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Abstract 

Leaf structure and water relations were studied in a temperate population of Avicennia 

marina subsp. australasica along a natural salinity gradient (28 to 49 parts per thousand 

(ppt)) and compared with two subspecies grown naturally in similar soil salinities to those of 

subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet 

tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per 

area, and water content increased with salinity and aridity. Turgor loss point declined with 

increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. 

Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell 

hydration at turgor loss point. Despite similarity among leaves in leaf water storage 

capacitance, total leaf water storage increased with increasing salinity and aridity. The time 

that stored water alone could sustain an evaporation rate of 1 mmol m-2 s-1 ranged from 77 

to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf 

hydration or turgor would require water from sources other than the roots, emphasizing the 

importance of multiple water sources to growth and survival of Avicennia marina across 

gradients in salinity and aridity. 

 

The manuscript focuses on variation in leaf structure and water relations in response to 

salinity and aridity, using the three subspecies of the mangrove, Avicennia marina, as model 

plants. Increase in leaf dry mass per unit area (LMA) with salinity and aridity was driven by 

increasing requirements for water storage. Variation in the proportional contributions of 

leaf tissues to lamina thickness reflected the environment in which plants had grown and 

was associated with leaf water storage, such that intracellular water storage was 

predominant in the drier environment. Turgor loss point was sensitive to increase in salinity 

and aridity but cell wall elasticity was not as plastic as expected. Analyses of PV curves 

showed that leaves could not be hydrated to full turgor if soil water was the sole source of 

moisture, emphasising the importance of alternative water sources (i.e. rainfall, dewfall, and 

tidal surface water) for leaf function in highly saline environments. These results imply that 

the combined effects of hypersaline soil and prolonged decrease in atmospheric moisture 
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due to hot and dry conditions might have contributed to drought-induced dieback of 

mangroves if leaf water storage was not sufficient for leaf survival.  

 

 

Key words: leaf hydration, LMA, modulus of elasticity, PV curve, SLA, turgor loss point, water 

relations.  

 

Introduction 

There is an urgent need to understand relationships between leaf traits and drought 

tolerance (Bartlett et al., 2012).  The urgency arises because an understanding of leaf design 

may help to anticipate responses of trees to edaphic and atmospheric drought, and mitigate 

tree die-back. Tree death in response to severe drought has been reported to occur globally 

(Allen et al., 2010; McDowell & Allen, 2015) in forest systems as different as tropical 

rainforests (Phillips et al., 2009; Rowland et al., 2015) and mangroves (Lovelock et al., 2009; 

Duke et al., 2017).  Mangroves are halophytic woody trees and shrubs that occur in tidal, 

saline wetlands (Feller et al., 2010). These systems contribute important ecosystem services 

to fisheries, forestry, and the social well-being of coastal communities in the tropics and 

subtropics. Mangroves are also a fundamental model study system for genetic capacity for 

salt tolerance. The structure and function of mangrove forests varies along complex 

environmental gradients in salinity and climatic aridity (Duke et al., 1998), factors that, 

respectively, affect the availability of water at the roots and the demand for water at the 

leaves. These factors will change in response to altered climate and sea level due to global 

warming. It is important to understand how mangroves cope with salinity and aridity to 

better manage these resources in a changing environment.  
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Mangroves, like other plants, must take up and store water to maintain leaf hydration. 

However, coping with a saline environment entails special challenges for the maintenance 

of favourable water and ion balances. Despite the abundance of water in mangrove 

habitats, salinity can limit the capacity of roots to absorb water while excluding most ions 

from entry into the transpiration stream. Standard seawater, for example, contains 35 parts 

per thousand (ppt) solute which includes 483 mM Na+ and 558 mM Cl- (Harvey, 1966) and 

has an osmotic potential of -2.4 MPa. For plants to absorb water, water potentials in roots 

must be lower than in surrounding soil. In halophytes like mangroves, turgor is maintained 

in tissues despite very negative water potentials through adjustment of intracellular solute 

concentrations, including high levels of Na
+
 and Cl

-
. These ions are sequestered from 

sensitive metabolic sites as metabolism in halophytes is as sensitive to high ion 

concentrations as in glycophytes (Flowers, 1972; Ball & Anderson, 1986), and the ions 

contribute to osmotic adjustment in their primary storage site, the vacuole (Flowers et al., 

1977). Osmotic adjustment in the cytoplasmic compartment occurs mainly through the 

accumulation of compatible solutes (Jefferies, 1981; Flowers & Colmer, 2008). While these 

principles of halophytic cellular physiology are well established, questions remain about the 

contributions to salinity tolerance of higher levels of organization, i.e. organs such as leaves.  

 

As carbon cannot be gained without the expenditure of water, acquisition of adequate 

water to sustain carbon gain is essential for both survival and growth. Under extreme 

conditions, leaves may close stomata and persist on stored water until conditions become 

favourable for water uptake. However, mangroves that cope with persistently highly saline 

soil must continue to spend water for carbon gain. Water uptake (Ball, 1988; Bazihizina et 

al., 2009; Reef et al., 2015), transport (Sperry et al., 1988; Melcher et al., 2001; Ewers et al., 

2004; Lopez-Portillo et al., 2005; Lovelock et al., 2006), and use (Ball & Farquhar, 1984b; Ball 

& Farquhar, 1984a; Clough & Sim, 1989; Nguyen et al., 2015) are typically lower in high than 

low salinities. These characteristics would lead to a higher requirement for leaf water 

storage for transient water use at high salinity. Indeed, Lechthaler et al. (2016) showed that 

leaf evaporation rates in the mangroves Bruguiera gymnorrhiza and Rhizophora mucronata 

depended on stored water because water transport to leaves was not sufficient to balance 

rates of water loss, especially when salinity was high.  
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Stored water can play an important role in drought tolerance. Leaf water storage depends 

on mass investment in structure, and thus leaf dry mass and water content per area should 

tend to scale proportionally. Further, leaf mass per area, i.e. LMA, is a key trait that often, 

but not always correlates with tolerance of drought (Niinemets, 2001; Bartlett et al., 2012) 

and salinity (Ball et al., 1988).  In a meta-analysis, Poorter et al. (2009) reported a simple 

linear increase in LMA with increasing substrate salinity. However, LMA alone is not a 

general adaptation to drought tolerance. Bartlett et al. (2012) found no direct linkage 

between LMA and the maintenance of turgor and hydration during dehydration to the 

turgor loss point. They suggested that reported correlations between LMA and drought 

tolerance in specific plant groups probably reflected “the coincidence of drought stress and 

other environmental conditions for which high LMA confers a benefit” (Bartlett et al., 2012).  

 

In addition to having thick leaves for water storage, species must have sufficient solute 

concentrations to allow maintenance of turgor even as the water is withdrawn. Sufficient 

osmotica depends on the habitat occupied. Indeed, leaf water potentials reported for field-

grown mangroves vary with the natural soil salinities in which they grow, which range from 

slightly brackish to hypersaline (Scholander et al., 1964; Scholander, 1968; Naidoo, 1989; 

Rada et al., 1989; Sternberg et al., 1991; Constable, 2014; Walker, 2014). Maintenance of a 

minimal level of hydration is essential for survival and maintenance of turgor is required for 

growth. Both are achieved through osmotic adjustment. Lower (i.e. more negative) osmotic 

potential and turgor loss point with increasing growth salinity are common features in 

mangroves (Rada et al., 1989; Suarez & Sobrado, 2000; Melcher et al., 2001; Paliyavuth et 

al., 2004; Sobrado, 2007). Indeed, osmotic potential at full turgor is a reliable predictor of 

the turgor loss point which in turn correlates with drought tolerance (Bartlett et al, 2012), 

and is likely also to correlate with salinity tolerance.  
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Rigid cell walls, which are often associated with high LMA, also have consequences for leaf 

water relations. The bulk modulus of elasticity is defined as the change in turgor pressure 

per fractional change in cell volume (Cheung et al., 1975). In other words, the bulk modulus 

of elasticity increases with the rigidity of the cell walls. Variation in bulk modulus of 

elasticity affects cellular water relations because the more rigid the cell wall, the greater the 

change in turgor pressure, and hence also water potential, for a given water loss above the 

turgor loss point. In this way, mechanical constraints on water loss by rigid walls conserve 

water content at the turgor loss point (Cheung et al., 1975). It follows from this 

interpretation that cell wall rigidity would increase with increasing salinity. However, both 

increases and decreases have been reported: bulk modulus of elasticity decreased with 

increasing salinity in Rhizophora mangle, Conocarpus erectus, and Coccoloba uvijera (Rada et 

al., 1989) and Avicennia germinans (Suarez et al., 1998) but increased with increasing 

salinity in Avicennia germinans (Suarez & Sobrado, 2000), Avicennia alba, Bruguiera 

gymnorrhiza, Heritiera littoralis and Xylocarpus granatum (Paliyavuth et al., 2004). Thus, the 

role and variability in the modulus of elasticity require clarification.  

