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ABSTRACT 57 

Background:High-grade serous ovarian cancer (HGSOC) causes 80% of all OC 58 

deaths. In this setting, the role of cancer stem-like cells (CSCs) is still unclear. In 59 

particular, the evolution of CSC biomarkers from primary (pOC) to recurrent (rOC) 60 

HGSOCs is unknown. Aim of this study was to investigate changes in CD133 and 61 

aldehyde dehydrogenase-1(ALDH1) CSC biomarker expression in pOC and rOC 62 

HGSOCs.  63 

Methods:224 pOC and rOC intra-patient paired tissue samples derived from 112 64 

HGSOC patients(pts) were evaluated for CD133 and ALDH1 expression using IHC. 65 

pOCs and rOCs were compared for CD133 and/or ALDH1 levels. Expression profiles 66 

were also correlated with patients´clinico-pathological and survival data. 67 

Results:49.1%(55/112) and 37.5%(42/112) pOCs were CD133+ and ALDH1+, 68 

respectively. CD133+ and ALDH1+ samples were detected in 33.9%(38/112) and 69 

36.6%(41/112) rOCs. CD133/ALDH1 coexpression was observed in 23.2%(26/112) 70 

and 15.2%(17/112) of pOCs and rOCs, respectively. Pairwise analysis showed a 71 

significant shift of CD133 staining from higher (pOCs) to lower expression levels 72 

(rOCs)(p<0.0001). Furthermore, all CD133+pOC pts were FIGO-stage III/IV 73 

(p<0.0001) and had significantly worse PFI(p=0.04) and OS(p=0.02). On multivariate 74 

analysis, CD133/ALDH1 coexpression in pOCs was identified as independent 75 

prognostic factor for PFI (HR:1.64;95%CI:1.03-2.60;p=0.036) and OS 76 

(HR:1.71;95%CI:1.01-2.88;p=0.045). Analysis on 52 pts with known somatic BRCA 77 

status revealed that BRCA mutations did not influence CSC biomarker expression. 78 

Conclusions:The study showed that CD133/ALDH1 expression impacts HGSOC pts’ 79 

survival and firstly suggests that CSCs might undergo phenotypic change during the 80 
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disease course similarly to non stem-like cancer cells, providing also a first evidence 81 

that there is no correlation between CSCs and BRCA status. 82 

 83 

 84 
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INTRODUCTION 88 

Ovarian cancer (OC) remains the most lethal gynecologic malignancy[1]. Advances 89 

in cancer genomics, epigenomics and proteomics has led to the understanding that OC 90 

is a heterogeneous group of different tumors displaying distinct phenotypes and 91 

etiology[2,3]. The current dichotomous OC classification[4,5]groups these tumors in 92 

two distinct categories: Type I (low-grade serous-papillary, low-grade endometrioid, 93 

mucinous and clear-cell carcinomas) and Type II (high-grade serous-papillary, high-94 

grade endometroid, carcinosarcomas and undifferentiated tumors). Type II OCs show 95 

a more aggressive biological behavior, are diagnosed at advanced stage and are 96 

chromosomally highly unstable. Among them, high-grade serous OC (HGSOC) 97 

accounts for around 80% of all OC deaths[3]. The identification of predictive 98 

biomarkers is pivotal for designing new treatment strategies able to reduce HGSOC-99 

related mortality. In this context, the cancer stem-like cell (CSC) theory represents 100 

one model to investigate OC heterogeneity. This hypothesis, supported by increased 101 

evidence acquired in the last decade, proposes that, within OC tissues, a small 102 

population of cells has an increased capacity for self-renewal, tumorigenesis and 103 

differentiation[6]. In multiple experimental studies CSCs showed to increase potential 104 

of tumorigenesis, metastasis/invasion, neoangiogenesis and chemoresistance[7,8]and 105 

have been often correlated with a poor prognosis[9-13]. 106 

Several potential CSC markers have been identified in OC samples[14-15]. Among 107 

