
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantifying the contribution of forcing and three prominent
modes of variability to historical climate

Citation for published version:
Schurer, AP, Hegerl, GC, Goosse, H, Bollasina, MA, England, MH, Mineter, MJ, Smith, DM & Tett, SFB
2023, 'Quantifying the contribution of forcing and three prominent modes of variability to historical climate',
Climate of the Past, vol. 19, no. 5, pp. 943-957. https://doi.org/10.5194/cp-19-943-2023

Digital Object Identifier (DOI):
10.5194/cp-19-943-2023

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Climate of the Past

Publisher Rights Statement:
© Author(s) 2023.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. Apr. 2024

https://doi.org/10.5194/cp-19-943-2023
https://doi.org/10.5194/cp-19-943-2023
https://www.research.ed.ac.uk/en/publications/073e423e-99c4-4437-8797-74c066f78fa6


Clim. Past, 19, 943–957, 2023
https://doi.org/10.5194/cp-19-943-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantifying the contribution of forcing and three prominent
modes of variability to historical climate
Andrew P. Schurer1, Gabriele C. Hegerl1, Hugues Goosse2, Massimo A. Bollasina1, Matthew H. England3,
Michael J. Mineter1, Doug M. Smith4, and Simon F. B. Tett1

1School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JW, United Kingdom
2Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, 1348, Belgium
3Climate Change Research Centre, ARC Centre for Excellence in Antarctic Science,
University of New South Wales, New South Wales, 2052, Australia
4Met Office Hadley Centre, Exeter, EX1 3PB, United Kingdom

Correspondence: Andrew P. Schurer (a.schurer@ed.ac.uk)

Received: 15 July 2022 – Discussion started: 9 August 2022
Revised: 17 February 2023 – Accepted: 3 March 2023 – Published: 9 May 2023

Abstract. Climate models can produce accurate represen-
tations of the most important modes of climate variability,
but they cannot be expected to follow their observed time
evolution. This makes direct comparison of simulated and
observed variability difficult and creates uncertainty in es-
timates of forced change. We investigate the role of three
modes of climate variability, the North Atlantic Oscilla-
tion, El Niño–Southern Oscillation and the Southern Annu-
lar Mode, as pacemakers of climate variability since 1781,
evaluating where their evolution masks or enhances forced
climate trends. We use particle filter data assimilation to
constrain the observed variability in a global climate model
without nudging, producing a near-free-running model sim-
ulation with the time evolution of these modes similar to
those observed. Since the climate model also contains exter-
nal forcings, these simulations, in combination with model
experiments with identical forcing but no assimilation, can be
used to compare the forced response to the effect of the three
modes assimilated and evaluate the extent to which these are
confounded with the forced response. The assimilated model
is significantly closer than the “forcing only” simulations to
annual temperature and precipitation observations over many
regions, in particular the tropics, the North Atlantic and Eu-
rope. The results indicate where initialised simulations that
track these modes could be expected to show additional skill.
Assimilating the three modes cannot explain the large dis-
crepancy previously found between observed and modelled
variability in the southern extra-tropics but constraining the

El Niño–Southern Oscillation reconciles simulated global
cooling with that observed after volcanic eruptions.

1 Introduction

Understanding the causes of observed climate change is cru-
cial not only to gain knowledge of the past but also to im-
prove projections of future change. It is common to split the
drivers of climate change into two broad categories: external
forcings, which could have natural or anthropogenic origins,
and internal variability (see e.g. Hegerl and Zwiers, 2011;
Eyring et al., 2021). Examples of external forcings include
changes in greenhouse gases and anthropogenic aerosols as
well as volcanic eruptions and changes in solar radiation.
Internal variability is caused by chaotic fluctuations gener-
ated internally by the climate system. Separating the external
forcing in observed climate change from the internal vari-
ability background is often referred to as detection and attri-
bution (Hegerl and Zwiers, 2011). Uncertainty in the model
response to external forcing and internal variability are re-
sponsible for much of the uncertainty in future projections
(see Hawkins and Sutton, 2009 and Lehner et al., 2020).

The combined effect of all external forcings or combi-
nations of different forcings can potentially be determined
by simulating them in climate models (e.g. Eyring et al.,
2016), but these simulations will also include internal vari-
ability. For detection and attribution studies, which are pri-
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marily focused on the externally forced component, the ef-
fect of the internal variability on the model signal (often
called the fingerprint of change) is reduced by averaging over
large ensembles (Gillett et al., 2021). These studies typically
treat internal variability as a statistical construct with prop-
erties calculated from pre-industrial simulations (piControl –
model simulations which do not include any forcings) (see
e.g. Allen and Stott, 2003; Ribes et al., 2017). Results can be
used not only to understand the past but also to constrain
future projections (Kettleborough et al., 2007; Brunner et
al., 2020). Other studies use large ensembles (see Maher et
al., 2021, for a review) to study the combined role of inter-
nal variability and forcing (Deser et al., 2020) and changes
in climate variability (Olonscheck et al., 2021). Since each
simulation contains one realisation of internal variability, the
ensemble spread can be used to estimate the possible range
of future climates (Deser et al., 2012). While large ensem-
bles can be used to estimate a range of plausible pasts, there
is zero probability that any one model simulation will have
the same detailed evolution as observed, due to chaotic be-
haviour in the climate system. Therefore determining inter-
nal variability and its contribution to past change is challeng-
ing and is typically done by removing the forced component
from observations either using model results (Hegerl et al.,
2018; Friedman et al., 2020) or by detrending (Knight, 2005).