 

Pressure – volume relationships (PV curves) provide a way to examine most aspects of leaf 

water relations, enabling determination of the modulus of elasticity, water storage 

capacitance, osmotic potential at full turgor and at the turgor loss point. Analysing PV curves 

with respect to leaf anatomy, Nguyen et al. (2016) revealed a cascade of water storage 

compartments that were operational over different ranges of leaf water potentials in one 

population of field-grown A. marina. They showed that liquid water can be absorbed from 

the lamina surface and stored in cells and specialized extracellular spaces (trichome lumina 

and cisternae) at water potentials higher than those experienced at the roots. This stored 

water, thus, must come from sources that are distinct from the soil. Quantification of the 

amount of extracellular water was problematic but it could account for as much as 10% of 

total leaf water based on the average size and density of trichomes. Thus, Nguyen et al. 

(2016) estimated that extracellular water together with that stored inside the cells, 

especially in the hypodermis, could support a sustained evaporation rate of 1 mmol m
-2

 s
-1 

for approximately 2 h without input from the roots as leaves dehydrated from full hydration 
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to the turgor loss point. These results invite the question: how do changes in leaf anatomy 

relate to water relations of A. marina with variation in environmental conditions?  

 

Avicennia marina is one of the most salt tolerant and widely distributed of mangrove 

species along complex gradients in salinity and aridity. There are three subspecies of A. 

marina whose Australian distribution varies with climatic conditions: subsp. eucalyptifolia in 

wet tropics, subsp. marina in arid tropics, and subsp. australasica in temperate areas with 

intermediate rainfall (Duke et al., 1998; Li et al., 2016). These subspecies were used as 

sources of variation in the present study. The leaf water relations, anatomy, and physical 

properties of naturally field grown leaves were measured to test the hypotheses that with 

increasing salinity and aridity (1) LMA increases with increases in the bulk modulus of 

elasticity and leaf succulence, (2) osmotic potentials at full turgor and at the turgor loss 

point decrease, (3) leaf water storage capacitance and total water storage increase, and (4) 

leaf water relations reflect increasing importance of access to multiple water sources 

additional to the soil.  

  

Materials and Methods 

Plant materials 

All leaf samples were collected from plants growing naturally along gradients in salinity and 

aridity. Variation in leaf traits with salinity was studied in A. marina subsp. australasica 

growing at three sites along the Clyde River (Batemans Bay, New South Wales, Australia) 

where salinity of soil water extracted from 30 cm depth at low tide (McKee, 1993) averaged 

28 ± 0.4 (35°38'50.3"S 150°08'39.5"E), 40 ± 0.4 (35°42'15.1"S 150°10'25.2"E), and 49 ± 0.6 

ppt (35°42'16.2"S 150°10'18.8"E). Seawater (35 ppt) has a water potential of -2.4 MPa, and 

so soil water salinities at the three sites were approximately equivalent to water potentials 

of -1.9, -2.7, and -3.4 MPa. Differences among subspecies were based on comparison of A. 

marina subsp. australasica with subsp. eucalyptifolia from the wet tropics (Daintree, 

Queensland, 16°17'29.8"S 145°25'10.2"E) and subsp. marina from the arid tropics (Giralia 

Bay, Western Australia, 22°27'34.0"S 114°14'31.9"E). Soil salinity where subsp. eucalyptifolia 
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grew was 30 ± 0 ppt (-2.1 MPa), and subsp. marina grew was 46 ± 0.7 ppt (-3.2 MPa). 

Hereafter, the five groups of plants are referred to by the first two letters of the subspecies 

names followed by a subscript with the soil salinity in which the plants grew, i.e. Au28, Au40, 

Au49, Eu30, and Ma46. Note that some data for Au49 were reproduced from Nguyen et al., 

2016 and are identified in table captions where appropriate. Differences between climatic 

conditions at the study sites are summarized in Fig. 1.  

 

Leaf features 

One fully exposed branch bearing only sun leaves was chosen from each of five co-occurring 

trees in each of the five study sites for all measurements of leaf properties as previously 

described (Nguyen et al., 2016). Care was taken to select leaves that appeared average in 

size for a given population under a given set of conditions, i.e. similar age, aspect, and 

exposure to full sunlight. Briefly, branches were rehydrated and two well-matched leaf pairs 

were selected for study and randomly allocated to one of two sets of measurements. One 

pair of leaves was used for measurement of physical properties and construction of a PV 

curve relationship with both sets of measurements made on the same leaf, and the second 

leaf used as a spare if measurements needed to be repeated. The second leaf pair was used 

for anatomical measurements. 

 

Leaf physical properties  

 Leaf area (S, m
2 

unless otherwise specified), dry mass (DM, g), maximum water content 

(WCmax, g), leaf dry mass per area (LMA, g m
-2

), maximum leaf water content per area 

(WCAmax, g m
-2

), and per dry mass (WCDmax, g g
-1

), were measured on the same set of leaves 

used for PV analyses, as described in Nguyen et al. (2016). 

 

Leaf anatomy 

Transverse and paradermal leaf sections were prepared, stained, and observed as previously 

described (Nguyen et al., 2015, 2016). Lamina thickness and the fractional contribution of 

each tissue layer to total lamina thickness were calculated from transverse sections. The 

number of cells per unit cross-sectional area (mm
-2

) in the hypodermis, palisade mesophyll, 
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and spongy mesophyll was calculated from transverse sections through these tissues; the 

number of trichomes and upper epidermal cells per unit leaf area were calculated from 

paradermal sections.  

 

Leaf water relations 

Pressure volume (PV) curves with three domains (Fig. 2) were constructed and analysed as 

in Nguyen et al. (2016) where relative water content (RWC) was plotted as a function of leaf 

water potential (ψleaf) with one exception. Bulk modulus of elasticity (ε, MPa) was 

calculated only for domain 2 of the PV curve as: εD2 = 
  

    
 where Δ  is the difference in 

turgor pressure and Δ    is the corresponding fractional difference in cellular volume 

between the points at full turgor (ψft, RWCft) and at turgor loss (ψtlp, RWCtlp) as shown in 

Fig. 2. Those two points were determined by conventional methods (Scholander et al., 1964; 

Tyree & Hammel, 1972; Cheung et al., 1975; Turner, 1988) using linear regressions of 1/ψleaf 

as a function of relative water deficit, i.e. 1 – RWC, for the appropriate regions of the PV 

curves (Nguyen et al., 2016). These calculated values of ψft and ψtlp mark the transitions 

between domains 1 and 2, and domains 2 and 3, respectively (Nguyen et al., 2016).  

 

The difference in turgor pressure between ψft and ψtlp was calculated as Δ  = ψft - ψπ
ft

 

where ψft is leaf water potential at full turgor, ψπ
ft

 is the osmotic potential at full turgor. The 

corresponding fractional difference in cellular volume between ψft and ψtlp was calculated 

as:  

 

Δ    = 
    -   tlp

   
 = 
(   a  -    (     -    tlp 

(   a  -        
 = 
     -    tlp

    
 

 

where WC is leaf water content, FMmax is leaf maximum fresh mass, DM is leaf dry mass, 

RWC is relative water content; ft and tlp denote the points of full turgor and turgor loss, 

respectively, on the PV curve as shown in Fig. 2. Substituting terms, the bulk modulus of 

elasticity was calculated for domain 2 of the PV curve as:  
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εD2 = 
(ψ - ψπ

 
      

     -    tlp
 .  

