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Abstract Interior point methods provide an attractive class of approaches for solving linear, quadratic
and nonlinear programming problems, due to their excellent efficiency and wide applicability. In this
paper, we consider PDE-constrained optimization problems with bound constraints on the state and
control variables, and their representation on the discrete level as quadratic programming problems. To
tackle complex problems and achieve high accuracy in the solution, one is required to solve matrix systems
of huge scale resulting from Newton iteration, and hence fast and robust methods for these systems are
required. We present preconditioned iterative techniques for solving a number of these problems using
Krylov subspace methods, considering in what circumstances one may predict rapid convergence of the
solvers in theory, as well as the solutions observed from practical computations.

Keywords Interior point methods · PDE-constrained optimization · Krylov subspace methods ·
Preconditioning · Schur complement

PACS 65F08 · 65F10 · 65F50 · 76D05 · 76D55 · 93C20

1 Introduction

We are concerned with optimization problems which involve partial differential equations. Problems
of this type appear for example in numerous applications of optimal control, where one wishes state
variables to be close to a certain desired form and hopes to achieve it by an appropriate choice of control
variables. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded open domain with sufficiently smooth boundary ∂Ω.
An optimal control problem with constraints may be written as:

min
y∈Y, u∈U

J (y, u) s.t. c(y, u) = 0, (1)

where the state y and control u belong to appropriate function spaces Y and U , respectively. The objective
J : Y × U 7→ R and the constraints c : Y × U 7→ Λ, where Λ is another function space, are assumed to
satisfy certain smoothness conditions to guarantee the existence and uniqueness of the solution. Many
real-life problems may be modelled as optimal control problems (1). There exists rich literature on the
subject which addresses specific applications and provides theoretical background to such problems. The
rigorous analysis of optimal control problems requires the use of nontrivial function spaces and involves
sophisticated techniques from functional analysis. We refer the interested reader to excellent books on
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the subject [22,24,45], while for simplicity in this paper we assume that Y , U and Λ are all equal to
L2(Ω).

The objective function J may take many different forms but it is often given as:

J (y, u) =
1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω), (2)

which corresponds to balancing between two goals: keeping the state y close to a certain desired form
ŷ, and minimizing the “energy” of the applied control u. The constraints c in (1) involve some PDE
operator(s), and restrict y and u to Ω and its boundary ∂Ω. Additionally they may include simple
bounds on y and u. In Section 3 we will introduce two particular classes of optimal control problems:
time-invariant and time-dependent PDE-constrained problems.

Computational techniques for PDE-constrained optimal control problems involve a discretization of
the underlying PDE. There are two options for doing this, and the typical paradigm in PDE-constrained
optimization literature is for both approaches to solve the problem in a similar manner. The first is to
apply an optimize-then-discretize method, involving constructing continuous optimality conditions, and
then discretizing these. However we find that this approach is inconvenient when considering the resulting
discrete systems for the problems considered in this paper, specifically with regard to the reduction of
the dimension of the system, as well as symmetry of the matrix involved. The alternative method,
which we apply in this paper, is the discretize-then-optimize approach: here a discrete cost functional is
constructed and discretized constraints are formulated. Then optimality conditions are derived for such
(possibly huge) problems. Our motivation for using this approach originates from an observation that
for a particular (quadratic) cost functional (2) the discretized PDE-constrained problem takes the form
of a quadratic optimization problem for linear PDEs. The use of fine discretization leads to a substantial
size of the resulting optimization problem. Therefore we will apply an interior point algorithm to solve
it.

Interior point methods (IPMs) are very well-suited to solving quadratic optimization problems and
they excel when sizes of problems grow large [17,52], which makes them perfect candidates for discretized
PDE-constrained optimal control problems. The use of IPMs in PDE-constrained optimization is not
new. There have been several developments which address theoretical aspects, including the functional
analysis viewpoint, and study the convergence properties of an interior point algorithm [46,49,51], and
many others which focus on the practical (computational) aspects. IPMs belong to a broad class of
methods which rely on the use of Newton methods to compute optimizing directions. There have been
several successful attempts to use Newton-based approaches in the PDE-constrained optimization context
[4,5,25,28]. The main computational challenge in these approaches is the solution of the linear system
which determines the Newton direction. For fine PDE discretizations such systems quickly get very
large. Additionally, when IPMs are applied, the added interior point diagonal scaling matrices degrade
the conditioning of such systems [17] and make them numerically challenging. Direct methods for sparse
linear algebra [10] can handle the ill-conditioning well but struggle with excessive memory requirements
when problems get larger. Inexact interior point methods [16,18,50] overcome this difficulty by employing
iterative methods to solve the Newton equations.

Because of the unavoidable ill-conditioning of these equations the success of any iterative scheme
for their solution depends on the ability to design efficient preconditioners which can improve spectral
properties of linear systems. The development of such preconditioners is a very active research area.
Preconditioners for IPMs in PDE-constrained optimization exploit the vast experience gathered for
saddle point systems [2], but face an extra difficulty originating from the presence of IPM scaling. There
have already been several successful attempts to design preconditioners for such systems, see [1,3,18]
and the references therein.

In this paper, we propose a general methodology to design efficient preconditioners for such systems.
Our approach is derived from the matching strategy originally developed for a particular Poisson control
problem [37]. We adapt it to much more challenging circumstances of saddle point systems arising in IPMs
applied to solve the PDE-constrained optimal control problems. We briefly comment on the enjoyable
spectral properties of the preconditioned system, and provide computational results to demonstrate that
they work well in practice.

This paper is structured as follows. In Section 2 we briefly recall a few basic facts about interior point
methods for quadratic programming. In Section 3 we demonstrate how IPMs can be applied to PDE-
constrained optimization problems. In Section 4 we introduce the preconditioners proposed for problems
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originating from optimal control. We consider separately two different cases of time-independent and
time-dependent problems. In Section 5 we illustrate our findings with computational results and, finally,
in Section 6 we give our conclusions.

2 Interior point methods for quadratic programming

Within this paper, we are interested in the solution of quadratic programming (QP) problems. In their
most basic form, such problems may be written as

min
x

c>x +
1

2
x>Qx (3)

s.t. Ax = b,

x ≥ 0.

We consider the case where A ∈ Rm×n (m ≤ n) has full row rank, Q ∈ Rn×n is positive semidefinite,
x, c ∈ Rn, and b ∈ Rm. This formulation is frequently considered alongside its dual problem

max
y

b>y − 1

2
x>Qx

s.t. A>y + z−Qx = c,

y free, z ≥ 0,

where z ∈ Rn, and y ∈ Rm. We note that a subset of this setup is that of linear programming (LP)
problems, where Q = 0.

In this manuscript, we consider the solution of quadratic programming problems using interior point
methods [17]. The nonnegativity constraints x ≥ 0 are “replaced” with the logarithmic barrier penalty
function, and the Lagrangian associated with the barrier subproblem is formed:

Lµ(x,y ) = c>x +
1

2
x>Qx + y>(Ax− b)− µ

∑
j

log(xj).

Differentiating Lµ with respect to x and y and defining zj = µ/xj , ∀j, gives the first order optimality
conditions (or Karush-Kuhn-Tucker conditions):

Ax = b,

A>y + z−Qx = c,

xjzj = µ, j = 1, 2, . . . , n, (4)

(x, z) ≥ 0,

in which the standard complementarity condition for (3), that is xjzj = 0, ∀j, is replaced with the
perturbed complementarity condition xjzj = µ, ∀j. IPMs drive the barrier term µ to zero and gradually
reveal the activity of the primal variables xj and dual slacks zj . This is achieved by applying Newton’s
method to the system of (mildly) nonlinear equations (4)−Q A> I

A 0 0
Z 0 X

 δxδy
δz

 =

ξdξp
ξc

 , (5)

where δx, δy and δz denote Newton directions, ξp, ξd and ξc denote primal and dual infeasibilities and
the violation of complementarity conditions. X and Z denote diagonal matrices with elements of x and
z spread on the diagonals, respectively. By eliminating δz, the Newton system (5) is further reduced to
a saddle point form [

−Q−X−1Z A>

A 0

] [
δx
δy

]
=

[
ξd −X−1ξc

ξp

]
. (6)

Since for any j = 1, 2, . . . , n at least one of the variables xj and zj reaches zero at optimality, the elements
of the diagonal scaling matrix X−1Z added to the (1, 1)-block may significantly differ in magnitude: some
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of them go to zero while the others go to infinity. This feature of IPMs [17] is a challenge for any linear
equation solver applied to (6). We skip further details about IPMs and refer the interested reader to [17,
52]. We also highlight that y in this description relates to a dual variable, whereas for PDE-constrained
optimization the function y corresponds to a primal variable – we elect to use the standard notation
within the respective fields.

However, before moving on to PDE-constrained optimization, it is worth drawing the reader’s atten-
tion to the fact that, although in (3) we assume only the one-sided bound x ≥ 0, IPMs can also be easily
applied to variables with two-sided bounds:

xa ≤ x ≤ xb.

This requires introducing two nonnegative Lagrange multipliers associated with two inequalities. Later
on we will denote them as za and zb, respectively.

3 PDE-constrained optimization

We now wish to demonstrate how interior point methods may be applied to PDE-constrained optimiza-
tion problems. These are a crucial class of problems which may be used to model a range of applications
in science and industry, for example fluid flow, chemical and biological processes, shape optimization,
imaging problems, and mathematical finance, to name but a few. However the problems are often of
complex structure, and sophisticated techniques are frequently required to achieve accurate solutions for
the models being considered. We recommend the works [22,45], which provide an excellent introduction
to the field.

Let us first consider a time-independent linear PDE-constrained optimization problem with additional
bound constraints:

min
y,u

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) (7)

s.t. Ly = u, in Ω,

y = f, on ∂Ω,

ya ≤ y ≤ yb, a.e. in Ω,

ua ≤ u ≤ ub, a.e. in Ω.

Here y, ŷ, u denote the state, desired state and control variables, with L some PDE operator, and β a
positive regularization parameter. The problem is solved on domain Ω (with boundary ∂Ω), for given
functions f , ya, yb, ua, ub.

We will now apply the discretize-then-optimize approach to (7), commencing with the construction
of a Lagrangian on the discrete space. The alternative optimize-then-discretize method will guarantee an
accurate solution of the continuous first order optimality conditions, however when applied in conjunction
with interior point methods the resulting matrix systems are not necessarily symmetric, nor can they
be reduced to such low dimensions for these problems as the matrix systems illustrated later in this
section. For these reasons, we find it is advantageous to apply the discretize-then-optimize approach for
the interior point solution of PDE-constrained optimization problems – we highlight that this follows the
approach used in important literature on the field such as [5,28]. Provided reasonable choices are made
for the discretization of the problem, it is frequently observed that both methods lead to very similar
behaviour in the solutions, and indeed this paradigm has recently been used to derive discretization
schemes for PDE-constrained optimization (see [20], for instance).

