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Abstract

This paper introduces a new stochastic dynamic program (SDP) based heuris-

tic to compute the (R, s, S) policy parameters for the non-stationary stochastic

lot-sizing problem with backlogging of the excessive demand, fixed order and re-

view costs, and linear holding and penalty costs. Our model combines a greedy

relaxation of the problem that considers replenishment cycles independent with

a modified version of Scarf’s (s, S) SDP. A simple model implementation requires

a prohibitive computational effort to compute the parameters. However, lever-

aging the K-convexity property and deploying memoisation techniques strongly

reduce the computational effort required. The resulting algorithm is consider-

ably faster than the state-of-the-art, extending its applicability by practitioners.

An extensive computational study shows that our approach computes the opti-

mal policy in more than 97% of the analysed instances, with a 0.02% average

optimality gap.
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1. Introduction

The computation of solutions for the non-stationary stochastic lot-sizing

problem is a well-developed branch of inventory control (Axsäter, 2015). The

stochasticity of the demand allows modelling the uncertainty of real-world prob-

lems, while its non-stationarity allows considering the seasonality or life cycle of

products. Under this setting, the inventory must satisfy a demand represented

by a set of stochastic variables of known probability distributions generally con-

sidered independent. Various policies have been developed to manage these

systems (Silver, 1981). A policy defines when an order has to be placed and its

quantity. This work focuses on the computation of (R, s, S) policy parameters

for the single-item, single-echelon lot-sizing under ordering, holding and penalty

cost, a widely studied and used class of inventory problems.

The (R, s, S) policy is a generalisation of Bookbinder & Tan’s dynamic un-

certainty — also known as (s, S) policy — and static-dynamic uncertainty —

also known as (R,S) policy — strategies (Bookbinder & Tan, 1988). In the

(R, s, S) policy, the inventory level is assessed at review intervals R; if it falls

under the s level, an order is placed; the order raises the inventory level to

S. If the cost of reviewing the inventory is negligible, the policy reviews the

inventory in each period behaving as the (s, S) one. If the s level is set equal to

S, an order is placed at each review. Figure 1 shows the inventory pattern of

the policy. In the non-stationary stochastic problem configuration, the policy

parameters change across the time horizon, assuming the (R, s,S) form.

The (R, s, S) policy is widely used by practitioners (Silver, 1981). In the

case of stochastic non-stationary problems, three sets of parameters have to be

jointly optimised to minimise the expected cost. This task has been considered

extremely difficult. In a recent work, Visentin et al. (2021) introduced the first

algorithm to compute the optimal policy parameters. They apply a branch-and-

bound approach to explore the possible replenishment plans while computing

the order levels and order-up-to-levels using stochastic dynamic programming

2



S

s

S

s

S

s

R R R

Periods

Inventory

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Figure 1: The expected inventory level under the (R, s, S) policy

(SDP). While their method computes the optimal set of parameters, it struggles

to scale to big problems, limiting its applicability by practitioners.

In this work, we fill this gap in the literature by

• extending a well-known relaxation to the (R, s, S) policy computation and

combining it with an SDP formulation to compute near-optimal policy

parameters. The relaxation considers the replenishment cycles indepen-

dently thus allowing a greedy backward heuristic to compute the replen-

ishment plan;

• introducing computational enhancements that make the model computable

in a reasonable time;

• analysing an extensive numerical study that shows that the heuristic com-

putational effort significantly outperforms the optimal method;

• investigating the problem configurations for which the policy computed

by the heuristic differs from the optimal one.

The paper is structured as follows. A survey of the literature is presented

in section 2. Section 3 provides the description of the problem and of the best-

known solution, later used as a comparison. Section 4 introduces the relaxation
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used, the greedy approach and the computational enhancements. Section 5

shows a comprehensive numerical study. Finally, Section 7 concludes the paper.

2. Literature review

This section surveys the relevant stochastic lot-sizing literature. In the first

part, we position our approach in comparison to other inventory control policies.

We then analyse recent practical applications of the (R, s, S) policy.

2.1. Stochastic inventory control policies

An inventory control policy defines when: to assess the inventory, place

an order, and the size of the order (Silver, 1981). The problem of computing

policy parameters to satisfy a stochastic demand appears in a wide variety of

industrial settings, and it has been extensively investigated in the literature. In a

recent survey, Vidal (2022) analyse the state of the art in deterministic inventory

control models, while Ma et al. (2019) reviews stochastic policy computation

approaches. Arrow et al. (1951) is considered the first known work where such

random demand is modelled with a cost configuration equivalent to the one

considered in this work. They investigate a closed formula to compute the

best maximum stock (order-up-to-level) and reorder level as functions of the

demand on a continuous time setting. Bookbinder & Tan (1988) propose a

broad framework of inventory control strategies: static uncertainty (also known

as (R,Q) policy), dynamic uncertainty (also known as (s, S) policy), and static-

dynamic uncertainty (also known as (R,S) policy). Bookbinder & Tan classify

approaches based on when replenishment decisions are taken: at the beginning

of the planning horizon, or after realising a period demand. In the (R,Q)

policy, the full replenishment plan is fixed at the beginning. A fixed ordering

plan is preferred in industrial settings where rigid production/shipment plans

are needed. For these reasons, the computation of this policy under uncertainty

has been widely investigated (see e.g. Sox, 1997; Meistering & Stadtler, 2017;

Tunc, 2021). Scarf (1959) proves that the (s, S) policy (i.e. Bookbinder &
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Tan’s dynamic uncertainty strategy) is cost-optimal. In this policy, the decision

to place an order and its quantity are taken after observing the demand. This

policy is particularly effective in dealing with unexpected demand realisations.