them, aldehyde dehydrogenase-1 (ALDH1) and CD133 are currently the best 108 

characterized for ovarian CSCs. Their expression on the cell surface is associated with 109 

increased tumorigenesis and self-renewal capability [16-18]. Nevertheless, the clonal 110 

evolution of CSCs throughout the course of disease, from primary (pOC) to recurrent 111 
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(rOC) OC, has not been elucidated yet and information about the changes in CSC 112 

presence within the tumor after relapse is still lacking. 113 

The aim of this study was to investigate the evolution of CSC biomarkers CD133 and 114 

ALDH1 expression in a large series of paired primary and recurrent HGSOCs. 115 

 116 

MATERIALS AND METHODS 117 

Sample Collection 118 

224 paired samples from 112 HGSOC patients were collected during primary and 119 

secondary tumor debulking. Patients were included consecutively and have been 120 

treated between 1985 and 2013 through primary cytoreduction followed by platinum-121 

based chemotherapy. Patients, retrospectively selected from the OCTIPS (Ovarian 122 

Cancer Therapy–Innovative Models Prolong Survival, Agreement No.279113-2) 123 

Consortium database, were treated for both pOC and rOC in one of the European 124 

Gynecologic Oncology Referral Centers of the following Institutions: Charité 125 

Universitätsmedizin Berlin,Germany; Katholieke Universiteit Leuven,Belgium; 126 

Imperial College, London,UK; University of Edinburgh,UK. 127 

Inclusion criteria were: having experienced at least one OC relapse for which having 128 

been subjected to at least one palliative surgery. Exclusion criterion was: no cancer 129 

tissue available from both pOC and rOC. Approval from each local ethics committee 130 

was obtained (EK207/2003,ML2524,05/Q0406/178,EK130113,06/S1101/16). OC 131 

tissue samples were collected during primary cytoreduction and at the surgery for 132 

relapse. All included samples underwent central histopathological assessment to 133 

confirm the diagnosis of HGSOC and to evaluate the tissue quality and tumor contain. 134 

Immunohistochemistry 135 

Immunohistochemical staining was performed on tissue microarrays (TMAs).  136 
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Slides were deparaffinized in xylol, rehydrated in graded alcohol and boiled in a 137 

pressure cooker for 5 minutes in citrate buffer (pH=6) for ALDH1 staining or in 138 

EDTA (pH=9) for CD133 staining. Mouse anti-human ALDH1-antibody (clone 139 

44;BD Transduction Laboratories,Franklin Lakes, NJ,USA) and mouse anti-human 140 

CD133/1-antibody (AC133 clone;Miltenyi-Biotech, BergischGladbach,Germany) 141 

were diluted 1:500 and incubated on the slides for 60 minutes at room temperature. 142 

Bound antibodies were visualized using DAKO Real Detection System and DAB+ 143 

(3,3′ -diaminobenzidine;DAKO,Glostrup,Denmark) as a chromogen. Finally, the 144 

slides were co-stained with hematoxylin.  145 

CD133 stained samples were assessed basing on the number of stained tumor cells. 146 

Samples were classified as “CD133-negative”(<10% CD133 positive tumor cells) and 147 

“CD133-positive”(>10% CD133-positive tumor cells)[19-20]. 148 

For ALDH1 staining evaluation, as previously published[21-22], the number of 149 

stained tumor cells (0%=0;1-10%=1;11-50%=2;>50%=3) was multiplied with the 150 

intensity of staining(negative=0;weak=1;moderate=2;strong=3), resulting in a 151 

semiquantitive immunoreactivity score(IRS) that ranged from 0 to 9. For further 152 

analysis, samples were classified “ALDH1-negative”, for absent or weak focal 153 

staining(IRS=0-1), or “ALDH1-positive”, for ALDH1-high tumor expression(IRS=2-154 