We wish to construct a finite element discretization of the cost functional in (7): for the problems
considered in this paper it is beneficial to use equal order finite elements for state and control variables,
and observe that a discretized approximation of the cost functional is

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) ≈

1

2
y>My − y>d y +

1

2

∫
Ω

ŷ 2 dΩ︸ ︷︷ ︸
constant

+
β

2
u>Mu,
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where y, u are the discretized versions of y, u. The (symmetric) finite element mass matrix M contains
entries of the form [M ]ij =

∫
Ω
φiφj dΩ, where {φi} are the finite element basis functions used, and yd

contains entries of the form
∫
Ω
ŷφi dΩ.

We therefore write (7) on the discrete level as

min
y,u

1

2
y>My − y>d y +

β

2
u>Mu (8)

s.t. Ky −Mu = f ,

ya ≤ y ≤ yb,

ua ≤ u ≤ ub,

with f , ya, yb, ua, ub the discrete versions of f , ya, yb, ua, ub. The matrix K depends on the PDE operator
L considered: for example when a Poisson control problem (with L = −∇2) is examined, K denotes a
finite element stiffness matrix with entries [K]ij =

∫
Ω
∇φi·∇φj dΩ. Alternatively for convection-diffusion

control problems (with L = −ν∇2+(~w·∇), and without stabilization applied within the solution method),
K contains a sum of diffusion and convection terms with [K]ij =

∫
Ω

(
ν∇φi · ∇φj + (~w · ∇φj)φi

)
dΩ.

We observe that, using our equal order finite element method, the matrices M,K ∈ RN×N , where N
denotes the number of finite element nodes used, and furthermore that y,u ∈ RN .

It can be easily seen that the problem statement (8) is in the form of the quadratic programming
problem (3), with

x =

[
y
u

]
, Q =

[
M 0
0 βM

]
, A =

[
K −M

]
,

c =

[
−yd
0

]
, xa =

[
ya
ua

]
, xb =

[
yb
ub

]
.

It should be highlighted that, as there has been relatively little previous research on interior point
methods for PDE-constrained optimization, there are a number of theoretical considerations that one
should account for. As discussed in the paper [46], the majority of the theory available for primal-dual
interior point methods is based on finite-dimensional mathematical programming, as opposed to the
function space setting of optimal control problems. The authors then proceed to carry out a global
and local convergence analysis in the L∞ and Lq (for q < ∞) settings. It is also important to note
that the regularity properties of the optimal state and control are different, which as highlighted in
[5] is a crucial feature of the continuous (infinite dimensional) problem which tends to be overlooked
when moving to a discretized setting. It is essential to recognise the differences between the continuous
formulations involving control constraints and state constraints [5,46], in particular the greater scope for
a rigorous analysis of the control constrained problem, as well as the possibility of generating provably
mesh-independent algorithms (including interior point methods) for problems with control constraints,
in constrast to problems with state constraints [5]. As the main objective of this paper is to demonstrate
the possibility of solving large scale linear systems that arise from interior point methods, we focus for
the most part on the challenges faced on the discrete level, however it is crucial to also be aware of
the issues present when examining the associated infinite dimensional problem, and in particular the
implications of the discretization strategy employed.

In the next section we consider interior point methods for solving problems of structure (8), for a
range of operators L and all β > 0. Although there has at this point been relatively little research into
such strategies, we highlight that the paper [46] considers the numerical solution of problems of this
type with control constraints only, and [1] derives effective preconditioners for large values of β and
Ly = −∇2y + y. We also point to the development of solvers of different forms to those presented in
this paper: in [18] reduced-space preconditioners are considered for optimal control problems, and in [9]
multigrid methods are discussed for a class of control problems.

3.1 Newton iteration

We now wish to derive the equations arising from a Newton iteration applied to the (nonlinear) problem
(7). Let us define

J
(
y,u

)
=

1

2
y>My − y>d y +

β

2
u>Mu

5



to be the discrete functional which we wish to minimize. Applying the discretized version of the PDE
constraint, alongside a barrier function for the bound constraints as in the previous section, leads to the
Lagrangian

Lµ
(
y,u,λ

)
= J

(
y,u

)
+ λ>(Ky −Mu− f)

− µ
∑
j

log
(
yj − ya,j

)
− µ

∑
j

log
(
yb,j − yj

)
− µ

∑
j

log
(
uj − ua,j

)
− µ

∑
j

log
(
ub,j − uj

)
,

of which we wish to find the stationary point(s). Here λ denotes the discretized adjoint variable (or
Lagrange multiplier), yj , ya,j , yb,j , uj , ua,j , ub,j denote the j-th entries of y, ya, yb, u, ua, ub, and µ is
the barrier parameter used.

Differentiating Lµ with respect to y, u and λ gives the first order optimality conditions (or Karush-
Kuhn-Tucker conditions):

My − yd +K>λ− zy,a + zy,b = 0, (9)

βMu−Mλ− zu,a + zu,b = 0, (10)

Ky −Mu− f = 0, (11)

where the j-th entries of zy,a, zy,b, zu,a, zu,b are defined as follows

(zy,a)j =
µ

yj − ya,j
, (zy,b)j =

µ

yb,j − yj
, (zu,a)j =

µ

uj − ua,j
, (zu,b)j =

µ

ub,j − uj
. (12)

Note that, by construction, the following bound constraints apply for the Lagrange multipliers enforcing
the constraints on y and u:

zy,a ≥ 0, zy,b ≥ 0, zu,a ≥ 0, zu,b ≥ 0.

Applying a Newton iteration to (9)–(12) gives, at each Newton step,

Mδy +K>δλ− δzy,a + δzy,b = yd −My∗ −K>λ∗ + z∗y,a − z∗y,b, (13)

βMδu−Mδλ− δzu,a + δzu,b = − βMu∗ +Mλ∗ + z∗u,a − z∗u,b, (14)

Kδy −Mδu = f −Ky∗ +Mu∗, (15)

(y∗ − ya) ◦ δzy,a + z∗y,a ◦ δy = µe− (y∗ − ya) ◦ z∗y,a, (16)

(yb − y∗) ◦ δzy,b − z∗y,b ◦ δy = µe− (yb − y∗) ◦ z∗y,b, (17)

(u∗ − ua) ◦ δzu,a + z∗u,a ◦ δu = µe− (u∗ − ua) ◦ z∗u,a, (18)

(ub − u∗) ◦ δzu,b − z∗u,b ◦ δu = µe− (ub − u∗) ◦ z∗u,b. (19)

Here, y∗, u∗, λ∗, z∗y,a, z∗y,b, z∗u,a, z∗u,b denote the most recent Newton iterates for y, u, λ, zy,a, zy,b,
zu,a, zu,b, with δy, δu, δλ, δzy,a, δzy,b, δzu,a, δzu,b the Newton updates, e defines the vector of ones of
appropriate dimension, and ◦ relates to the multiplication componentwise of two vectors.

In matrix form, (13)–(19) read

M 0 K> −I I 0 0
0 βM −M 0 0 −I I
K −M 0 0 0 0 0
Zy,a 0 0 Y − Ya 0 0 0
−Zy,b 0 0 0 Yb − Y 0 0

0 Zu,a 0 0 0 U − Ua 0
0 −Zu,b 0 0 0 0 Ub − U





δy
δu
δλ
δzy,a
δzy,b
δzu,a
δzu,b


=



yd −My∗ −K>λ∗ + z∗y,a − z∗y,b
−βMu∗ +Mλ∗ + z∗u,a − z∗u,b

f −Ky∗ +Mu∗

µe− (y∗ − ya) ◦ z∗y,a
µe− (yb − y∗) ◦ z∗y,b
µe− (u∗ − ua) ◦ z∗u,a
µe− (ub − u∗) ◦ z∗u,b


,

where Y , U , Zy,a, Zy,b, Zu,a, Zu,b are diagonal matrices, with the most recent iterates for y, u, zy,a, zy,b,
zu,a, zu,b appearing on the diagonal entries. Similarly, the matrices Ya, Yb, Ua, Ub are diagonal matrices
corresponding to ya, yb, ua, ub.
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Now, we may write that fourth, fifth, sixth and seventh rows lead to

δzy,a = − (Y − Ya)−1Zy,aδy − Zy,a + µ(Y − Ya)−1e, (20)

δzy,b = (Yb − Y )−1Zy,bδy − Zy,b + µ(Yb − Y )−1e, (21)

δzu,a = − (U − Ua)−1Zu,aδu− Zu,a + µ(U − Ua)−1e, (22)

δzu,b = (Ub − U)−1Zu,bδu− Zu,b + µ(Ub − U)−1e, (23)

whereupon we may consider instead the solution of the reduced systemM +Dy 0 K>

0 βM +Du −M
K −M 0

 δyδu
δλ

 =

µ(Y − Ya)−1e− µ(Yb − Y )−1e + yd −My∗ −K>λ∗
µ(U − Ua)−1e− µ(Ub − U)−1e− βMu∗ +Mλ∗

f −Ky∗ +Mu∗

 , (24)

where

Dy = (Y − Ya)−1Zy,a + (Yb − Y )−1Zy,b, (25)

Du = (U − Ua)−1Zu,a + (Ub − U)−1Zu,b. (26)

The conditions written in (24) are applied, alongside the imposition of (20)–(23), at each Newton itera-
tion.

Note that, due to the fact that state and control bounds are enforced as strict inequalities at each
Newton step, the diagonal matrices Dy and Du are positive definite.

Of course, it is perfectly natural to consider a problem with only state constraints or only control
constraints (or indeed only lower or upper bound constraints). For such cases we may follow exactly the
same working to obtain a matrix system of the form (24), removing individual matrices corresponding
to constraints that we do not apply.

3.2 Algorithm

We now present the structure of the interior point algorithm, adapted from the paper [17], that we apply
to the problems considered in this paper. The essence of the method is to traverse the interior of the
feasible region where solutions may arise – we do this by applying a relaxed Newton iteration, reducing
the barrier parameter by a factor σ at each Newton step. Having computed the Newton updates δy,
δu, δλ, δzy,a, δzy,b, δzu,a, δzu,b, we make a step in this direction that also guarantees that the strict
bounds are enforced at each iteration. Upon convergence the iterates approach the true solution of the
optimization problem, with the additional state and control constraints automatically satisfied.