However, as shown in (De Kok & Inderfurth, 1997; Tunc et al., 2011), this policy

suffers from a high degree of setup-oriented nervousness, meaning that the order

timings frequently change, limiting its practical applicability. Recent works

involving this policy are (Jiao et al., 2017; Xiang et al., 2018; Azoury & Miyaoka,

2020). Perera & Sethi (2022) presents a survey of discrete (s, S) policy and

discusses its relevance in industrial settings. The (R,S) policy (i.e. Bookbinder

& Tan’s static-dynamic uncertainty strategy) fixes the replenishment moments

at the beginning of the planning horizon and decides the size when placing the

order. This policy may be appealing as it reduces setup-oriented nervousness,

as discussed by Tunc et al. (2011); a known order schedule also allows better

deals with the carriers. Relevant studies on this policy are (Tarim & Kingsman,

2004; Rossi et al., 2015; Tunc et al., 2018). One of the limitations of Bookbinder

& Tan’s classification is that it does not take into account the stock-taking cost

commonly present in real-world problems (Fathoni et al., 2019; Christou et al.,

2020). When a cost for reviewing the inventory is considered, the (R, s, S) policy

features a lower expected total cost compared to other policies. Therefore, the

(R, s, S) can be seen as a generalisation of the (s, S) and (R,S) policies.

2.2. (R,s,S) applications

The (R, s, S) policy has a vast number of applications in the literature; due

to a reduced nervousness compared to the (s, S) and a better cost-performance

than the (R,S). These policies have also been studied for different problem

configurations. Schneider & Rinks (1991); Schneider et al. (1995) introduce two

heuristics to compute (R, s, S) parameters in a two-echelon inventory system

with one warehouse and multiple retailers. Strijbosch et al. (2002) propose a

technique to simulate an (R, s, S) inventory system in which the parameters

remain constant. It can compute fill rates or find parameters values to achieve

a prescribed service level. Chen & Lin (2009) adopt a hedge-based (R, s, S) pol-
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icy portfolio, with constant parameters in the short term, for a multi-product

inventory control problem. In Cabrera et al. (2013) the (R, s, S) policy is used

to manage the inventory of multiple warehouses. Göçken et al. (2015) use a

simulation optimisation technique to determine the optimal policy for distribu-

tion centres in a two-echelon inventory system with lost sales. Johansson et al.

(2020) use an (R, s, S) policy for controlling one-warehouse, multiple-retailer

inventory systems; their configuration is motivated by a real problem faced by

a company selling metal sheet products. In the surveyed papers, the policy

parameters are optimised and kept constant across the time horizon; in other

words, the R value is a given fixed value reducing the problem to an (s, S) pol-

icy. Further works operating in a stationary setting include: Lagodimos et al.

(2012), who solves the continuous-time problem with stationary demand; and

Christou et al. (2020), who extend Lagodimos et al.’s work to consider the order

quantity as a multiple of given batch size. The focus on stationary settings is

due to the complexity of jointly optimising the three sets of parameters. How-

ever, it is known that it is costly to adopt a stationary policy when the demand

is nonstationary (Tunc et al., 2011). This motivated the study by Visentin et al.

(2021). Their approach to computing (R, s, S) policy parameters uses a binary

search tree to fix the optimal replenishment plan. The tree is travelled using

branch-and-bound with tailor-made bounds based on Scarf’s SDP that reduces

its dimensionality by more than 99%. We will survey this approach in further

detail in Section 3.1. However, Visentin et al.’s model requires considerable

computational effort to solve big instances, limiting its practical value. To over-

come this limitation, in this work we will replace the binary search tree with a

greedy heuristic and leverage memoisation to avoid SDP recomputations.

In summary, the (R, s, S) policy has a wide variety of applications due to a

number of advantages over other competing policies. The algorithm presented

herein aims to boost its adoption by providing a heuristic that computes near-

optimal policies using a fraction of the computational effort compared to the

state-of-the-art.
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3. Problem description

This work considers the single-item, single-stocking location, stochastic in-

ventory control problem over a T -period planning horizon. The (R, s, S) policy

defines three aspects of inventory management: the timing of inventory reviews,

when an order is placed, and the order size. A review takes place when the inven-

tory level in the warehouse is assessed; these moments are fixed at the beginning

of the time horizon. An order can only be placed after a review takes place.

The interval between two review moments represents a replenishment cycle.

The demand’s stochasticity and non-stationarity of period t are modelled

through the random variable dt. Demands are independent variables with a

known probability distribution. Cumulative demand of periods t to the begin-

ning of period j takes the form of dt,j with j > t. If the demand in a given

period exceeds the on-hand inventory, the excess is backlogged and carried to the

next period. In Section 4.4, we extend the model to the lost-sales configuration,

where the exceeding demand is lost; a common approach when competitors’

products are available. Under these assumptions, the (R, s, S) policy takes the

vectorial form form (R, s,S), with R = (R1, . . . , RT ); where Rt , st and St de-

note respectively the length, the reorder-level and order-up-to-level associated

with the t-th inventory review.