9). 155 

All samples were evaluated independently by two co-authors (IR and SDE). 156 

Clinical Data and Follow-up 157 

Patients’ clinical data and information on 52 patients’ germline and/or somatic BRCA 158 

status were retrieved from OCTIPS Consortium database[23-24]. Platinum-159 

resistance and platinum-sensitivity were defined, according to GCIG, as relapse 160 

occurring before or after six months following the last platinum-based chemotherapy, 161 
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respectively[25]. Recurrence was defined basing on RECIST Criteria[26]. A sole 162 

CA125 serum elevation was not considered relapse[27]. 163 

Statistical Analysis 164 

Statistical analysis was performed using SPSS version 22.0(SPSS Inc, Chicago, IL, 165 

USA). To assess the difference between pOCs and rOCs in terms of biomarker 166 

expression, the correlation test (Spearman coefficient, 2-tailed) and the “Wilcoxon 167 

signed rank” non-parametric test for related samples were applied. Correlation of 168 

CD133 and ALDH1 tumor expression with patients’ clinico-pathological categorical 169 

data was assessed using the Fisher’s exact test. Patients’ progression-free 170 

interval(PFI), progression-free survival (PFS) and overall survival(OS) were 171 

determined by Kaplan–Meier analysis (Log-Rank test).PFI represented the time 172 

interval from the last adjuvant chemotherapy to relapse, whereas progression-free 173 

survival (PFS) was the time interval between first recurrence diagnosis and tumor 174 

progression. For univariate and multivariate survival analyses, the Cox regression 175 

model was used. Multivariable models were performed among variables reporting a 176 

p-value≤0.1 in univariate analysis. P values≤0.05 were considered statistically 177 

significant. 178 

 179 

RESULTS 180 

Primary and recurrent intra-patient paired tumor samples derived from 112 HGSOC 181 

patients were analyzed for CD133 and ALDH1 expression. Patients’ characteristics 182 

are listed in Table 1.  183 

Immunohistochemistry staining showed that ALDH1 and CD133 proteins were 184 

localized to the cytoplasm(Fig1,Fig.3). 185 

 186 
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 187 

CD133 expression. 188 

CD133-positive (CD133+) staining was significantly more frequent among 189 

pOCs[55/112(49.1%)] compared to rOCs[38/112(33.9%)], p=0.030(Fisher’s exact 190 

test,Fig.1a,1c). Investigation of sequential changes in CD133+ expression in paired 191 

tumors, with a correlation test (Spearman coefficient) between pOCs and rOCs, 192 

demonstrated a significant correlation (p=0.001,Spearman coefficient 0.306).  193 

Furthermore, pairwise testing revealed a significant shift from higher frequency of 194 

CD133+ cells in pOCs to lower levels in the paired recurrent samples (p<0.0001, 195 

Wilcoxon test;Fig.2), thus indicating significantly higher rates of CD133+ cells in 196 

pOCs compared to rOCs.  197 

ALDH1 expression. 198 

Distribution of ALDH1 IRS in pOCs and rOCs is shown in Fig.3a,3d. ALDH-1 199 

positive tumors were found in 37.5%(42/112) and 36.6%(41/112) of primary and 200 

recurrent samples, respectively (p=1,Fisher’s exact test,Fig.3b,3e). A trend for 201 

significant correlation between pOCs and rOCs ALDH1-expression levels was seen 202 

(p=0.059,Spearman coefficient 0.179). Pairwise analysis showed no tendency towards 203 

a change of IRS values to higher or lower levels in recurrences (p=0.988,Wilcoxon 204 

test;Fig.4).  205 

CD133/ALDH1 co-expression. 206 

Co-expression of both CSCs biomarkers was detected in 23.2%(26/112) of pOCs and 207 

in 15.2%(17/112) of rOCs(p=0.174,Fisher’s exact test). Among 26 patients reporting 208 

