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Abstract 

Metagenomic binning has revolutionised the study of uncultured microorganisms. This study compares 
single- and multi-coverage binning on the same set of samples, and demonstrates that multi-coverage 
binning produces  better results than single-coverage binning, and identifies contaminant contigsand 
chimeric bins that other approaches miss. Whilst resource expensive, multi-coverage binning is a 
superior approach and should always be performed over single-coverage binning. 

Main 

Metagenomic binning, the resolution of metagenomic sequence data into individual genomes, has been 
used to identify hundreds of thousands of genomes from microbiome samples1–6. These studies are 
enabled by software that groups together assembled contigs based on the assumption that contigs with 
similar sequence content and coverage profiles across multiple samples likely originate from the same 
genome7,8. However, calculating coverage from multiple samples represents a problem for large sample 
sizes, requiring an all-against-all comparison. It has therefore become routine for single-coverage 
binning to be performed for large datasets. Previous research has described multi-coverage binning in 
the context of co-assembly, finding that at least five samples are required for it to be worthwhile3; 
increasing the number of samples when performing multi-coverage binning decreased the 
contamination and increased the completeness of bins7,9. However co-assembly is sub-optimal as it 
allows the reconstruction of only one bin per species3.  

The aim of this paper is to compare single- and  multi-coverage binning on the same dataset, to quantify 
the effect of the loss of coverage information on the quantity and quality of bins produced. We 
hypothesize that single-coverage binning will frequently bin together contigs that are co-abundant only 
in a single sample (Fig 1A), that these errors represent invisible contamination, and that they can be 
detected by using multi-coverage data.  

Forty-two rumen microbiome samples were assembled and binned using two strategies, single-
coverage and multi-coverage binning. All other parameters remained the same. The completeness and 
contamination results for all bins produced by both methods are shown in Figure 1B. Minimal difference 
is observed between the distribution of completeness scores in the single and multi-coverage bins, 
however, the single coverage bins have increased contamination: 22.5% (1273/5658) of the single 
coverage bins have a contamination score of 5 or greater versus 3.5% (293/8420) of the multi-coverage 
bins. This suggests that more contigs classed as contaminant DNA are incorporated using the single 
coverage approach. 

The single coverage approach produced a total of 5658 bins across the 42 samples, whereas the multi-
coverage approach produced 8420 (Figure 1C). A filtered set of bins was produced using completeness 
and contamination cut-offs that have previously been used in ruminants6,10–12 (completeness ≥ 80% and 
contamination ≤ 10%). Using these cut-offs, the single coverage approach produced 931 filtered bins, 
compared to 1660 produced by the multi-coverage approach, an increase of 78%. This suggests that 



 

 

the multi-coverage approach results in more bins of higher quality. The filtered bins were used for all 
downstream analysis. 

The taxonomies produced by either binning method were compared. Variation was observed in the 
proportion of bins belonging to each taxa at each rank. A greater proportion of the multi-coverage bins 
were archaea (4.3%) than in the single coverage bins (3.1%). In both approaches the predominant 
phyla was Bacteroidota with a slight variation in the Firmicutes/Bacteroidota ratio, 1.28 in multi-coverage 
bins vs 1.05 in multi-coverage bins. One Phylum, Patescibacteria; two Classes, Endomicrobia and 
Saccharimonadia, three Orders, nine Families, 35 Genera and 96 Species were found exclusively in 
the multi-coverage bins. Just two Genera and 11 Species were found exclusively in the single coverage 
bins. This suggests that single coverage binning may overlook taxa that can be recovered using multi-
coverage binning, perhaps due to the increased coverage data available with multi-coverage binning 
enabling the splitting of contigs by coverage at a greater resolution. 

Dereplication of the bins was performed at the species and strain level to determine the overlap between 
single- and multi- coverage bins. In the single coverage bins, 460 species and 573 strains were 
identified; this increased in the multi-coverage bins to 682 species and 943 strains. When all bins were 
dereplicated together 700 species were found, 240 of which were unique to multi-coverage bins and 18 
to single coverage bins. At the strain level 969 strains were present, 398 only found using the multi-
coverage method and 23 the single coverage method. This illustrates how including coverage 
information from multiple samples can help recover species and strains that would otherwise be missed. 

We used the distribution of observed values of r to assess the quality differences between bins and to 
detect contaminant contigs (see rationale in Supplementary Information). The mean pairwise correlation 
coefficient for each bin was significantly higher in multi-coverage bins (p-value < 2x10-16); 89% 
(1480/1660) of multi-coverage bins had a mean pairwise correlation coefficient greater than 0.9 
compared to 44% (406/931) of single-coverage bins (Figure 1D). Furthermore, the distribution is clearly 
skewed towards 1 for multi-coverage bins, whereas the distribution for single-coverage bins was flatter 
with a tail stretching down into lower values of r. This suggests that the single-coverage bins are more 
dispersed and contain many more pairs of contigs that are dissimilar to one another than the multi-
coverage bins: contigs with low levels of similarity with the rest of the bin are likely to be contaminants. 

