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New analytical models are introduced to describe the motion of a Herschel–Bulkley fluid
slumping under gravity in a narrow fracture and in a porous medium. A useful self–similar
solution can be derived for a fluid injection rate that scales as t; an expansion technique
is adopted for a generic injection rate which is power–law in time. Experiments in a
Hele–Shaw cell and in a narrow channel filled with glass ballotini confirm the theoretical
model within the experimental uncertainty.

Key words: gravity currents, Herschel–Bulkley fluid flows, porous media

1. Introduction

Implications of fluid rheology on flow in fractures and porous media have been exten-
sively analysed in the last years. Artificial fluids and foams are designed to fulfill specific
requirements related to aquifer remediation, fracking technology, and soil reinforcing.
In some conditions, Carbon Dioxide stored in aquifers may behave as a non–Newtonian
fluid (Wang & Clarens 2012). Darcy’s law, valid for Newtonian fluids, has been extended,
with various methodologies, to power–law non–Newtonian fluids and experimentally vali-
dated; see Cristopher & Middleman (1965), Barletta & de B. Alves (2014) and references
therein.

Viscous gravity currents of power–law (Ostwald–de Waele, Ostwald 1929) fluids in wide
channels and in fractures have been extensively investigated, formulating specific models
for various geometrical configurations and providing an experimental verification. Grat-
ton et al. (1999) and Perazzo & Gratton (2005) presented a comprehensive theoretical
framework for unidirectional and axisymmetric flow over a horizontal plane and down an
incline. Longo et al. (2013a) investigated experimentally horizontal spreading in radial
geometry, while Longo et al. (2015c) and Longo et al. (2015d) examined the advance in
horizontal and inclined channels, taking into account the shape of the cross section, and
longitudinal variations of cross section and bottom inclination.

Gravity currents of a power–law fluid in porous media have recently been analysed
with a combination of analytical, numerical, and experimental techniques (e.g., Longo
et al. 2013b; Di Federico et al. 2014; Longo et al. 2015a; Ciriello et al. 2016).

However, even though the power–law approximation provides an accurate interpreta-
tion of fluid behaviour in several flow conditions, it does not cover other classes of fluids
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exhibiting yield stress. These are better described by models such as Herschel–Bulkley
(three parameters, Herschel & Bulkley 1926), Cross (four parameters, Cross 1965), and
Carreau-Yasuda (four or five parameters, Carreau 1972; Yasuda et al. 1981).

Gravity currents of Herschel–Bulkley fluids (HB) on horizontal and inclined planes, or
in wide channels, have been analysed theoretically and experimentally by several authors.
Hogg & Matson (2009) modelled two-dimensional currents, focusing their attention on
the front geometry, its role in the overall dynamics, and the arrested state for a dam-
break process. Huang & Garcia (1998), Vola et al. (2004), and Balmforth et al. (2006)
investigated the propagation numerically. Further experimental contributions were pro-
vided by Ancey & Cochard (2009) in dam-break configuration, and by Chambon et al.
(2014) in steady uniform regime. The special case of Bingham fluids was analysed by
Liu & Mei (1989); the effect of finite-width channels was explored by Mei & Yuhi (2001)
and Cantelli (2009). A recent review (Coussot 2014) critically lists the numerous papers
on flows of HB fluids in several geometries and conditions. The effect of a realistic chan-
nel geometry mimicking natural channelized flow was analysed in Longo et al. (2016),
where a HB fluid was injected with a constant discharge rate in a channel widening and
reducing its bottom inclination downstream.

As to porous flow of yield stress fluids, a key element is the reliability of the model
relating flow rate and pressure gradient. According to Chevalier et al. (2013), porous
flow of an Herschel–Bulkley fluid is characterised by multiple length scales, and at least
one of them is not related to the geometry of the pores and connecting channels, but
depends on the pressure drop. Hence, the flow starts along specific, limited paths near the
threshold pressure drop. Subsequently the sequence of converging and diverging throats
encountered by the fluid facilitates a progressive increment of the mobilized fluid domain
as the pressure drop increases, rather than a sharp increase in the extent of mobilized
fluid. Further experiments (Chevalier et al. 2014) have demonstrated that the domain of
fluid at rest is very limited even for very low velocity. This complex behaviour increases
the difficulties in modeling yield stress fluids, and strengthens the need to verify existing
formulations of the flow law valid at Darcy’s scale with carefully conducted experiments.

The existing body of knowledge on HB flows, accumulated mostly in recent years,
leaves open several avenues of investigation. To the best of our knowledge, the behaviour
of HB fluids flowing in a narrow channel (a fracture) has not been investigated to the
same extent as flows in wide channels, and deserves a more in-depth analysis due to
the numerous practical applications of the process, such as polymer processing, heavy
oil flow, gel cleanup in propped fractures, drilling processes. In addition, the flow of HB
fluids in a porous medium still requires experimental validations to enable extending
the results obtained in viscometric flows to more realistic configurations. The present
theoretical approach aims to contribute to these aspects, with the crucial support of
laboratory experiments.

In this paper we present a theoretical model and its experimental validation for 2D flows
of a Herschel–Bulkley fluid in a narrow fracture and in a porous medium. The theoretical
model is general, while computations and experiments refer mainly to a specific situation
(the injected volume quadratic in time) where a simple self–similar solution is available.
An expansion method has been applied to handle, with some restrictions, the general
case of an injected volume which is power-law over time; the general method has likewise
been experimentally validated.

The paper is structured as follows. Section 2 presents the model for HB flow in a narrow
fracture. The self–similar solution is illustrated in Section 3. Flow in a homogeneous
porous medium is examined in section 4. Section 5 describes the experiments conducted
in a Hele–Shaw cell and in an artificial 2D porous medium. The last section contains the

Accepted in Journal of Fluid Mechanics, 9th April 2017



2D flow of a gravity current of Herschel–Bulkley fluid 3

Figure 1. Diagram showing the setup of axes and fluid orientation in flow through a narrow
fracture (Hele–Shaw cell).

conclusions. Details on rheometry of the yield stress fluids employed in the experiments
are included in the Appendix.