Since climate variability is very complex, acting across
multiple timescales and space scales, it is common to only
study different aspects of it by isolating distinct modes of
variability such as El Niño–Southern Oscillation (ENSO)
(Timmermann et al., 2018) or the North Atlantic Oscillation
(NAO) (Hurrell et al., 2003). These are typically assumed to
be manifestations of internal variability and are found in pi-
Control simulations; however they can also be influenced by
external forcings (e.g. Smith et al., 2020; Khodri et al., 2017).
By focussing on a particular expression of variability in this
way it is possible to study various aspects of its effect on cli-
mate. This includes estimating the past effect of a particular
mode of variability (Iles and Hegerl, 2017; Hartmann et al.,
2013), determining whether it is possible to predict how the
mode will evolve over the next couple of years (Chen and
Cane, 2008; Smith et al., 2020), and predicting if this pattern
or amplitude is likely to change in the future (Collins et al.,
2013; Cai et al., 2015). Some studies have attempted to simu-
late past changes by perturbing climate simulations to mimic
the observed evolution of different climate modes. Kosaka
and Xie (2013) prescribed observed sea surface temperatures
(SSTs) over the central Pacific to force a simulation to fol-
low the observed ENSO, while Delworth and Zeng (2016)
and Delworth et al. (2016) prescribed heat flux anomalies to
mimic the effect of the NAO on the Atlantic Ocean.

In this study, we adopt an existing data assimilation tech-
nique (the particle filter; Van Leeuwen, 2009) that has al-
ready been used in a number of studies (for example Goosse
et al., 2012) to assimilate three major modes of internal vari-
ability in a historical model simulation (starting in 1781)

which also accounts for all the most important external forc-
ings. For the start of the simulations the modes assimilated
will mainly rely on proxy reconstructions with instrumen-
tal observations used later when it becomes available, In
this way the simulations will have both the externally forced
component of past change, in addition to the correct evolu-
tion of three of the most important modes of internal vari-
ability, without the need to impose any additional fluxes or
SSTs. In combination with simulations without any external
forcings (piControl simulations) and simulations with realis-
tic external forcings but non-assimilated internal variability,
the roles of the different drivers of past change can be eval-
uated. In Sect. 2 we will introduce the experimental set-up,
while Sect. 3 analyses how well it performs compared to ob-
served climate. The article will then finish with a brief dis-
cussion and conclusions section.

2 Experiment set-up

We use a set of simulations with the coupled atmosphere–
ocean model HadCM3 (Pope et al., 2000; Gordon et al.,
2000). The atmosphere model has a horizontal resolution of
3.75◦× 2.5◦ in longitude and latitude with 19 vertical lev-
els. The ocean model has a resolution of 1.25◦× 1.25◦ with
20 levels. Despite the relatively low resolution and the no-
longer-state-of-the-art physics modules, we expect the model
results to be meaningful, as the model has shown a high level
of skill, putting it consistently among the top half of CMIP5
models (see e.g. Flato et al., 2013; Sanderson et al., 2015;
Knutti et al., 2013), and performs well compared to CMIP6
models (Tett et al., 2022). The model is sufficiently fast and
efficient to run the large quantity of model years required for
this study. The forcings used are those described in Schurer
et al. (2014), with the exception of the anthropogenic aerosol
and ozone emissions, which are updated to the CMIP5 pro-
tocol. Two sets of experiments have been run covering the
period from 1781–2008.

The first set is a 10-member, all-forcing ensemble from
1781 to 2008 with time-varying greenhouse gas and aerosol
emissions, land cover changes, and natural forcings (vol-
canic, solar, orbital), initialised from existing simulations
(the four all-forced simulations and four “NoAER” simula-
tions presented in Schurer et al., 2014). These simulations
are those described and analysed in Brönnimann et al. (2019)
and are referred to as “forcing-only” in the rest of the article.