Let us now consider appropriate stopping criteria for the method. Two natural requirements are for
the norms of the primal and dual infeasibilities (at the k-th iteration)

ξkp = f −Kyk +Muk, ξkd =

[
yd −Myk −K>λk + zky,a − zky,b
−βMuk +Mλk + zku,a − zku,b

]
,

to be lower than some prescribed tolerances εp, εd, respectively. Additionally, we require the error in the
complementarity products

ξkc =


µe− (yk − ya) ◦ zky,a
µe− (yb − yk) ◦ zky,b
µe− (uk − ua) ◦ zku,a
µe− (ub − uk) ◦ zku,b

 , (27)

to fall below some specified tolerance εc.
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We present the algorithm that we apply – its structure is similar to the algorithm outlined in [17,
Section 2].

Interior Point Method for Quadratic Programming

Parameters

α0 = 0.995, step-size factor to boundary

σ ∈ (0, 1), barrier reduction parameter

εp, εd, εc, stopping tolerances,

Interior point method stops when
∥∥ξkp∥∥ ≤ εp, ∥∥ξkd∥∥ ≤ εd, ∥∥ξkc∥∥ ≤ εc

Initialize IPM

Initial guesses for y0, u0, λ0, z0y,a, z
0
y,b, z

0
u,a, z

0
u,b

Barrier parameter µ0

Primal infeasibility ξ0p = f −Ky0 +Mu0

Dual infeasibility ξ0d =

[
yd −My0 −K>λ0 + z0y,a − z0y,b
−βMu0 +Mλ0 + z0u,a − z0u,b

]
Complementarity products ξ0c , as in (27) with k = 0

Interior Point Method

while
(∥∥ξkp∥∥ > εp or

∥∥ξkd∥∥ > εd or
∥∥ξkc∥∥ > εc

)
Reduce barrier parameter µk+1 = σµk

Solve Newton system (24) for primal-dual Newton direction δy, δu, δλ

Use (20)–(23) to find δzy,a, δzy,b, δzu,a, δzu,b

Find αP , αD s.t. bound constraints on primal and dual variables hold

Set αP = α0αP , αD = α0αD

Make step: yk+1 = yk + αP δy, u
k+1 = uk + αP δu, λ

k+1 = λk + αDδλ

zk+1
y,a = zky,a + αDδzy,a, z

k+1
y,b = zky,b + αDδzy,b

zk+1
u,a = zku,a + αDδzu,a, z

k+1
u,b = zku,b + αDδzu,b

Update infeasibilities:

ξk+1
p = f −Kyk+1 +Muk+1,

ξk+1
d =

[
yd −Myk+1 −K>λk+1 + zk+1

y,a − zk+1
y,b

−βMuk+1 +Mλk+1 + zk+1
u,a − zk+1

u,b

]
Compute error of complementarity products as in (27)

Set iteration number k = k + 1

end

It is clear from the presentation of this method that the dominant computational work arises from
the solution of Newton system (24). It is therefore crucial to construct fast and robust solvers for this
system, and this is what we focus on in Section 4.

3.3 Time-dependent problems

It is also important to be able to handle time-dependent problems using this methodology, due to
the complexity and practical utility of such setups. To provide a brief illustration of how this may be
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accomplished, let us consider the time-dependent problem:

min
y,u

1

2

∫ T

0

∫
Ω

(y − ŷ)2 dΩdt+
β

2

∫ T

0

∫
Ω

u2 dΩdt

s.t. yt + Ly = u, in Ω × (0, T ],

y = f, on ∂Ω × (0, T ],

y = y0, at t = 0,

ya ≤ y ≤ yb, a.e. in Ω × (0, T ],

ua ≤ u ≤ ub, a.e. in Ω × (0, T ].

The state, control and adjoint variables are now solved in a space-time domain Ω × (0, T ], with L the
time-independent component of the PDE operator.

As in [35,44] for heat equation control problems, we may apply a discretize-then-optimize approach,
using the trapezoidal rule to approximate the integrals within the cost functional, and the backward
Euler method to account for the time derivative. We thus rewrite the problem in the discrete setting as
follows:

min
y,u

τ

2
y>M1/2y − τy>d,Ty +

βτ

2
u>M1/2u

s.t. Ky − τMu = fT ,

ya ≤ y ≤ yb,

ua ≤ u ≤ ub.

Here the matrix M1/2 = blkdiag( 1
2M,M, ...,M, 12M), M = blkdiag(M, ...,M), and

K =


M + τK
−M M + τK

. . .
. . .

−M M + τK
−M M + τK

 , yd,T =


1
2yd,1
yd,2

...
yd,Nt−1
1
2yd,Nt

 , fT =


My0 + f

f
...
f
f

 ,

where K corresponds to the time-independent part of the PDE operator, and τ denotes the (constant)
time-step taken. The vectors yd,i relate to the values of ŷ at the i-th time-step, and y0 is the vector
representation of y0. We denote by Nt := T

τ the number of time-steps taken.
We apply Newton iteration to the discrete optimality conditions, in an analogous way to the time-

independent problem. This yields the matrix system

τM1/2 0 K> −I I 0 0
0 βτM1/2 −τM 0 0 −I I
K −τM 0 0 0 0 0
Zy,a 0 0 Y − Ya 0 0 0
−Zy,b 0 0 0 Yb − Y 0 0

0 Zu,a 0 0 0 U − Ua 0
0 −Zu,b 0 0 0 0 Ub − U





δy
δu
δλ
δzy,a
δzy,b
δzu,a
δzu,b


(28)

=



τyd,T − τM1/2y
∗ −K>λ∗ + z∗y,a − z∗y,b

−βτM1/2u
∗ + τMλ∗ + z∗u,a − z∗u,b

fT −Ky∗ + τMu∗

µe− (y∗ − ya) ◦ z∗y,a
µe− (yb − y∗) ◦ z∗y,b
µe− (u∗ − ua) ◦ z∗u,a
µe− (ub − u∗) ◦ z∗u,b


,

with zya , zyb , zua , zub
the same as for the time-independent setting, except now measured over all points

in space and time.
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Reducing (28) as for the time-independent case gives a block matrix system τM1/2 +Dy 0 K>
0 βτM1/2 +Du −τM
K −τM 0

 δyδu
δλ

 (29)

=

µ(Y − Ya)−1e− µ(Yb − Y )−1e + τyd,T − τM1/2y
∗ −K>λ∗

µ(U − Ua)−1e− µ(Ub − U)−1e− βτM1/2u
∗ + τMλ∗

fT −Ky∗ + τMu∗

 ,
with Dy, Du analogous to Dy, Du, as defined in (25), (26), except with the quantities measured within
the entire space-time domain.

4 Preconditioning for the Newton system

For the matrix systems considered in this paper, particularly those arising from time-dependent problems,
great care must be taken when seeking an appropriate scheme for obtaining an accurate solution. The
dimensions of these systems mean that a direct method is often infeasible, so we find that the natural
approach is to develop preconditioned Krylov subspace solvers.

When seeking preconditioners for such methods, we exploit the fact that the matrix systems for the
PDE-constrained optimization problems are of saddle point form:[

Φ Ψ>

Ψ Θ

]
︸ ︷︷ ︸
A

[
x1

x2

]
=

[
b1

b2

]
. (30)

Here Φ ∈ Rn×n, Ψ ∈ Rm×n and Θ ∈ Rm×m (with m ≤ n, as in Section 2). Further Φ and Θ are symmetric
matrices, meaning that A is itself symmetric, and all of the matrices are sparse for the finite element
method used. We recommend [2] for a thorough overview of saddle point systems and their numerical
properties.

The study of preconditioners for systems of this form is a well-established subject area: indeed it is
known that two ‘ideal’ preconditioners are given by

PD =

[
Φ 0
0 S

]
, PT =

[
Φ 0
Ψ −S

]
,

where S := −Θ + ΨΦ−1ΨT defines the (negative) Schur complement of A. It can be shown [23,26,29]
that the eigenvalues of the preconditioned systems are given by

λ
(
P−1D A

)
∈
{

1,
1

2
(1±

√
5)

}
, if Θ = 0,

λ
(
P−1T A

)
∈ {1} , generally,

provided that these systems are invertible.
In practice, of course, one would not wish to invert Φ and S exactly within a preconditioner, so

the main challenge is to devise effective approximations Φ̂ and Ŝ which can be applied within a block
diagonal or block triangular preconditioner of the form

P =

[
Φ̂ 0

0 Ŝ

]
or

[
Φ̂ 0

Ψ −Ŝ

]
. (31)

Such preconditioners are very often found to be extremely potent in practice, and in many cases one can
prove their effectiveness as well (we discuss this further in Section 4.1).

A major objective within the remainder of this paper is to develop effective representations of the
(1, 1)-block Φ and Schur complement S for matrix systems arising from interior point solvers.

10



4.1 Time-independent problems

We now wish to apply saddle point theory to matrix systems arising from time-independent problems.
So consider the matrix system (24), for instance in the case where the matrix K arises from a Laplacian
operator (considered for Poisson control) or convection-diffusion operator. This system is of saddle point
form (30), with

Φ =

[
M +Dy 0

0 βM +Du

]
, Ψ =

[
K −M

]
, Θ =

[
0
]
.

Let us consider approximating the (1, 1)-block and Schur complement of this matrix system. For this
problem M is a positive definite matrix, with positive diagonal entries, and the same applies to K in the
case of Poisson control problems.

We now highlight that mass matrices may in fact be well approximated by their diagonal: for instance,
in the case of Q1 mass matrices on a uniform two dimensional domain, the eigenvalues of [diag(M)]−1M
are all contained within the interval [14 ,

9
4 ] (see [47]). As Dy and Du are diagonal and positive definite,

one option for approximating Φ is hence to take

Φ̂ =

[
diag (M +Dy) 0

0 diag (βM +Du)

]
.