2. Model description for flow in a narrow fracture

The HB model for a shear thinning/thickening fluid with yield stress is{
τ =

(
µ0γ̇

n−1 + τpγ̇
−1) γ̇, τ > τp,

γ̇ = 0, τ < τp,
(2.1)

given in terms of the stress τ and of the strain rate γ̇. A slightly more complicated de-
scription using tensor invariants is required for three dimensional flows; this formulation
is not reported here as we consider a one–dimensional problem below. The parameter
µ0, the consistency index, represents a viscosity–like parameter, whilst τp is the yield
stress of the fluid, and n, the fluid behaviour index, controls the extent of shear–thinning
(n < 1) or shear–thickening (n > 1); n = 1 corresponds to the Bingham case. For flow
through a narrow fracture (such as a Hele–Shaw cell) of width Ly, as depicted in Figure
1, the primary balance is between cross gap quantities. The relevant relationship is that
the velocity u(x, y) in the x–direction must satisfy

τxy =

(
µ0

∣∣∣∣∂u∂y
∣∣∣∣n−1 + τp

∣∣∣∣∂u∂y
∣∣∣∣−1
)
∂u

∂y
, τxy > τp,

∂u

∂y
= 0, τxy < τp,

(2.2)

where τxy represents the cross gap stress and y is the cross gap direction. Furthermore, the
primary balance between cross–gap stress and along–fracture pressure gradient is related
by y(∂p/∂x) = τxy. We define the height h(x, t) of fluid above a horizontal impermeable
base. Then under the relevant shallow water approximation, pressure is to leading order
hydrostatic, and the pressure gradient becomes ∂p/∂x = ∆ρ g (∂h/∂x), where ∆ρ is the
density difference driving the flow, between fluid within and that outside the gravity
current and g acceleration due to gravity. We assume that wetting characteristics at the
walls of the fracture are unimportant (or alternately the flow takes place in a pre–wetted
fracture). Combining these equations, using the condition that τxy = τp as the fluid
yields, leads to an expression for the location of the yield surface in the gap, |yyield| =
τp/(∆ρ g|∂h/∂x|), where −Ly/2 6 yyield 6 Ly/2 is required.

To continue, we need to solve for the cross–gap flow structure in yielded and un-yielded
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regions of the flow. The continuity of mass of the fluid layer may be written as

∂h

∂t
= − ∂

∂x
(ūh) , (2.3)

where ū(x, t) is the gap–averaged velocity. Assuming a zero slip velocity, and upon in-
troducing the expression of ū(x, t) in equation (2.3), we can form an evolution equation
for h(x, t) alone, namely

∂h

∂t
=

(
Ly
2

)(n+1)/n

sgn

(
∂h

∂x

)(
n

2n+ 1

)(
∆ρ g

µ0

)1/n

×

∂

∂x

h ∣∣∣∣∂h∂x
∣∣∣∣1/n

(
1− κ

∣∣∣∣∂h∂x
∣∣∣∣−1
)(n+1)/n(

1 +

(
n

n+ 1

)
κ

∣∣∣∣∂h∂x
∣∣∣∣−1
) , (2.4)

where κ = 2τp/(∆ρ gLy) is a non dimensional number representing the ratio between
yield stress and gravity related stress, or the ratio between the Bingham and the Ramberg
number. Additionally setting

Ω =

(
Ly
2

)(n+1)/n(
n

2n+ 1

)(
∆ρ g

µ0

)1/n

, (2.5)

where Ω is a velocity scale, allows us to write this equation slightly more succinctly as

∂h

∂t
=

sgn

(
∂h

∂x

)
Ω
∂

∂x

h ∣∣∣∣∂h∂x
∣∣∣∣ 1n
(

1− κ
∣∣∣∣∂h∂x

∣∣∣∣−1
)n+1

n
(

1 +

(
n

n+ 1

)
κ

∣∣∣∣∂h∂x
∣∣∣∣−1
) . (2.6)

To this equation we must add the further condition that when the flow is fully plugged
(that is yyield = Ly/2) then the velocity throughout the gap is zero (ū = 0), so therefore
∂h/∂t = 0 for such regions. This is the limiting version of the equation above in the limit
∂h/∂x = κ, which is in turn the condition for the flow to be fully plugged. Consequently,
the equation for the height of the current is continuous through such a plugging transition.

In the model, the slip contribution was neglected also because most experiments were
conducted by roughening the Hele–Shaw cell with commercial transparent anti slip tape,
which is commonly adopted to make slippery surfaces safe. Independent rheometric mea-
surements were conducted with plates roughened with sand paper.

3. Self–similar solution

Various self–similar solutions exist to describe the spreading of gravity currents of
constant or variable volume in cases similar to our problem where κ = 0, n = 1 (e.g.,
King & Woods 2003; Lyle et al. 2005), and where κ = 0 (Pascal & Pascal 1993; Longo
et al. 2013b, 2015b; Ciriello et al. 2016). For the current study where both yield stress
and shear thinning/thickening effects are present, a generalized form of such solutions is
not available since the presence of yield stress breaks self–similarity. However, one form of
self–similar solution does exist if we allow a variable injection rate of fluid (a more general
type of solution with self–similarity of the second kind might be possible, although not
attempted here). To this end, suppose that the volume of fluid in the gravity current
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2D flow of a gravity current of Herschel–Bulkley fluid 5

varies as

Ly

∫ ∞
0

h(x, t)dx = Qtα, (3.1)

where α, Q > 0. Then the principal dimensions of the three parameters are [Ω] =
L/T, [Q/Ly] = L2/Tα, [κ] = 1. It is possible to rewrite our principle variables in di-
mensionless form as

h̃ = h

(
Q

LyΩα

)1/(α−2)

, x̃ = x

(
Q

LyΩα

)1/(α−2)

, t̃ = t

(
Q

LyΩ2

)1/(α−2)

. (3.2)

Introducing these variables immediately reduces equations (2.6–3.1) to the dimensionless
form

∂h̃

∂t̃
= − ∂

∂x̃

h̃ ∣∣∣∣∣∂h̃∂x̃
∣∣∣∣∣

1
n

1− κ

∣∣∣∣∣∂h̃∂x̃
∣∣∣∣∣
−1


n+1
n
1 +

(
n

n+ 1

)
κ

∣∣∣∣∣∂h̃∂x̃
∣∣∣∣∣
−1

 , (3.3)

∫ ∞
0

h̃dx̃ = t̃α, (3.4)

where we have assumed that ∂h̃/∂x̃ < 0. Hereafter the tilde is dropped. We can seek
self–similar solutions of these equations by looking for solutions in the form h = tβf(η)
where η = x/tγ . Substituting into equation (3.3–3.4) yields

βtβ−1f − tβ−1γηf ′ = −

[
tβ+(β−γ)/nf |f ′| 1n

(
1− κtγ−β

|f ′|

)n+1
n

×
(

1 +

(
n

n+ 1

)
κtγ−β

|f ′|

)]′
t−γ , (3.5)