Examining the minimum value for r within each bin allows us to identify the pair of contigs with the least 
similar coverage profiles. The minimum value of r observed in each bin was significantly lower in the 
single coverage bins (p-value < 2x10-16); 73% (684/931) of single coverage bins contained at least one 
pair of contigs which were negatively correlated, versus only 10% (157/1660) of multi-coverage bins 
(Figure 1E). This is consistent with the hypothesis that single-coverage bins contain higher numbers of 
contaminant contigs. The single coverage bins had significantly (p-value < 2x10-16) more bins with 
higher proportions of coverage coefficients of less than 0.5 than the multi-coverage bins (Figure 1F). 
Just 8.3% (77/931) single coverage bins had no coverage coefficients less than 0.5 compared to 39.3% 
(653/1660) of multi-coverage bins.  

To identify the most contaminated bins, all filtered bins were ranked by their mean pairwise r. Ninety-
eight of the hundred lowest ranked bins were produced using single-coverage binning. The lowest 
ranked bin, single_ERR2027909.44, has a mean pairwise r of just 0.25. The coverage profiles of the 
contigs can be seen in Figure 2A. Contigs were predicted as contamination if they had an r ≤ 0.9 with 
more than 90% of the contigs in the bin. Using this approach, 303 of the 529 contigs (57%) in 
single_ERR2027909.44 represent contamination, the equivalent of 949kb of contaminant sequence 
from a total of 3.12Mb (30%). The non-contaminant contigs are all highly correlated with one another 
and can be seen in the top half of the heatmap in Figure 2A, with their coverage profiles plotted in Figure 
2B. In contrast, the contigs predicted to be contaminants show dissimilar coverage profiles, with no 
discernible pattern in the multi-coverage data (Fig 2A and 2C). Therefore, multi-coverage data for this 
single-coverage bin suggests that this is a highly contaminated bin with hundreds of contigs that do not 
belong together. However, CheckM estimates this bin to be 93.04% complete, with just 8.06% 
contamination13. A taxonomic method for identifying chimeric bins, GUNC14, does not detect any 



 

 

chimerism in this bin, estimating a clade separation score of just 0.16. It is therefore clear that multi-
coverage data can identify potential contamination and chimerism that current methods miss. 

Using the above cut-off to detect contaminant contigs in all filtered bins, we predict that 428 of the 931 
single coverage bins (46%) contain more than 10% contamination in terms of the number of contigs, 
and 151 (16%) contain more than 10% contamination by sequence length. The worst single-coverage 
bin by contig (single_ERR2027912.135) contains 58.4% contamination, and the worst single-coverage 
bin by sequence length (single_ERR2027901.59) contains 43.6% contamination. In contrast, 177 out 
of 1660 multi-coverage bins (10.6%) contain more than 10% contamination by contig, and only 39 out 
of 1660 (2%) contain more than 10% contamination by sequence length. However, despite the superior 
performance of multi-coverage binning, this technique also produces some contaminated bins - the 
worst multi-coverage bin (multi_ERR2027898.229) contains 75% contamination by contig and 44% 
contamination by sequence length. 

To ensure that our results were not limited to a single dataset, we replicate our findings in a human 
microbiome dataset (Supplementary Information) and show that these genomes contain larger amounts 
of contamination than the published statistics15. By measuring the pairwise Pearson correlation 
coefficient between each pair of contigs in each bin, using multi-coverage data, the results demonstrate 
that single-coverage bins contain large amounts of hidden contamination that are not detected by 
existing techniques, and that multi-coverage binning performs much better (though not perfectly) when 
assessed using this method. 

There are challenges in the implementation of our approach, such as the computational burden, 
selection of appropriate cutoffs and the potential loss of mobile genetic elements – these are discussed 
further in the Supplementary Information. However, our results demonstrate that, wherever possible, 
multi-coverage data should be used for metagenomic binning; and in all cases, significant effort must 
be devoted to quality control and filtering of metagenomic bins that go beyond existing methods such 
as CheckM and GUNC, as both single-copy-core-gene and taxonomic methods miss hidden 
contamination that statistical methods do not.  
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Figure Legends 

Figure 1 a comparison of single- and multi- coverage metagenomic binning. A hypothetical example 
using simulated data demonstrating our hypothesis that contigs from two different genomes may only 
be co-abundant in a single-sample and therefore may be mistakenly binned together in single-coverage 
binning B a comparison of completeness and contamination statistics for single-coverage bins (top row) 



 

 

and multi-coverage bins (bottom row). C The number of bins produced by single and multi-coverage 
binning. D violin plot of the mean pairwise inter-contig correlations for single (n=931) and multi-coverage 
bins (n=1660). The boxplot centre represents the median, the box the 25th and 75th percentiles and the 
whiskers 1.5x the interquartile range. E violin plot of the minimum pairwise inter-contig correlations for 
single (n=931) and multi-coverage bins (n=1660). The boxplot centre represents the median, the box 
the 25th and 75th percentiles and the whiskers 1.5x the interquartile range. F scatter plot of the 
percentage of pairwise inter-contig correlations below r=0.5 for single and multi-coverage bins. 

