probabilis-
tic tractability (namely, a generalization of the notion of hier-
archical queries [36]), the facts resulting from query answer-
ing are enriched with their marginal probability, safely calcu-
lated in a scalable way. In the following extension to our run-
ning example, we use probabilistic reasoning to account for
uncertain ownerships (e.g., due to unreliable sources), prefix-
ing the facts with their likelihood, so as to derive non-trivial
conclusions on company control relationships:

0.8 :: Own(“ACME”, “COIN”, 0.7)
0.3 :: Own(“COIN”, “SAVERS”, 0.3)
0.4 :: Own(“ACME”, “GYM”, 0.55)
0.6 :: Own(“GYM”, “SAVERS”, 0.4).

In total, the language allows bridging logic-based reasoning
and machine learning in three ways. First, the language sup-
ports scalable probabilistic inference in basic cases as seen
above. Second, the extensions to the core language provide
all the necessary features to abstract and embed advanced
inference algorithms (e.g. belief propagation) so that they
can be executed directly by the VADALOG system, and hence
leverage its optimization strategies. Third, for the more so-
phisticated machine learning applications, data binding prim-
itives allow a simple interaction with specialized libraries and
systems as described before.

Post-processing Annotations: Since specific computations are
often needed after the result has been produced, VADALOG
supports many of them by means of annotations for the fol-
lowing features: ordering of the resulting values, as set se-
mantics is assumed on the output, and yet a particular order-
ing of the facts may be desired by the consumer: for example,
@orderby(“Control”, 1) sorts the obtained control facts
by the controlling company; deduplication, in specific condi-
tions (e.g. in presence of calculated values), the output may
physically contain undesired duplicates; non-monotonic ag-
gregations on the final result, without the limitations induced
by recursion; and certain answers.



4 The VADALOG System

The functional architecture of the VADALOG system, our
KGMS, is depicted in Figure 1. The knowledge graph is orga-
nized as a repository, a collection of VADALOG rules, in turn
packaged in libraries. Rules and libraries can be edited and
administered through a dedicated management user interface.
The external sources are supported by means of a collection
of transducers, intelligent adapters that allow active interac-
tion with the sources in the reasoning process.

The VADALOG system fulfils the requirements presented
in Section 2. The Big Data characteristics of the sources and
the complex functional requirements of reasoning are tackled
by leveraging the underpinnings of the core language, which
are turned into practical execution strategies. By combin-
ing these strategies with a highly engineered architecture, the
VADALOG system achieves high performance and an efficient
memory footprint.

4.1 The Reasoning Process
In this section we give some indications about how our system
exploits the key properties of Warded Datalog±, explained in
Section 3.1, in the reasoning process. We focus on the generic
reasoning task of computing the certain answers to a conjunc-
tive query over a knowledge graph (i.e., a database and a set
of existential rules). Recall that for Warded Datalog±, the
problem of computing the certain answers can be reduced to
the problem of tuple inference.

A useful representation of the instance obtained by the
chase is the chase graph [10], a directed acyclic graph where
facts are represented as nodes and the applied rules as edges.
It is implicit in the reasoning algorithms devised for Warded
Datalog± that after a certain number of chase steps (which, in
general, depends on the input database), the chase graph ex-
hibits specific periodicities and no new information, relevant
to query answering, is generated. Notice, however, that this
number of chase steps is a loose upper bound, while in prac-
tice, redundancies appear much earlier. The VADALOG sys-
tem adopts an aggressive recursion and termination control
strategy, which detects such redundancy as early as possible
by combining compile-time and runtime techniques.

At compile time, thanks to wardedness, which limits the
interaction between the labeled nulls, the engine rewrites the
program in such a way that joins on specific values of labeled
nulls will never occur (harmful join elimination).

At runtime, the system adopts an eager optimal pruning
of redundant and potentially non-terminating chase branches,
structured in two parts, detection and pruning. In detection,
whenever a rule generates a fact that is isomorphic to a pre-
viously generated one, the sequence of applied rules, namely
the provenance, is stored. In pruning, whenever a fact ex-
hibits the same provenance as another one and they are iso-
morphic, the fact is not generated and the chase graph is cut
off from that node on. Due to wardedness, the provenance
information needed is bounded. Moreover, our technique is
somehow lifted, in the sense that it highly exploits the struc-
tural symmetries within the chase graph: for termination pur-
poses, facts are considered equivalent if they have the same
provenance and originate from isomorphic facts. This is a

great advantage in terms of performance and memory foot-
print. In particular, many homomorphism checks are avoided.

4.2 The Architecture
In order to have an efficient KGMS that is also effective and
competitive in real-world applications, the VADALOG sys-
tem adopts the described warded-enabled principles and tech-
niques, which guarantee termination and contain redundancy.
We adopt a specialized in-memory architecture that makes the
most of the existing experience in DBMS development.

From a set of VADALOG rules (rewritten at compile time as
explained), we generate a query plan, i.e., a graph having a
node for each rule and an edge whenever the head of a rule
appears in the body of another one. Some special nodes are
marked as input or output, when corresponding to datasets
in external systems or atoms of the reasoning task, respec-
tively. The query plan is optimized with a range of variations
on standard techniques, for example, pushing selections and
projections as close as possible to the data sources. Finally,
the query plan turned into an access plan, where generic rule
nodes are replaced by the most appropriate implementations
for the corresponding low level operators (e.g. selection, pro-
jection, join, aggregation, evaluation of expression, etc.). For
each operator a set of possible implementations are available
and are activated according to common optimization criteria.

The VADALOG system uses a pull stream-based approach
(or pipeline approach), where the facts are actively requested
from the output nodes to their predecessors and so on down
to the input nodes, which eventually fetch the facts from the
data sources. The stream approach is essential to limit the
memory consumption or, at least make it predictable, so that
the system is effective for large volumes of data.