∫ ηe

0

tβ+γf(η)dη = tα, (3.6)

where primes denote differentiation with respect to η. Comparing powers of t gives im-
mediately β+γ = α, γ−β = 0, β−1 = (β−γ)(1+1/n). This has one consistent solution,
namely α = 2 and β = γ = 1. A fluid injection rate scaling as t allows a self–similar
solution, for which both the height and length of the current increase with time, similarly
scaling as t. However, for α = 2 the scales in equation (3.2) break down and an additional
velocity scale embedded in the integral constraint of mass conservation given by equation
(3.1) arises beyond Ω, given by (Q/Ly)1/2. A similar case is treated in Di Federico et al.
(2012a,b). We define an arbitrary time scale t∗, the velocity scale u∗ = (Q/Ly)1/2 and
the ratio between the two velocity scales δ = (LyΩ2/Q)1/2, with x∗ = u∗t∗. Equations
(3.3–3.4) become

∂h

∂t
= −δ ∂

∂x

h ∣∣∣∣∂h∂x
∣∣∣∣ 1n
(

1− κ
∣∣∣∣∂h∂x

∣∣∣∣−1
)n+1

n
(

1 +

(
n

n+ 1

)
κ

∣∣∣∣∂h∂x
∣∣∣∣−1
) , (3.7)

∫ ∞
0

h(x, t) dx = t2. (3.8)
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6 Di Federico et al.

Figure 2. (a) Shape of the similarity solution in a Hele–Shaw cell (α = 2) for different values
of n; (b) plug regions.

We seek a self–similar solution of the form h = tf(η),where η = x/t; substituting into
equations (3.7–3.8) yields

f − ηf ′ = −δ

[
f |f ′| 1n

(
1− κ

|f ′|

)n+1
n
(

1 +

(
n

n+ 1

)
κ

|f ′|

)]′
, (3.9)

∫ ηe

0

f(η) dη = 1. (3.10)

This system admits a simple solution, namely a linear profile for f(η) (Di Federico et al.
2012a). Supposing a solution in the form f(η) = A(ηe − η), for some constants A > 0
and ηe > 0, we substitute into equations (3.9–3.10) to obtain

Aηe = δA(n+1)/n
(

1− κ

A

)(n+1)/n
[
1 +

(
n

n+ 1

)
κ

A

]
, ηe =

√
2

A
. (3.11)

Eliminating ηe gives one nonlinear equation to solve for A.
Solutions for several values of the parameter n are shown in Figure 2 with all other

parameters kept constant. The self–similar solution retains similarity by constraining
the yield surface to be at a constant location along its length as the current spreads.
Furthermore the thickness of the plugged region simply grows as the fluid becomes more
shear–thinning.

3.1. Asymptotic analysis for α 6= 2

For α 6= 2 no self–similar solution is predicted, but it is possible to find an approximate
result starting from the self–similar solution for power–law fluids (κ → 0). We briefly
recall that for κ→ 0 equation (3.3) becomes

∂h

∂x
= − ∂

∂x

(
h

∣∣∣∣∂h∂x
∣∣∣∣1/n

)
, (3.12)

while the integral mass balance given by equation (3.4) is unmodified. Equations (3.12–
3.4) admit the similarity solution

h = ηn+2
N tF2f(ζ), η = xt−F1 , ηN =

(∫ 1

0

fdζ

)−1/(n+2)

, ζ = η/ηN , (3.13)
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2D flow of a gravity current of Herschel–Bulkley fluid 7

where

F1 =
α+ n

2 + n
, F2 = α− F1, (3.14)

and where the shape function f satisfies the following non linear ordinary differential
equation (

f |f ′|1/n
)′

+ F2f − F1ζf
′ = 0. (3.15)

The numerical integration of equation (3.15) for α 6= 0 and α 6= 2 requires two boundary
conditions at ζ → 1. By assuming f ≈ a0(1 − ζ)b, substituting in equation (3.15) and
balancing the lower order terms, yields b = 1 and a0 = Fn2 . Hence, it follows that

f |ζ→1−ε = Fn2 ε, f ′|ζ→1−ε = −Fn2 , (3.16)

with ε a small quantity. The two cases α = 0, 2 admit an analytical solution with f
represented by a parabola and a straight line, respectively.

It is possible to extend the self-similar solution to κ > 0 with the following expansion
in the term κ/|∂h/∂x| (see, e.g., Sachdev 2000; Hogg et al. 2000).

Upon assuming that κ/|∂h/∂x| is a small quantity, equation (3.3) becomes

∂h

∂t
=

− ∂

∂x

[
h

∣∣∣∣∂h∂x
∣∣∣∣1/n

(
1− 2n+ 1

n(n+ 1)
κ

∣∣∣∣∂h∂x
∣∣∣∣−1 +

n+ 1− 2n2

2n2
κ2
∣∣∣∣∂h∂x

∣∣∣∣−2 +O(κ3)

)]
. (3.17)

We propose the following expansion in the regime σ ≡ κtn(2−α)/(n+2) � 1 :

h = ηn+1
N tF2

[
f0(ζ) + σf1(ζ) + σ2f2(ζ) + . . .

]
, (3.18)

x = ηtF1
(
1 + σX1 + σ2X2 + . . .

)
, (3.19)

where f0(ζ) and ηN are given by the similarity solution for power-law fluids (3.13), and
X1, X2, . . . are constants to be evaluated.

The variable σ is selected in order to guarantee that at the zero order O(σ0) the yield
stress contribution is null and the solution is represented by (3.13). At the first order
O(σ) there is a balance between the terms due to the yield stress and all other terms.
The condition σ � 1 requires that t � tc ≡ κ(n+2)/[n(α−2)], if α < 2, and t � tc, if
α > 2; tc is defined as a “critical time”. Figure 3 shows the critical time tc(κ, n, α) for
κ = 0.01 and for different n and α. The critical time becomes infinite for α = 2, notably
this coincides with the case which permits a self-similar solution without the necessity
of an expansion. It is seen that ∂tc/∂α > 0 for any n. In addition, ∂tc/∂n > 0, if α > 2,
and ∂tc/∂n < 0, if α < 2, hence the domain of validity of the expansion is extended as
the fluid becomes more shear–thinning.

The previous analysis implies that for a gravity current of a power–law fluid all terms
in the evolution equations evolve at a common rate (or, equivalently, a unique velocity
scale exists). In contrast, for a HB fluid the term arising due to the yield stress evolves
at a different rate than other terms (i.e. it introduces a second velocity scale, for a given
common length scale). In order to obtain an expansion to solve this equation, note that
the correction is achieved at first order by computing a second function which evolves
with a rate equal to the new one imposed by the yield stress term. The non linearity
of the problem requires an increasing number of such terms in the series to improve the
accuracy in the balance when extended to higher orders.