 

Water storage capacitance (Q, mol m
-2

 MPa
-1

), i.e. the amount of water released per unit 

leaf area per unit change in leaf water potential, was calculated for domains 1 and 2, 

following Brodribb and Holbrook (2003) as:  

 

Q = 
  

 
 
   a 

  
 
  

 
  
    

  leaf
 

 

where M is molar mass of water (g mol-1 , Δ    is the difference between relative water 

contents spanning a domain as shown for ΔRWCD1 and ΔRWCD2 in Fig. 2, and  ψleaf is the 

difference between leaf water potentials spanning a domain as shown for Δ D1 and Δ D2 in 

Fig. 2.  

 

Leaf water storage per unit area was calculated, respectively, for domains 1 (WD1, mol m
-2

) 

and 2 (WD2, mol m
-2

) of the three-domain PV curves (Nguyen et al., 2016) as:   = Q(Δ leaf). 

The sum of WD1 and WD2 is the total water storage (Wtot, mol m
-2

).  

 

Data analysis 

Data were analysed with Genstat version 16 (Payne, 2014) through one-way ANOVA and 

simple linear regression. Data were normally distributed and did not require transformation 

before analyses.  isher’s Least  ignificant  ifference and Tukey tests were applied post hoc 

to determine differences between treatment means whenever relationships with   ≤ 0.050 

were found. 

 

Note that abbreviations used in the text are summarized in Table 1.  

 



 

 

This article is protected by copyright. All rights reserved. 

Results 

Testing the four key hypotheses revealed strong differences in leaf water storage across the 

aridity and salinity gradients. First, an increase in LMA with salinity and aridity was linked to 

increase in leaf water storage, which was achieved through increase in number of cell layers 

while maintaining fractional tissue contributions to lamina thickness. Second, turgor loss 

points declined with increase in soil salinity, driven primarily by differences in osmotic 

potential at full turgor as there were no consistent effects of salinity on the bulk modulus of 

elasticity. Third, there was little variation in leaf water storage capacitance (mol m
-2

 MPa
-1

) 

but total leaf water storage (mol m
-2

) increased with increase in salinity and aridity. Finally, 

PV curves revealed that water from sources other than roots would be required for 

maximum leaf hydration and turgor. These results are presented in detail below.  

 

Physical properties of the leaves 

Leaf physical properties varied both within and among subspecies (Table 2). Within A. 

marina subsp. australasica, leaf area, dry mass, and maximum water content were smaller 

at higher salinity (Fig. 3a-c). Leaf area declined more than dry mass with increasing salinity, 

consequently, leaf mass per area (LMA) significantly increased with salinity (P = 0.01, Fig. 

3d). However, the maximum water content per unit dry mass (WCDmax, g g
-1

) decreased 

slightly with increasing salinity (P = 0.02, Fig. 3e). As maximum water content per unit leaf 

area (WCAmax, g m
-2

) is the product of LMA and WCDmax, opposing variation in these two 

factors prevented significant (P = 0.15) variation in WCAmax with salinity within subsp. 

australasica (Fig. 3f). The tendency for WCAmax to increase with increasing salinity within 

subsp. australasica was mainly driven by LMA (r2 = 0.55, P = 0.001). A similar pattern was 

evident with comparison of all subspecies in which LMA, and hence also WCAmax, increased 

with increasing salinity and aridity (Table 2, Fig. 3d-f).   

 

Leaf anatomy 

All three subspecies shared similar structures with five major tissue layers comprising the 

lamina (Fig. 4). These layers were the adaxial epidermis, hypodermis, palisade mesophyll, 

spongy mesophyll, and the abaxial epidermis which was covered with trichomes and 
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contained stomata. There were no significant differences in either lamina thickness (P= 

0.99) or the fraction each tissue contributed to lamina thickness within subsp. australasica 

grown in a range of salinities (Table 3, Fig. 5a).  

 

In contrast, lamina thickness differed among the three subspecies (P <0.001) being smallest 

in Eu30 (4 8 ±  6 μ ) and largest in Ma46 (76  ± 26 μ ) despite these subspecies growing in 

salinities similar to those of Au28 and Au49, respectively. There were no significant 

differences in the fraction that the photosynthetic tissues contributed to lamina thickness 

(Table 3), whereas significant differences occurred in the water storage tissues, i.e. the 

hypodermal and trichome layers. While the fraction of lamina thickness contributed by the 

hypodermis was lower in Eu30 than in Ma46 (P = 0.01), that of the trichomes followed the 

opposite pattern. Nevertheless, the actual thickness of each tissue layer was the greatest in 

Ma46 and the smallest in Eu30 (Table 3, Fig. 5a). Thus, averaging across all subspecies, lamina 

thickness increased with increasing salinity and aridity, consistent with the parallel increase 

in WCAmax (Fig. 5b), and LMA (Fig. 5c).  

 

There were differences in the ways in which variation in the thicknesses of tissue layers 

were achieved. There was no significant difference in either the proportion or number of 

cells per unit leaf area in the adaxial epidermis among subspecies, but the cuticle layer in 

Ma46, averaging  0 μ , was twice as thick as that of other groups (P < 0.001). The smaller 

proportion of hypodermis in Eu30 was due to two factors: fewer hypodermal cell layers (P < 

0.001, Table 3, Fig. 4b) comprised of a greater number of smaller cells per unit cross-

sectional area (P = 0.01, Table 3, Fig. 4b). Variation in the thickness of photosynthetic tissues 

occurred mainly through the number of palisade cell layers (Table 3). There was no 

significant difference in the number of trichomes per unit leaf area between subspecies 

grown in similar salinities; however, the leaves of Eu30 and Au28 had significantly higher 

number of trichomes per unit area than those of Ma46 and Au49 (P <0.001). Nevertheless, 

the average volume of individual trichomes was not significantly different among subspecies 

(P = 0.69, Table 3). 
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Leaf water relations 

Key leaf water relations parameters were calculated from PV curves constructed for leaves 

from all five sites as summarized in Table 4. All pressure volume curves had a similar shape 

with three domains as described in Nguyen et al. (2016). Domains 1, 2, and 3 were 

dominated respectively by loss in extracellularly stored water, decline in turgor, and decline 

in osmotic potential during leaf dehydration. On average, for each 0.1 MPa decrease in 

 leaf, RWC decreased by 1.5 - 2% in domain 1, 0.3 - 0.4% in domain 2, and 1% in domain 3. 

 

There were no detectable effects of salinity on domain 1 in subsp. australasica.  Domain 1 

represented the decrease in relative water content (RWC) from 100% to approximately 87% 

with a corresponding decrease in leaf water potential (ψleaf) from -0.1 MPa to the transition 

between domains 1 and 2 (ψft) at -0.9 MPa. This domain accounted for an average of 13% of 

RWC of the leaf. There were no significant differences between these characteristics 

measured in subsp. australasica and those of the other two subspecies, except that average 

 ft was significantly less negative in Eu30 (-0.7 MPa) than Au28 (-0.9 MPa, P = 0.04). 

 

Once the extracellular water was e hausted, further decline in ψleaf with decreasing RWC 

was driven mainly by decline in turgor over domain 2. The turgor loss point defined the 

transition from domain 2 to domain 3. Leaf water potential at the turgor loss point ( tlp) 

became more negative with increasing soil water salinity both within subsp. australasica (r
2
 

= 0.77, P < 0.001) and among subspecies (r
2
 = 0.71, P < 0.001). Within subspecies grown in 

similar salinities,  tlp was significantly less negative in Eu30 (-4.1 MPa) than in Au28 (-4.5 

MPa), and in Ma46 (-4.9 MPa) than in Au49 (-5.1 MPa, P < 0.001). 