Our setting is made more challenging by the presence of
multiple interacting rules in a single rule set and the wide
presence of recursion. We address this by means of a special-
ized buffer management technique. We adopt pervasive local
caches in the form of wrappers to the nodes of the access plan,
where the facts produced by each node are stored. The local
caches work particularly well in combination with the pull
stream-based approach, since facts requested by a node suc-
cessor can be immediately reused by all the other successors,
without triggering further backward requests. Also, this com-
bination realizes an extreme form of multi-query optimiza-
tion, where each rule exploits the facts produced by the oth-
ers, whenever applicable. To limit memory occupation, the
local caches are flushed with an eager eviction strategy that
detects when a fact has been consumed by all the possible
requestors and thus drops it from the memory. Cases of ac-
tual cache overflow are managed by resorting to standard disk
swap heuristics (e.g. LRU, LFU, etc.).

Local caches are also fundamental functional components
in the architecture, since they transparently implement the de-
scribed recursion and termination control. Indeed, the pull
stream-based mechanism is completely agnostic to the termi-
nation conditions, and simply produces data for the output
nodes as long as the input ones provide facts: it is the respon-
sibility of the local caches to detect periodicity and hence to
control termination and cut off computation once a known



# companies all-rand (s) query-rand (s) all-real (s) query-real (s)
10 0.381 0.342 0.2 0.19

100 0.352 0.34 0.21 0.2
1K 0.555 0.491 0.36 0.25

10K 1.319 1.046 0.85 0.47
50K 3.69 2.76 2.36 1.81
100K 7.688 6.834 N/A N/A
1M 14.39 8.12 N/A N/A

Figure 2: Reasoning times for the company control scenario.

pattern reoccurs. In this way, we locally inhibit the produc-
tion of redundant facts.

For the joins, the VADALOG system adopts a cycle-aware
extension of the standard nested loop join, suitable for the
stream-based approach and efficient in combination with the
local caches on the operands. However, in order to guarantee
good performance, the local caches are enhanced by dynamic
(i.e. runtime) in-memory indexing; in particular, the caches
involved in the joins can be indexed by means of hash indices
created at runtime so as to activate an even more efficient hash
join implementation.

4.3 Systems Status and Performance
Our system currently fully implements the core language
and is already in use for a number of industrial applications.
Many extensions, especially those important for our partners,
are already realized, but others are still missing or under de-
velopment and will be integrated in the future. Our partners
show appreciation for the performance of the system, and we
are in the process of conducting a full-scale evaluation. How-
ever, we want to give a glimpse on the results so far.

In particular, for the company control scenario from our
running example, Figure 2 reports promising results. We
considered 7 purely randomly generated company ownership
graphs (following the Erdős-Rényi model, relatively dense)
from 10 to 1M companies and 5 real-world-like graphs (den-
sity and topology resembling the real-world setting), from 10
to 50K companies. For each graph we performed two kinds
of evaluations: (1) all-rand and all-real, where we query the
reasoner for the control relationship between all the pairs of
companies and measure the reasoning time in seconds; (2)
query-rand and query-real, where we query the system for
the control relationship between 50 specific pairs of compa-
nies and measure the average reasoning time in seconds. Re-
sults are extremely promising and suggest that the engine has
very good performance for both batch and interactive appli-
cations on large knowledge graphs.

4.4 Related Systems
There are a wide variety of existing tools that are related to the
VADALOG system. On one side, we have the progeny of data
exchange/cleaning/integration/query answering systems [6;
19; 21; 27; 31], whose most recent representatives provide
excellent specific chase implementations [8]. However, they
are not suitable to address the KGMS requirements due to the
lack of emphasis on scalability guarantees, insufficient cover-
age of important business-desired features and a general ten-
dency towards prototypical architectures, which do not make

them ideal for enterprise settings. Similar observations can
be made for existing Datalog systems [28].

Another group of related tools is Datalog-based systems.
In particular, RDFox [29] and LogicBlox [4] deserve spe-
cial attention. The former is a high-performance RAM-based
Datalog engine, while the latter comes with the philosophy
of extending the usual notion of a DBMS to support ana-
lytical applications. Both systems are extremely good rea-
soning engines, demonstrated by high performance in bench-
marks [8] and feature coverage, respectively. Although they
share with the VADALOG engine the view of adopting novel
and enhanced algorithms from the Datalog reasoning experi-
ence and database systems design practices, in the VADALOG
system we put central emphasis on the adopted logical lan-
guage. Our system is the first to exploit the theoretical under-
pinnings of wardedness.

5 Conclusion
In this paper, we have formulated a number of requirements
for a KGMS, which led us to postulate our reference archi-
tecture (see Figure 1). Based on these requirements, we in-
troduced the VADALOG language whose core corresponds to
Warded Datalog±. The basic VADALOG language is extended
by features for numeric computations, monotonic aggrega-
tion, probabilistic reasoning, and, moreover, by data binding
primitives used for interacting with the corporate and exter-
nal environment. These binding primitives allow the reason-
ing engine to access and manipulate external data through the
lens of a logical predicate. The external data may stem from
a corporate database, may be extracted from web pages, or
may be the output of a machine-learning program that has
been evaluated over previously computed data relations. We
then introduced the VADALOG system, which puts these swift
logics into action. This system exploits the theoretical under-
pinning of Warded Datalog± and combines it with existing
and novel techniques from database and AI practice.

Many core features of the VADALOG system are already in-
tegrated and show good performance. Our plan is to complete
the system in the near future. We believe that the VADALOG
system is a well-suited platform for applications that integrate
machine learning (ML) and data analytics with logical rea-
soning. We are currently implementing applications of this
type and will report about them soon.
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