CD133/ALDH1 co-expression in pOCs, 22(84.6%) lost this pathological 209 

characteristic in relapse situation. Of the 17 patients presenting biomarker co-210 

expression in rOC, 13(76.5%) showed no co-expression in pOC. Consequently, 4/112 211 
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patients (3.6%) showed CD133/ALDH1 co-expression in both pOC and rOC: two of 212 

them were platinum-resistant and two were platinum-sensitive. 213 

CSCs biomarkers and clinico-pathological factors  214 

We analyzed the correlation of ALDH1 and/or CD133 tumor expression patterns in 215 

pOCs with patients´ clinico-pathological characteristics. All primary CD133+ patients 216 

were diagnosed at FIGO III/IV stage (p=0.006). No correlation was observed between 217 

other clinico-pathological factors and ALDH1 and/or CD133 tumor 218 

expression(Tab.2).  219 

Survival 220 

CD133 positivity in pOCs was significantly associated with poor PFI and OS 221 

(Fig.5a,5b). In particular, CD133+ and CD133- patients reported median OS of 51 and 222 

71 months (HR:1.713;95%CI:1.076-2.727;p=0.02) and median PFI of 9 and 17 223 

months (HR:1.477;95%CI:1.006-2.170;p=0.04). PFS after recurrence was not 224 

significantly different (p=0.868,Fig.5c) between patients with CD133+ and CD133- 225 

or between (p=0.252,Fig.5f) patients with ALDH1+ and ALDH1rOC. 226 

Median OS for ALDH1+ and ALDH1- patients was 52 and 64 months, respectively 227 

(p=0.402) and median PFI-1 was 9 and 17 months, respectively (p=0.199)(Fig.5d,5e).  228 

ALDH1/CD133 co-expression in pOCs was found to significantly affect HGSOC 229 

patients’ outcome. A significant decrease in OS and PFI has been found in patients 230 

co-expressing ALDH1/CD133 in primary tissue (46 and 9 months, respectively) 231 

compared to patients without biomarker co-expression (68 and 17 months, 232 

respectively) (p=0.019,Fig.5g;p=0.015,Fig.5h). No significant difference in PFS after 233 

relapse was observed between patients who reported CD133/ALDH1 co-expression or 234 

no co-expression in rOC(p=0.898,Fig.5i). 235 
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On multivariate analysis, the co-expression of ALDH1 and CD133 in pOC, rather 236 

than the single expression of one biomarker, was identified to be an independent 237 

prognostic factor for both PFI (HR:1.638;95%CI:1.033-2.598;p=0.036) and OS 238 

(HR:1.707;95%CI:1.012-2.881;p=0.045) in HGSOC(Tab.3,4). 239 

Outliers’ sub-analysis 240 

“Outliers” were considered patients for whom the highest difference between pOC 241 

and rOC could be detected in CD133+cell rate. Three patients were identified: two 242 

reported a difference in CD133+cell rate of -90%(from 90% of CD133+cells at pOC 243 

to 0% at rOC); the first one was a platinum-resistant patient with PFI of 2 months and 244 

OS of 14 months; the second one was a platinum-sensitive patient with PFI of 7 245 

months and OS of 9 months. The third patient showed a difference in CD133+cell 246 

rate of +70%(from 0% of CD133+ at pOC cells to 70% in rOC) with PFI of 15 247 

months (platinum-sensitive) and OS of 44 months. 248 

CSC biomarker expression and BRCA status 249 

In order to investigate if BRCA mutations could influence CSC biomarker expression, 250 

a subgroup analysis was carried out among 52 patients, whose germline and/or 251 

somatic BRCA status (assessed on pOC and rOC) was available [24]. 40.4% of tested 252 

patients (21/52) had a somatic BRCA mutation in both pOCs and rOCs: 16/52(30.8%) 253 

were BRCA1-mutated (mBRCA1) and 5/52(9.6%) were BRCA2-mutated 254 

(mBRCA2)(Tab.5). 255 

No significant difference in CD133 and/or ALDH1 expression was found between 256 

BRCA-wild type (BRCA-WT) and BRCA-mutant (mBRCA1/2) tumors(Tab.6). 257 

Among BRCA-WT patients, no correlation between pOCs and rOCs in CD133+ 258 

expression was observed (p=0.088,Spearman coefficient 0.312). Furthermore, in 259 

accordance with results observed in the whole population, paired testing revealed a 260 
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significant shift from higher levels in pOCs to lower levels in the rOCs 261 