 

Leaf osmotic potential at full turgor ( π
ft

) was about 0.8 MPa higher than  tlp for all leaves, 

and was correlated with  tlp both within (r
2
 = 0.48, P = 0.002) and among subspecies (r

2
 = 

0.72, P < 0.001, Fig. 6a). Although  tlp varied within and among subspecies, relative water 

contents at turgor loss points (RWCtlp) differed only between Eu30 and Au28 in which the 
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turgor loss point occurred at significantly lower RWCtlp in Eu30 (71%) than in Au28 (78%, P = 

0.04). 

 

Bulk modulus of elasticity 

Bulk modulus of elasticity calculated for domain 2 (εD2) was highly variable and average 

values were not significantly different either within subsp. australasica grown at a range of 

salinities (P = 0.95) or among subspecies (P = 0.51). Thus, the variation in εD2 did not 

correlate with the progressive decrease in  tlp with increasing salinity (Fig. 6b). There was 

also no correlation between εD2 and increase in LMA within subsp. australasica (P = 0.52) or 

among subspecies (P = 0.88).  

 

Water storage 

Water content per unit leaf area (  A  was plotted as a function of ψleaf to show variation 

across leaves from the five sites during dehydration (Fig. 7a). There was a correlation 

between WCAmax and that at the turgor loss point (WCAtlp) within subsp. australasica (r
2
 

=0.68, P < 0.001). This correlation became stronger with the addition of data for the other 

two subspecies (r
2
 =0.92, P < 0.001, Fig. 7b). 

 

Despite the differences in water content between leaves, there were no significant 

differences in water storage capacitances calculated from either domain 1 (QD1, P = 0.26) or 

domain 2 (QD2, P = 0.75), between subsp. australasica grown in the three salinities. 

Similarly, neither QD1 nor QD2 were significantly (P = 0.30, P = 0.18, respectively) different 

among subspecies (Table 4). 

 

The total of amount of water released per unit leaf area during dehydration from full 

hydration to the turgor loss point was related to salinity and evaporative demand. The 

average total water storage (Wtot) was lowest (4.63 ± 0.37 mol H2O m
-2

) in leaves grown in 

the low salinity, wet tropics site (Eu30), and highest (7.56 ± 0.44 mol H2O m
-2

) in leaves 

grown in the high salinity, arid tropics site (Ma46) (Table 4). Linear regression showed a 
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significant increase in Wtot with salinity both within subsp. australasica  (r
2
 = 0.32, P = 0.02) 

and among all three subspecies (r
2
 = 0.44, P < 0.001).  Domains 1 and 2 contributed roughly 

equally to total water storage, i.e. WD1 ≈  D2 (Table 4). However, the percentage 

contribution from domain 2 increased at the expense of domain 1 from 47.8% (Eu30) to 

52.2% (Ma46) with increasing salinity and aridity.  

 

These data were placed in a field context by dividing WD2 into two sub-components: WD2-s 

where the stored water could be sourced from the soil, i.e.  leaf <  soil, and WD2-ns where 

the stored water would have to be obtained from sources other than soil, i.e.  soil <  leaf < 

 ft.  Note that soil water salinities were measured at a depth of 30 cm and so do not include 

lower salinities that can occur at the soil surface during tidal flooding. In this calculation, soil 

water contributed exclusively to water storage in domain 2. Figure 8 showed that the 

contribution of soil water (WD2-s) to total leaf water storage (Wtot) ranged from 28% (Eu30) 

to 35% (Ma46). These data indicated that alternative water sources with salinities lower than 

those in the soil were required to achieve maximum water storage in all subspecies and 

sites. 

 

Discussion 

Variation in LMA, osmotic adjustment, water storage, and access to multiple sources of 

water were reflected in the structure of A. marina leaves grown in environments of 

increasing salinity and evaporative demand. Increase in LMA was a consequence of greater 

water storage with increasing salinity and aridity. The core feature of leaf water relations 

was the capacity to maintain low (i.e. more negative) osmotic potential at full turgor which, 

when combined with high bulk modulus of elasticity, enabled maintenance of high cellular 

water contents with dehydration to the turgor loss point. That in itself would enhance 

survival, but maintenance of cell hydration during high transpiration rates would also 

require water storage when water loss exceeds rates of water supply. Indeed, water storage 

was increased by increasing lamina thickness, particularly through increasing layers of cells 
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(Table 3, Fig. 4). Finally, linking leaf anatomy with leaf function as described by pressure-

volume relationships showed that achieving either full hydration or full turgor required 

access to sources of water in addition to that supplied by the roots.   

 

Increase in leaf mass per area was associated with increase in leaf water content per area. 

LMA increased with increasing soil salinity and aridity of the environments in which the 

plants were grown (Fig. 3d), consistent with a recent meta-analysis of halophytic and 

glycophytic species (Poorter et al., 2009). Previous studies have shown that species with 

higher LMA had higher cell wall concentrations of cellulose and hemicellulose per leaf dry 

mass, implying greater structural reinforcement than in leaves with lower LMA (Mediavilla 

et al., 2008). Structural compounds would have contributed to the high LMA of the 

sclerophyllous leaves of A. marina (Choong et al., 1992). However, in the present study, 

LMA was not correlated with the bulk modulus of elasticity, a measure of cell wall rigidity, 

consistent with the global meta-analysis of Bartlett et al. (2012). Differences in LMA among 

subspecies were related to differences in lamina thickness associated with differences in 

numbers and sizes of cells comprising lamina tissues (Figs. 4, 5). Finally, increase in 

intracellular solute concentrations to maintain favourable water relations would also 

contribute to the increase in LMA with increasing salinity. For example, Ball (1981) 

estimated the accumulation of NaCl for osmotic adjustment would account for 

approximately 10% of leaf dry mass in lab grown Avicennia marina. Thus, no single attribute 

accounted for the increase in LMA with increase in growth salinity. Instead, increase in LMA 

involved different combinations of more supportive structure, higher numbers of cells per 

unit leaf area, and higher solute concentrations that depended on the subspecies. 

 

These results invite the question: what drives the salinity-dependent increase in LMA across 

subspecies? Decreasing osmotic potentials with increasing growth salinity required 

increasing cellular solute concentrations, which would contribute to the increase in LMA. 

However, such increase in the solute concentration comes at the expense of the amount of 

water per unit dry mass, WCDmax (Fig. 3e). Thus, increase in numbers or sizes of cells per 

unit area, thereby increasing leaf thickness and hence also LMA, would be required to 
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maintain or increase maximum water content per unit leaf area (WCAmax) in increasingly 

saline soils. Indeed, WCAmax increased with increasing LMA in response to increasing salinity 

and evaporative demand (Fig. 5c), requiring coordination between leaf structure and leaf 

water relations. These effects were more pronounced among subspecies than within 

subspecies grown along a salinity gradient (Fig. 3f). Thus, the salinity-dependent increase in 

LMA appears driven by increasing requirements for water storage. In other environments, 

species from seasonally dry or xeric habitats typically have high values of LMA (Poorter et 

al., 2009). Based on the present study, such high LMA in combination with increasing leaf 

thickness, as for example in Neotropical savannas (Rossatto et al., 2015), may also be 

related to demands for water storage. 

 

Leaf osmotic potentials at full turgor ( π
ft

) and at the turgor loss point ( tlp) declined with 

increase in the growth salinity and evaporative demand of the climate in which the plants 

were grown. 