However, since κ appears always in powers of κ|∂h/∂x|−1, we expect a reduction in
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Figure 3. Dimensionless critical time for κ = 0.01 as a function of the fluid behaviour index
n and of α. The vertical dashed line at α = 2 is the asymptote, the hatched area indicates the
domain where the condition σ < 1 is satisfied for a fluid with n = 1.2.

the accuracy of the asymptotic solution for increasing time, if |∂h/∂x| ∼ t(α−2)n/(n+2)

decreases in time, which happens for α < 2. Conversely, for α > 2, the asymptotic
expansion becomes more accurate, but the current evolves to an increasing steepness
which renders the thin current assumption asymptotically invalid. The expansion will
be uniform in x as long as |∂h/∂x| does not approach zero anywhere. In particular, the
expansion will be not-uniform if α = 0 since in this case the current becomes flat at
x = 0.

By inserting equations (3.18–3.19) in equation (3.17) and balancing the terms of equal
power in σ, at O(σ0) we recover the fundamental balance, with f0 ≡ f and f represented
by (3.13).

At O(σ) equation (3.17) becomes(
f1 |f ′0|

1/n − 1

n
f0 |f ′0|

1/n−1
f ′1

)′
+ F2f1 − F1ζf

′
1 =

1

ηnN

2n+ 1

n(n+ 1)

(
f0 |f ′0|

1/n−1
)′
, (3.20)

which is an inhomogeneous linear ODE for the unknown function f1, with a forcing term
modulated by the fundamental solution f0. The numerical integration of equation (3.20)
requires two boundary conditions for ζ → 1, obtained again by expanding in series near
the front of the current. By assuming that f1 ≈ a1(1 − ζ)b ( with f0 ≈ Fn2 (1 − ζ),
see equation (3.16)), substituting in equation (3.20) and equating the lower order terms
(corresponding to b = 1), yields

a1 =
F2

(F2 − F1n+ F2n)

2n+ 1

ηnN (n+ 1)
, b = 1. (3.21)

Hence, the function can be approximated by f1 ≈ a1(1− ζ) for ζ → 1, and the boundary
conditions for equation (3.20) are

f1|ζ→1−ε = a1ε, f
′
1|ζ→1−ε = −a1, (3.22)

where ε is a small quantity.
Even though the two functions f0 and f1 are defined in the domain 0 6 ζ 6 1, the

nose of the current is ζN = 1 + σX1 + . . ., which is expected to be smaller than unity
since the additional resistance supplied by the yield stress reduces the propagation rate
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2D flow of a gravity current of Herschel–Bulkley fluid 9

compared to the case κ = 0. The integral constraint given by equation (3.4) becomes

ηn+2
N (1 + σX1 + . . .)

∫ 1+σX1+...

0

[f0(ζ) + σf1(ζ)] dζ = 1, (3.23)

which at O(σ) yields

X1 = −
∫ 1

0
f1(ζ) dζ∫ 1

0
f0(ζ) dζ

. (3.24)

Figure 4 shows the correction to the front position for waning inflow rate (α = 0.5),
constant inflow rate (α = 1), waxing inflow rate (α = 1.5) and very waxing inflow rate
(α = 2.5). The case α = 2 is not shown since the correction is null. The smallest correction
is for waxing inflow rates, with minimum effects for shear-thickening fluids, while for low
values of α, the corrections are minor for shear-thinning fluids. The first order correction
term may be valid for a limited time, as shown in Figure 4a for shear-thickening and
Newtonian fluids with κ = 0.05; a divergence with the first order approximation solution
appears for t < 10 and t < 20, respectively. Since the critical time is tc ≈ 100 and
tc ≈ 400 for the two cases, we conclude that the limiting factor is the number of terms
in the expansion. An extension of the range of validity can be achieved by increasing the
number of these terms (see, e.g., Hogg et al. 2000).

Figure 5 shows the profiles of the current at t = 5 for constant volume (α = 0), and
constant inflow rate (α = 1). The case α = 0, κ = 0 has a closed-form solution (Ciriello
et al. 2016) and is a parabola for a Newtonian fluid (n = 1). The presence of yield stress
reduces the front position and increases the average steepness of the profile, without
other significant variations as long as κ is a small quantity.

4. 2D flow in a porous medium

The case of flow through a porous medium requires the formulation of the equivalent
Darcy’s law for a HB fluid, which may be written (Chevalier et al. 2013)

d∇p = χτp + βµ0

( ū
d

)n
, (4.1)

where d is the diameter of grains, ∇p the pressure gradient, τp the yield stress, µ0 the
consistency index, n the flow behaviour index, ū the darcian velocity, and χ and β are
coefficients. The coefficient χ is governed by the maximum width of the widest path of
the flowing current, the coefficient β depends on pore size distribution and structure.
Their values should, in general, be determined experimentally, and theoretically they
are related to the distribution of the second invariant of the strain tensor (Chevalier
et al. 2014). Here, a pragmatic approach is adopted, and the values reported in Chevalier
et al. (2013), χ = 5.5 and β = 85 are used; the diameter of the glass beads employed
in our experiments falls in the range adopted in their experiments (from 0.26 to 2 mm).
Equation (4.1) indicates that the flow is possible only if |∂p/∂x| > χτp/d, otherwise a
plug is formed. Indeed the experiments indicate that percolation takes place even at a
very low pressure gradient, with a progressive increment of the flow rate for increasing
pressure drop. Chevalier et al. (2014) have shown that even at very low darcian velocity
values, the region of fluid at rest is negligible and the velocity density distribution is
similar to that obtained for a Newtonian fluid.

Under the relevant shallow water approximation, the pressure gradient becomes ∂p/∂x =
∆ρ g (∂h/∂x); inverting equation (4.1), and under the constraint |∂h/∂x| > κp, the av-
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Figure 4. The effects of the first order correction on the front position, Hele–Shaw cell. (a)
α = 0.5, (b) α = 1, (c) α = 1.5, (d) α = 2.5. Thick, mid and thin curves refer to n = 1.5, n = 1,
and n = 0.5, respectively. Continuous, dashed and dot–dashed curves refer to κ = 0 (power–law
fluid), κ = 0.01, and κ = 0.05, respectively. The time decreasing curves, in gray, are unphysical.
Variables are non dimensional.

erage velocity is equal to

ū = −sgn

(
∂h

∂x

)
d(n+1)/n

(
∆ρ g

85µ0

)1/n
(

1− κp
∣∣∣∣∂h∂x

∣∣∣∣−1
)1/n ∣∣∣∣∂h∂x

∣∣∣∣1/n , (4.2)

where κp = 5.5τp/(d∆ρ g). Inserting the average velocity in the local mass conservation
yields for ∂h/∂x < 0

∂h

∂t
= −d

(n+1)/n

φ

(
∆ρ g

85µ0

)1/n
∂

∂x

h ∣∣∣∣∂h∂x
∣∣∣∣1/n

(
1− κp

∣∣∣∣∂h∂x
∣∣∣∣−1
)1/n

 , (4.3)

where φ is the porosity. Assuming again a current with time variable volume, the integral
mass conservation reads

Lyφ

∫ ∞
0

h(x, t)dx = Qtα. (4.4)
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Figure 5. The effects of the first order correction on the current profiles at time t = 5, Hele–Shaw
cell. (a) α = 0, (b) α = 1. Thick, mid and thin curves refer to n = 1.5, n = 1, and n = 0.5,
respectively. Continuous and dashed curves refer to κ = 0 (power–law fluid) and κ = 0.01,
respectively. Variables are non dimensional.