(p<0.0001,Wilcoxon test;Fig.6a). In contrast, among mBRCA1/2 patients, no 262 

correlation between pOCs and rOCs (p=0.493,Spearman coefficient 0.158), or a 263 

tendency towards a change in CD133+ expression was observed (p=0.167,Wilcoxon 264 

test;Fig.6b).   265 

Regarding ALDH1 expression, among BRCA-WT patients no correlation between 266 

pOCs and rOCs in ADH1 IRS was found (p=0.986,Spearman coefficient 0.003), as 267 

well as no change in paired testing (p=0.895,Wilcoxon test;Fig.7a); also for 268 

mBRCA1/2 patients no difference was observed in ALDH1-IRS between primary and 269 

recurrent patients (p=0.410,Spearman coefficient 0.190;p=0.385,Wilcoxon 270 

test;Fig.7b). 271 

Among BRCA-WT patients, only 1/31 patient (3.2%) showed CD133/ALDH1 co-272 

expression in both pOCs and rOCs. In 3/31(9.7%) patients the co-expression was 273 

evidenced in rOCs but not in pOCs. 90% of patients (9/10) reporting CD133/ALDH1 274 

co-expression in pOC lost biomarker co-expression at tumor relapse. 275 

Also for mBRCA1/2 patients, only 1/21(4.8%) patient showed CD133/ALDH1 co-276 

expression in both pOC and rOC. Two patients (9.5%) had co-expression at recurrent 277 

rather than at primary disease. The difference between BRCA-WT and mBRCA1/2 278 

patients in terms of co-expression loss at rOC was not significant (4/5 vs 9/10,p=1, 279 

Fisher’s exact test).  280 

Considering patients who were CD133+ and/or ALDH1+ at pOC, no significant 281 

difference could be detected in PFI and OS among BRCA-WT vs mBRCA1/2 282 

cases(Fig.8).  283 

 284 

DISCUSSION  285 
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In the Era of Precision Medicine, huge steps have been taken in the understanding of 286 

HGSOC biology. In this tumor setting, the role of CSC and its clonal evolution during 287 

subsequent disease relapse has been relatively unexplored. 288 

This study investigated the changes in CSC biomarkers CD133 and ALDH1 289 

expression in primary and recurrent HGSOCs and showed that CD133+CSCs are 290 

significantly more represented in pOCs rather than rOCs, whereas no significant 291 

changes in terms of ALDH1 expression levels occurred at disease relapse. 292 

Furthermore, CD133 positivity in pOCs significantly correlates with poor survival, 293 

while co-expression of both CD133 and ALDH1 in primary samples independently 294 

predicted poor PFI and OS in HGSOC patients. 295 

In 2015, Zhou published a meta-analysis[28], which investigated the prognostic value 296 

of immunohistochemical CD133 expression in OC. Pooled data derived from 1050 297 

patients from 8 studies showed that CD133 positivity significantly correlates with 298 

advanced FIGO stage at diagnosis and with worse OS, in accordance with our 299 

findings, although our population was restricted to HGSOC. 300 

Other recent meta-analysis demonstrated that also ALDH1 is a promising prognostic 301 

biomarker for breast[9], head/neck[10], lung[11]and colorectal cancer[12] but its 302 

predictive or prognostic role in OC is still controversial[13,29-31]. In contrast to 303 