Policies are compared based on their expected cost. Stocktaking — the

process by which physical inventory is reviewed — has a fixed cost of W . We

denote by Qt the quantity of the order placed in period t. Ordering costs are

represented by a fixed value K and a linear cost, but we shall assume that the

variable cost is zero without loss of generality. The extension of our solution to

the case of a variable production/purchasing cost is straightforward, as this cost

can be reduced to a function of the expected closing inventory level at the final

period (see Tarim & Kingsman, 2004). At the end of each period, a holding

cost h is charged for every unit carried from one period to the next. In case of a

stockout, a penalty cost b is charged for each item and period. We denote with

It the closing inventory level for period t, making I0 the initial inventory.
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We consider the problem of computing the (R, s,S) policy parameters that

minimize the expected total cost over the planning horizon. The order quantity

Qt is fixed at every review moment before the demand realisation using. The

order is placed only if t is a review period and the open inventory is below the

order level st.

The problem of computing the optimal (R, s,S) can be formulated as follow:

C1(I0) , min
(R,s,S)

f1(I0, Q1, R1) + E[C1+R1
(I0 +Q1 − d1,1+R1

)] (1)

Where C1(I0) is the expected cost of the optimal policy parameters starting

at period 1 with the initial inventory I0. In general, Ct(It−1) represent the

expected inventory cost of starting at period t with open inventory It−1. While

ft(It−1, Qt, Rt) is the expected cost of a review cycle starting in period t and

ending up in period t + Rt; it comprises review, ordering, holding and penalty

cost for the review cycle, that is

ft(It−1, Qt, Rt) , K1{Qt > 0}+W +

Rt∑
i=1

E[hmax(It−1 − dt,t+i +Qt, 0)

+bmax(−It−1 −Qt + dt,t+i, 0)].

(2)

Ct(It−1) values can be computed recursively, when all the policy parameters

are known, using the following formula:

Ct(It−1) , ft(It−1, Qt, Rt) + E[Ct+Rt
(It−1 +Qt − dt,t+Rt

)]) (3)

until the base case

CT+1(IT ) , 0 (4)

is reached. For a given (R, s,S) parameters set, this formulation allows to

compute the expected policy cost. However, the number of combinations of

parameters is exponential, making this approach unusable for the computation

of optimal ones.
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3.1. Branch-and-bound approach

Visentin et al. (2021) present the first algorithm for computing the optimal

parameters for the (R, s,S) problem. Their work is based on the following

lemma.

Lemma 1. If the replenishment cycles (R) are fixed, the problem is reduced to

a particular version of the (s,S) policy computation (Scarf, 1959), and can be

solved to optimality using SDP.

In this case, the problem is formulated as follows:

Ĉ1(I0) = min
R
f1(I0, Q1, R1) + E[C1+R1

(I0 +Q1 − d1,1+R1
)], (5)

where s and S are dependent on R. The proposed baseline computes the optimal

replenishment cycles by testing all R possible combinations and computing the

optimal policy cost for each of them. Their best technique, our comparison in

the experimental section, uses branch-and-bound to avoid recomputations and

prune sub-optimal R assignment. Optimal st and St levels can be computed by

considering only future periods when Rt is fixed, ignoring the expected opening

inventory level; this is not valid for the computation of the R vector.

4. Heuristic technique

The heuristic introduced in this work aims to compute locally optimal Rt

values to produce a near-optimal (R, s,S) policy. The main idea is to move the

assignment of the decision variable Rt at period t, and not to fix all of them at

the beginning of the time horizon, as implied by Equation 5. Similar relaxations

have been applied to the computation of the (R,S) policy (see e.g. Tarim, 1996;

Rossi et al., 2011; Özen et al., 2012). Under this policy, the relaxation introduces

the possibility of placing negative orders and discarding the items at no extra

cost. In the (R, s, S) policy, the relaxation also does not consider the possibility

that the opening inventory level is higher than the order level.
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After applying this relaxation, Equation 3 becomes

Ĉt(It−1) = min
Rt

ft(It−1, Qt, Rt) + E[Ct+Rt
(It−1 +Qt − dt,t+Rt

)]). (6)

Solving this recursion leads to different optimal Rt for different opening inven-

tory levels It−1. For example, if the opening inventory level is slightly higher

than st, but considerably lower than St, an order is not placed and the next

review cycle may start earlier. However, in the (R, s, S) policy, the review cycles

are fixed at the beginning of the time horizon and not after the demand realisa-

tion. This is the reason why we need to know the probability distribution of the

opening inventory level to determine the optimal Rt. Our heuristics operates

by choosing a locally optimal Rt, assuming that an order is placed in period t

and the possibility of placing a negative order. We define these locally optimal

replenishment cycles as Rat .

Knowing the expected cost of future periods Ĉj with j > t, it is possible to

compute the optimal st and St for that specific replenishment cycle Rt using

SDP. The best St is the value that minimizes Ĉt(St), since we place an order to

reach the point with the lowest future expected cost:

St = arg min
It−1

Ĉt(It−1). (7)

So, assuming that an order is placed, the best replenishment cycle is the one

that has the lowest cost after the inventory level is topped up to St:

Rat , arg min
Rt

Ĉt(St). (8)

As mentioned above, the computation of Ĉt requires the expected costs of

future periods Ĉj with j > t, which are dependent on the optimal Rj . We

relaxed the cost function by defining Cat as the expected cost of using local op-

timal Raj for all periods j after t. Given CaT+1(IT ) = 0, it is possible to compute

the relaxed cost function in a backward way using the following approximate

SDP functional equation:

Cat (It−1) , ft(It−1, Qt, R
a
t ) + E[Cat+Ra

t
(It−1 +Qt − dt,t+Ra

t
)]. (9)
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This formula computes a near-optimal replenishment schedule Ra, and the

set of order and order-up-to levels optimal for that given schedule. Due to the

relaxation, Ra can differ from the optimal R; however, as the experimental

section shows, this event is rare.