For the second set of experiments we use the same model
set-up with the same forcings as described above, initialised
from the same initial conditions but using a particle filtering
method without nudging (Van Leeuwen, 2009). This tech-
nique has already been successfully used in several differ-
ent studies (e.g. Goosse et al., 2012). It results in a physi-
cally consistent, near-continuous simulation which tracks a
set of chosen indices, which due to the nature of the filter
need to have a low dimensionality (usually this would mean
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only using a small number of indices or strongly filtered spa-
tial fields). In this case the North Atlantic Oscillation (NAO),
the El Niño–Southern Oscillation (ENSO) and the South-
ern Annular Mode (SAM) were chosen as they have been
found by numerous studies to have a dominant role in large-
scale atmospheric variability (see e.g. Eyring et al., 2021).
Our simulations cannot be expected to be as close to the
“truth” as the Kalman filter or four-dimensional variational
data assimilation approaches commonly employed by reanal-
yses, for example the 20th-century reanalysis (Compo et al.,
2011), the last-millennium reanalysis (Hakim et al., 2016)
and the ensemble-Kalman-filtering paleo-reanalysis (Franke
et al., 2017), which are assimilating much more information
such as surface temperature and pressure observations. In-
stead this set-up will produce an analysis which will behave
like a free-running model that happens to share relatively
closely (but not perfectly) these three modes of variability
with the observations. We can use this technique to see what
effect simulating a realistic variability (on a seasonal scale)
has on annual and decadal variability and what aspects of
decadal climate evolution are improved compared to fully
free-running model simulations with the same external forc-
ing (but without the data assimilation). This analysis also
identifies regions where, despite the assimilated variability,
observed changes remain inconsistent with the model simu-
lation, which could be interpreted as a possible indicator of
model error or data uncertainty.

The particle filter set-up is based on that described in Du-
binkina et al. (2011). In our analysis, 50 model simulations
are started in 1781 from initial conditions taken from the
same simulations as the ensemble of 10 transient simulations.
Every year, the simulations are stopped on 1 April, and the
likelihood of each of the 50 simulations (often called “par-
ticles”) is calculated based on the observations of the three
chosen indices over the preceding 12 months. Another set
of 50 simulations is then generated with initial conditions
taken from the end of these existing 50 simulations, sampled
according to their likelihood, with the lowest-likelihood par-
ticles stopped and multiple new simulations initialised from
the higher-likelihood particles. A tiny perturbation is made to
the atmosphere of each of the initial conditions, and 50 new
simulations are run for the next year.

The likelihood, p, of a particle, ψ , given the observations,
d , is based on a Gaussian density,

p(d|ψ)=K−1 exp
[
−

1
2

(d −H (ψ))TC−1(d −H (ψ))
]
, (1)

where K is a normalisation constant; H is an observational
operator, which maps the model output onto the observa-
tional phase space; and C is the error covariance matrix,
which here takes into account the observational uncertainty
(see Dubinkina et al., 2011, for more details). The likelihood
is thus dependent on both the closeness of each particle to the
observed index and on the relative uncertainty in each index.
The number of particles to spawn from each individual simu-

Figure 1. Schematic showing the performance of the particle fil-
ter. Values are only illustrative and do not represent any particu-
lar climate variable. Observations: black with grey uncertainties;
model simulations: blue; simulations that are continued: darker
blue; weighted mean: purple; continuous simulations: green (note
that this quickly converges onto a single simulation as you follow
the simulations back in time from the end of the experiment).

lations is proportional to its likelihood following an iterative
process described in Dubinkina et al. (2011), with the only
modification that here we only allow each particle to be re-
spawned a maximum of 20 times, thus maintaining a spread
of initial conditions for each new iteration.

A schematic, shown in Fig. 1, illustrates the particle filter
technique used here, with just 10 particles and 1 assimilated
index. This toy example shows the performance for 10 assim-
ilation steps, where at each step the initial conditions for the
next step are chosen from the previous particles based on the
likelihood calculated with Eq. (1). The assimilated product
can be derived at each step for any variable by calculating a
likelihood-weighted mean of all simulations using the likeli-
hood in Eq. (1). We term this the weighted mean. A sequence
of continuous particles can be found by time-reversing the
trajectory by linking each particle to its parent (Fig. 1). After
only a few assimilation steps back it is inevitable that they
will all converge onto one particle and will follow the same
sequence thereafter. We term this the continuous particle, and
for simplicity it will be derived by only following the most
likely particle at the final assimilation step backwards. In the
particle filter experiment this pseudo-continuous simulation
will also exist (with only tiny a perturbation at machine pre-
cision being applied to the atmosphere at each restart step).
In theory, such a simulation could also exist without any as-
similation step at all, but this would require a prohibitively
large number of simulations. Unless stated differently results
are shown for the weighted mean and are referred to as the
“DA” (data assimilation) model simulation.
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Figure 2. Schematic diagram of target indices. The NAO instrumental reconstruction uses Luterbacher et al. (2001) up until the year 2000
and then the 20th-century reanalysis (Compo et al., 2011) thereafter. The ENSO proxy reconstruction uses a combination of Emile-Geay et
al. (2013a) and Li et al. (2013) until 1882 and then HadSST3 (Kennedy et al., 2011a, b) thereafter. The SAM proxy reconstruction used is
Abram et al. (2014a) until 1957 and then the Marshall index (Marshall, 2003) thereafter.