The effectiveness of the approximation may be measured in some sense by the eigenvalues of Φ̂−1Φ, which
may themselves be determined by the Rayleigh quotient

v>Φv

v>Φ̂v
=

v>1 (M +Dy)v1 + v>2 (βM +Du)v2

v>1
[
diag(M +Dy)

]
v1 + v>2

[
diag(βM +Du)

]
v2

=
v>1 Mv1 + βv>2 Mv2 + v>1 Dyv1 + v>2 Duv2

v>1
[
diag(M)

]
v1 + βv>2

[
diag(M)

]
v2 + v>1 Dyv1 + v>2 Duv2

∈

[
min

{
v>1 Mv1 + βv>2 Mv2

v>1
[
diag(M)

]
v1 + βv>2

[
diag(M)

]
v2

, 1

}
, (32)

max

{
v>1 Mv1 + βv>2 Mv2

v>1
[
diag(M)

]
v1 + βv>2

[
diag(M)

]
v2

, 1

}]
∈
[
min

{
λmin

([
diag(M)

]−1
M
)
, 1
}
,max

{
λmax

([
diag(M)

]−1
M
)
, 1
}]

,

where (32) follows from the fact that v>1 Dyv1 + v>2 Duv2 is non-negative. Here v =
[
v>1 , v

>
2

]> 6= 0,
with v1, v2 vectors of appropriate length, and λmin, λmax denote the smallest and largest eigenvalues of
a matrix. We therefore see that if [diag(M)]−1M is well-conditioned, then the same is true of Φ̂−1Φ.

As an alternative for our approximation Φ̂, one may apply a Chebyshev semi-iteration method [14,
15,48] to approximate the inverses of M +Dy and βM +Du. This is a slightly more expensive process
to approximate this component of the entire system (in general the matrices with the most complex
structure are K and K>), however due to the tight clustering of the eigenvalues of [diag(Φ)]−1Φ we find
greater accuracy in the results obtained.

The main task at this stage is to approximate the Schur complement

S = K(M +Dy)−1K> +M(βM +Du)−1M. (33)

The aim is to build an approximation such that the eigenvalues of the preconditioned Schur complement
are tightly clustered. We motivate our approximation based on a ‘matching’ strategy originally derived
in [37] for the Poisson control problem without bound constraints: for this particular problem, K is the
finite element stiffness matrix, and the matrices Dy = Du = 0. It was shown that by ‘capturing’ both
terms (KM−1K and 1

βM) of the Schur complement, one obtains the result

λ

([(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)]−1 [
KM−1K +

1

β
M

])
∈
[

1

2
, 1

]
, (34)
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independently of problem size, as well as the value of β.

Furthermore, it is possible to prove a lower bound of the preconditioned Schur complement for a very
general matrix form, as demonstrated below.

Theorem 1 Let SG and ŜG be the general matrices

SG = X̄X̄> + Ȳ Ȳ >, ŜG = (X̄ + Ȳ )(X̄ + Ȳ )>,

which we assume to be invertible, and with real X̄, Ȳ . Then the eigenvalues of Ŝ−1G SG are real, and
satisfy λ ≥ 1

2 .

Proof As SG and ŜG are invertible, they are symmetric positive definite by constuction. To examine the
spectrum of Ŝ−1G SG we therefore consider the Rayleigh quotient (for real v 6= 0):

R :=
v>SGv

v>ŜGv
=

χ>χ+ ω>ω

(χ+ ω)>(χ+ ω)
, χ = X̄>v, ω = Ȳ >v,

which is itself clearly real. By the invertibility of SG and ŜG, both numerator and denominator are
positive. Therefore

1

2
(χ− ω)>(χ− ω) ≥ 0 ⇔ χ>χ+ ω>ω ≥ 1

2
(χ+ ω)>(χ+ ω) ⇔ R ≥ 1

2
,

which gives the result. ut

For the Schur complement given by (33), the matrices X̄ = K(M + Dy)−1/2 and Ȳ = M(βM +
Du)−1/2, which we use below to derive our approximation. Note that to demonstrate an upper bound
for this problem, one would write

R = 1− 2ω>χ

(χ+ ω)>(χ+ ω)

= 1− 2v>M(βM +Du)−1/2(M +Dy)−1/2K>v

v>K(M +Dy)−1K>v + v>M(βM +Du)−1Mv + 2v>M(βM +Du)−1/2(M +Dy)−1/2K>v

≤ 1−min
v 6=0

{
2v>M(βM +Du)−1/2(M +Dy)−1/2K>v

v>
[
K(M +Dy)−1K> +M(βM +Du)−1M + 2M(βM +Du)−1/2(M +Dy)−1/2K>

]
v

}

= 1−min
v 6=0


(

1 +
v>
[
K(M +Dy)−1K> +M(βM +Du)−1M

]
v

2v>M(βM +Du)−1/2(M +Dy)−1/2K>v

)−1 , (35)

provided v /∈ ker(K>). We may therefore draw the following conclusions:

– The Rayleigh quotient R is certainly finite, as the case χ+ω = 0 is disallowed by the assumption of
invertibility of ŜG.

– Furthermore, depending on the (typically unknown) entries of Dy, the term v>K(M + Dy)−1K>v
should be large compared with the term v>M(βM + Du)−1/2(M + Dy)−1/2K>v arising in the
denominator above, due to the fact that K has larger eigenvalues than M in general. The term being
minimized in (35) will therefore not take a large negative value in general, and hence R will not
become excessively large.

– However, it is generally not possible to demonstrate a concrete upper bound unless X̄ and Ȳ have
structures which can be exploited. The reason for this is that the diagonal matrices Dy and Du that
determine the distribution of the eigenvalues can take any positive value (including arbitrarily small
or infinitely large values, in finite precision), depending on the behaviour of the Newton iterates, which
is impossible to control. In practice, we find it is rare for the largest eigenvalues of the preconditioned
Schur complement to exceed values of roughly 5− 10.
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– However, using the methodology of Theorem 1, results of this form have been demonstrated for
problems such as convection-diffusion control [36] and heat equation control [35] (without additional
bound constraints). We also highlight that, in [39,42], preconditioners for problems with bound con-
straints1, solved with active set Newton methods, are derived. In [39], parameter-independent bounds
are derived for a preconditioned Schur complement, however the additional requirement is imposed
that M is a lumped (i.e. diagonal) mass matrix. As we do not assume that the mass matrices are
lumped in this work, we may not exploit this method to obtain an upper eigenvalue bound.

– In general, the eigenvalues of Ŝ−1G SG are better clustered if the term X̄Ȳ > + Ȳ X̄> is positive semi-
definite, or ‘nearly’ positive semi-definite. The worst case would arise in the setting where χ ≈ −ω,
however for our problem the matrices X̄ and Ȳ do not relate closely to each other as the activities
in the state and control variables do not share many common features.

We now provide an indicative result for the situation which corresponds to the limiting case when
the barrier parameter µ → 0 and all state and control bounds are satisfied as strict inequalities, i.e. all
bounds remain inactive at the optimum. In such a case all Lagrange multipliers zy,a, zy,b, zu,a and zu,b
would take small values of order µ and so would the diagonal matrices Dy and Du defined by (25) and
(26), respectively. In the limit we would observe Dy = 0 and Du = 0.

Lemma 1 If Dy = Du = 0, and the matrix K + K> is positive semi-definite2, then the eigenvalues of

Ŝ−1G SG satisfy λ ≤ 1.

Proof From the above working, we have that

R = 1− 2ω>χ

(χ+ ω)>(χ+ ω)
= 1−

1√
β
v>(K +K>)v

v>KM−1K>v + 1
βv
>Mv + 1√

β
v>(K +K>)v

,

using the assumption that Dy = Du = 0. The denominator of the quotient above is clearly positive,
due to the positive definiteness of M , and the numerator is non-negative by the assumption of positive
semi-definiteness of K+K>. This automatically leads to the statement R ≤ 1, and hence the result. ut

The ‘matching strategy’ presented here guarantees a lower bound for the preconditioned Schur com-
plement of matrices of this form, provided some very weak assumptions hold3, and often results in
the largest eigenvalue being of moderate magnitude. We therefore wish to make use of this matching
approach to generate effective Schur complement approximations for the very general class of matrix
systems considered in this manuscript. In particular, we consider matrices K of general form (as opposed
to the stiffness matrix as in (34)), as well as diagonal matrices Dy and Du which can be extremely
ill-conditioned. Motivated by Theorem 1, we may therefore consider a matching strategy for the Schur
complement (33), by writing

Ŝ1 :=
(
K + M̂1

)
(M +Dy)−1

(
K + M̂1

)>
, (36)

where M̂1 is chosen such that the matrix M̂1(M + Dy)−1M̂ >
1 captures the second term of the exact

Schur complement (33). That is,

M̂1(M +Dy)−1M̂ >
1 ≈M(βM +Du)−1M.

This leads to the following requirement when selecting M̂1:

M̂1 ≈M(βM +Du)−1/2(M +Dy)1/2.

We take diagonal approximations where appropriate, in order to avoid having to construct square roots
of matrices, which would be extremely expensive computationally. That is, we take

M̂1 = M
[
diag(βM +Du)

]−1/2[
diag(M +Dy)

]1/2
. (37)

We now present a result concerning this choice for M̂1.

1 For the problems considered in [39], bounds for αyy + αuu are specified, where αy and αu are given constants.
2 This assumption holds for both Poisson control and convection-diffusion control problems, for instance.
3 The main assumption made is that ŜG is invertible. This certainly holds unless (X̄ + Ȳ )>v = 0 for some v, which in

our setting implies that M−1(βM +Du)1/2(M +Dy)−1/2K> has an eigenvalue exactly equal to −1. As the matrices M ,
Dy , Du and K are unlikely to interact closely at any Newton step, this is extremely unlikely to occur and our assumption
is therefore reasonable.
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Lemma 2 When the Schur complement (33) is approximated by Ŝ1, and with M̂1 given by (37), then,

provided K + M̂1 is invertible, the eigenvalues of Ŝ−11 S satisfy

λ ≥ 1

2
·

min
{
λmin

([
diag(M)

]−1
M
)
, 1
}

max
{
λmax

([
diag(M)

]−1
M
)
, 1
} .

In other words the eigenvalues are bounded below by a fixed constant, depending only on the finite element
discretization used.