Regardless of the sources of variation including subspecies and climate, soil water salinity 

was the major determinant of  π
ft

 and  tlp, consistent with the requirements to maintain a 

favourable water balance and the turgor essential for growth under increasingly saline 

edaphic conditions. Indeed, the capacity to vary osmotic potentials and thereby adjust 

water potentials at the turgor loss point must play critical roles in growth and survival of A. 

marina over a wide range of salinities. Specifically, A. marina had a low osmotic potential at 

full turgor,  π
ft

, and it became more negative with increase in the soil water salinity in 

which the plants were grown. This is consistent with a study showing acclimation in osmotic 

potentials associated with accumulation of progressively increasing ion levels in leaves of A. 

marina (Downton, 1982). The os otic potential at full turgor,  π
ft

, was correlated with the 

osmotic potential at the turgor loss point,  tlp (Fig. 6a) as predicted by theoretical equations 

(Bartlett et al., 2012). These results obtained from A. marina were consistent with those 

from a meta-analysis (Fig. 6c) of responses to drought where species was the source of 

variation (Bartlett et al., 2012), and from a study of multispecies responses to imposed and 

natural seasonal drought in a tropical rainforest (Binks et al., 2016). Thus, growth of A. 

marina in wet soil with high salinity elicited similar responses to those of plants subjected to 
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drying soil. Bartlett et al. (2012) concluded from meta-analysis that leaf osmotic potentials 

at full turgor ( π
ft

) and at the turgor loss point ( tlp) were important determinants of 

drought tolerance. The results of the present study extend that conclusion to include salt 

tolerance.  

 

Leaves had a high bulk modulus of elasticity that provided mechanical strength and 

contributed to maintenance of high levels of cellular hydration during dehydration to the 

turgor loss point. 

A consequence of decreasing  π
ft and  tlp

 with increasing growth salinity is the potential for 

turgor stress when either soil salinity is low or leaves are fully hydrated and, conversely, the 

potential for osmotic stress when soil salinity is high or leaves are dehydrated. The average 

bulk modulus of elasticity, εD2 (18 to 27 MPa), in A. marina was highly variable with no 

significant difference among subspecies grown in salinities ranging from 28 to 49 ppt (Fig. 

6b). Our results contrasted with the e pectation that εD2 would increase, i.e. that cell walls 

would become more rigid, with increasing growth salinity as observed in A. germinans 

grown in salinities ranging from 0 to 32 ppt under laboratory conditions (Suarez & Sobrado, 

2000). In the present study, high εD2 may reflect a need for mechanical strength in field-

grown leaves subject to a wide range of leaf water potentials over both daily and seasonal 

time scales.  or e a ple, under natural field conditions,  leaf of A. marina growing in soil 

with pore water salinity of 40 to 49 ppt (-2.7 to -3.4 MPa) varied from -0.1 MPa at dawn 

following a leaf wetting event to -6 MPa in mid-afternoon without perceptible damage 

(Constable, 2014; Walker, 2014). In this example, if  π
ft equals -4.2 MPa, then the turgor 

pressure would be as high as 4.1 MPa. Conversely, cells would be subjected to extreme 

osmotic stress when  idday or afternoon  leaf approaches or is more negative than a turgor 

loss point of, say, -5 MPa. Maintenance of a high εD2 would offer protection against cell wall 

failure over the wide range of leaf water potentials encountered daily by leaves of A. marina 

under natural field conditions. 
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In the present study, there was no correlation between bulk modulus of elasticity and turgor 

loss points (Fig. 6b), consistent with the global meta-analysis (Fig. 6d) of Bartlett et al. 

(2012). Nevertheless, in the present study, cells remained well hydrated at the turgor loss 

point.  Indeed, in leaves of subsp. australasica grown in soil water salinity ranging from 28 to 

49 ppt, RWCtlp
 decreased from 78 to 75%, respectively, while εD2 averaged 26 MPa (Table 4). 

Similarly, average RWCtlp ranged from 71 - 78% across all three subspecies. However, these 

RWCtlp values were calculated from leaf saturated water content, which included the 

extracellular water that dominated domain 1 (Nguyen et al., 2016). If domain 1 was 

excluded from calculations, effectively shifting the leaf saturated water content to that at 

 ft, then RWCtlp based solely on domain 2 (dominated by cellular water) ranged from 82 - 

90%. These values are greater than the estimated minimum requirement of 75% RWC to 

sustain cell function (Lawlor & Cornic, 2002). These data agreed with the suggestion by 

Cheung et al. (1975) and meta-analysis by Bartlett et al. (2012) that high bulk modulus of 

elasticity played an important role in conserving cell hydration during leaf dehydration. 

Based on the PV curves, a  % decrease in     was associated with a decrease in  leaf of 0.1 

MPa with reduction in hydration below the turgor loss point (domain 3). These data suggest 

A. marina would be able to maintain cell function for a further 0.7 – 1.5 MPa decrease in 

 leaf below the turgor loss point. This is consistent with the occurrence of plasmolysis in 

most living cells at 1 MPa lower than  tlp in leaves of A. marina (Nguyen et al., 2016).  

 

Leaf water storage increased with increase in the growth salinity and evaporative demand 

of the climate in which the plants were grown.  

Leaf water storage may play critical roles in drought survival and in buffering fluctuation in 

leaf water potentials when rates of evaporation exceed rates of water re-supply from the 

roots (Lechthaler et al., 2016). In A. marina, WCAmax differed among subspecies and was 

correlated strongly with WCAtlp (Fig. 7b). WCAmax is a component of leaf water storage 

capacitance (Q, mol m
-2 MPa

-1
), the amount of water released per unit leaf area per unit 

change in water potential (Fig. 2).  There was a tendency, albeit not significant, for Q to 

increase with increasing salinity and aridity (Table 4), partly due to increase in WCAmax and, 
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hence, also LMA, consistent with previous studies in other drought-affected systems 

(Blackman & Brodribb, 2011). The combined effects of increasing Q, driven by increasing 

WCAmax, and decrease in the turgor loss point (ψtlp) resulted in an increase in total water 

storage, Wtot, with increasing salinity and aridity. 

 

Although salinity strongly affected leaf water storage, the ways in which water was stored 

differed among subspecies and appeared to be related to the evaporative demands of the 

environments in which the subspecies grew. For example, leaves of Eu30 from the wet 

tropics were almost half the thickness of those of Ma46 from the arid tropics and had 

correspondingly less WCAmax. These subspecies differed in the relative contributions of 

different tissues to lamina thickness. Specifically, the hypodermal layer occupied 31% of 

lamina thickness in Eu30 and 38% in Ma46 while the layer accounted for 19% of lamina 

thickness in Eu30 and 15% in Ma46 (Table 4). In addition, the greater number of trichomes 

per unit area with similar average volumes (Table 4) would enable greater extracellular 

water storage in the leaf lamina of Eu30 than Ma46. This mechanism might be favoured by 

two factors in a wet tropical environment. First, trichomes of A. marina leaves rapidly 

absorb liquid water from wet epidermal surfaces (Nguyen et al., 2016), enabling rapid 

replenishment of leaf water from frequent leaf-wetting events, such as showers. Second, 

the highly humid atmosphere would limit evaporation, enhancing the duration of 

extracellular water storage in the trichome layer during the day. In contrast, water 

absorption by the trichome layer in Ma46 would occur predominantly during nocturnal leaf-

wetting events in its arid tropical environment. However, that water would need to be 

stored intracellularly to prevent its rapid loss from the trichomes upon increase in 

evaporative demand after sunrise. This may account for a greater allocation of lamina 

thickness to the hypodermal layer in the much thicker and more heavily cutinized leaves of 

Ma46 than Eu30 (Figs. 4, 5). Such differences among subspecies reflect coordination between 

leaf structure and leaf water relations under different environmental conditions. Further 

work is required to distinguish the relative contributions of genotypes and environments. 
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The PV curves showed that leaves of A. marina must access water from sources with 

salinities lower than those measured in the soil to achieve either full hydration or full 

turgor. 

 

Mangroves such as A. marina growing in saline wetlands are subject to spatial and temporal 

variation in salinity, which would affect the sources of water available for uptake. Soil pore 

water salinity would typically be higher than that of flooding tidal water because exclusion 

of salt during water uptake by the roots leads to the accumulation of salt in the rhizosphere 

(Passioura et al., 1992). The salinity of soil pore water would fluctuate less than that of 

surface water. Depending on conditions, the salinity of surface flood water can vary from 

nearly freshwater to seawater while at the same time that of underlying soil water can be 

hypersaline. Thus, roots of a single plant may be exposed to a wide range of salinities over a 

vertical gradient from flood water through the soil. Indeed, split-root experiments have 

shown preferential water uptake when salinity was low in soil with spatial (Bazihizina et al., 

2009; Reef et al., 2015) or temporal variation in salinity (Lechthaler et al., 2016). Meanwhile, 

leaves can also be rehydrated by different sources of water, such as fog, dew and rainfall 

(Eller et al., 2013) even in hypersaline mangrove environments (Constable, 2014; Walker, 

2014). 