Upon introducing the velocity and length scales

u∗ =
d(n+1)/n

φ

(
∆ρ g

85µ0

)1/n

, (4.5)

x∗ =
d(n+1)/n

φ

(
Qφ

Lyd(2n+2)/n

)1/(2−α)(
85µ0

∆ρ g

)α/[n(2−α)]
, (4.6)

with the resulting time scale

t∗ =
x∗

u∗
=

(
Qφ

Lyd(2n+2)/n

)1/(2−α)(
85µ0

∆ρ g

)2/[n(2−α)]

, (4.7)

equations (4.3–4.4) may be written in non dimensional form as

∂h

∂t
= − ∂

∂x

h ∣∣∣∣∂h∂x
∣∣∣∣1/n

(
1− κp

∣∣∣∣∂h∂x
∣∣∣∣−1
)1/n

 , (4.8)

∫ ∞
0

h(x, t)dx = tα. (4.9)

As for the flow in the fracture, equations (4.8-4.9) admit a self similar solution only for
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α = 2, which breaks down the scales in equations(4.6–4.7). By defining an arbitrary time
scale t∗, the new velocity scale u∗ = (Q/Lyφ)1/2 and the coefficient

δp =

(
Lyd

(2n+2)/n

Qφ

)1/2(
∆ρ g

85µ0

)1/n

, (4.10)

which is the ratio between the velocity scale (4.5) and the new velocity scale, equation
(4.3) may be written in non dimensional form (the tilde is dropped) as

∂h

∂t
= −δp

∂

∂x

h ∣∣∣∣∂h∂x
∣∣∣∣1/n

(
1− κp

∣∣∣∣∂h∂x
∣∣∣∣−1
)1/n

 , (4.11)

while equation (4.4) becomes ∫ ∞
0

h(x, t)dx = t2. (4.12)

The self similar solution is again h = tf(η), η = x/t, and substituting into equation
(4.11) gives

f − ηf ′ = −δp

[
f |f ′|1/n

(
1− κp
|f ′|

)1/n
]′
. (4.13)

The system of equations (4.11–4.12) admits a solution f(η) = Ap(ηep − η), which upon
substitution yields

2

Ap
= δ2p(Ap − κp)2/n, Apη2ep = 2. (4.14)

For given values of κp and δp, it is possible to solve the first equation numerically in the
unknown Ap and then to compute ηep. The condition for flow requires that AP > κp.
The general case α 6= 2 can be treated with an expansion similar to that adopted for the
flow in a Hele–Shaw cell.

There are many conceptual and formal similarities between the equations arising in
the description of Hele–Shaw and 2D porous flows of a HB fluid, while the main point
of difference is the treatment of plug. While in a Hele–Shaw flow the presence of a plug
region is an explicit part of the model (possibly with wall slip), for a porous flow the
model predicts the cessation of the flow below a threshold within the entire body of
the granular medium. During the experiments described in the following, it was noted
that below a threshold value of the pressure gradient (∂h/∂x in our approximation), a
percolation develops and the flow never completely stops. This behaviour suggests that a
bi-viscous model, able to smooth the transition from pre- to post-yield behaviour, could
better interpret the experiments.

5. The experiments

In order to validate the theoretical model, two series of experiments were conducted
(i) in a Hele–Shaw cell with a small gap, simulating a fracture, and (ii) in the same cell
with a larger gap and filled with glass beads of uniform size, reproducing a 2D porous
medium. Figure 6 shows the experimental device and two different snapshots. The 75 cm
long cell was made of two parallel plates of transparent plastic, the gap width between
which could be varied as necessary. In order to limit slip for the experiments without
glass beads, a commercial transparent anti–slip tape was used to line the inside of the
plates. Fluid was injected with a syringe pump for the fracture tests, and with a vane
pump controlled by an inverter for the porous flow tests requiring higher flow rates.
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The HB fluids were obtained by mixing deionized water, Carbopol 980 (0.05% to
0.14%), ink, with subsequent neutralization by adding NaOH. The mass density was
measured with a hydrometer (STV3500/23 Salmoiraghi) or with a pycnometer, with an
accuracy of 1%.

The rheologic behaviour of the fluid was analysed in a parallel plate rheometer (Dy-
namic Shear Rheometer Anton Paar Physica MCR 101) conducting several different
tests, both static and dynamic, to evaluate the fluid behaviour index, the consistency
index and the yield stress. When dealing with non-Newtonian fluids, either Ostwald–de
Waele (power–law) or Herschel-Bulkley, the characterisation of the correct parameters
representing the rheological behaviour of the fluid can be challenging. However the final
aim of the experiments is clear, and that is to verify the proposed model by using inde-
pendent measurements of both the flow field characteristics (front position and current
thickness over time) and of the fluid rheometric parameters. Noteworthy, the models used
to describe the fluid rheology and obtain the rheometric parameters do not have a general
validity but are an approximation of the fluid behaviour in a limited shear range. Further-
more, none of the flow fields generated in the measuring instruments (mainly rheometers)
is perfectly viscometric. The problem of correctly estimating the rheometric parameters
is particularly significant for HB fluids, for which yield stress estimation (and definition)
is far from trivial. See the review paper by Nguyen & Boger (1992) for a discussion on
the topic and a description of the methodology adopted in our laboratory experiments.
Therefore in order to evaluate the accuracy of the measurements of the yield stress, we
carried out numerous additional experiments with different methods, broadly classified
as “direct” and “indirect” methods, see the further description in Appendix A.