The resulting approximate SDP formulation is more complex than the (s, S)

one, making the computational effort required to solve it prohibitive. This is

mainly due to the computation of the expected cycle cost (Equation 2). This

computation involves three variables in each period: current inventory, order

size and length of the replenishment cycle. Associated computational effort can

be considerably reduced by leveraging the K-convexity property (Scarf, 1959)

within the (s, S) SDP formulation. The deployment of search reduction and

memoisation techniques further improve the performances, and it has a crucial

impact on the applicability of this model. In the next subsections, we present

the pseudocode for the solution and how these enhancements affect it.

4.1. Pseudocode

Algorithm 1 shows the procedure to compute the heuristics backwards. Lines

1-2 contain the boundary condition. Line 3 goes through all the periods in

backwards order. Line 5 searches through all the possible replenishment cycles,

line 6 through all the inventory levels and line 7 through all the possible order

quantities. Lines 12-13 save the current value of Rat according to Equation 8,

while line 14 updates the relative expected costs, Equation 9.

For clarity and for the sake of the enhancements, we separate the computa-

tion of the immediate cost. Let ζt,t+j be a value of the random variable dt,t+j

and P (ζt,t+j) be the probability of assuming that value. Algorithm 2 computes

the immediate cost, Equation 2.

4.2. K-convexity

We can exploit the property of K-convexity presented in Scarf (1959) in

solving the SDP. This approach is widely used to optimise traditional (s, S)

SDP computation.

11



Algorithm 1 RsS-SDP()

1: for i from min inventory to max inventory do

2: CaT+1(i) = 0

3: end for

4: for t from T down to 1 do

5: best review cost←∞

6: for r from 1 to T − t+ 1 do

7: for i from min inventory to max inventory do

8: Ccycle(i)←∞

9: for q from 0 to max order do

10: expected cost← ft(i, q, r) + E[Cat+r(i+ q − dt,t+r)]

11: if expected cost < Ccycle(i) then

12: Ccycle(i)← expected cost

13: end if

14: end for

15: end for

16: if min(Ccycle) < best review cost then

17: Rat ← r

18: Cat ← Ccycle

19: best review cost← min(Ccycle)

20: end if

21: end for

22: end for
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Algorithm 2 ft(i, q, r)

1: cost←W

2: if q > 0 then

3: cost← cost+K

4: end if

5: for j from 1 to r do

6: for each ζt,t+j value of dt,t+j do

7: close inv ← i+ q − ζt,t+j
8: if close inv ≥ 0 then

9: cost← cost+ h close inv P (ζt,t+j)

10: else

11: cost← cost− b close inv P (ζt,t+j)

12: end if

13: end for

14: end forreturn cost

The property is defined as

Definition 1. Let K ≥ 0, then function f(x) is K-convex if:

K + f(a+ x)− f(x)− a
(
f(x)− f(x− b)

b

)
≥ 0

for all positive a, b and x.

Scarf (1959) shows that considering s∗t and S∗
t the optimal reorder level and

order up-to level for period t:

Ct(It−1) =

 f(It−1, 0) + E[Ct+1(It−1 − dt)] s∗t ≤ It−1 ≤ S∗
t

f(It−1, 0) + E[Ct+1(S∗
t − dt)] +K 0 ≤ It−1 < s∗t .

(10)

This is done by computing the Ct(y) for different values of y starting from an

upper bound of St. The value y is then decremented, and the lowest value of Ct

is remembered. When the cost is greater than Ct+K the search terminates. St

is the inventory level in which the cost assumes the minimum value, st is the one

13



in which we stop the search. This approach greatly speeds up the computation

of the SDP.

Similarly to the computation of the (s, S) policy, we can use the K-convexity

property for the (R, s, S). Considering the Equation 9, for a fixedRt the problem

is reduced to an (s, S) one with the next Rt − 1 periods in which an order can

not be placed.

Algorithm 3 shows the pseudocode of the enhanced SDP, clarifying the im-

provement’s reason. For a fixed review cycle length Rt, there is no need to

search for the best order quantity Qt. When the order level st is determined,

the lower inventory levels assume the same expected cost.

4.3. Cycle Cost Memoisation

The calculation of the cycle cost is particularly time demanding. There is a

summation of expected costs over multiple periods. However, it is possible to

identify situations in which the same computations occur multiple times. Let

lt(It, Rt) be the function that computes the holding and penalty expected cost

of starting at the end of period t with closing inventory It and with the next

review moment in Rt periods. This new function is defined as:

lt(It, Rt) ,
Rt∑
i=1

E[hmax(It − dt+1,t+i, 0) + bmax(−It + dt+1,t+i, 0)] (11)

considering di,j = 0 when i = j. Equation 2 can be rewritten as:

ft(It−1, Qt, Rt) = K1{Qt > 0}+W + lt(It−1 − dt,t+i +Qt, Rt). (12)

The lt(It, Rt) function can be computed in a recursive way

lt(It, Rt) = hmax(It, 0) + bmax(−It, 0) + E[lt+1(It − dt+1, Rt − 1)], (13)

this can be considered as the functional equation of an SDP, where the hold-

ing/penalty cost of period t is the immediate cost. There are two boundary

conditions:

lT+1(IT + 1, Rt) = 0 (14)

lt(It, 0) = 0. (15)
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Algorithm 3 RsS-SDP-KConv()

