
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Investigation of Firebrand Generation from an Experimental Fire :
Development of a Reliable Data Collection Methodology

Citation for published version:
Thomas, J, Mueller, E, santamaria, S, Gallagher, M, El houssami, M, filkov, A, Clark, K, Skowronski, N,
Hadden, R, Mell, W & Simeoni, A 2017, 'Investigation of Firebrand Generation from an Experimental Fire :
Development of a Reliable Data Collection Methodology', Fire Safety Journal.
https://doi.org/10.1016/j.firesaf.2017.04.002

Digital Object Identifier (DOI):
10.1016/j.firesaf.2017.04.002

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Fire Safety Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. Apr. 2024

https://doi.org/10.1016/j.firesaf.2017.04.002
https://doi.org/10.1016/j.firesaf.2017.04.002
https://www.research.ed.ac.uk/en/publications/b8d2db3e-956b-48a3-80cd-b737ae8f6027


Investigation of Firebrand Generation from an Experimental Fire: 
Development of a Reliable Data Collection Methodology 

JAN C. THOMAS
1
, ERIC V. MUELLER

1
, SIMON SANTAMARIA

1
, MICHAEL GALLAGHER

2
, 

MOHAMAD EL HOUSSAMI
1
, ALEXANDER FILKOV

3,4
, KENNETH CLARK

2
, NICHOLAS 

SKOWRONSKI
5
, RORY M. HADDEN

1
, WILLIAM MELL

6
 and ALBERT SIMEONI

7 

1 
BRE Center for Fire Safety Engineering, U. of Edinburgh, Edinburgh, Scotland, UK 

2 
Northern Research Station, USDA Forest Service, New Lisbon, NJ, USA 

3
 School of Ecosystem and Forest Sciences, U. of Melbourne, Creswick, VIC 3363, Australia 

4
 Tomsk State University, Department of Physical and Computational Mechanics, Russia 

5 
Northern Research Station, USDA Forest Service, Morgantown, WV, USA 

6
 Pacific Wildland Fire Science Lab, USDA Forest Service, Seattle, WA, USA 

7
 Jensen Hughes, Inc., Framingham, MA, USA 

ABSTRACT  

An experimental approach has been developed to quantify the characteristics and flux of firebrands during 

a management-scale wildfire in a pine-dominated ecosystem. By characterizing the local fire behavior and 

measuring the temporal and spatial variation in firebrand collection, the flux of firebrands has been related 

to the fire behavior for the first time. This linkage is seen as the first step in risk mitigation at the wildland 

urban interface (WUI). Data analyses allowed the evaluation of firebrand flux with respect to observed fire 

intensities for this ecosystem. Typical firebrand fluxes of 0.824-1.361 pcs.m
-2

.s
-1

 were observed for fire 

intensities ranging between 7.35±3.48 MW.m
-1

 to 12.59±5.87 MW.m
-1

. The experimental approach is 

shown to provide consistent experimental data, with small variations within the firebrand collection area. 

Particle size distributions show that small particles of area 0.75-5×10
-5

 m
2
 are the most abundant (0.6-1 

pcs.m
-2

.s
-1

), with the total flux of particles >5 ×10
-5

 m
2
 equal to 0.2 to 0.3 pcs.m

-2
.s

-1
. The experimental 

method and the data gathered show substantial promise for future investigation and quantification of 

firebrand generation and consequently a better description of the firebrand risk at the WUI. 