 

Water potentials measured during leaf dehydration ranged from -0.1 MPa at full hydration 

to values more negative than those at the turgor loss points. This range of potentials can be 

experienced in a single day (Constable, 2014; Walker, 2014). Thus, the PV relationship 

informs interpretation of the daily variation in leaf water potentials. Total water storage was 

estimated for domains 1 and 2 of the PV curves. These domains contributed almost equally 

to total leaf water storage, which increased with increases in the salinity and aridity in which 

the plants were grown. Summing the water storage from domains 1 and 2 (i.e. from full 

hydration to the turgor loss point), the total water storage in leaves of the present study 

could alone supply the water loss needed to support photosynthesis at an evaporation rate 

of 1 mmol H20 m
-2 s

-1 
for up to 77 min in the wet tropics (Eu30) and 126 min in the arid 
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tropics (Ma46) (Table 5, Fig. 8). These calculations underscore the increasing importance of 

stored water to leaf function with increase in salinity and aridity of the environment. 

 

The ranges of water potentials involved in domains 1 and 2 suggest contributions of water 

from different sources. Extraction of water from soil and its subsequent transport to leaves 

requires leaf water potentials to be lower than those of soil water. If ψleaf was less negative 

than ψsoil, then water supply to leaves must be from sources other than soil water. For 

domain 1, water storage (WD1) was exhausted with dehydration from -0.1 MPa to an 

average of -0.8 MPa, which is equivalent to the water potential of 34% seawater (12 ppt), 

much lower than the salinities measured in soil pore water at any sites in the present study. 

Water stored in domain 1 could be contributed by roots if salinity was lower than 12 ppt, or 

by leaves receiving dew or intercepting rainfall. Indeed, Lechthaler et al. (2016) reported 

rapid recharge of water storage in leaves of seedlings in the Rhizophoraceae when salinities 

around roots were lowered from 30 to 5 ppt. Leaves of A. marina can absorb liquid water 

through salt secretion glands (Tan et al., 2013) and through the trichome layer (Nguyen et 

al., 2016) and have the capacity for extracellular storage of such water as reflected in 

domain 1 (Nguyen et al., 2016). Thus, leaf-wetting events could reverse the water potential 

gradient from the atmosphere to the plant to the soil (Goldsmith, 2013), enabling 

rehydration of leaves to water potentials as high as -0.1 MPa even when roots are exposed 

to very high soil salinities, as has been observed under natural field conditions (Constable, 

2014; Walker, 2014). 

 

Water stored in domain 2 was released from cells with dehydration from an average leaf 

water potential of -0.8 MPa to the turgor loss point. The cellular water storage of domain 2, 

WD2, was divided into two co ponents: water storage when ψleaf was less negative (WD2-ns) 

or more negative (WD2-s) than the soil water potentials measured at the time the PV curves 

were constructed. On this basis, water sourced from soil would most likely contribute to 

storage in domain 2. Furthermore, as leaf full hydration and full turgor occurred at leaf 

water potentials  uch higher than those of ψsoil, leaves would be neither fully hydrated nor 

fully turgid if soil pore water was the only source of water unless salinity was lowered by 
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rainfall events or roots near the soil surface accessed flood water of lower salinity. This 

analysis shows the importance of spatial and temporal variation in soil salinity, together 

with access to alternative water sources, to the water balance of these leaves. 

 

Conclusions 

Comparative analyses of pressure volume curves revealed intricate integration of leaf 

structure and water relations that may contribute to growth and survival of Avicennia 

marina along complex gradients in salinity and aridity.  As expected, osmotic adjustment 

together with a high cellular modulus of elasticity enable maintenance of turgor and 

hydration over progressively lower leaf water potentials with increase in soil water salinity, 

consistent with analyses of leaf properties in relation to drought tolerance (Bartlett et al., 

2012).  The high LMA values of the scleromorphic leaves of A. marina played no direct role 

in leaf water relations, again consistent with meta-analysis of drought tolerant species 

(Bartlett et al., 2012). Nevertheless, variation in LMA in A. marina was largely a consequence 

of the increasing thickness of the lamina required for both extracellular and intracellular 

water storage in response to increasing salinity and aridity. These two storage 

compartments contributed approximately equally to total leaf water storage, but were 

operational over different ranges of leaf hydration. Indeed, when placed in context with the 

soil water salinities of the growth conditions, the PV curves revealed that access to 

alternative water sources was required to achieve full hydration or turgor. This requirement 

could be met by foliar water uptake under moist atmospheric conditions as leaves of 

Avicennia can absorb liquid water via trichomes (Nguyen et al., 2016) and salt secretion 

glands (Tan et al., 2013). These results merit further study as they may help to define safety 

margins analogous to those of cloud forests (Oliveira et al., 2014) for the maintenance of 

favourable hydration and leaf function with natural variation in soil salinity and atmospheric 

moisture through the progression of wet and dry seasons or exposure to extreme drought 

conditions. In the latter case, increasing soil salinity in association with drought would 

reduce the hydration state that could be achieved through supply of soil water from the 

roots, while a dry atmosphere could limit the supply of water obtained via foliar water 

uptake.  Indeed, such combined effects may have contributed to drought-induced die-back 

of mangroves growing in hypersaline soils (Lovelock et al., 2009), and may underlie the 
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recent large-scale die-back of a 700 km stretch of mangrove forest in northern Australia 

following unusually hot and dry atmospheric conditions (Duke et al., 2017). Thus, the results 

of the present study underscore the importance of understanding leaf features that may 

provide a means of assessing responses of key vegetation types to climate change and 

climate extremes.  
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Table 1: Abbreviations 

Abbreviations Symbol Unit 

Plant materials   

A. marina subsp. australasica  
grown at 28, 40, 49 ppt seawater  

Au28, Au40, Au49  

A. marina subsp. eucalyptifolia  

grown at 30 ppt seawater 
Eu30  

A. marina subsp. marina  
grown at 46 ppt seawater 

Ma46  

Parameters   

 Bulk modulus of elasticity ε MPa 

 Difference ∆  

 Fractional difference in cellular volume ΔV/V  

 Leaf area S m
2
 

 Leaf dry mass DM g 

 Leaf dry mass per area  LMA g m
-2

  

 Leaf fresh mass FM g 

 Leaf water content WC g 

 Leaf water content per area WCA g m
-2

 

 Leaf water content per dry mass WCD g g
-1

 

 Leaf water potential Ψleaf MPa 

 Osmotic potential Ψπ MPa 

 Relative water content RWC % 

 Turgor pressure  P MPa 

 Water storage capacitance Q mmol m
-2 

MPa
-1

 

 Water storage (per unit leaf area) W mol m
-2

 

 Subscripts and superscripts 

 Maximum value max  

 (Calculated for) Domain 1 D1  

 (Calculated for) Domain 2 D2  

 (Measured at the point of) Full turgor ft  

 (Measured at) Turgor loss point tlp  

 Total tot  
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Table 2. Physical properties of leaves of the three subspecies of A. marina: subsp. 

australasica (Au), subsp. eucalyptifolia (Eu), and subsp. marina (Ma) grown under 

temperate, wet tropical, and arid tropical climates, respectively, in salinities ranging from 28 

to 49 ppt. These salinities are given as a subscript following the two letter subspecies 

designations. Values are means ± se (n= 5). Superscript letters denote significant differences 

among means as determined by one-way ANOVA with post hoc Tukey test when P ≤ 0.05. 