Figure 2 The worst performing single-coverage bin according to the mean pairwise correlation 
coefficient. A heatmap of the worst single coverage bin, showing the coverage of every contig (rows) in 
each sample (columns). Orange represents low coverage and yellow high coverage. Contaminant 
contigs, identified as having an r≤0.9 with more than 90% of the contigs in the bin, are indicated to the 
right of the heatmap. B Line plot showing the coverage profile of the core (non-contaminant) contigs. C 
Line plot showing the coverage profile of the contaminant contigs 
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Methods 

Binning methods 

The Illumina sequence data of 42 rumen microbiome samples from a previous study were downloaded 

from the European Nucleotide Archive repository, project accession PRJEB21624 10. Trim Galore 

(0.6.2) was used to trim the Illumina adaptors and poor quality base-calls; the trimmed reads were then 

single-sample assembled with MEGAHIT (v1.1.3) using options --k-list 27,47,67,87, --kmin-1pass, -m 

0.95, --min-contig-len 1000 and -t 8 16,17. The reads were mapped against their own assembly and also 

against each of the other assemblies with BWA MEM (v0.7.17) 18. Samtools (v1.9) was used to convert 

the output to BAM files and the jgi_summariza_bam_contig_depths script from Metabat2 (v2.15) to 

calculate the coverage for each of the bam files 8,19. These coverage files were used as input for 

Metabat2 to perform single coverage binning with the option --minContig 1500. The coverage files for 

each sample were combined and processed with Metabat2 and --minContig 1500 to produce multi-

coverage bins.  

Bin quality assessment 

CheckM (v.1.0.7), with the options lineage_wf, -x fa and --tab_table, was used to calculate the 

completeness and contamination of all bins. Bins with contamination ≤ 10% and completeness ≥ 80% 

were kept for downstream analysis. GUNC (v1.0.4) was run with options --contig_taxonomy_output --

detailed_output --db_file gunc_db_progenomes2.1.dmnd. Complete rRNAs were searched for using 

Barrnap (v0.9) with the arc, bac, euk and mito options (https://github.com/tseemann/barrnap).  

Single and multi-coverage bin comparisons  

The bins were assigned taxonomies using the GTDB-Tk (v1.4.0) classify_wf option 20. Phylophlan 

(v3.0.60), using the phylophlan database (downloaded automatically by the tool) and options --diversity 

high and --min_num_markers 40, was then used to create a phylogeny with 460 rumen microbiota 

genomes from the Hungate 1000 project 21,22. The resulting phylogeny was rooted at the 

Bacteria/Archaea branch with FigTree (http://tree.bio.ed.ac.uk/software/figtree/) and visualised with 

iTOL 23. Annotations for the bins were improved using the phylogeny, for example if a bin was 

surrounded by Hungate genomes of a different family then the bin’s family was corrected to match 

theirs.  

The filtered single and multi-coverage bins, both together and separately, were dereplicated at the 

species (95%) and strain level (99%) using dRep (v3.2.0) with the options -p 4, -comp 80, -con 10, -nc 

0.6 and -sa 0.95 or -sa 0.99 24. 

Bin cohesion 

To explore how cohesive the single coverage bins were relative to the multi-coverage bins, the coverage 

for each of the contigs in the single coverage bins was pulled from the multi-coverage files. The 

correlation between all of the contigs coverage within each bin was calculated, with comparisons 

against self and duplicate pairwise comparisons removed, using Pearson’s correlation within R 25. Plots 

were drawn with the ggplot2 package (v3.3.5), ggsci (v2.9), ggplotify (v.0.1.0), cowplot (v.1.1.1), 

patchwork (v.1.1.1), gridGraphics (v.0.5-1) and dplyr (v1.0.7) 26–32. Significance calculations were 

performed with significance defined as p < 0.05 using the Mann-Whitney U test and R (v4.1.0).  

Code availability 



 

 

Code for producing single- and multi- coverage assemblies and bins is available at: 
https://github.com/WatsonLab/single_and_multiple_binning 

 

Data availability 

Raw rumen FASTQ datasets are available under BioProject accession PRJEB21624. Raw human 
FASTQ datasets are available under BioProject accession PRJNA278393. Bins from Rampelli et al, 
assembled by Pasolli et al, are available from http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html. 
Metagenome assemblies of the Rampelli et al data, assembled by Pasolli et al, are available from 
https://www.dropbox.com/s/5qqtbyuufmgycp6/RampelliS_2015.tar.bz2. Finally, our analysis of the 
rumen and human datasets and bins can be downloaded from DOI: 10.6084/m9.figshare.19733509 
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