CD133, ALDH1 expression is usually low or negative in serous OC compared to 304 

other cancer histotype and more frequent in low FIGO stage tumors[13,29].  305 

Previously, Liebscher[21] investigated the prognostic impact of ALDH1 expression 306 

in a homogeneous group of primary HGSOC patients and demonstrated that ALDH1 307 

was an independent prognostic factor for OS. These results differ from our findings, 308 

since in our population ALDH1 did not have an impact on patients’ survival. 309 

Nevertheless, in Liebscher’s population the frequency of FIGO Stage I-II cases was 310 
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higher than in our population (11.5% vs 7.2%), while the number of optimally 311 

cytoreduced patients was lower (66.3% vs 80.4%). 312 

Silva[32] showed that the co-expression of CD133 and ALDH1 correlated with  313 

significant worse PFI and OS in a small cohort of 56 ovarian cancer patients. These 314 

results were in accordance with our findings in a larger HGSOC population. 315 

To our knowledge, this is the first study analyzing the evolution of CSC markers in 316 

the largest cohort of primary and recurrent HGSOC patients. Furthermore, the 317 

subanalysis on patients with known BRCA status increases the value of the findings 318 

by taking into consideration the genetic influence of BRCA status on patients’ 319 

survival[33-34]and provides a first evidence of the correlation between tumor-320 

initiating cells and homologous recombination deficieny. Limitation of the study was 321 

the lack of information regarding BRCA1/2 status on all enrolled patients. The 322 

analysis on a cohort of 52 patients could not provide definitive conclusions for this 323 

issue.  324 

Interestingly, we observed that 84.6% of our patients’ cohort reporting 325 

CD133/ALDH1 co-expression in pOC lost this pathological characteristic at relapse. 326 

Nevertheless, while CSC biomarker expression is significantly correlated with poor 327 

prognosis, it is enigmatic why in a recurrent setting, which represents a more 328 

aggressive step of the disease compared to primary disease, CSCs are less frequently 329 

encountered. Theoretically, CSCs were expected to be much more frequent in rOC 330 

than in the pOC. We hypothesize that the reduction in CSC biomarker expression 331 

does not represent a reduction in CSC number within the tumor sample, but might be 332 

the result of cellular reprogramming occurring in the CSC itself, which might lead to 333 

the loss of CSC biomarker expression. Studies on this issue are still lacking.                           334 
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This study shows that CD133 and ALDH1 as biomarkers can have influence on 335 

HGSOC patients’ survival and for the first time suggests that they might be caused by 336 

a phenotypical change during the course of the disease similarly to non stem-like 337 

cancer cells. However, the need for recurrent tumor tissue to be analyzed implied that 338 

this cohort of samples might be not the most representative one for ovarian cancer 339 

patients, due to the fact that most of patients had a platinum sensitive relapse, and 340 

surgical approach at relapse was feasible. For this reason, general conclusion for the 341 

whole recurrent ovarian cancer setting cannot currently be drawn.  342 

Another limitation of the study is that these biomarkers, in particular ALDH1, are 343 

broadly expressed, not only by CSCs. The identification of CSC is actually sure only 344 

based on the capacity to build spheroids, on tumor xenograft assay and on serial 345 

transplantation assay, which require fresh tumor tissue. Nevertheless, IHC allowed to 346 

analyze a large cohort of paired tumor tissues and to observe that there is a change in 347 

CSC–associated biomarker expression between primary and relapse disease. 348 

Further investigations on larger cohort of paired pOC and rOC samples are warranted, 349 

potentially expanding the scope with inclusion of further candidate CSC markers and 350 

with evaluation of CSCs behavior following neoadjuvant chemotherapy[31,35-36], 351 

in order to reduce mortality of one of the most deadly malignancies of our time.  352 
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PARAMETER  

PATIENTS (n.) 112 

AGE 
Median (range) 

 
56y (33-77y) 