The grey block shows responses of leaf physical properties to salinity within subsp. 

australasica. Note that effects of subspecies were confounded with environment. Data for 

Au49 was reproduced from Nguyen et al. (2016).  

Parameter 
Sym
bol 

Un
it 

Eu30 Au28 Au40 Au49 Ma46 

Me
an 

se 
Me
an 

se 
Me
an 

se 
Me
an 

se 
Me
an 

se 

Salinity   
pp
t 30 0 28 

0.
4 40 

0.
4 49 

0.
6 46 

0.
7 

Leaf area 
S 

cm
2 

14.
4a 

0.
9 

21.
2c 

1.
2 

19.
5b 

1.
1 

14.
8a 

1.
1 

19.
9bc 

0.
6 

Leaf dry mass per area 
LMA 

g 
m-

2 
156

a 5 
21
2b 5 

226
bc 10 

256
c 14 

325
d 11 

Maximum water 
content per area 

WCA

max 

g 
m-

2 
292

a 16 
41
1b 11 

404
b 16 

447
bc 13 

501
c 19 

Maximum water 
content per dry mass 

WC
Dmax 

g 
g-1 

1.8
9ab 

0.
15 

1.9
4b 

0.
04 

1.7
9ab 

0.
03 

1.7
6ab 

0.
08 

1.5
4a 

0.
05 
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Table 3. Anatomical features of leaves of the three subspecies of A. marina: subsp. 

australasica (Au), subsp. eucalyptifolia (Eu), and subsp. marina (Ma) grown under 

temperate, wet tropical, and arid tropical climates, respectively, in salinities ranging from 28 

to 49 ppt. These salinities are given as a subscript following the two letter subspecies 

designations. Values are means ± se (n= 5). Superscript letters denote significant differences 

among means as determined by one-way ANOVA with post hoc Tukey test when P ≤ 0.05. 

The grey block shows responses of leaf anatomical features to salinity within subsp. 

australasica. Note that effects of subspecies were confounded with environment. Part of 

data for Au49 was reproduced from Nguyen et al. (2016). 

Parameter 
Sym
bol 

Uni
t 

Eu30 Au28 Au40 Au49 Ma46 

Mea
n 

se 
Mea

n 
se 

Mea
n 

se 
Mea

n 
se 

Mea
n 

se 

Lamina thickness  Lth μ  418
a
 16 566

b
 24 565

b
 14 569

b
 13 761

c
 26 

Contribution to lamina thickness 

Adaxial epidermis UEP % 3 0 3 0 3 0 3 0 3 0 

Hypodermis HP % 31
a
 2 38

b
 1 38

b
 2 36

ab
 1 38

b
 0 

Palisade mesophyll PP % 30 1 29 1 26 1 30 1 29 1 

Spongy mesophyll SP % 16 1 13 1 14 1 12 0 15 1 

Trichome TP % 19
b
 1 17

ab
 0 19

b
 1 19

b
 1 15

a
 0 

Number of cell layers 

Hypodermis HN   5.8
a
 0.4 8.0

b
 0.5 8.0

b
 0.3 8.0

b
 0.0 9.2

b
 0.2 

Palisade mesophyll PN   
3.6

a

b
 0.2 3.6

ab
 0.2 3.2

a
 0.2 3.0

a
 0.0 4.0

b
 0.0 

Spongy mesophyll SN   4.2 0.4 4.6 0.2 5.0 0.3 5.0 0.3 4.8 0.2 

Number of cells per unit leaf or lamina cross-sectional area 

Adaxial epidermis (leaf 
area) UED 

m
m

-2
 

3,09
1

a
 251 

3,61
3

ab
 154 

3,86
1

b
 147 

2,99
7

a
 22 

3,45
9

ab
 225 

Hypodermis HD 
m
m

-2
 

1,44
2

b
 135 

1,30
2

ab
 54 

1,56
9

b
 57 

1,42
0

b
 125 962

a
 56 

Palisade mesophyll  PD 
m
m

-2
 

2,59
8

b
 206 

2,11
0

ab
 190 

2,34
0

ab
 75 

2,35
2

ab
 205 

1,66
3

a
 120 

Spongy mesophyll SD 
m
m

-2
 

4,35
7 505 

3,38
9 158 

4,00
0 472 

4,26
5 494 

3,16
0 124 

Trichome   

Number per unit leaf area 
TD 

m
m

-2
 

2,82
7

b
 115 

2,69
0

b
 48 

2,72
9

b
 82 

2,18
8

a
 

88 
1,86

3
a
 79 

Internal lumen diameter  μ  μ  24 1 20 2 22 1 20 2 19 1 

Length  μ  μ  81
a
 3 96

ab
 3 107

b
 2 109

b
 5 114

b
 4 

Volume*  TV 
μ 
3
 

24,1
81 

3,2
26 

16,0
54 

2,6
02 

22,3
74 

2,5
78 

20,4
60 

3,2
88 

15,9
03 

2,7
94 
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Table 4. Water relations parameters derived from three-domain PV curves constructed from 
leaves of the three subspecies of A. marina: subsp. australasica (Au), subsp. eucalyptifolia 
(Eu), and subsp. marina (Ma) grown under temperate, wet tropical, and arid tropical 
climates, respectively, in salinities ranging from 28 to 49 ppt. These salinities are given as a 
subscript following the two letter subspecies designations.  Values are means ± se (n= 5). 
Superscript letters denote significant difference among means as determined by one-way 
ANOVA with post hoc Tukey test when P ≤ 0.05. The grey block shows responses of leaf 
water relations to salinity within subsp. australasica (grey block). Note that effects of 
subspecies were confounded with environment. Part of data for Au49 was reproduced from 
Nguyen et al. (2016).  

Parameter 
Sym
bol 

Unit 
Eu30 Au28 Au40 Au49 Ma46 

Me
an 

se 
Me
an 

se 
Me
an 

se 
Me
an 

se 
Me
an 

se 

Leaf water 
potential at full 
turgor 

 ft MPa 
-

0.6
9a 

0.
04 

-
0.8
7b 

0.
03 

-
0.8
2ab 

0.
04 

-
0.8
5ab 

0.
03 

-
0.8
6ab 

0.
04 

Osmotic potential 
at full turgor 

 π
ft MPa 

-
3.3

a 
0.
2 

-
3.7

ab 
0.
1 

-
4.0b

c 
0.
1 

-
4.2c 

0.
1 

-
4.2c 

0.
1 

Water potential at 
turgor loss point 

 tlp MPa 
-

4.1
a 

0.
0 

-
4.5

b 
0.
1 

-
4.7c 

0.
0 

-
5.1d 

0.
1 

-
4.9c

d 
0.
0 

RWC at full turgor 
RW
Cft 

% 
85 1 88 1 87 1 87 1 87 1 

RWC at turgor loss 
point 

RW
Ctlp 

% 
71a 1 78b 1 

76a

b 1 
75a

b 3 
73a

b 1 

Modulus of 
elasticity for 
domain 2 

εD2 MPa 
18 3 26 3 27 5 26 4 21 2 

Water storage 
capacitance for 
domain 1 

QD1 
mol m-2 
MPa-1 

3.5
7 

0.
27 

3.1
3 

0.
38 

3.6
1 

0.
44 

3,8
3 

0.
35 

4.2
3 

0.
56 

Water storage 
capacitance for 
domain 2 

QD2 
mol m-2 
MPa-1 

0.6
6 

0.
13 

0.6
4 

0.
08 

0.6
4 

0.
07 

0.7
2 

0.
09 

1.0
0 

0.
11 

Total water storage  Wtot mol m-2 
4.6
3a 

0.
37 

4.8
5a 

0.
18 

5.6
0a 

0.
25 

6.2
8ab 

0.
63 

7.5
6b 

0.
44 

Water storage for 
domain 1 

WD1 
mol m-2 

2.4
3a 

0.
05 

2.5
6a 

0.
12 

2.9
5ab 

0.
25 

3.2
6ab 

0.
34 

3.6
2b 

0.
28 

Water storage for 
domain 2 

WD2 
mol m-2 

2.2
0a 

0.
37 

2.2
3a 

0.
28 

2.6
5ab 

0.
15 

3.0
2ab 

0.
36 

4.0
0b 

0.
42 
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Table 5. Estimation of the time that stored water obtained from soil or alternative sources 

could contribute to gas exchange in leaves of the three subspecies of A. marina: subsp. 

australasica (Au), subsp. eucalyptifolia (Eu), and subsp. marina (Ma) grown under 

temperate, wet tropical, and arid tropical climates, respectively, in salinities ranging from 28 

to 49 ppt. Calculations were based on the distribution of water stored over different ranges 

of leaf water potentials as shown in Fig. 8, and assumed a leaf evaporation rate of 1 mmol 

H2O m-2 s-1. Values are means ± se (n= 5). Superscript letter denoted significant difference 

among means as determined by one-way ANOVA with post hoc Tukey test when P ≤ 0.05. 