KEYWORDS: embers, firebrand shower, fire behavior, wildfire, forest fire, WUI 

NOMENCALTURE 

BW black and white R (ROS) fire rate of spread 

DPT Differential pressure transducer ST secondary tower in FBP 

FBP  fire behavior package SD standard deviation 

FCS firebrand collection site TC thermocouple 

FMC fuel moisture content (% dry weight) TSC thin skin calorimeter 

I fireline intensity (kW.m
-1

) WNW west-north-west 

L flame length WUI wildland-urban interface 

LiDAR light detection and ranging X,Y,Z locations   

PT primary tower in FBP Δhc heat of combustion (kJ.kg
-1

) 

PNR Pinelands National Reserve Δm mass consumption (kg) 

 

INTRODUCTION 

Structures at the wildland urban interface (WUI) are particularly susceptible to ignition due to firebrand 

exposure [1, 2]. Maranghides and Mell [3] outline the need for a WUI-hazard scale assessment of the risks 

arising from wildfires and identified that direct fire and firebrand exposure are the leading cause of the 

ignition of structures in the WUI. Although there has been a considerable increase in the research activity 

in the area of firebrands and firebrand exposure in the last decade, no complete description of the problem 

yet exists. This challenge is compounded by the wide range of environmental and topographical conditions, 

ecosystems, and structure types that may be present during a WUI fire. Delivering understanding and 



solutions that are able to fit these diverse conditions continues to be a significant challenge for the fire 

science community. Most available studies related to firebrands have focused on characterizing the 

aerodynamics of typical firebrands [4] and analyzing the burning duration of firebrands [5, 6] with respect 

to fire size and wind conditions [7]. Santamaria et al. [8] studied the impact of firebrand accumulation on 

ignition of wooden materials in inclined, V-shaped configurations. Spotting ignition from firebrands at 

short distance has been exhaustively investigated at laboratory scale by Manzello et al. [9-11]. Long-

distance spotting (>5 km) was described by Koo et al. [7]. A more detailed literature review, covering most 

studies related to firebrands and the exposure problem in the WUI, is presented in Caton et al. [1] and 

Hakes et al. [2].  

This study focuses on the development of a methodology for characterizing the generation and flux of 

firebrands at short distance in large-scale fires, which can provide realistic input data for modelers and for 

laboratory-scale tests, in order to improve the resistance of WUI structures and communities to ember 

showers. Until now, there has been very little information available about the relationship between 

firebrand generation, fuel consumption, fire behavior and wind conditions, all combined in a real WUI fire 

or even in a large-scale field experiments. This understanding must come from detailed studies that cannot 

be achieved for large-scale wildfires, where accurate measurements are nearly impossible to carry out. For 

instance, very precise investigation work was carried out by Rissel et al. [12] and Manzello et al. [13] to 

characterize the size of the firebrands after a WUI fire, but they did not have access to a detailed 

description of fire behavior, making it impossible to link the firebrand generation to the fire. 

The methodology used in this study is in alignment with a framework developed and presented in El 

Houssami et al. [14] and Filkov et al. [15], which reported integrated numbers of firebrands for local fire 

conditions and their characteristics (size, mass and origin). The novelty of this study includes the 

quantification of firebrand flux in time with respect to the local fire behavior, wind speed, fuel 

consumption, fire intensity, and characterizes the exposure of each sampling location. This information will 

help in estimating the firebrand flux that can be produced from a typical fire and the characteristics 

(geometry, mass) of the particles and if it is sufficient to impact a structure. This study falls in the 

configuration of low wind speed, flat terrain, and homogeneous fuel of the matrix suggested by 

Maranghides and Mell [3]. Since the methodology is developed with a full set of instruments to accurately 

measure the firebrands landing ahead of a fire front, it needs to first be tested in relatively controlled 

conditions at field scale, beginning with low wind speeds. Such a condition is not inherently a drawback for 

firebrand generation, because it was previously demonstrated that fire-induced drafts at low wind speeds 

were strong enough to detach bark pieces from tree boles and produce substantial amounts of 

firebrands [14]. Quantification of firebrand exposure in this way will allow a more complete description of 

the problem and allow the firebrand fluxes and characteristics to be linked to the fuels and fire behavior.  