FIGO STAGE (%) 
- I 
- II 
- III 
- IV 

 
2 (1.8%) 
6 (5.4%) 
93 (83%) 
11 (9.8%) 

RESIDUAL TUMOR AFTER PRIMARY DEBULKING SURGERY: 
- No residual tumor 
- Residual Tumor 

 
90 (80.4%) 
22 (19.6%) 

PLATINUM SENSITIVITY STATUS AFTER PRIMARY TREATMENT 
      -   Platinum sensitive 

- Platinum resistant 
- Missing 

 
90 (80.4%) 
18 (16.1%) 
4 (3.5%) 

PLATINUM SENSITIVITY STATUS AFTER TREATMENT FOR DISEASE RELAPSE 
- Platinum sensitive 
- Platinum resistant 
- Missing 

 
59 (52.7%) 
12 (10.7%) 
41(36.6%) 

Table 1 



Table 2 
Clinico-pathological 
factors 

Total 
N°           CD133            ALDH1 CD133 and ALDH1 coexpression 

  
Positive 
(%) 

Negative 
(%) P Positive 

(%) 
Negative 
(%) P Positive 

(%) 
Negative 
(%) P 

Patients’ Age 
< 56y 
≥ 56y 

 
54 
58 

 
27 (50%) 
28 (48%) 

 
27 (50%) 
30 (52%) 

 
0.855 

 
18 (33%) 
25 (43%) 

 
36 (67%) 
33 (57%) 

 
0.288 

 
11 (20%) 
15 (26%) 

 
43 (80%) 
43 (74%) 

 
0.492 

FIGO STAGE 
I/II 
III/IV 

 
8 
104 

 
0 
55 (53%) 

 
8 (100%) 
49 (47%) 

 
0.006 

 
3 (38%) 
40 (39%) 

 
5 (62%) 
64 (61%) 

 
1.000 

 
0 
26 (25%) 

 
8 (100%) 
78 (75%) 

 
0.194 

RESIDUAL TUMOR 
AFTER FIRST 
CYTOREDUCTIVE 
SURGERY 
No residual 
Any residual 

 
 
 
 
90 
22 

 
 
 
 
42 (47%) 
13 (59%) 

 
 
 
 
48 (53%) 
9 (41%) 

 
 
 
 
0.346 

 
 
 
 
35 (39%) 
8 (36%) 

 
 
 
 
55 (61%) 
14 (64%) 

 
 
 
 
1.000 

 
 
 
 
20 (22%) 
6 (27%) 

 
 
 
 
70 (78%) 
16 (73%) 

 
 
 
 
0.586 

PLATINUM 
SENSITIVITY 
STATUS AFTER 
PRIMARY 
TREATMENT 
Platinum sensitive 
Platinum resistant 

 
 
 
 
 
90 
18 

 
 
 
 
 
43 (48%) 
7 (39%) 

 
 
 
 
 
47 (52%) 
11 (61%) 

 
 
 
 
 
0.439 

 
 
 
 
 
33 (37%) 
9 (50%) 

 
 
 
 
 
57 (63%) 
9 (50%) 

 
 
 
 
 
0.303 

 
 
 
 
 
19 (21%) 
6 (33%) 

 
 
 
 
 
71 (79%) 
12 (67%) 

 
 
 
 
 
0.357 

 



Table 3 
PROGRESSION FREE INTERVAL 

 UNIVARIATE ANALYSIS MULTIVARIATE ANALYSIS 

  HR (95% CI)                  P HR (95% CI)                 P 

Age  1.003 (0.983-1.024) 0.774

FIGO Stage (III/IV vs I/II) 
 

2.019 (0.907-4.496) 0.085  1.856 (0.826-4.169) 0.134 

Residual Tumor 
(any residual vs no residual) 

 
1.026 (0.625-1.684) 0.919    

CD133/ALDH1 coexpression
(positive vs negative) 