The grey block shows responses of leaf water storage to salinity within subsp. australasica 

(grey block). Note that effects of subspecies were confounded with environment. Data for 

Au49 was reproduced from Nguyen et al. (2016). 

 

Source of 
stored 
water 

Environme
ntal 
 source of 
water 

Tim
e 

Ψle

af
 

Eu30
 Au28

 Au40
 Au49

 Ma46
 

Mea
n 

s
e 

Mea
n 

s
e 

Mea
n 

s
e 

Mea
n 

s
e 

Mea
n 

s
e 

Domain 1 
(mostly 
extracellul
ar) 

Alternative 

min Ψft 

< 
Ψle

af  41a 1 43a 3 49ab 4 54ab 6 60b 5 

Domain 2 
(cellular) 

Alternative 

min Ψso

il < 
Ψle

af < 
Ψft 14ab 2 9a 2 18bc 3 21bc 2 22c 1 

Soil 

min Ψtl

p < 
Ψle

af < 
Ψso

il 

22 5 29 3 26 4 30 5 44 7 

Total  
min  

77a 6 81a 3 93a 4 
105a

b 
1
1 126b 7 
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Figure 1. Long-term average monthly rainfall, relative humidity at 3 pm, minimum and 

maximum air temperature at weather stations nearest the three study sites along the tidal 

margins of Batemans Bay, New South Wales (temperate oceanic, solid square), Daintree 

River, Queensland (wet tropics, open triangle), and Giralia Bay, Western Australia (arid 

tropics, open circle). All data were collected by the Australian Bureau of Meteorology at Low 

Isles lighthouse (No. 031037) for Daintree River, Learmonth airport (No. 005007) for Giralia 

Bay, and Catalina Country Club (No. 069134) for Batemans Bay.  
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Figure 2. An exemplary PV curve of A. marina subsp. marina constructed with leaf relative 

water content (     as a function of leaf water potential (ψleaf). The curve shows three 

domains: D1 dominated by extracellular water, D2, dominated by decline in turgor, and D3 

dominated by osmotic effects after turgor loss (Nguyen et al. 2016). Open diamond symbols 

indicate the points of leaf saturation (100% RWC), full turgor (ψft, RWCft), and turgor loss 

(ψtlp, RWCtlp). The ranges in leaf water potential (Δ leaf) and relative water content (ΔRWC) 

that span domains 1 and 2 are indicated by subscripts D1 and D2, respectively.  
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Figure 3. Physical properties of field-grown sun leaves of three subspecies of Avicennia 

marina as a function of soil pore water salinity. Panels show (a) leaf area, (b) leaf dry mass, 

(c) leaf water content, (d) leaf mass per area (LMA), (e) leaf maximum water content per dry 

mass (WCDmax), and (e) leaf maximum water content per area (WCAmax). Symbols: subsp. 

eucalyptifolia (Eu30 - open triangle), subsp. australasica grown at salinities of 28 ppt (Au28 - 

solid triangle), 40 ppt (Au40 - solid square), and 49 ppt (Au49 - solid circle), and subsp. marina 

(Ma46 - open circle).  Each point represents one leaf from one of the five trees that were 

chosen for the experiment. Lines drawn by linear regression show relationships for subsp. 

australasica (dashed line, solid black symbols) and for all three subspecies (solid line, all 

symbols).  
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Figure 4. Transverse sections through the leaf lamina of the three subspecies of A. marina: 

(a) subsp. eucalyptifolia, (b) subsp. australasica, and (c) subsp. marina grown under 

temperate, wet tropical, and arid tropical climates, respectively, in salinities ranging from 28 

to 49 ppt. Bars are 50 μ . Abbreviations: UE: upper (ada ial  epider is, H: hypoder is,  : 

palisade mesophyll, S: spongy mesophyll, T: trichome layer. Notice the differences in lamina 

thickness between subspecies, especially in the number of cell layers of the hypodermis. 
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Figure 5. Lamina thickness and its components in field grown sun leaves of three subspecies 

of A. marina. (a) The fractional distribution of five major tissues comprising the leaf lamina. 

Subspecies designations as in Fig 3.  Fillings indicate upper epidermis (UE, dash), hypodermis 

(H, hatch), palisade mesophyll (P, grey), spongy mesophyll (S, white), and trichome layer (T, 

black). Values are means (n = 5). Letters denote significant differences between tissue types 

among means as determined by one-way ANOVA with post hoc Tukey test when P ≤ 0.05. 

(b) Lamina thickness as a function of maximum water content per unit leaf area (WCAmax). 

(c) LMA as a function of maximum water content per unit leaf area (WCAmax). Symbols as 

given in panel (b). Each point represents one leaf from one tree with five trees per group. 

Lines drawn by linear regression show significant relationships for subsp. australasica 

(dashed line, solid black symbols) and for all three subspecies (solid line, all symbols).   
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Figure 6. (a) Osmotic potential at full turgor ( π
ft) and (b) bulk modulus of elasticity (ε) as 

functions of osmotic potential at the turgor loss point (ψtlp) when salinity was the source of 

variation in subsp. australasica (dashed line, black symbols) and when subspecies combined 

with environmental factors were the sources of variation (solid line, all symbols). Symbols as 

given in panel (a). Lines drawn by linear regression only for relationships with   ≤ 0.05. Data 

from panels (a) and (b) were replotted, respectively, in panels (c) and (d) relative to a global 

meta-analysis (Bartlett et al., 2012). 
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Figure 7. Variation in water content per unit leaf area with dehydration in the three 

subspecies of A. marina. (a) Exemplary curves of water content per unit leaf area (WCA) as a 

function of leaf water potential ( leaf) during air-drying. Data are shown for two pairs of 

leaves, with each pair contrasting subspecies grown under similar soil pore water salinities 

but different climatic conditions. Symbols: subsp. eucalyptifolia (Eu30 - open triangle), subsp. 

australasica grown at salinities of 28 ppt (Au28 - solid triangle), and 49 ppt (Au49 - solid 

circle), subsp. marina (Ma46 - open circle). Arrows show WCA at full turgor (open arrows) 

and at the turgor loss points (solid arrows). (b) Water content per unit leaf area at the 

turgor loss point (WCAtlp) as a function of maximum water content per unit leaf area 

(WCAmax) when salinity was the source of variation in subsp. australasica (dashed line, black 

symbols) and when subspecies combined with environmental factors were the sources of 

variation (solid line, all symbols). Lines drawn by linear regression only for relationships with 

  ≤ 0.05. 
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Figure 8. Average water storage per unit leaf area among the three subspecies of A. marina. 

The water storage column is divided into components indicating the water storage in 

domains 1 (white) and 2 (shaded). Three storage components were defined by regions along 

a    curve where  leaf  is less negative than  ft (white, WD1 ,  leaf is less negative than  soil 

and more negative than  ft (grey, WD2-ns), and  leaf is less negative than  tlp and more 

negative than  soil (black, WD2-s). Column height gives the total water storage. Parameter 

values are means, n = 5 independent PV curves (one per tree).  Letters denote significant 

differences among means as determined by one-way ANOVA with post hoc Tukey test when 

P ≤ 0.05.  

 

 

 