The glass beads forming the porous medium had a nominal diameter of 3, 4 and
5 mm ±0.1 mm depending on the test. The profile of the current was detected with
either a stills camera (Canon EOS 3D, 3456 × 2304 pixels) operating at a rate of
0.5 frames s−1 or a high-resolution video camera (Canon Legria 1920×1080 pixels) oper-
ating at 25 frames s−1. The images were then post-processed with a proprietary software
package in order to be referenced to a lab coordinate system and for the boundary be-
tween the (dark) intruding current and the empty cell or the (light) porous medium to be
extracted and parameterised. With this set-up, the overall accuracy in detecting the pro-
file of the current was approximately 1 mm, whilst the uncertainty in measuring timings
was negligible. During all experiments, the natural packing prevented any movement of
the beads, as demonstrated by the images used for extracting the fluid interface.

Table 1 and Table 2 list the parameters for the two sets of experiments (fracture and 2D
porous medium) and four series with increasing concentration of Carbopol (labelled from
A to D, corresponding to 0.05%, 0.08%, 0.10%, and 0.14% concentration respectively).
Figure 7a shows the dimensionless front position of the currents versus time for thirteen
tests conducted in the fracture with three different HB fluids. The plotting variables have
been chosen to collapse all the experimental data into a single line. In order to separate
the results for the three different fluids, the experimental front position was multiplied
by 0.5 and 1.5 for experiments A and C, respectively. The uncertainty in the model and
experimental data was computed following the same procedure reported in Di Federico
et al. (2014), and is represented by the dashed lines and error bars corresponding to plus
or minus one standard deviation (STD) for the data. The front propagation is generally
linear for all tests, with some discrepancy at early times due to the effects of the injection
geometry and the poor adherence of the experiments to model assumptions. We recall
that the solution is an “intermediate asymptotic” to the general solution, and is valid
for times and distances from the boundaries large enough to forget the details of the
boundary (or initial) conditions but far enough from the ultimate asymptotic state of
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Figure 6. A sketch of the experimental rectangular channel. (a) Front view, (b) side view, (c)
a snapshot of the channel during Exp. B1 (the shaded area is the advancing current), and (d) a
snapshot of the channel filled with glass beads during Exp. A1 (the dark area is the advancing
current,the grey area is the porous medium not yet reached by the current).

Exp. Q Ly n µ0 τp ρ κ ẋN−exp ẋN−theor fluid
(cm3 s−2) (cm) (Pa sn) (Pa) (kg m−3) (×10−3) (cm s−1) (cm s−1)

B1 0.012 0.32 0.68 0.9 0.3 1000 19 0.55 0.54 Carb. 0.08%
B2 0.012 0.48 0.68 0.9 0.3 1000 13 0.53 0.54
B3 0.024 0.48 0.68 0.9 0.3 1000 13 0.71 0.71
B4 0.024 0.48 0.68 0.9 0.3 1000 13 0.73 0.71
C1 0.006 0.48 0.66 2.5 0.6 1000 30 0.29 0.28 Carb. 0.10%
C2 0.012 0.48 0.66 2.5 0.6 1000 30 0.37 0.37
C3 0.012 0.48 0.66 2.5 0.6 1000 30 0.38 0.36
C4 0.024 0.48 0.66 2.5 0.6 1000 30 0.46 0.48
C5 0.024 0.48 0.66 2.5 0.6 1000 30 0.53 0.48
D1 0.006 0.48 0.45 3.1 15.0 1000 637 0.16 0.18 Carb. 0.14%
D2 0.012 0.48 0.45 3.1 15.0 1000 637 0.22 0.22
D3 0.012 0.48 0.45 3.1 15.0 1000 637 0.23 0.23
D4 0.024 0.48 0.45 3.1 15.0 1000 637 0.31 0.30

Table 1. Parameters for the experiments in the fracture. The injected volume scales with t2.

the system. Hence, we expect that also for longer time the experimental results will
deviate from the self–similar solution.

Figure 7b shows the shape of the current at different times for Exp. B3. The normalized
profiles show a fairly good collapse to a single curve, even though the discrepancy between
experiments and theory becomes evident for η/ηe < 0.30 and near the front. This is due
to the disturbances at the inlet (the inflow is located near the bottom in the experiments,
while assumed to be evenly distributed along the vertical in the theory), to non–negligible
vertical velocities near the inlet (see Longo & Di Federico 2014), and to the bottom stress,
which becomes relevant at the tip of the current. The experimental profiles are similar
for all other tests.
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Figure 7. A comparison of theory with experiments for the fracture, showing (a) the front
position xN/ηe as a function of dimensionless time t for all tests. The three bold lines represent
the perfect agreement with theory for the three different fluids used in the experiments; (b) the
dimensionless profile of the current at different times for Exp. B3. The error bars refer to the
profile at t = 66 s and correspond to ± one STD, the bold straight line indicates the theoretical
profiles and the dashed lines are the confidence limits of the model. For clarity, in (a,b) one
point of every three is plotted.

Exp. Q α d Ly n µ0 τp ρ κp ẋN−exp ẋN−theor fluid
(cm3 s−2) (cm) (cm) (Pa sn) (Pa) (kg m−3) (×10−3) (cm s−1) (cm s−1)

A1 0.100 2 0.3 3 0.70 0.2 0.1 1000 19 0.76 0.72 Carb. 0.05%
A2 0.200 2 0.4 4 0.70 0.2 0.1 1000 14 1.06 1.00
B5 0.025 2 0.5 5 0.68 0.9 0.3 1000 34 0.23 0.23 Carb. 0.08%
C6 0.020 2 0.4 4 0.60 2.5 0.6 1000 84 0.17 0.16 Carb. 0.10%
C7 0.030 2 0.5 5 0.60 2.5 0.6 1000 67 0.17 0.17
C8 0.030 2 0.4 3 0.60 2.5 0.6 1000 84 0.17 0.17
A3 16.0 1.0 0.3 3 0.70 0.2 0.1 1000 18 Carb. 0.05%
A4 26.0 0.6 0.4 4 0.70 0.2 0.1 1000 14
B6 4.0 1.0 0.5 5 0.68 0.9 0.3 1000 30 Carb. 0.08%
B7 30.0 0.6 0.5 5 0.68 0.9 0.3 1000 30

Table 2. Parameters of the experiments in a porous medium, with volume ∝ tα. The
experimental and theoretical front speed is not constant for the last four experiments.