Proof Selecting M̂1 as in (37) gives that the eigenvalues of Ŝ−11 S are determined by the Rayleigh quotient

R :=
v>Sv

v>Ŝ1v
=

χ>χ+ ω>ω

(χ+ γ)>(χ+ γ)
=

χ>χ+
ω>ω

γ>γ
γ>γ

(χ+ γ)>(χ+ γ)
,

where for this problem the vectors of interest are χ = (M +Dy)−1/2K>v, ω = (βM +Du)−1/2Mv and

γ = (M + Dy)−1/2 [diag(M +Dy)]
1/2

[diag(βM +Du)]
−1/2

Mv. As the numerator and denominator

both consist of positive quantities, using the assumption that K + M̂1 is invertible, with the possible
exception of χ>χ which may be zero, we can state that

R ≥ min

{
ω>ω

γ>γ
, 1

}
· χ>χ+ γ>γ

(χ+ γ)>(χ+ γ)
≥ 1

2
·min

{
ω>ω

γ>γ
, 1

}
,

by setting X̄ = K(M + Dy)−1/2 and Ȳ = M [diag(βM +Du)]
−1/2

[diag(M +Dy)]
1/2

(M + Dy)−1/2

within Theorem 1.
We then observe that the quotient ω>ω

γ>γ
can be decomposed as

w>1 (βM +Du)−1w1

w>1 [diag(βM +Du)]
−1/2

[diag(M +Dy)]
1/2

(M +Dy)−1 [diag(M +Dy)]
1/2

[diag(βM +Du)]
−1/2

w1

=
w>1 (βM +Du)−1w1

w>1 [diag(βM +Du)]
−1

w1

· w
>
2 [diag(M +Dy)]

−1
w2

w>2 (M +Dy)−1w2
,

where w1 = Mv 6= 0 and w2 = [diag(M +Dy)]
1/2

[diag(βM +Du)]
−1/2

w1 6= 0.
Now, it may be easily shown that

w>1 (βM +Du)−1w1

w>1 [diag(βM +Du)]
−1

w1

≥
[
max

{
λmax

([
diag(M)

]−1
M
)
, 1
}]−1

,

w>2 [diag(M +Dy)]
−1

w2

w>2 (M +Dy)−1w2
≥ min

{
λmin

([
diag(M)

]−1
M
)
, 1
}
,

using the working earlier in this section. Combining these bounds gives the desired result. ut

Clearly, it is valuable to have this insight that using our approximation M̂1 retains the parameter
independence of the lower bound for the eigenvalues of Ŝ−11 S. We note that this can potentially be a
weak bound, as the large diagonal entries in Dy and Du are likely to dominate the behaviour of M +Dy

and βM +Du, thus driving the eigenvalues of the preconditioned Schur complement closer to 1.

We highlight that, in practice, one may also approximate the inverses of K + M̂1 and its transpose
effectively using a multigrid process. We apply the Aggregation-based Algebraic Multigrid (AGMG)
software [30–33] for this purpose within our iterative solvers.

Combining our approximations of Φ and S, we propose the following block diagonal preconditioner
of the form (31):

P1 =

 (M +Dy)approx 0 0
0 (βM +Du)approx 0

0 0 Ŝ1

 ,
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where (M + Dy)approx, (βM + Du)approx indicate our choice of approximations for M + Dy, βM +

Du (i.e. diagonal approximation, or Chebyshev semi-iteration method), and Ŝ1 is given by (36). This
preconditioner is symmetric positive definite, and may thus be applied within a symmetric solver such
as Minres [34].

It is useful to consider the distribution of eigenvalues of the preconditioned system, as this will control
the convergence properties of the Minres method. The fundamental result we use for our analysis of
saddle point matrices (30) is stated below [40, Lemma 2.1].

Theorem 2 If Φ is symmetric positive definite, Ψ is full rank, and Θ = 0, the eigenvalues of A are
contained within the following intervals:

λ(A) ∈
[

1

2

(
µmin −

√
µ2
min + 4σ2

max

)
,

1

2

(
µmax −

√
µ2
max + 4σ2

min

)]
∪
[
µmin,

1

2

(
µmax +

√
µ2
max + 4σ2

max

)]
,

where µmax, µmin denote the largest and smallest eigenvalues of Φ, with σmax, σmin the largest and
smallest singular values of Ψ .

We now wish to apply a result of this form to the preconditioned system. The preconditioned matrix,
when a general block diagonal preconditioner of the form (31) is used, is given by

P−1A =

[
Φ̂ 0

0 Ŝ

]−1 [
Φ Ψ>

Ψ 0

]
=

[
Φ̂−1Φ Φ̂−1Ψ>

Ŝ−1Ψ 0

]
.

Now, to analyse the properties of this system, let

λ(Φ̂−1Φ) ∈ [φmin, φmax], λ(Ŝ−1S) ∈ [smin, smax],

where φmin, smin > 0. The analysis of this section gives us information about these values.
By the similarity property of matrix systems (using that for our problem Φ̂ and Ŝ are positive definite)

the eigenvalues will be the same as those of

P−1/2AP−1/2 =

[
Φ̂−1/2 0

0 Ŝ−1/2

] [
Φ Ψ>

Ψ 0

][
Φ̂−1/2 0

0 Ŝ−1/2

]

=

[
Φ̂−1/2ΦΦ̂−1/2 Φ̂−1/2Ψ>Ŝ−1/2

Ŝ−1/2ΨΦ̂−1/2 0

]
.

The eigenvalues of the (1, 1)-block of this matrix, Φ̂−1/2ΦΦ̂−1/2, are the same as those of Φ̂−1Φ by
similarity, and so are contained in [φmin, φmax]. The singular values of the (2, 1)-block are given by

the square roots of the eigenvalues of Ŝ−1/2ΨΦ̂−1Ψ>Ŝ−1/2, i.e. the square roots of the eigenvalues of
Ŝ−1(ΨΦ̂−1Ψ>) by similarity. Writing the Rayleigh quotient (for v 6= 0),

v>ΨΦ̂−1Ψ>v

v>Ŝv
=

v>ΨΦ̂−1Ψ>v

v>ΨΦ−1Ψ>v
· v
>ΨΦ−1Ψ>v

v>Ŝv
=

v̄>Φ̂−1v̄

v̄>Φ−1v̄︸ ︷︷ ︸
∈[φmin,φmax]

· v
>ΨΦ−1Ψ>v

v>Ŝv︸ ︷︷ ︸
∈[smin,smax]

,

where v̄ = Ψ>v, enables us to pin the singular values of the (2, 1)-block within
[√
φminsmin,

√
φmaxsmax

]
.

So, using Theorem 2, the eigenvalues of P−1A are contained within the interval stated below.

Lemma 3 If Φ and S are symmetric positive definite, and the above bounds on λ(Φ̂−1Φ) and λ(Ŝ−1S)
hold, then the eigenvalues of P−1A satisfy

λ(P−1A) ∈
[

1

2

(
φmin −

√
φ2min + 4φmaxsmax

)
,

1

2

(
φmax −

√
φ2max + 4φminsmin

)]
∪
[
φmin,

1

2

(
φmax +

√
φ2max + 4φmaxsmax

)]
.
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It is therefore clear that, for our problem, a good approximation of the Schur complement will
guarantee clustered eigenvalues of the preconditioned system, and therefore rapid convergence of the
Minres method. As we have observed for our problem, the quantities of interest are therefore the largest
eigenvalues of Ŝ−1S, which can vary at every step of a Newton method.

We now present a straightforward result concerning the eigenvectors of a preconditioned saddle point
system of the form under consideration.

Proposition 1 Consider an eigenvalue λ that satisfies[
Φ Ψ>

Ψ 0

] [
v1

v2

]
= λ

[
Φ̂ 0

0 Ŝ

] [
v1

v2

]
, (38)

with Φ, S = ΨΦ−1Ψ>, Φ̂, Ŝ symmetric positive definite. Then either λ is an eigenvalue of Φ̂−1Φ, or λ,
v1 and v2 satisfy (

λΦ̂− Φ− 1

λ
Ψ>Ŝ−1Ψ

)
v1 = 0, v2 =

1

λ
Ŝ−1Ψv1.

Proof Equation (38) is equivalent to

Ψ>v2 =
(
λΦ̂− Φ

)
v1, (39)

Ψv1 = λŜv2. (40)

Let us first consider the case where Ψv1 = 0 (there are at most n−m such linearly independent vectors
that correspond to eigenvectors). Then (40) tells us that v2 = 0, from which we conclude from (39)

that (λΦ̂ − Φ)v1 = 0. Therefore, in this case, the eigenvalues are given by eigenvalues of Φ̂−1Φ, with

eigenvectors of the form
[
v>1 , 0

>]> – there are at most n−m such solutions.
If Ψv1 6= 0, we may rearrange (40) to obtain

v2 =
1

λ
Ŝ−1Ψv1 ⇒ Ψ>v2 =

1

λ
Ψ>Ŝ−1Ψv1,

which we may substitute into (39) to obtain

1

λ
Ψ>Ŝ−1Ψv1 =

(
λΦ̂− Φ

)
v1.

This may be trivially rearranged to obtain the required result. ut

We observe that the eigenvalues and eigenvectors of the (1, 1)-block and Schur complement (along with
their approximations) interact strongly with each other. This decreases the likelihood of many extreme

eigenvalues of Ŝ−1S arising in practice, as this would have implications on the numerical properties of Φ
and Ψ (which for our problems do not interact at all strongly). However the working provided here shows
that this is very difficult to prove rigorously, due to the wide generality of the saddle point systems being
examined – we must also rely on the physical properties of the PDE operators within the optimization
framework. Our numerical experiments of Section 5 indicate that the eigenvalues of Ŝ−1S, and therefore
the preconditioned system, are tightly clustered, matching some of the observations made in this section.

As an alternative to the block diagonal preconditioner P1, we may take account of information on
the block lower triangular parts of the matrix system, and apply the block triangular preconditioner

P2 =

 (M +Dy)approx 0 0
0 (βM +Du)approx 0

K −M −Ŝ1

 ,
within a non-symmetric solver such as Gmres [41].

It is possible to carry out eigenvalue analysis for the block triangular preconditioner P2 in the same
way as for the block diagonal preconditioner P1. However it is well known that the convergence of non-
symmetric solvers such as Gmres does not solely depend on the eigenvalues of the preconditioned system,
and therefore such an analysis would be less useful in practice.
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We now consider a completely different strategy for preconditioning the matrix system. We may first
rearrange (24) to the formβM +Du −M 0

−M 0 K
0 K> M +Dy

 δuδλ
δy

 =

 µ(U − Ua)−1e− µ(Ub − U)−1e− βMu∗ +Mλ∗

f −Ky∗ +Mu∗

µ(Y − Ya)−1e− µ(Yb − Y )−1e + yd −My∗ −K>λ∗

 . (41)

The matrix within (41) is a saddle point system of the form (30), with

Φ =

[
βM +Du −M
−M 0

]
, Ψ =

[
0 K>

]
, Θ =

[
M +Dy

]
.

This approach also has the desirable feature that the (1, 1)-block Φ can be inverted almost precisely,
as all that is required is a method for approximating the inverse of a mass matrix (to be applied twice).
Once again, a very cheap and accurate method is Chebyshev semi-iteration [14,15,48], so we apply this
strategy within our preconditioner.