1: for i from min inventory to max inventory do

2: CaT+1(i) = 0

3: end for

4: for t from T down to 1 do

5: best review cost←∞

6: for r from 1 to T − t+ 1 do

7: best cycle cost←∞

8: for i from max inventory down to min inventory do

9: Ccycle(i)← ft(i, 0, r) + E[Cat+1(It−1 +Qt − dt)]

10: if Ccycle(i) < best cycle cost then

11: best cycle cost← Ctemp(i)

12: Scyclet ← i

13: end if

14: if Ccyclet (i) > best cycle cost+K then

15: scyclet ← i

16: break for

17: end if

18: end for

19: if best cycle cost < best review cost then

20: Rat = r

21: best review cost← best cost cycle

22: for i from min inventory to scyclet do

23: Cat (i)← Ccyclet (st)

24: end for

25: Cat ← Ccycle

26: end if

27: end for

28: end for

15



The states are represented by the tuple (t, It, Rt) and are computed in a

forward manner. To avoid recomputations, we store the computed tuples in a

dictionary with constant access time.

4.4. Unit cost and lost sales extensions

Similarly to (Visentin et al., 2021), unit ordering cost can be easily modelled

as a function of the expected closing inventory or included in the immediate cost

function. In the case of a stockout, the lost sales model is more common than

a delay of the demand (Verhoef & Sloot, 2006), especially in a retail setting.

Lost sales models have been underrepresented in the inventory control literature

(Bijvank & Vis, 2012); however, many recent works are considering mixed lost-

sales and backorder configurations (ElHafsi et al., 2021). The model presented

herein can be adapted to include partially lost sales. Dos Santos & Oliveira

(2019) defines as β the percentage of unmet demand that is backlogged; the

remaining is lost. The functional equation 9 becomes

Cat (It−1) = min
0≤Qt≤Mγt

(ft(It−1, Qt)+E[Cat+1(max(It−1+Qt−dt, β(It−1+Qt−dt))]).

(16)

5. Experimental Results

This section conducts an extensive computational study of the heuristic pre-

sented in this paper. We aim to evaluate the quality of the policies computed

by the heuristic and the computational effort required. In Section 5.1, we as-

sess the computational effort required to compute a policy and the quality of

the policy itself under an increasing time horizon. An analysis of the heuristics

behaviour under different demand patterns and cost parameters is presented in

Section 5.2. Finally, we analyse an example in which the algorithm computes a

near-optimal replenishment plan.

For the experiments, we use as a comparison the branch-and-bound (BnB)

technique presented in (Visentin et al., 2021). This is the only (R, s, S) solver
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for this problem configuration available in the literature. We use the same solver

to compute the optimality gap. The solvers are:

• BnB-Guided, the fastest branch-and-bound approach presented in (Visentin

et al., 2021). It pre-computes an initial replenishment plan using (Rossi

et al., 2015) to improve the computational performances.

• SDP, the basic implementation of the SDP heuristic model presented in

Algorithm 1. We include this to appreciate the impact of the optimisation

techniques deployed.

• SDP-Opt, the heuristic implementation deployed using the K-convexity

property (Algorithm 3) and the immediate cost memoisation.

All experiments are executed on an Intel(R) Xeon E5640 Processor (2.66GHz)

with 12 Gb RAM. For the sake of reproducibility, we made the implementation

of all the techniques and the data generators available1.

Since our approach is a heuristic, we use the optimality gap as a measure

to compute the computed policy’s quality. The optimality gap is the estimated

extra cost of using the policy instead of the cost-optimal one for a particular

problem. It is defined as

Optimality gap ,
Policy cost−Optimal cost

Optimal cost
. (17)

Better policy parameters exhibit a lower optimality gap. It can be used to

estimate the inventory cost of deploying a non-optimal system.

5.1. Scalability

We used the same testbed presented in (Visentin et al., 2021). A fixed hold-

ing cost per unit h = 1. The other cost factors are sampled from uniform random

variables: fixed ordering cost K ∈ [80, 320], fixed review cost W ∈ [80, 320] and

linear penalty cost b ∈ [4, 16]. The demand is modelled as a series of Pois-

son random variables. A uniform random variable draws the average demands

1https://github.com/andvise/inventory-control
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per period with a range of 30 to 70. We generate 100 different instances. We

replicate the experiments for increasing values of the number of periods.

Figure 2 shows the logarithm of the average computational time over the 100

instances in comparison with the fastest technique available in the literature.

The simple implementation of the heuristic can barely solve tiny instances before

the time limit, making it useless for every practical use. Figure 2 shows that the

reduction of computational effort provided by K-convexity and memoisation is

considerable. The guided BnB slightly outperforms the optimised SDP for small

instances up to 8 periods, and then the gap between the two strongly increases,

making it able to solve instances more than twice as big in the same amount of

time. The K-convexity performance improvement is more significant than the

memoisation one. Moreover, it generally avoids the computation of all the DP

states associated with a negative inventory (Algorithm 3, line 13). Memoisation

offers a significant speed-up in computational times, which is greater in bigger

instances. For bigger instances, the physical memory needed grows to require

the usage of memory swap and a slow down in performances. In this testbed,

the heuristic always computes the optimal replenishment plan.