Figure 8a shows the front position for the six experiments conducted in a porous
medium with three different HB fluids. The profile was corrected for capillary effects
following the procedure outlined in Longo et al. (2013b). The front velocity shows a
fairly good agreement with the theoretical constant velocity, even though asymptotically
there are larger discrepancies due to the geometry of the current, with a very thin nose
affected by the bottom boundary effects. The experimental profiles of the current at
different times are shown in Figure 8b for Exp. A2. The profiles collapse to a single
curve, which is significantly affected by the disturbances at the inlet. The experimental
points are within the confidence limits of the theoretical models and show a clear linearity
for η > 0.5ηep. In order to also check the model for the asymptotic solution with α 6= 2,
some experiments were designed for constant (α = 1) and waning (α = 0.6) inflow
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Figure 8. A comparison of theory with experiments for 2D porous flow (rectangular channel
filled with glass beads). For caption see Figure 7. (b) refers to Exp. A2.

Figure 9. A comparison of theory (solid curves) with experiments (symbols) for the 2D porous
medium, showing xN as a function of dimensionless time t for all tests. The injected volume
scales with tα. Experimental parameters are listed in Table 2.

rate, with two different HB fluids and three different bead diameters (see the last four
experiments in Table 2). Figure 9 shows the experimental front position (symbols) and
the first order expansion of the self-similar solution (solid curves). The overlap in each
case is satisfactory, in particular for experiments at constant inflow rate.

6. Conclusions

A general model was developed for gravity-driven flows of Herschel–Bulkley (HB) fluids
in a narrow fracture or 2D porous media, extending existing formulations for Newtonian
and power-law fluids. For the special case of an inflow rate linearly time-increasing,
a self–similar solution was derived for both cases: the front of the current advances at
constant speed and with a linear profile. For the general case of power–law inflow rate, an
expansion of the self–similar solution valid for an Ostwald–de Waele fluid was developed,
in the limit κ � 1 or κp � 1, with these two parameters marking the deviation form
pure power-law behaviour. The expansion has a validity controlled by the value of α;
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hence, it is valid within a time interval limited by a critical time value, beyond which
either the approximation in deriving the differential equation, or the adopted expansion
become invalid.

The rheological parameters of the HB fluids have been measured with independent
tests, with two different rheometers and with both direct and indirect methods for the
yield stress. The results for the yield stress vary according to the different methods
adopted, however a single value of the yield stress (the lowest in the list of measured
values) has proven to correctly characterise all the experiments performed with the same
fluid in the Hele–Shaw cell and in the porous medium.

The experiments were mostly conducted with volume scaling in time as α = 2, with
some additional experiments conducted with α = 0.6 , 1. Each test shows a reasonable
agreement with the theory for flow in fractures and porous media, especially so for the
former. Deviations from the linear profile forecast for α = 2 occur near the inlet; in the 2D
porous medium, a dome develops near the inlet, followed by a profile in good agreement
with the theory. In all cases the theoretical prediction lies within the confidence limits
of the experimental data. These experimental results provide a verification of the flow
model for HB fluids in fractures and also a further verification of the extended Darcy’s
law proposed by Chevalier et al. (2013) for HB fluid flow in porous media. However the
existence of non–zero Darcy flow below the threshold pressure gradient requires further
fundamental experimental investigation.

An additional promising area of research suggested by our work is the interaction of rhe-
ologically complex fluids (described e.g. by the HB model) with spatial heterogeneity in
key problem parameters, using either a deterministic or stochastic approach. For fracture
flow, heterogeneity may be represented by a spatially variable aperture (Lavrov 2013), or
by obstructions, local contractions and expansions (Hewitt et al. 2016). For porous media
flow, spatial variability of permeability may be modelled using deterministic trends or
directly as a random field, using approaches and methods typical of stochastic hydrology.
We are currently working on these problems and plan to report on our efforts in the near
future.

Appendix A. Rheometry of the fluids

Most measurements were conducted with a parallel plate rheometer (Dynamic Shear
Rheometer Anton Paar Physica MCR 101, equipped with a moving plane plate of diam-
eter 25 mm, gap equal to 1mm in most cases), and with a strain-controlled rheometer
(coaxial cylinders Haake RT 10 RotoVisco, equipped with cup and rotor according to
DIN 53019, with internal radius equal to 19.36 mm and external radius equal to 21 mm).
In order to limit the slip, the surfaces of the cup and of the rotor were roughened with
strips of Sellotape, the surface of the plates were roughened with sand paper P-60 glued
on the smooth surface (see Carotenuto & Minale 2013, for an in depth analysis of the
effects of sandpaper on rheological measurements of Newtonian fluids). Additionally, in
order to prevent absorption, the sand paper was painted with transparent acrylic.

Figure A.1a shows the classical stress strain-rate experimental results obtained with
the coaxial cylinders rheometer, Figure A.1b shows similar results for the fluid 0.10%
obtained with the plane plate rheometer. The continuous curves represent the HB model
interpolation for the reduced series of experimental points, visualized with filled symbols.
The reduction of the sample is required partly due to the limits of accuracy of the in-
struments at very low shear-rate, partly as a consequence of the poor adaptation of the
model to the real rheological behaviour of the fluid. This is the simplest and most com-
mon procedure to estimate the yield stress, but the results depend on the cut-off value
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Figure A.1. (a) Experimental shear–stress shear–rate curves for three fluids Carbopol
980 0.08, 0.10, 0.14%. Measurements with the coaxial cylinders rheometer. (b) Experimental
shear–stress shear–rate curves for Carbopol 980 0.10%. Measurements with the plane plate
rheometer. The curves are the HB model interpolation for the reduced series of experimental
points, represented by the filled symbols.

of shear–rate used to select the reduced sample. For the present data, τp = 1.1, 2.9, 7 Pa
for measurements in the coaxial cylinders rheometer and for fluids with increasing con-
centration of Carbopol. For measurements taken with the parallel plate rheometer, the
yield stress for the mixture with 0.10% of Carbopol 980 is equal to 1.3 Pa. This method
of estimation of the yield stress is an indirect one.

A direct method is based on stress relaxation: the fluid is sheared reaching a specific
value of strain, then shearing stops and the shear stress requested to guarantee the
reached strain is recorded. Its asymptotic value is taken to be equal to the yield stress.

Figure A.2a shows the results for various strains in the fluid Carbopol 980 0.10%. The
asymptotic value lies in he range 0.6 − 1.0 Pa and is a function of the imposed strain;
it decays for increasing strain, since the degree of disturbances in the fluid controls the
late behaviour of the system. Figure A.2b shows the asymptotic shear stress for imposed
shear–rate. After an initial growth, the shear–stress reaches a plateau, up to a limiting
value which makes the transient state extremely long. The stress corresponding to the
minimum reached plateau is assumed as an upper limit of the yield stress. For the 0.10%
Carbopol 980 fluid, τmin ≈ τp = 1.15 Pa.