Once again, the main challenge is to approximate the Schur complement:

S = − (M +Dy) +
[

0 K>
] [βM +Du −M

−M 0

]−1 [
0
K

]
= − (M +Dy) +

[
0 K>

] [ 0 −M−1
−M−1 −M−1(βM +Du)M−1

] [
0
K

]
= −

[
K>M−1(βM +Du)M−1K + (M +Dy)

]
.

Let us consider a ‘matching’ strategy once again, and write for our approximation:

Ŝ2 := −
(
K> + M̂2

)
M−1(βM +Du)M−1

(
K + M̂ >

2

)
,

where M̂2 is selected to incorporate the second term of S, i.e.

M̂2M
−1(βM +Du)M−1M̂ >

2 ≈M +Dy,

which may be achieved if

M̂2 ≈ (M +Dy)1/2(βM +Du)−1/2M.

For a practical preconditioner, we in fact select

M̂2 =
[
diag(M +Dy)

]1/2[
diag(βM +Du)

]−1/2
M.

To approximate K>+ M̂2 and K + M̂ >
2 in practice, we again make use of the AGMG software to apply

a multigrid process to the relevant matrices within Ŝ2.
One may therefore build a block triangular preconditioner for the permuted system (41), of the form

PT in (31). Rearranging the matrix system (and hence the preconditioner) to the form (24), we are
therefore able to construct the following preconditioner for (24):

P3 =

−Ŝ2 0 K>

0 βM +Du −Mcheb

0 −Mcheb 0

 ,
where Mcheb relates to a Chebyshev semi-iteration process for the mass matrix M . We notice that this
relates to observations made on nullspace preconditioners for saddle point systems in [38].

It is clear that to apply the preconditioner P3, we require a non-symmetric solver such as Gmres,
as it is not possible to construct a positive definite preconditioner with this rearrangement of the matrix
system. Within such a solver, a key positive property of this strategy is that we may approximate Φ almost
perfectly (and cheaply), and may apply K> exactly within P3 without a matrix inversion. An associated

disadvantage is that our approximation of S is more expensive to apply than the approximation Ŝ1 used
within the preconditioners P1 and P2 – whereas Theorem 1 may again be applied4 to verify a lower
bound for the eigenvalues of the preconditioned Schur complement, the values of the largest eigenvalues
are frequently found to be higher than for the Schur complement approximation Ŝ1 described earlier.

4 In the notation of Theorem 1, the matrices involved are X̄ = K>M−1(βM +Du)1/2 and Ȳ = (M +Dy)1/2.
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4.2 Time-dependent problems

Due to the huge dimensions of the matrix systems arising from time-dependent PDE-constrained opti-
mization problems, it is very important to consider preconditioners for the resulting systems, which are
of the form (29). These are again of saddle point type (30), with

Φ =

[
τM1/2 +Dy 0

0 βτM1/2 +Du

]
, Ψ =

[
K −τM

]
, Θ =

[
0
]
.

As for the time-independent case we may approximate Φ using diagonal solves or the Chebyshev
semi-iteration method applied to the matrices from each time-step.

To approximate the Schur complement of (29),

S = K
(
τM1/2 +Dy

)−1K> + τ2M
(
βτM1/2 +Du

)−1M,

we again apply a matching strategy to obtain

Ŝ1,T :=
(
K + M̂1,T

)(
τM1/2 +Dy

)−1(K + M̂1,T

)>
,

where

M̂1,T

(
τM1/2 +Dy

)−1M̂>
1,T ≈ τ2M

(
βτM1/2 +Du

)−1M.

This in turn motivates the choice

M̂1,T = τM
[
diag

(
βτM1/2 +Du

)]−1/2 [
diag

(
τM1/2 +Dy

)]1/2
,

and we require two multigrid processes per time-step to apply Ŝ−11,T efficiently.
Combining our approximations of (1, 1)-block and Schur complement, we may apply

P1,T =


(
τM1/2 +Dy

)
approx

0 0

0
(
βτM1/2 +Du

)
approx

0

0 0 Ŝ1,T


within Minres, for example, or

P2,T =


(
τM1/2 +Dy

)
approx

0 0

0
(
βτM1/2 +Du

)
approx

0

K −τM −Ŝ1,T

 ,
within a nonsymmetric solver such as Gmres.

Alternatively, in complete analogy to the time-independent setting, one could rearrange the matrix
system such that the (1, 1)-block may be approximated accurately, and select the preconditioner

P3,T =

−Ŝ2,T 0 K>
0 βτM1/2 +Du −τMcheb

0 −τMcheb 0

 .
Inverting Mcheb requires the application of Chebyshev semi-iteration to Nt mass matrices M , and the
Schur complement approximation is given by

Ŝ2,T := − 1

τ2
(
K> + M̂2,T

)
M−1

(
βτM1/2 +Du

)
M−1

(
K + M̂>

2,T

)
,

with

M̂2,T = τ
[
diag

(
τM1/2 +Dy

)]1/2 [
diag

(
βτM1/2 +Du

)]−1/2M.

Similar eigenvalue results can be shown for the Schur complement approximation Ŝ1,T as for the
approximations used in the time-independent case.
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Remark 1 We highlight that a class of methods which is frequently utilized when solving PDE-constrained
optimization problems, aside from the iterative methods discussed in this paper, is that of multigrid. We
recommend [8] for an overview of such methods for PDE-constrained optimization, [7] for a convergence
analysis of multigrid applied to these problems, [20,21] for schemes derived for solving flow control prob-
lems, and [6] for a method tailored to problems with additional bound constraints. These solvers require
the careful construction of prolongation/restriction operators, as well as smoothing methods, tailored to
the precise problem at hand. Applying multigrid to the entire coupled matrix systems resulting from the
problems considered in this paper, as opposed to employing this technology to solve sub-blocks of the
system within an iterative method, also has the potential to be a powerful approach for solving problems
with bound constraints. Similar multigrid methods have previously been applied to the interior point
solution of PDE-constrained optimization problems in one article [9], and we believe that a carefully
tailored scheme could be a viable alternative when solving at least some of the numerical examples
considered in Section 5.

Alternative problem formulations

We have sought to illustrate our interior point solvers, and in particular the preconditioned iterative
methods for the solution of the associated Newton systems, using quadratic tracking functionals with a
quadratic cost for the control, as in (2). We now wish to briefly outline some of the possible extensions
to this problem that we believe we could apply our method to, as below:

– Boundary control problems. Our methodology could be readily extended to problems where the control
(or state) variable is regularized on the boundary only within the cost functional, for instance where

J (y, u) =
1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(∂Ω).

For such problems, we would need to take account of boundary mass matrices within the saddle
point system that arises, however preconditioners have previously been designed for such problems
that take into account these features (see [35], for instance).

– Control variable regularized on a subdomain. Analogously, problems may be considered using our
preconditioning approach where the cost functional is of the form

J (y, u) =
1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω1)

,

where Ω1 ⊂ Ω. The matching strategy of Section 4.1 may be modified to account for the matrices of
differing structures.

– Alternative regularizations. A further possibility is for the control (or state) variable to be regularized
using a different term, for instance an H1 regularization term of the following form:

J (y, u) =
1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2H1(Ω) =

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) +

β

2
‖∇u‖2L2(Ω).

Upon discretization, stiffness matrices arise within the (1, 1)-block in addition to mass matrices,
however the preconditioning method introduced in this paper may still be applied, by accounting for
the new matrices within the matching strategy for the Schur complement.

– Time-dependent problems. Finally, we highlight that modifications to the cost functional considered
for time-dependent problems in Section 3.3 may be made. For instance, one may measure the control
(or state) variables at the final time only, that is

J (y, u) =
1

2

∫ T

0

∫
Ω

(
y(x, t)− ŷ(x, t)

)2
dΩdt+

β

2

∫
Ω

u(x, T )2 dΩ.

On the discrete level, this will lead to mass matrices being removed from portions of the (1, 1)-block,
and this information may be built into new preconditioners [35,44].

We emphasize that there are some examples of cost functional, for instance a functional where a curl
function is applied to state or control, or one which includes terms of the form

∫
max{0,det(∇y)} (see

[19]), where the preconditioning approach presented here would not be directly applicable. As PDE-
constrained optimization problems are widespread and varied in type, much useful further work could
be carried out on extending the method presented in this paper to more diverse classes of optimization
problems.
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Fig. 1 Contour and mesh plots of the solution to the Poisson control example with control constraints, for state variable
y (top) and control variable u (bottom), with β = 10−2.

5 Numerical experiments

Having motivated our numerical methods for the solution of the problems considered, we now wish
to test our solvers on a range of examples. These test problems are of both time-independent and
time-dependent form, and are solved on a desktop with a quad-core 3.2GHz processor. For each test
problem, we discretize the state, control and adjoint variables using Q1 finite elements. Within the
interior point method, the value of the barrier reduction parameter σ is set to be 0.1, with α0 = 0.995,
and εp = εd = εc = 10−6. To solve the Newton systems arising from the interior point method, we use
the Ifiss software package [11,43] to construct the relevant finite element matrices. When the symmetric
block diagonal preconditioner P1 is used, we solve the Newton systems using the Minres algorithm to
a relative preconditioned residual norm tolerance of 10−8, and the Chebyshev semi-iteration method to
approximate the inverse of the (1, 1)-block (apart from within one experiment where we use a diagonal
approximation), as well as the AGMG method to approximate the inverse Schur complement. Where
the block triangular preconditioners P2 and P3 are applied, we solve the Newton systems with the
preconditioned Gmres method to a tolerance of 10−8; we apply 20 steps of Chebyshev semi-iteration to
approximate the (1, 1)-block, and once again utilize AGMG for the Schur complement approximations.
We highlight that it would be feasible to relax the tolerances for Minres and Gmres in order to lower
the overall CPU time for the interior point scheme [16], however we elect to solve the matrix systems
relatively accurately in order to fully demonstrate the potency of our preconditioned iterative methods.
All results are computed using Matlab R2015a.

Control constrained problems. The first experiments we carry out involve a Poisson control
problem, with L = −∇2 applied on Ω := [0, 1]2, y = 0 on the boundary of Ω, and the desired state given

by ŷ = e−64((x1−0.5)2+(x2−0.5)2), where the spatial coordinates ~x = [x1, x2]
>

. We solve this problem
using the Minres algorithm with preconditioner P1, using both the Chebyshev semi-iteration method
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Table 1 Results for the Poisson control example with control constraints, for a range of values of h and β, and precon-
ditioner P1. Presented are the number of interior point (Newton) iterations required to achieve convergence (blue, left),
and average number of Minres steps per interior point iteration before a relative preconditioned residual norm of 10−8 is
achieved (black, right). Results are given with a Chebyshev semi-iteration method applied to the (1, 1)-block (top), and
with a diagonal approximation (bottom).