The indices chosen are shown in Fig. 2. The data used
to constrain the data assimilation simulation are intended to
be the best available for that particular index. Hence, instru-
mentally observed indices are used when available and proxy
reconstructions when they are not. The consequence of this
is that the uncertainty in the target index changes through
time, as does the relative uncertainty between the indices and
thus the constraint applied to the simulations. The assimila-
tion step was chosen to occur on 1 April, so the simulations
are restarted from initial conditions which best agree with the
boreal winter, which had just occurred (the period in which
the most information is assimilated).

For the NAO index the metric used is the mean of the NAO
index over the period December to March and is calculated
as the standardised difference between the standardised pres-
sure of the Icelandic Low and the Azores High, as in Luter-
bacher et al. (2001). For ENSO the metric used is the tem-
perature anomaly over the Niño3.4 region (5◦ N–5◦ S, 170–
120◦W). For 1781–1881 this is the mean over the months
November to February and is obtained by the mean of the
proxy reconstructions of Li et al. (2013) and Emile-Geay et
al. (2013a). In 1882 the metric changes to take advantage
of the more reliable instrumental observations (HadSST3;
Kennedy et al., 2011a, b), with two periods used, the mean of
the Niño3.4 index from April to September and the mean of
the index from October to March, to find particles that follow
the ENSO evolution during the whole year. The SAM index
is initially the annual reconstruction of Abram et al. (2014a).
Given that the assimilation occurs on 1 April every year, it
means that the first part of the year used to calculate the SAM
index is from the previous assimilation step. In 1957 the filter
switches to use the instrumental Marshall index (Marshall,
2003). Given that monthly data exist, the mean of the period
of April through to March is used to coincide with the assim-
ilation time step, and the metric for this period is calculated
as the mean of the monthly values.

Given the finite number of particles (50), none of the indi-
vidual simulations is capable of perfectly matching all three
indices simultaneously. Which index will be given the most
weight will be determined by the uncertainty in that particu-

lar index (see Eq. 1). The uncertainty associated with each of
the indices is shown in the Supplement (Fig. S1). The uncer-
tainties in the proxy reconstructions for the ENSO and partic-
ularly the SAM are much larger than the NAO instrumental
uncertainty. Thus, the analysis initially tracks the NAO bet-
ter as the filter preferentially tries to fit this index, as shown
by correlations between the assimilated and observed index
in Fig. 3 (correlations for the “continuous particle” shown
in Fig. S2). Uncertainties in ENSO and then the SAM de-
crease during the instrumental period (substantially in the
case of the SAM); thus the correlation to these indices im-
proves (with the match to the NAO noticeably degrading af-
ter 1950). The performance of the filter is also reflected in
the number of particles that are re-spawned at each iteration
(Fig. S3). This is about 17 till 1881, dropping to 10 when
the ENSO instrumental data are used and below 5 when the
SAM instrumental data start in 1957. As the number of par-
ticles which match the observed indices within their associ-
ated uncertainty decreases, more particles are discontinued,
and more spawn from the remaining particles. Towards the
end of the simulation the filter often only re-spawns from
three particles, the minimum allowed. It is important to note
that improvement in the agreement on an annual scale is not
necessarily related to agreement on a decadal scale as mod-
elled values consistently higher or lower than those observed
can lead to large decadal disagreement, for example in the
decadally smoothed ENSO index in the mid-20th century
(Fig. 3).

3 Results

3.1 Performance validation

The performance of the particle filter experiment is assessed
by analysing how well it reproduces the spatial patterns as-
sociated with the assimilated indices. The NAO, ENSO and
SAM indices were calculated in the observational record and
in the particle filter simulation, and in Fig. 4 the sea level
pressure fields are regressed on these indices. A compari-
son of the model pattern (right panels) to the observational
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Figure 3. Performance of filter. Time series of target indices (top three rows) – NAO (DJFM, climatology period 1782–2008), ENSO (NDJF,
climatology period 1882–1992), SAM (annual mean, climatology period 1957–1995) – for the weighted-mean analysis (blue), reconstruction
(brown) and instrumental observations (black). Note that because of changes in the target indices through time (Fig. 2), the plotted time series
does not always exactly correspond to the data assimilated. Left column panels: annual values; right column panels: annual values smoothed
by an 11-year running mean. Bottom left: running 20-year correlation for the annual value; bottom right: 40-year correlations for the decadal
values for the NAO (green), ENSO (purple) and SAM (orange). The vertical dashed line shows the switch between proxy and instrumental
values for ENSO and SAM.

counterparts (left panels) can be used to assess whether the
HadCM3 climate model is capable of accurately simulating
the spatial patterns of these modes of variability. In general
the model performs well; however there are some noticeable
biases, in particular in the temperature response to ENSO,
which is known to extend too far west in HadCM3 (see also
Collins et al., 2001), and in the temperature response to the
SAM. The central panels show the DA simulation fields re-
gressed on the observed index; the difference between these
patterns and the observed regression patterns is shown in the
Supplement (Fig. S5). This represents a test of the assimila-
tion procedure. If the particle filter was performing perfectly
the modelled indices would be identical to the observed in-
dices, and consequently the central and right panels would be
identical. This is almost the case (although the patterns using
the observed index are slightly weaker), which is a reflection
of the fact that the modelled indices follow the instrumental
observations reasonably well, although not perfectly (Fig. 3).
Regressing the DA simulation fields on the proxy SAM re-
construction results in a much weaker pattern (not shown),
reflecting the loss of performance in this earlier period.