Another method is called creep and recovery : a constant shear stress is applied in
steps and the creep is observed. If a more or less complete recovery is reached, then the
applied stress was below the yield stress and the continuum behaved as an elastic solid.
If a limited or null recovery is reached, then the applied stress was above the yield stress.

Figure A.3a shows strain-times curves for Carbopol 980 0.10%, with stress imposed
for 20 s (except for the curve relative to τ = 1 Pa), and a recovery for 30 s. Figure A.3a
shows the corresponding time evolution of apparent viscosity. The residual strain is equal
to 28, 32, 54, 85% for τ = 0.2, 0.5, 1, 1.5 Pa, respectively, and the yield stress is assumed
in the range [1− 1.5] Pa. The estimation is affected by a significant uncertainty, because
in the present experiments the residual deformation is monotonic with the imposed stress
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Figure A.2. Carbopol 980 0.10%.(a) Asymptotic stress at constant strain; (b) asymptotic
stress at constant strain–rate. The insets show the procedure adopted in testing.

Figure A.3. Creep-recovery method for the Carbopol 980 0.10%. (a) Strain-times curves, and
(b) corresponding apparent viscosity. The yield stress lies between τ = 1 Pa and τ = 1.5 Pa.
Measurements were conducted with the parallel plate rheometer; the inset shows the procedure
adopted for testing.

and no abrupt increasing is observed. For other fluids, the behaviour is much sharper
(Magnin & Piau 1987).

The yield stress was also measured with a direct method based on the static stability of
a layer of fluid on an inclined plane (Uhlherr et al. 1984), by adopting the same device and
experimental technique detailed in Longo et al. (2016). The yield stress can be evaluated
by assuming that at the incipient motion the following balance holds:

τp = ρgh sin θc, (A 1)

where h is the thickness of the layer and θc the critical angle.
The incipient motion of the free surface, as detected with a particle image velocity
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Figure A.4. (a) A photo of the inclined plane and of the accessories used for a direct mea-
surement of the yield stress. The electronic level and the video camera are in the same frame of
the fluid layer; (b) the plots of the free surface velocity versus time for a mixture of Carbopol
980 (0.08% neutralized); (c) a mixture of Carbopol 980 (0.10% neutralized); (d) a mixture of
Carbopol 980 (0.14% neutralized). The solid lines indicate the fitted free surface velocity, the
vertical solid line indicates the assumed start of flow motion. The secondary horizontal axis in-
dicates the angle with respect to the horizontal, the secondary vertical axis indicates the average
shear rate obtained by dividing the free surface velocity and the starting thickness of the layer,
neglecting its reduction in time. The thickness of the layer was set to 0.3, 0.3 and 1 cm, for
Carbopol 980 0.08, 0.10, 0.14%, respectively.

algorithm applied to the images recorded by a videocamera, is assumed as indicator of
the sliding. Figure A.4 shows, for three different yield stress fluids, the experimental
apparatus and the plots of the free surface for increasing bottom inclination. The dots
represent the average velocity of the free surface, with dispersion due to vibrations and to
noise in the images. It is possible to detect a kink, enhanced by separately interpolating
the pre–motion and the post–motion experimental data with two different straight lines.
However, a creep motion is detected near the critical angle, presumably due to the elastic
deformation of the layer of material before flowing.

The overall uncertainty, computed as

dτp
τp

=
dρ

ρ
+

dh

h
+

dθc
tan θc

, (A 2)

has a significant contribution due to the uncertainty on the thickness of the layer h. By
assuming that the critical angle is detected within the uncertainty of the electronic level
(±0.1 deg), and assuming an uncertainty in the thickness measurements equal to ±0.3 cm,
the estimated yield stress values are τp = 1.0± 0.1 Pa, τp = 1.2± 0.2 Pa, τp = 26± 1 Pa
for Carbopol 980 0.08, 0.10, 0.14%, respectively. However, the true uncertainty is larger
than our estimate, due to the intrinsic uncertainty in the definition of the critical angle.

Another method to estimate the yield stress is based on the dynamic behaviour at
small deformation, as detected with oscillatory shear tests, with the measurement of the
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Figure A.5. (a) Evolution of the storage modulus G′ (red dashed lines) and of loss modulus
G′′ (gray continuous lines) for mixture Carbopol 980 0.10% as a function of stress for different
frequencies. The symbols are the intersection between the moduli (cross over), conventionally
representing the flow point; (b) cross over stress as a function of the frequency. Measurements
with parallel plate rheometer, gap 1 mm, T = 298 K.

Figure A.6. Sweep experiments of Carbopol 980 0.10% at frequency ω = 0.1 Hz. The yield
stress is evaluated as the abscissa of the intersection of the two straight lines interpolating the
storage modulus G′ in the left and in the right sides of the cross over, respectively.

storage modulus G′(ω) and the loss modulus G′′(ω), representative of the elastic and of
the viscous behaviour of the continuum, respectively. Applying a sinusoidal strain γ =
γ0 sinωt with small amplitude γ0 and frequency ω, the time varying stress is measured
τ = τ0 sin(ω + δt), where δ is a phase shift. The complex modulus G∗(ω) ≡ τ/γ =
G′(ω)+iG′′(ω) has the two components, G′ and G′′, representative of elasticity (perfect if
G′′ = 0, δ = 0) and of viscosity (perfect if G′ = 0, δ = 90◦), respectively. The yield stress
can be estimated as the intercept of the tangent of the storage modulus considering the
domains before after the cross over (De Graef et al. 2011). Figure A.5a shows the moduli
measured at different frequencies for Carbopol 980 0.10%, while Figure A.5b shows the
cross over variation with the frequency ω. Selecting the lowest frequency measurements
(ω = 0.1 s−1), the yield stress can be estimated as shown in Figure A.6, obtaining τy ≈
0.6 Pa.

Table 3 lists the estimated yield stress adopting the different techniques for the fluid
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Method see: τp
(Pa)

Extrapolation rheom. 1 Fig. A.1a 2.9
Extrapolation rheom. 2 Fig. A.1b 1.3
Stress relaxation

Fig. A.2a 0.6–1
(constant strain)
Asymptotic stress

Fig. A.2b < 1.1
(constant strain–rate)
Creep–recovery Fig. A.3 1–1.5
Inclined plane Fig. A.4c 1.2
Dynamic oscillatory Fig. A.6 0.6

Table 3. Synthesis of the yield stress estimations for Carbopol 980 0.10%. Rheom. 1 refers to
the coaxial cylinders rheometer, rheom. 2 refers to the parallel plate rheometer.

Carbopol 980 0.10%. The results indicate the dispersion of the data and that measure-
ments can give at most a range of variation of the yield stress to be used for the verification
of the theoretical models.
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