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

P1 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0

Chebyshev u ≤ 0.01 u ≤ 0.1 u ≤ 1 u ≤ 3 u ≤ 20 u ≤ 100 u ≤ 300

h

2−2 10 5.6 11 6.3 13 6.2 15 6.6 18 7.5 19 7.2 20 7.4

2−3 10 5.7 13 6.1 14 6.3 16 7.8 19 8.3 20 8.7 21 9.3

2−4 10 5.6 13 6.1 15 6.5 19 7.4 22 8.6 22 8.5 21 8.8

2−5 11 5.4 16 5.8 18 6.3 21 7.0 23 8.8 25 8.9 24 9.4

2−6 11 5.5 16 5.8 20 6.2 22 6.8 26 15.5 24 8.9 30 9.4

2−7 12 5.2 18 5.5 20 6.2 20 7.1 27 8.4 25 8.6 31 9.2

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

P1 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0

Diagonal u ≤ 0.01 u ≤ 0.1 u ≤ 1 u ≤ 3 u ≤ 20 u ≤ 100 u ≤ 300

h

2−2 9 9.4 11 10.4 13 9.5 15 9.2 18 10.1 19 9.4 20 17.6

2−3 10 15.1 12 16.7 14 16.9 16 18.4 19 17.5 20 18.5 21 19.5

2−4 10 15.5 15 18.6 16 19.9 19 22.7 22 21.6 22 23.4 21 24.3

2−5 11 16.3 16 16.2 19 19.5 21 21.1 23 24.7 25 25.7 24 25.8

2−6 11 15.5 16 20.2 20 16.9 22 18.9 26 32.1 24 18.9 31 26.7

2−7 12 14.3 18 15.7 21 16.1 20 18.5 28 28.8 25 19.3 31 23.4

Table 2 Results for the Poisson control example with state constraints, for a range of values of h and β. Presented are
the number of interior point iterations required to achieve convergence (blue, left), and average number of Gmres steps
needed (black, right). Results are given when the preconditioners P2 (top) and P3 (bottom) are used.

β = 1 β = 10−2 β = 10−4 β = 10−6

P2 −0.1 ≤ y ≤ 0.002 −0.1 ≤ y ≤ 0.175 −0.1 ≤ y ≤ 0.9 −0.1 ≤ y ≤ 1

h

2−2 11 5.3 8 5.0 9 5.0 10 5.0

2−3 12 9.9 9 10.2 10 13.3 10 10.9

2−4 13 11.4 10 12.9 11 16.8 11 13.5

2−5 14 12.1 11 13.3 13 27.4 12 15.0

2−6 16 12.5 12 13.6 14 17.8 13 15.7

2−7 17 12.7 13 14.6 16 16.9 14 16.3

β = 1 β = 10−2 β = 10−4 β = 10−6

P3 −0.1 ≤ y ≤ 0.002 −0.1 ≤ y ≤ 0.175 −0.1 ≤ y ≤ 0.9 −0.1 ≤ y ≤ 1

h

2−2 11 5.0 8 5.1 9 5.0 10 5.0

2−3 12 9.6 9 9.1 10 10.5 10 10.5

2−4 13 11.2 10 10.3 11 12.3 11 12.4

2−5 14 12.1 11 10.8 13 12.9 12 13.5

2−6 16 12.6 12 11.4 14 13.3 13 13.9

2−7 17 13.1 13 13.0 16 13.5 14 14.5

and the matrix diagonal to approximate the (1, 1)-block within the preconditioner. The results obtained
are shown in Table 1, for a range of mesh-sizes h and regularization parameters β. A solution plot for
β = 10−2 is also shown in Figure 1. We select box constraints for the control variable only, based on the
value of β used and the behaviour of the optimal control problem when no bound constraints are imposed
– we are careful to make sure that the constraints are sensible physically, but also challenging for our
interior point solver. The constraints taken for each value of β are stated in Table 1. It is worth pointing
out that increasing the accuracy of discretization (decreasing h by a factor of 2) typically adds about one
extra interior point iteration, which once again demonstrates that interior point methods are not very
sensitive to the problem dimension (as discussed in [17], for instance). We find that both the number
of iterations of the interior point method, and the average number of Minres iterations per interior
point (Newton) step, are very reasonable for the problem considered. Whereas we observe an increase
in iterative steps for the more challenging case of smaller β, all numbers are low, in particular the very
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Table 3 Number of interior point (Newton) iterations, average number of iterations of the Krylov subspace method
per interior point step, and CPU time required to solve the Poisson control example with state constraints, when the
preconditioners P1, P2 and P3 are used. Results are presented for a range of h, and fixed β = 10−2.

P1 P2 P3

β = 10−2 IPM Krylov CPU IPM Krylov CPU IPM Krylov CPU

h

2−2 8 8.0 0.13 8 5.0 0.20 8 5.1 0.22

2−3 9 11.8 0.23 9 10.2 0.35 9 9.1 0.34

2−4 10 14.5 0.46 10 12.9 0.63 10 10.3 0.57

2−5 11 14.1 1.8 11 13.3 2.6 11 10.8 2.4

2−6 13 14.8 9.1 12 13.6 11.4 12 11.4 10.1

2−7 14 14.9 37.4 13 14.6 54.4 13 13.0 53.8

Table 4 Results for the Helmholtz problem with state constraints, for a range of values of h and β, as well as values of k.
Presented are the number of interior point iterations required to achieve convergence (blue, left), and average number of
Gmres steps needed (black, right). Results are given when the preconditioners P2 (top) and P3 (bottom) are used.

k = 20 k = 50

P2 β = 10−2 β = 10−4 β = 10−6 β = 10−2 β = 10−4

−0.0005 ≤ y ≤ 0.0005 −0.05 ≤ y ≤ 0.05 −0.6 ≤ y ≤ 0.6 −10−5 ≤ y ≤ 10−5 −0.001 ≤ y ≤ 0.001

h

2−2 7 4.3 10 5.3 10 4.7 5 4.0 8 4.7

2−3 8 9.2 10 11.6 11 12.4 5 6.8 8 12.3

2−4 8 10.6 11 17.7 12 30.8 6 10.4 8 17.9

2−5 9 11.2 12 18.8 12 19.6 6 6.1 9 20.5

2−6 9 10.4 12 15.9 13 22.7 7 10.3 10 23.1

2−7 10 10.2 13 15.6 14 15.5 8 10.6 10 20.1

k = 20 k = 50

P3 β = 10−2 β = 10−4 β = 10−6 β = 10−2 β = 10−4

−0.0005 ≤ y ≤ 0.0005 −0.05 ≤ y ≤ 0.05 −0.6 ≤ y ≤ 0.6 −10−5 ≤ y ≤ 10−5 −0.001 ≤ y ≤ 0.001

h

2−2 7 4.2 10 5.2 10 3.9 5 3.7 8 5.1

2−3 8 9.3 10 11.8 11 8.2 5 6.2 8 10.4

2−4 8 9.9 11 13.9 12 10.0 6 9.3 8 16.8

2−5 9 10.9 12 15.2 12 10.2 6 5.1 9 19.1

2−6 9 10.2 12 15.1 13 10.4 7 9.5 10 21.8

2−7 10 10.3 13 14.7 14 10.2 8 10.0 10 18.5

encouraging iteration counts for moderate regularization parameters. We also find that, as one might
expect, the computational cheapness of a diagonal approximation of the (1, 1)-block is counteracted by
the higher Minres iteration numbers that result.

Problems with state constraints. We next examine a Poisson control problem involving state
constraints, where ŷ = sin(πx1) sin(πx2), and y = ŷ on the boundary of Ω. We apply the preconditioners
P2 (with Chebyshev semi-iteration used to approximate the (1, 1)-block) and P3, and solve using Gmres
to a tolerance of 10−8 for a range of h and β. Again the results, which are presented in Table 2, are
very promising when either preconditioner is used, and a large degree of robustness is achieved despite
the very general matrix systems which can arise at each interior point iteration. We highlight that the
iteration counts are likely to vary depending on how severe the box constraints that we impose are, as
the structure of the matrices can change drastically. In Table 3 we present results for this problem (for
β = 10−2) with preconditioners P1, P2 and P3 – we observe in particular that the CPU times scale in
an approximately linear fashion with the dimension of the matrix systems being solved.

In order to illustrate the potential of our solvers to handle PDE constraints of varying forms, in
Table 4 we present results where the PDE constraint is an indefinite Helmholtz equation, that is Ly =
−∇2y−k2y for a given (positive) parameter k. We highlight that the forward Helmholtz equation itself is
a notoriously difficult problem to solve numerically [12], and a great deal of research has been undertaken
concerning the preconditioning of such systems (we recommend [13] for a discussion of shifted Laplacian
preconditioners for these problems). We therefore emphasize that, given the challenges involved and the
inherent indefiniteness of the problem, it is extremely difficult to obtain completely robust solvers, and
much future research could be undertaken in this area. However the results obtained indicate that, at
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Fig. 2 Contour and mesh plots of the solution to the convection-diffusion control example with state and control con-
straints, for state variable y (top) and control variable u (bottom), with β = 10−2.

least for some test problems, the interior point method presented can be applied for a range of parameter
setups.

Both state and control constraints. In Table 5 we investigate a problem of convection-diffusion

control type, with L = −0.01∇2 +
[
− 1√

2
, 1√

2

]> · ∇, and ŷ = e−64((x1−0.5)2+(x2−0.5)2). We now impose

both state and control constraints (as specified for each value of β), and test the preconditioners P2

and P3 using Gmres. We also present a solution plot for β = 10−2 in Figure 2. For convection-diffusion
control problems such as this, we find there is a great advantage in applying the preconditioner P3 over
the preconditioner P2, due in part to the accurate approximation of the (1, 1)-block within it. Indeed
this is demonstrated by the numbers of Gmres iterations required, which are much lower when using
the preconditioner P3, especially for the final interior point iterations when convergence is close to being
achieved. The Gmres solver with P3 demonstrates excellent robustness considering the complexity of
the problem.