 
1.729 (1.093-2.733) 0.019  1.638 (1.033-2.598) 0.036 

 



Table 4 
OVERALL SURVIVAL 

  UNIVARIATE ANALYSIS        MULTIVARIATE ANALYSIS 

  HR (95% CI)               P HR (95% CI)                  P 

Age  1.011 (0.985-1.038) 0.404 

FIGO Stage (III/IV vs I/II)  1.465 (0.533-4.020) 0.459 

Residual Tumor 
(any residual vs no residual) 

 1.632 (0.973-2.736) 0.063 1.272 (0.725-2.231) 0.401 

Platinum sensitivity status 
after primary treatment 
(platinum resistant vs 
platinum sensitive) 

 

3.394 (1.927-5.978) <0.001 2.907 (1.594-5.302) <0.001 

CD133/ALDH1 coexpression 
(positive vs negative) 

 
1.799 (1.089-2.971) 0.022 1.707 (1.012-2.881) 0.045 

 



Table 5 

PATIENT ID GERMLINE BRCA STATUS SOMATIC BRCA STATUS –  
PRIMARY TUMOR 

SOMATIC BRCA STATUS – 
RECURRENT TUMOR 

B001 mBRCA1 mBRCA1 mBRCA1 

B002 WT WT WT 

B003 WT WT WT 

B006 N/A WT WT 

B007 N/A WT WT 

B009 N/A WT WT 

B012 N/A WT WT 

B015 N/A WT WT 

B019 WT mBRCA2 mBRCA2 

B021 N/A WT WT 

B022 N/A WT WT 

B024 mBRCA1 mBRCA1 mBRCA1 

B025 N/A WT WT 

B026 N/A WT WT 

B028 mBRCA1 mBRCA1 mBRCA1 

B029 mBRCA1 mBRCA1 mBRCA1 

B030 N/A WT WT 

B032 WT WT WT 

B037 N/A WT WT 

B041 mBRCA1 mBRCA1 mBRCA1 

B044 N/A WT WT 

B045 N/A mBRCA1 mBRCA1 

B048 WT WT WT 

B050 WT WT WT 

B051 N/A mBRCA2 mBRCA2 

B052 WT WT WT 

B053 N/A WT WT 

B054 N/A WT WT 

B062 N/A WT WT 

B063 N/A mBRCA2 mBRCA2 

B065 WT WT WT 

B068 N/A mBRCA1 mBRCA1 

B069 N/A WT WT 

B071 N/A mBRCA1 mBRCA1 

B077 mBRCA2 mBRCA2 mBRCA2 

B080 mBRCA2 mBRCA2 mBRCA2 

B081 WT mBRCA1 mBRCA1 

B082 N/A mBRCA1 mBRCA1 

B085 N/A mBRCA1 mBRCA1 

B087 mBRCA1 mBRCA1 mBRCA1 

B088 N/A WT WT 

B090 N/A mBRCA1 mBRCA1 

B093 N/A WT WT 

B094 N/A mBRCA1 mBRCA1 

B097 N/A mBRCA1 mBRCA1 

B098 N/A WT WT 

B099 N/A WT WT 

B100 N/A WT WT 

L007 WT WT WT 

L010 WT WT WT 

L017 WT WT WT 

L020 mBRCA1 mBRCA1 mBRCA1 



Table 6 

BRCA status Total 
N°               CD133             ALDH1 CD133 and ALDH1 

coexpression 

  
Positive 

(%) 
Negative 

(%) P Positive 
(%) 

Negative 
(%) P Positive 

(%) 
Negative 

(%) P 

BRCA-WT 
mBRCA1/2 

31 
21 

21 (68%) 
13 (62%) 

10 (32%) 
8 (38%) 0.769 13 (42%) 

7 (33%) 
18 (58%) 
14 (67%) 0.575 10 (32%) 

5 (24%) 
21 (68%) 
16 (76%) 0.551 
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