3.2 Correlations of models with observed climate

In order to determine the regions in which the particle fil-
ter provides a statistically improved realisation of the ob-

served climate compared to the forcing-only simulations, we
estimate skill by using correlation coefficients, as suggested
in Goddard et al. (2013). Detrended observed anomalies are
correlated with those simulated by the model with and with-
out assimilation for each grid cell to determine where the as-
similation is significantly improving the agreement. Because
the particle filter results are a weighted mean over a number
of particles (see Fig. S3), the internal variability not associ-
ated with the three assimilated modes will be reduced. Con-
sequently comparing them directly to each of the forcing-
only simulations could give misleading results. To account
for this, the average weights which are used in the particle
filter experiment for the period analysed are calculated (see
Fig. S4) and then applied at random to the 10 forcing-only
simulations to create 100 different equivalently weighted
means. Results are considered significant if correlations cal-
culated between the observations and the particle filter exper-
iment are greater than 95 % of the equivalent values calcu-
lated between the observations and the weighted means from
the 10 forcing-only simulations. In order to focus exclusively
on the skill gained from including the assimilation, we cal-
culate the difference between the correlation calculated for
the assimilated experiment and the mean correlation calcu-
lated for the non-assimilated forcing-only simulations (see
Fig. 6). In order to provide a test of bias an equivalent figure
displaying mean absolute error (instead of the correlation) is
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Figure 4. Regression between index and sea level pressure. From top to bottom: NAO, ENSO, SAM. Left column: regression between
the observed index and the observed spatial pattern of sea level pressure (from 20CRv3; Slivinski et al., 2019). Middle column: regression
between the observed index and the DA model spatial pattern. Right column: regression between the DA model index and its own spatial
pattern. All data are first detrended. Regressions calculated over the period 1882–2008 except the SAM regressions, which are calculated
over the shorter period (1957–2008).

shown in Fig. S10. The correlations between the assimilated
and non-assimilated model simulations and the observations
are shown in the Supplement (Figs. S6 and S7).

Spatial patterns of correlation differences are shown in
Fig. 6a and b for annual and boreal-winter (DJF) surface air
temperature (the focus is on boreal winter as this is when
most data are assimilated; results for other seasons are shown
in Fig. S9). In both cases a substantial fraction of the to-
tal number of grid squares displays significantly higher cor-
relations than would be expected due to chance. Improved
correlations are highest in the central and eastern tropical
Pacific due to the effect of ENSO, and regions with strong
connections to this mode of variability will show similar be-
haviour in both models and observations, for example the In-
dian Ocean and tropical Atlantic (Klein et al., 1999). Out-
side of the tropics teleconnections to the ENSO variability
are much weaker. Other significant increases in correlation
(above that expected by chance) are seen in the northern
extra-tropics, in the North Atlantic, Europe and Siberia, par-
ticularly in winter. This is the region most strongly affected
by the NAO (see Hurrell et al., 2003, and Figs. 4 and 5) which
is assimilated for this period (December–March). To further
investigate correlations over this region we have analysed re-
sults using a spatial European reconstruction (Luterbacher et
al., 2004) over the full period of the experiment (1782–2000;
Fig. 6c and d), in winter and in the annual mean. Correla-
tions are found to be particularly strong over the northern part
of Europe in winter, consistent with the effect of the NAO.
The effect of the SAM on temperature is not so clear, partly

due to limitations in observational coverage. However, there
are high and significant correlations in parts of the Southern
Ocean, particularly south of Australia and off the southern tip
of South America, regions strongly affected by the SAM (see
e.g. Fogt and Marshall, 2020) and which have good agree-
ment between models and observations in Fig. 4. The results
for mean absolute error (Fig. S10) are broadly similar, show-
ing reduction in bias in the regions which are found to have
higher correlations. Note that Fig. 6a–d use the infilled anal-
ysis product of HadCRUT5, but the main findings are insen-
sitive to the infilling process (see Fig. S8).

Differences in how well the assimilated and forced simula-
tions correlate to observed precipitation are shown in Fig. 6g
and h. Due to sparsity in observations the analysis is re-
stricted to land-only regions with a start date of 1950. As
for temperature, significant improvements are mainly found
in the tropics, particularly in the Pacific, but also in Europe
and southern Australia, consistent with the influence of the
NAO and the SAM.