5.2. Instance type analysis

These experiments aim to analyse the performances of the heuristic under

different instance parameters. We want to analyse which cost parameters are

affecting the computational performances and the optimality gap of the heuris-

tic. We use a modified version of the instances used in (Visentin et al., 2021,

Section 6.2); this is a commonly used testbed originally proposed by (Berry,

1972) and widely used in the literature (Özen et al., 2012; Dural-Selcuk et al.,

2019; Xiang et al., 2018). The algorithm proposed herein computes the optimal

policy parameters for all the instances used therein. Our extension aims to find

problem settings where the heuristic under-performs the optimal approach. We

do it by examining a wider range of review and ordering costs, and by adopting

a normally distributed demand with varying standard deviation, expressed as a

proportion of its mean value (i.e. via a coefficient of variation).
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Figure 2: Caption: Computational time of the (R, s, S) SDP over the number of periods, time

limit 1 hour.

We use two different planning horizons: 10 and 20 periods. For the cost

parameters, we use all the possible combinations of review and ordering cost

values K,W ∈ {20, 40, 80, 160, 320}, holding and penalty cost fixed respectively

at h = 1 and b = 10. We consider Poisson demand and normally distributed

one with a coefficient of variation ρ ∈ {0.1, 0.2, 0.3}, where ρ = σ/µ, where σ

denotes the standard deviation, and µ the expected value of the demand. In

the literature, the coefficient of variation used is generally not higher than 0.3;

because a higher value would lead to a non-negligible probability of observing

negative demand values, which would violate the assumptions our model is built

upon.

We consider six different demand patterns: stationary (STA), positive trend

(INC), negative trend (DEC), two life-cycle trends (LCY1, LCY2) and an erratic

one (RAND); more details on these patterns can be found in (Visentin et al.,

2021). The combinations of the parameters mentioned above lead to the creation

of 1200 instances.
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Table 1 and Table 2 show the results for the 10 and 20-period instances.

Regarding the policies’ quality, we consider the average optimality gap, the

percentage of computed policies that differs for the optimal and their optimality

gap. We also compare the time required to compute the policies and the average

number of reviews. Figure 3 shows the boxplots of the optimality gap for the

instances in which the two algorithms compute different policies.

The cost factors suggest that the algorithm does not compute the optimal

policy in situations with a high ordering cost and a low review cost. Due to the

relaxation, the approximate SDP computes the parameters of the cycles based

only on the state values, considering the uncertainty of the future periods, but

ignoring the one related to the period opening inventory. When the review cost

is low, the BnB uses more review periods compared to the SDP to counteract

this uncertainty. Up to 7.33% and 9.33% (for the 10 and 20 instances) of the

policy computed differ from the optimal one; however, their gap averages less

than 1%. Figure 3 shows that even in the worse case, the optimality gap does

not exceed 2% and that even in the bigger instances with high uncertainty, the

majority is under 1%. The average optimality gap across all the instances with

the lowest review cost is 0.09% and 0.1%. A higher ordering cost leads to longer

intervals between orders, so a higher uncertainty on the opening inventory level

of a period. This leads to a maximum of 6.67% and 7.5% of near-optimal

policies. While for these particular settings, the percentage of non-optimal

policy is relatively high; their optimality gap is low.

The direct correlation between the demand uncertainty and the optimality

gap is evident. When realisations strongly differ from the expected demand, it

is more likely that the opening inventory level is higher than the order level in

a review moment. Our approach selects the review plan by considering that an

order takes place in those periods anyway. If the demand is low compared to its

expected value, it can also happen that the inventory level is higher than the

order-up-to-level. In these cases, our approach relaxes the problem by placing

a negative order and setting the inventory to S, so the policy is not optimal. In

essence, SDP performance is worse for increasing ρ.
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The pattern analysis provides interesting insights. The approach performs

better with the increasing (INC) pattern regardless of the other instance param-

eters; it always computes the optimal policy. We have the worse performance

in the decreasing (DEC) and random (ERR) ones. This is in line with Özen

et al. (2012) that considers a similar problem relaxation. If we have increasing

demands, the base stock levels likely increase as well to satisfy higher demands.

If the base stock levels increase monotonically, the relaxation generally com-

putes the optimal policy. The random pattern suffers similar drawbacks due to

randomly generated decreasing patterns. We observe the biggest gap between

the number of reviews with 0.05 and 0.7 fewer reviews on average when the

demand is random.

On average, the optimality gap between the two approaches is only 0.01%

and 0.02%, with 2.53% and 2.67% of the policy computed that are near-optimal

for the 10 and 20-period instances respectively. This proves the quality of the

heuristic in computing policies.

Our approach is 3.4 and 194 times faster, respectively, on the 10 and 20 peri-

ods regarding computational time. Moreover, the cost parameters do not affect

the SDP performances, while they affect the BnB pruning efficacy. For example,

low-review cost 20-period instances take more than 10 times more effort than

high-review ones. Uncertainty on the forecast affects the performances of both

approaches since it makes the computation of a state’s expected cost more ex-

pensive. However, the SDP manages to reduce this impact using memoisation.

The SDP approximately double its computational effort for ρ = 0.3 compared

to ρ = 0.1, while the increment for the BnB approach is higher than 20.