3D test problems. It is also important to emphasize that the methodology presented in this work
can be readily applied to three dimensional test problems – indeed these are problems for which it is
generally accepted that preconditioned iterative methods are essential, as the huge computer storage
requirements associated with such problems ensure that direct methods are out of reach. We therefore
experiment using a Poisson control problem applied on the domain Ω := [0, 1]3, with desired state

ŷ = e−64((x1−0.5)2+(x2−0.5)2+(x3−0.5)2) and spatial coordinates ~x = [x1, x2, x3]
>

. We present numerical
results in Table 6, demonstrating that, as for two dimensional problems, rapid convergence is achieved
with robustness in problem size and regularization parameter.

Time-dependent PDE constraints. To demonstrate that our solvers are also able to handle
matrix systems of vast dimension arising from time-dependent PDE-constrained optimization problems,
we present results in Table 7 for a heat equation control problem, with the PDE constraint given by
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Table 5 Results for the convection-diffusion control example with state and control constraints, for a range of values of
h and β. Presented are the number of interior point iterations required to achieve convergence (blue, left), and average
number of Gmres steps needed (black, right). Results are given when the preconditioners P3 (top) and P2 (bottom) are
used.

β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

P3 0 ≤ y ≤ 0.2 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.75 0 ≤ y ≤ 0.75

−0.75 ≤ u ≤ 0.75 −2 ≤ u ≤ 2 −3 ≤ u ≤ 3 −5 ≤ u ≤ 5 −6 ≤ u ≤ 6

h

2−2 13 8.9 14 9.1 15 9.5 14 8.7 14 8.8

2−3 14 11.3 15 10.9 15 12.1 15 12.2 15 11.8

2−4 15 13.1 15 11.8 16 13.4 16 13.3 16 14.1

2−5 17 13.9 17 13.3 16 14.7 19 13.7 19 14.9

2−6 19 14.6 19 14.5 17 17.9 22 16.6 23 16.3

2−7 21 23.0 21 14.9 22 17.3 26 17.7 27 18.4

β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

P2 0 ≤ y ≤ 0.2 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.75 0 ≤ y ≤ 0.75

−0.75 ≤ u ≤ 0.75 −2 ≤ u ≤ 2 −3 ≤ u ≤ 3 −5 ≤ u ≤ 5 −6 ≤ u ≤ 6

h

2−2 13 10.1 14 11.3 14 11.3 14 11.1 14 11.4

2−3 14 20.9 15 19.8 15 24.8 15 21.8 15 22.4

2−4 16 35.1 15 20.6 16 42.6 16 37.6 17 53.0

2−5 17 44.1 17 40.4 16 45.6 19 64.3 19 69.3

2−6 19 52.6 19 48.4 17 47.3 22 66.7 23 73.6

2−7 21 50.0 21 48.2 22 63.5 26 75.0 27 81.7

Table 6 Results for the three dimensional Poisson control example with control constraints, for a range of values of h and
β, and preconditioner P1. Presented are the number of interior point (Newton) iterations required to achieve convergence
(blue, left), and average number of Minres steps per interior point iteration before a relative preconditioned residual norm
of 10−8 is achieved (black, right).

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

P1 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0

Chebyshev u ≤ 0.01 u ≤ 0.1 u ≤ 1 u ≤ 3 u ≤ 20 u ≤ 100 u ≤ 300

h

2−2 7 10.8 8 10.7 9 11.1 10 11.2 11 11.2 12 11.1 12 11.4

2−3 8 10.7 9 10.8 11 10.4 11 11.0 12 11.0 13 11.1 12 11.1

2−4 9 10.9 10 10.8 11 10.8 12 10.9 12 11.2 13 11.1 13 11.1

2−5 11 14.1 12 14.0 12 13.8 13 13.8 13 13.6 14 13.5 14 13.8

yt − ∇2y = u (for t ∈ (0, 1]), and with additional control constraints imposed. The number of interior
point iterations, and average Minres iteration count when P1,T is applied, are provided for a range of h
and β. As mentioned earlier, the backward Euler method is used for the time discretization, and values
of τ = 0.04, 0.02 and 0.01 are tested for the time-step (in other words with 25, 50 and 100 time intervals).
In Table 8, we present results obtained for the same problem using block triangular preconditioner P2,T

with Gmres. We once again observe a high degree of robustness in problem size (whether increased by
refining the mesh in the spatial coordinates, or by decreasing the time-step) and regularization parameter.

Our final investigation involves the optimal control of the wave equation, which is the same problem
as above, except with the PDE operator ytt − ∇2y = u and with an initial condition imposed on yt
(which we set to be zero). The recent work [27] derives an implicit scheme for this problem, which
involves averaging the Laplacian term in the PDE operator. Within the matrix K, this leads to discrete

approximations of the operator I − τ2

2 ∇
2 on the block diagonal entries, as well as additional entries on

the two blocks below the diagonal (corresponding to the operators −2I and I − τ2

2 ∇
2, respectively).

The method is designed to be unconditionally convergent, while also removing the requirement of a
Courant–Friedrichs–Lewy (CFL) condition of the form τ ≤ h [27]. We investigate the potency of our
preconditioners for this matrix system. In Table 9, we present the average number of Minres or Gmres
iterations required to solve the systems arising from the interior point method. Although there is a larger
variation in the number of steps required, due to the additional terms within the matrix system, the
performance of the method is very encouraging considering the high complexity of the problem. We
emphasize once again that the performance of the method is dependent somewhat on the severity of
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Table 7 Results for the heat equation control example with control constraints, for a range of values of h, τ , and β, and
preconditioner P1,T . Presented are the number of interior point iterations required to achieve convergence (blue, left), and
average number of Minres steps needed (black, right).

P1,T β = 10−1 β = 10−2 β = 10−3 β = 10−4

τ = 0.04 0 ≤ u ≤ 0.1 0 ≤ u ≤ 1 0 ≤ u ≤ 3 0 ≤ u ≤ 30

h

2−2 13 13.1 15 16.5 16 19.7 21 31.3

2−3 15 13.7 16 16.6 18 20.5 24 30.6

2−4 16 14.0 18 17.1 20 20.8 24 28.2

2−5 16 14.0 19 17.5 21 21.0 25 27.5

2−6 18 14.5 19 17.5 22 21.1 27 27.2

P1,T β = 10−1 β = 10−2 β = 10−3 β = 10−4

τ = 0.02 0 ≤ u ≤ 0.1 0 ≤ u ≤ 1 0 ≤ u ≤ 3 0 ≤ u ≤ 30

h

2−2 14 13.0 16 15.9 17 19.8 23 31.9

2−3 15 13.4 17 15.6 19 20.5 25 30.9

2−4 16 13.7 18 16.0 21 20.9 25 27.6

2−5 17 14.0 19 16.4 22 21.1 28 28.3

2−6 15 13.4 19 16.2 22 20.8 27 27.6

P1,T β = 10−1 β = 10−2 β = 10−3 β = 10−4

τ = 0.01 0 ≤ u ≤ 0.1 0 ≤ u ≤ 1 0 ≤ u ≤ 3 0 ≤ u ≤ 30

h

2−2 14 12.2 16 15.4 18 19.6 24 31.0

2−3 15 12.4 18 15.7 19 19.9 28 30.9

2−4 16 12.8 18 15.7 21 20.2 27 28.2

2−5 16 12.8 18 15.7 22 20.5 30 28.3

2−6 17 13.0 19 15.8 22 20.4 29 28.5

Table 8 Results for the heat equation control example with control constraints, for a range of values of h, τ , and β, and
preconditioner P2,T . Presented are the number of interior point iterations required to achieve convergence (blue, left), and
average number of Gmres steps needed (black, right).

τ = 0.04 τ = 0.02

P2,T β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−1 β = 10−2 β = 10−3 β = 10−4

0 ≤ u ≤ 0.1 0 ≤ u ≤ 1 0 ≤ u ≤ 3 0 ≤ u ≤ 30 0 ≤ u ≤ 0.1 0 ≤ u ≤ 1 0 ≤ u ≤ 3 0 ≤ u ≤ 30

h

2−2 13 8.1 15 9.9 16 11.7 21 18.1 14 7.9 16 9.6 17 11.8 23 18.5

2−3 15 8.4 16 9.9 18 11.8 24 17.2 15 8.2 17 9.6 19 12.1 25 17.7

2−4 16 8.5 18 10.3 20 12.1 24 16.3 16 8.4 18 9.8 21 12.4 25 16.2

2−5 16 8.5 19 10.4 21 12.2 25 16.1 17 8.5 19 10.0 22 12.3 28 16.8

2−6 18 8.8 19 10.4 22 12.7 27 16.3 15 8.2 19 9.9 22 12.6 27 16.5

the box constraints imposed, however the numerical results obtained for a range of time-independent
and time-dependent PDE-constrained optimization problems demonstrate the potency of the solvers
presented in this manuscript.

Table 9 Results for the wave equation example with control constraints, for a range of values of h, τ , and β. Presented
are the average number of Minres (with preconditioner P1,T ) and Gmres (with preconditioner P2,T ) iterations required
to solve the Newton systems obtained.

P1,T , h = 2−4 P1,T , h = 2−5 P2,T , h = 2−4 P2,T , h = 2−5

β β β β

10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4

τ

0.04 13.7 17.7 13.3 14.7 18.0 13.4 10.1 12.1 9.9 11.1 12.7 10.0

0.02 12.5 12.5 13.1 11.7 12.7 13.1 8.9 9.2 9.9 8.6 9.1 9.8

0.01 14.7 10.9 10.6 31.6 50.8 10.9 10.9 13.5 8.1 22.8 23.7 8.5

0.005 26.9 29.2 30.7 37.3 42.9 35.7 21.5 22.2 24.0 21.8 22.5 22.1
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6 Concluding remarks

In this paper we have presented a practical method for the interior point solution of a number of PDE-
constrained optimization problems with state and control constraints, by reformulating the minimization
of the discretized system as a quadratic programming problem. Having outlined the structure of the
algorithm for solving these problems, we derived fast and feasible preconditioned iterative methods
for solving the resulting Newton systems, which is the dominant portion of the algorithm in terms of
computational work. Encouraging numerical results indicate the effectiveness and utility of our approach.

The problems we considered involved Poisson control, heat equation control, and both steady and
time-dependent convection-diffusion control. A natural extension of this work would be to consider the
control of systems of PDEs, for instance Stokes control and other problems in fluid flow, as well as the
control of nonlinear PDEs, which arises in a wide range of practical scientific applications. The latter
task would be accomplished by reformulating the discretization as a nonlinear programming problem –
the robust solution of such formulations is a substantial challenge within the optimization community,
but would represent significant progress in tackling real-world optimal control problems.
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