One striking aspect of Fig. 6 is that, even for temperature,
the assimilation only significantly improves the correlations
for about a third of the globe at interannual timescales, with
much of the significantly correlated area in the tropics. This
is an indication of the relative importance of the three modes
of variability assimilated here compared to that of other com-
ponents of internal variability. At higher latitudes the atmo-
sphere’s intrinsic variability is much higher, and although im-
portant, the relative role of the indices assimilated here can
only explain a relatively small component of the total vari-
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Figure 5. Regression between index and surface air temperature. From top to bottom: NAO, ENSO, SAM. Left column: regression between
the observed index and the observed spatial pattern of SAT (from HadCRUT5, infilled; Morice et al., 2021). Middle column: regression
between the observed index and the DA model spatial pattern. Right column: regression between DA model index and its own spatial pattern.
All data are first linearly detrended. Regressions calculated over the period 1882–2008 except the SAM regressions, which are calculated
over the shorter period (1957–2008) due to data availability. Grey indicates missing data.

ability. This demonstrates both the limitations and strengths
of this approach; while it will not give as accurate a realisa-
tion of past climate as reanalyses which assimilate as much
observed daily (or sub-daily) data as possible, it can instead
be used to assess the relative role these three indices play in
determining the climate.

One interesting aspect is how much variability these in-
dices can explain on a decadal timescale (filtering using a
running 11-year mean). As Fig. 6c and d show, the most
prominent area of improved correlations on these longer
timescales is the North Atlantic, in the sub-polar gyre region,
which is an area that has previously been identified as one
with a particularly strong link to the NAO and which could
play a key role in driving ocean circulation (see e.g. Zhang
et al., 2019, for a review). There are also significant correla-
tion improvements in surface temperature on a decadal scale
in the Pacific and Indian oceans, over northern Eurasia, in
Africa, and in the Southern Ocean. Due to the relatively short
period analysed, results for precipitation on a decadal scale
are very noisy (Fig. 6i and j). However they do show an in-
creased agreement in the tropical Pacific and in Europe, con-
sistent with the results for surface temperature.

3.3 Large-scale mean climate

Results for correlation against observed large-scale average
temperature support the spatial correlations discussed above.
The agreement is significantly improved by the assimila-
tion in the global mean and in the tropics and southern-

hemispheric extra-tropics (Fig. 7). Temperature in the north-
ern extra-tropics shows an improvement in the particle filter
during the second half of the century (particularly north of
35◦ N), with larger correlations than in any simulation with-
out data assimilation, but not during the first half of the cen-
tury, with values particularly low in the period 1900–1940
and no statistical overall improvement for the period as a
whole. A similar result is found in correlations over Europe
(Fig. 7h), with very low values at the start of the 20th century.
As the NAO has a particularly strong influence on Europe
(Hurrell et al., 2003), and the DA model follows the observed
NAO closely throughout this period, these weak correlations
suggest the effect of the NAO on Europe and northern-high-
latitude regions is not constant through time, although uncer-
tainties in observations could also contribute. Other studies
(Weisheimer et al., 2019) have also found non-stationarities
in the skill of initialised climate models to predict the NAO,
with higher values since the 1970s and lower values in the
mid-20th century. In general, relatively small improvements
in the correlation of temperature at a large scale and over
long time periods are expected because at these scales the
effect of external forcing will dominate, and much of the dis-
crepancy between simulated and observed climate is likely
to be due to errors in the simulated forced response. This
is particularly true for higher latitudes, where previous stud-
ies have found that, despite a strong regional influence, the
NAO only weakly affects large-scale temperatures (Iles and
Hegerl, 2017).
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Figure 6. Improvement in annual and northern-hemispheric winter (DJF) temperature and precipitation correlation between models and
observations due to assimilation. The difference in correlation between observations and the model simulations with and without assimi-
lation. (a, b) Temperature correlations using HadCRUT5 (infilled; Morice et al., 2021) for the period 1882–2008. (c, d) Decadal (11-year
running mean) temperature correlations using HadCRUT5 for the period 1882–2008. (e, f) Correlation using a temperature reconstruction
(Luterbacher et al., 2004) for the period 1782–2000. (g, h) Correlation using the Global Precipitation Climatology Centre (GPCC) dataset
(Schneider et al., 2016) for the period 1950–2008. (i, f) Decadal (11-year running mean) precipitation correlation using GPCC for the period
1950–2008. Stippling indicates where the correlation is bigger than the 95th percentile from the weighted means of the 10 forcing-only model
simulations. The number at the top right of every plot indicates the percentage of grid cells which are stippled. If only due to uncorrelated
random variability, a value of 5 % would be expected.
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Figure 7. The 41-year sliding correlations for annual zonal-mean
and European winter air temperature. (a–f) Correlations are calcu-
lated between observed and simulated air temperature. (a–f) Corre-
lations between zonal-mean temperatures for latitudes given in the
bottom right of each panel between HadCRUT5 (non-infilled) and
the forcing-only simulation (pink) and data assimilation simulation
(blue). All simulations masked to available observational data cov-
erage. (g) Correlations between a reconstruction of European win-
ter (Luterbacher et al., 2004) and simulations. Correlations over the
full period on the right of the plot. If the correlation is greater than
all 10 forcing-only simulations, the blue symbol is plotted as a star
(instead of a plus).