5.2.1. Non-optimality of the relaxation

This section analyses a single instance to understand the differences be-

tween the computed policies better. This example shows a situation in which

the heuristic computes a non-optimal policy. When computing the solution,

it considers only the expected demand for future periods. On the other hand,

the BnB approach presented in (Visentin et al., 2021) tests all the possible re-
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Optimality Time (min) Nr Reviews Expected cost error

Optimality Gap % Non-Optimal Non-Optimal OG SDP BnB SDP BnB SDP BnB

K values 20 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 0.22 0.61 5.18 5.19 0.17 0.17

40 0.0 (0.0, 0.01) 0.0 0.0 (0.0, 0.0) 0.22 0.7 4.52 4.53 0.17 0.16

80 0.01 (0.0, 0.01) 1.67 0.24 (0.02, 0.47) 0.23 0.74 3.7 3.72 0.15 0.14

160 0.01 (0.0, 0.02) 3.33 0.3 (0.1, 0.51) 0.24 0.87 3.09 3.12 0.13 0.12

320 0.05 (0.02, 0.09) 6.67 0.8 (0.46, 1.14) 0.25 1.0 2.38 2.45 0.09 0.09

W values 20 0.06 (0.03, 0.1) 9.17 0.65 (0.37, 0.92) 0.22 1.04 5.25 5.36 0.16 0.16

40 0.01 (0.0, 0.02) 1.67 0.45 (0.08, 0.83) 0.22 1.02 4.51 4.53 0.16 0.16

80 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 0.23 0.83 3.71 3.71 0.15 0.15

160 0.0 (0.0, 0.01) 0.83 0.07 (0.03, 0.1) 0.25 0.62 3.06 3.06 0.13 0.13

320 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 0.25 0.4 2.34 2.34 0.11 0.11

Poisson p 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 0.17 0.47 3.65 3.65 0.12 0.12

σ values 0.1 0.0 (0.0, 0.0) 0.67 0.07 (0.03, 0.11) 0.16 0.24 3.68 3.68 0.08 0.08

0.2 0.01 (0.0, 0.02) 1.33 0.66 (0.26, 1.05) 0.24 0.69 3.81 3.81 0.16 0.16

0.3 0.05 (0.02, 0.08) 7.33 0.61 (0.33, 0.89) 0.36 1.74 3.95 4.05 0.2 0.2

Pattern STA 0.02 (0.01, 0.03) 2.0 0.37 (0.0, 0.84) 0.13 0.64 3.82 3.85 0.12 0.12

INC 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 0.31 0.82 4.01 4.01 0.13 0.13

DEC 0.04 (0.0, 0.08) 5.0 0.84 (0.35, 1.32) 0.27 1.13 3.37 3.41 0.12 0.12

LCY1 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 0.2 0.76 3.95 3.96 0.17 0.17

LCY2 0.01 (0.0, 0.02) 2.0 0.33 (0.17, 0.48) 0.25 0.78 3.78 3.81 0.19 0.19

ERR 0.03 (0.0, 0.05) 5.0 0.51 (0.13, 0.88) 0.24 0.57 3.71 3.76 0.11 0.11

Average 0.02 (0.01, 0.02) 2.33 0.58 (0.35, 0.81) 0.23 0.78 3.77 3.8 0.14 0.14

Table 1: Optimality gap and pruning percentage for the techniques for instances of 10 periods.

Between brackets, the 90% confidence intervals of the optimality gaps.
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Optimality Time (min) Nr Reviews Expected cost error

Optimality Gap % Non-Optimal Non-Optimal OG SDP BnB SDP BnB SDP BnB

K values 20 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 1.83 197.65 10.33 10.33 0.04 0.04

40 0.0 (0.0, 0.01) 0.83 0.26 (0.0, 0.0) 1.75 242.99 9.06 9.09 0.04 0.04

80 0.0 (0.0, 0.01) 1.67 0.14 (0.0, 0.28) 1.78 318.49 7.36 7.37 0.05 0.05

160 0.01 (0.0, 0.03) 3.33 0.41 (0.1, 0.71) 1.87 418.64 6.07 6.11 0.05 0.05

320 0.05 (0.02, 0.08) 7.5 0.62 (0.35, 0.89) 1.76 576.3 4.63 4.79 0.04 0.04

W values 20 0.06 (0.03, 0.09) 10.83 0.55 (0.34, 0.76) 1.68 657.18 10.42 10.63 0.04 0.04

40 0.01 (0.0, 0.01) 2.5 0.2 (0.13, 0.26) 1.85 537.93 9.07 9.1 0.04 0.04

80 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 1.75 340.27 7.32 7.32 0.05 0.05

160 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 1.86 161.08 6.04 6.04 0.05 0.05

320 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 1.85 57.62 4.59 4.59 0.04 0.04

Poisson p 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 1.34 130.59 7.37 7.37 0.04 0.04

σ values 0.1 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 1.27 46.83 7.37 7.37 0.03 0.03

0.2 0.0 (0.0, 0.0) 1.33 0.16 (0.04, 0.27) 1.89 279.82 7.51 7.51 0.05 0.05

0.3 0.05 (0.02, 0.08) 9.33 0.53 (0.34, 0.73) 2.69 946.02 7.71 7.9 0.06 0.06

Pattern STA 0.01 (0.0, 0.03) 2.0 0.6 (0.04, 1.16) 0.81 286.97 7.48 7.55 0.02 0.02

INC 0.0 (0.0, 0.0) 0.0 0.0 (0.0, 0.0) 2.18 177.57 7.68 7.68 0.04 0.04

DEC 0.02 (0.0, 0.04) 3.0 0.55 (0.0, 1.27) 2.09 784.24 7.05 7.11 0.08 0.07

LCY1 0.01 (0.0, 0.02) 3.0 0.35 (0.08, 0.61) 1.47 251.47 7.88 7.92 0.04 0.04

LCY2 0.01 (0.0, 0.03) 4.0 0.32 (0.11, 0.53) 1.98 285.64 7.35 7.4 0.05 0.04

ERR 0.03 (0.0, 0.05) 4.0 0.64 (0.22, 1.06) 2.26 318.99 7.5 7.57 0.04 0.04

Average 0.01 (0.01, 0.02) 2.67 0.48 (0.31, 0.66) 1.8 350.81 7.49 7.54 0.04 0.04

Table 2: Optimality gap and pruning percentage for the techniques for instances of 20 periods.