Previous studies, for example Friedman et al. (2020) and
Hegerl et al. (2018), have found that observed decadal tem-
perature variability in the Southern Hemisphere, particularly
the extra-tropics, is far greater than that simulated by the
latest climate models and is outside the CMIP5 ensemble
spread. As we are assimilating the key modes of variabil-
ity for this region (the ENSO and SAM), it is an interest-
ing question to investigate whether our DA model simulation
can offer insights into this discrepancy. Time series of sur-
face air temperatures averaged over zonal bands, including
the southern-hemispheric extra-tropics, are shown in Fig. 8.
As expected, the observed variability over 65 to 30◦ S is out-
side the range of the forcing-only simulations. Assimilation
does little to improve this situation, suggesting that it is nei-
ther the SAM nor the ENSO variability which is responsible
for the discrepancy. However, this could partially be due to
possible deficiencies in the model’s pattern of the SAM (see
Figs. 4 and 5). Other intriguing possibilities are limitations in
model variability in the Southern Ocean (Hyder et al., 2018),
potentially due to the relatively coarse resolution (Beadling
et al., 2020), as well as possible biases in SST measurements

Figure 8. Annual-mean surface air temperature averaged over three
latitudinal bands. Assimilated model: blue; 10 forcing-only simula-
tions: light pink; forcing-only ensemble mean: red; observations:
black (HadCRUT5, non-infilled). All time series are filtered using a
5-year running mean, and simulations are masked to available ob-
servational data coverage.

such as those found in the northern-hemispheric Atlantic and
Pacific (Chan et al., 2019) and using coastal weather stations
(Cowtan et al., 2018).

3.4 Temperature response to large volcanic eruptions

Volcanic eruptions have an important role on annual as well
as decadal climate (Robock, 2000). However, the global-
mean temperature response has been found to be stronger
in climate models than in observations (Chylek et al., 2020;
Bindoff et al., 2013). It has been suggested that this discrep-
ancy could be explained, at least partially, by ENSO events,
which coincide with all major volcanic eruptions during the
instrumental era (Lehner et al., 2016), although the role of
the volcanic eruption in triggering the occurrence of an El
Niño is still disputed (see McGreogor et al., 2020, for a re-
view). Studies of the last millennium which rely on proxy
evidence offer mixed results from a longer-term perspective,
with some recent studies, typically based on tree-ring evi-
dence, supporting an El Niño-like response in the year fol-
lowing an eruption (e.g. McGregor et al., 2010; Li et al.,
2013), while studies based on coral data from the ENSO re-
gion itself do not find any significant relationship (Tierney et
al., 2015; Dee et al., 2020). Models of different complexities
also simulate an El Niño response, although they disagree on
the underlying mechanisms (Ohba et al., 2013; Khodri et al.,
2017; Predybaylo et al., 2020; Maher et al., 2015; Herman-
son et al., 2020). While the majority of studies concentrate on
tropical eruptions, modelling studies have also found an im-
portant role for high-latitude eruptions, and the mechanism
may also be different (Pausata et al., 2015). Given that the
data assimilation simulation has been designed to follow the
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observed ENSO index, it provides an ideal test bed for inves-
tigating the effect of the ENSO on the climate after volcanic
eruptions, although it cannot provide any evidence to address
the question of whether a forced link exists between the erup-
tion and the ENSO state.

To investigate the temperature response following vol-
canic eruptions we employ a commonly used technique
called an epoch analysis (e.g. Hegerl et al., 2003). This in-
volves averaging the response across multiple eruptions in
order to reduce internal variability to focus on the forced
response. Here we choose the five strongest tropical erup-
tions which coincide with the period of instrumental observa-
tions: Krakatoa (August 1883), Santa Maria (October 1902),
Agung (March 1963), El Chichón (April 1982) and Pinatubo
(June 1991). The global-mean surface air temperature and
Niño3.4 index are calculated for the simulated and observed
climate for 60 months after each eruption occurred relative
to a pre-eruption mean (calculated as the mean over the 60
months directly before the eruption), and the results for all
five are averaged together. Figure 9 shows the results for
the epoch analysis for the last five major tropical eruptions.
The ENSO index concurrent with the eruptions is on average
slightly positive when the volcanic eruptions occur and be-
comes increasingly positive for the year after the eruptions.
This behaviour is captured remarkably well in the DA simu-
lation but not by any of the forcing-only simulations. Based
on the results from the forcing-only simulations one would
conclude that the model overestimates the response to vol-
canic eruptions since all model simulations have larger cool-
ing following the eruption than that observed. Assimilating
ENSO, however, resolves this clear mismatch, showing that,
at least for this model, if a simulation has the correct ENSO
evolution the temperature response is very close to that ob-
served.

4 Discussion and conclusions

In this study, we introduce a new experimental set-up based
on existing data assimilation techniques to produce a near-
continuous and near-free-running model simulation with a
realisation of the ENSO, NAO and SAM similar to that
which actually occurred. We have demonstrated that this
method adequately captures the assimilated modes and of-
fers an improved realisation of the climate above that of free-
running simulations without assimilation in several key re-
gions in both temperature and rainfall. This includes annual-
and winter-mean surface temperature over much of the north-
ern extra-tropics, large parts of tropical surface temperature,
and tropical and European rainfall. On a decadal scale, im-
provements in skill are found over much of the tropical Pa-
cific, over some parts of the Southern Ocean and in the sub-
polar gyre region of the northern Atlantic. Decadal forecast
experiments have shown that the NAO (Smith et al., 2020)
and ENSO (Barnston et al., 2019; Dunstone et al., 2020) are

Figure 9. Response to five tropical volcanic eruptions. Epoch anal-
ysis for observed Niño3.4 SST anomaly index (top) and global-
mean surface air temperature (bottom). Observations are HadSST4
(Kennedy et al., 2019) and HadCRUT5 (non-infilled); all simula-
tions are masked to the observations. Both variables are plotted as
anomalies from the mean of the 5 years before the eruption date.

predictable on seasonal to annual timescales. This analysis
highlights where a prediction system has the potential to bet-
ter reproduce observed trends if the prediction systems were
capable of following the correct realisation of these modes.
Interestingly our results also display some evidence of non-
stationarity, with the assimilation improving agreement with
observations more in some periods than others, suggesting
that the skill in decadal forecasts could vary through time.

Past modelling studies have shown that the observations
in the southern extra-tropics are far more variable on the
decadal scale than model simulations. By assimilating the
ENSO and the SAM we can show that getting the evolution
of these modes of variability closer to reality does not help
to explain this discrepancy. This suggests that the difference
must have an alternative origin, such as observational errors
or other model deficiencies. Outside this region though, there
is no major discrepancy in surface air temperature, providing
support for the ability of climate models to reproduce ob-
served climate evolution.

Consistent with most models, the HadCM3 simulations
analysed here show too much cooling following volcanic
eruptions over the last 150 years. Correctly assimilating
ENSO results in simulated cooling that is consistent with the
observations. This demonstrates that the model response is
not necessarily too strong, but rather the forcing-only simu-
lations do not capture the correct ENSO response. This con-
clusion highlights that relying on model simulations which
do not capture the observed ENSO variability could lead to
misleading conclusions.

We therefore consider this use of a particle filter to be
a promising experimental design which could be developed
further in the future to investigate the causes of past variabil-

Clim. Past, 19, 943–957, 2023 https://doi.org/10.5194/cp-19-943-2023



A. P. Schurer et al.: Quantifying the contribution of forcing and three prominent modes of variability 953

ity or the effect of potential future changes in key circula-
tion modes using a storyline approach. We note that while
we have chosen to assimilate three modes of variability in
this study, it would be possible to assimilate any number of
them. Assimilating fewer modes would reduce the degrees
of freedom for the filter and hence allow an improved perfor-
mance for that mode or alternatively the ability to use fewer
particles, while assimilating more has the potential to reduce
the performance of the filter unless the number of particles is
also increased.

Data availability. Model simulation data are all publicly avail-
able. The particle filter simulation data are available at
https://doi.org/10.7488/ds/3829 (Schurer et al., 2023a). The all-
forced HadCM3 simulations (without assimilation) are available
at https://doi.org/10.7488/ds/3827 (Schurer et al., 2023b). The
NAO reconstruction is available at https://crudata.uea.ac.uk/cru/
data/paleo/naojurg/ (Climate Research Unit, 2023). The ENSO re-
constructions are available at https://doi.org/10.25921/c8ez-6f86
(Li et al., 2011) and https://doi.org/10.25921/t8hf-mt92 (Emile-
Geay et al., 2013b). The SAM reconstruction is available at
https://doi.org/10.25921/3egm-zr66 (Abram et al., 2014b). The
seasonal European temperature reconstruction is available at
https://doi.org/10.25921/1hw9-nz71 (Luterbacher et al., 2006). The
Marshall index is available at https://legacy.bas.ac.uk/met/gjma/
sam.html (BAS, 2023). HadSST3 is available at https://www.
metoffice.gov.uk/hadobs/hadsst3/ (Met Office, 2011). HadSST4 is
available at https://www.metoffice.gov.uk/hadobs/hadsst4/ (Met Of-
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