Between brackets, the 90% confidence intervals of the optimality gaps.
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(a) (b)

Figure 3: Optimality Gap for the instances in which the heuristics fail to compute the optimal

policy. (a) for the 10-period instances and (b) for the 20-period

plenishment combinations of the previous periods during the search process.

Not considering the previous demands means ignoring the possibility of having

such a low demand that at a period t, the opening inventory level It is higher

than st, which will strongly affect future decisions. This difference worsens the

heuristic’s performance under high uncertainty and decreasing patterns (DEC

and ERR). In these instances, the high demand with high uncertainty at the

beginning of the time horizon makes unexpected high inventory levels at a re-

plenishment moment more likely. In this situation, the BnB solution adds more

review moments (especially when the cost associated W is low) to assess the

inventory level and react to the uncertainty.

For example, considering the instance of Table 1 with K = 320, W = 20,

ρ = 0.3 and decreasing demand pattern. Table 3 shows the two policies. The

BnB approach considers the higher uncertainty at the beginning of the time

horizon; it also reviews the inventory level at period 5. While this review adds

an extra cost in an almost deterministic system, it allows a better reaction to

unexpected demand. At the end of the time horizon, the uncertainty on the

inventory level is lower, and the two policies are identical from period 6 on

when a lower demand leads to lower absolute variations of the realised demand.

The BnB policy has an expected cost of 1706, the SDP of 1737, a difference of 31
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Period 1 2 3 4 5 6 7 8 9 10 Policy cost

γt 1 0 0 1 0 0 0 1 0 0

RsS-SDP St 282 - - 242 - - - 53 - - 1737

st 206 - - 170 - - - 25 - -

γt 1 0 0 1 1 0 0 1 0 0

RsS-BnB St 302 - - 242 186 - - 53 - - 1706

st 212 - - 45 111 - - 25 - -

Table 3: (R, s, S) policy parameters for the K = 320, W = 20, σ = 0.4, DEC pattern instance.

that leads to an optimality gap of 1.8%. Figure 4 shows the average simulated

cost of the two policies over 100000 demand simulations. We can see that the

optimal policy has increased review costs that lead to lower holding, ordering

and penalty costs.

6. Discussion

The experimental analysis shows that the proposed algorithm scale better

than (Visentin et al., 2021), with limited degradation of the quality of the com-

puted policy only for high demand uncertainty. The basic formulation requires a

prohibitive computational effort. The two enhancements based on K-convexity

(Scarf, 1959) and memoisation strongly improve the computational performance,

making it able to solve instances twice as big as the state-of-the-art and making

it two orders of magnitude faster in 20-period instances. This allows prac-

titioners to use such a policy in a wider range of real-world situations. We

then investigated the SDP performance under different types of instances. We

measured the computational effort to compute the policy and how much the re-

laxation affects its quality. The heuristic’s computational effort is less affected

by the instance configuration. The proposed algorithm rarely computes a non-

optimal policy when there is less uncertainty on demand and high review, low

fixed ordering cost instances. Even in the rare worse instances, the added cost

of using the heuristic never exceeds 2%. For Poisson distributed demand, the
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Figure 4: Caption: Comparison of the average cost of a policy over 100 000 demand simula-

tions.
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SDP always computes the optimal policy. Regarding the demand pattern, the

heuristic produces sub-optimal replenishment plans when the demand decrease

over time. The average optimality gap is 0.04% and 0.05% with 95.6% and

94.13% of computed policies identical to the optimal respectively for the 10 and

the 20-period instances; almost all the non-optimal policies are related to high

uncertainty of the demand (ρ = 0.3). These differences are caused by reduced

review moments in the SDP computed policies. Overall, the computational

benefits of heuristics make it the better choice for practitioners. If the tackled

problem is of limited size, the review cost is low compared to the ordering cost,

and the uncertainty of the demand prediction is high, the optimal algorithm is

still to be preferred.

7. Conclusions

This paper presented a heuristic for the non-stationary stochastic lot-sizing

problem with ordering, review, holding and penalty cost, a well-known and

widely used inventory control problem. Computing (R, s, S) policy parame-

ters is computationally hard due to the three sets of parameters that must be

jointly optimised. We presented the first pure SDP formulation for such a prob-

lem. The algorithm introduced solves to optimality a relaxation of the original

problem, in which review cycles are considered independently, and items can be

returned/discarded at no additional cost. A similar relaxation has been previ-

ously used in (R,S) policy computation works. The extensive numerical study

proved the reduction of the computational effort needed to compute a policy.

The heuristic computes the optimal policy in most cases.

In future studies, we plan to extend such a method’s applicability by consid-

ering more complex supply chains such as multiple items, multiple echelons, and

different cost structures. We plan to further enhance the current formulation

to improve the non-optimal computed policies, similarly to what (Rossi et al.,

2011) did with state space augmentation.
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