EXPERIMENTAL METHODS 

Site description 

This work was conducted in the Pinelands National Reserve (PNR) of New Jersey, USA. The region is 

characterized by a cool temperate climate, with a mean annual precipitation of 1160 mm and mean monthly 

temperatures ranging between 0 – 24°C, from January to July. The terrain consists of plains, low-angle 

slopes, and wetlands, with a maximum elevation of 62.5 m. In the region of the study, the forest canopy is 

dominated by pitch pine (Pinus rigida Mill.), with intermittent oaks (Quercus spp.). Understory vegetation 

is composed of a mix of huckleberry (Gaylussacia baccata), blueberry (Vaccinium palladum), inkberry 

(Ilex glabra), briar (Smilax rotundifolia), scrub oak (Quercus marilandica and Quercus ilicifolia), 

wintergreen (Gaultheria procumbens), and sedge (Carex pennsylvanica), listed in relative order of 

importance. This general area is host to significant research activity, including studies on fire behavior [16] 

and firebrand generation [14], as well as a fuel management program directed by the New Jersey Forest 

Fire Service and federal wildland fire managers. 

For this study, a burn parcel covering approximately 28 hectares was selected, as shown in Fig. 1. The 

perimeter of the parcel was defined by existing access roads. The locations of measurement sites were first 

selected on the criteria that the collection of firebrands occur outside of the parcel, to avoid collection of 

falling debris, which can occur if the fire passes through a measurement site. This was an improvement on 

the methodology presented by El Houssami et al. [14]. The sites were then positioned based on a 



determination of the intended ignition pattern, depending on predicted wind conditions, in order to develop 

a head fire spreading towards the collection sites. 

 

Fig. 1. Satellite image of burn unit (post fire). Indicating, general wind direction, ignition pattern, data 

collection package locations (Lift, FBP, FCS) and overall fire spread direction. The dark area in the middle 

of the image corresponds to an area of high consumption of canopy fuel. 

Fuel characterization  

Pre- and post-burn measurements of the surface fuels (shrub and forest floor material) were taken at fifteen 

randomly selected destructive harvest locations. For each, a 0.5 m
2
 area was harvested down to the mineral 

soil. Pre-burn sampling was conducted within the two weeks prior to the burns, and post-burn sampling 

was conducted within the following week. All shrub and forest floor materials present down to and 

excluding the duff layer were dried at 70ºC for a minimum of 48 h, sorted into different fuel classes and 

types, and weighed. The accuracy of destructive sampling is hindered by the fact that pre- and post-fire 

samples must inherently be collected in different locations. To handle this, the OpenBUGS (OpenBUGS, 

version 3.2.3 rev 1012) MCMC simulator11 was used to repeatedly resample and derive the distributional 

properties of the fuels from the harvested samples. Using these distributions, estimates of pre-burn loading, 

post-burn loading, and consumption were obtained. Note that standard hourly classifications of fuel 

diameter size are used here (1-hr: 0.0-6.35 mm; 10-hr: 6.35-25.4mm). 

Forest canopy biomass was estimated before and after treatments in 3 permanent 20×20 m plots, using a 

Riegl Laser Rangefinder (Model # LD90-3100VHS-FLP, Riegl USA, Orlando, FL). Following the methods 

described by Clark et al. [17] parallel transects spaced 1 m part were paced at a consistent rate with the 

LiDAR unit and logged to a Trimble Ranger. The device was carried at a height of 2 m, at the top of the 

shrub layer, providing canopy data above that height. Raw transect data was summarized into 1 m height 

bins across each plot, and were used to estimate available canopy fuel loading from the equation for pitch 

pine dominated stands in Clark et al. [17]. Available canopy fuels include live and dead needle, 1-hr, and 

10-hr biomass.  

Fuel moisture content (FMC), expressed as a percentage of water mass over oven dry mass, was estimated 

for surface and canopy fuel components. These included the forest floor, shrub, live pine needle, and live 

pine 1- and 10-hr twig material. Five samples of each component were harvested at the time of the burn, 

weighed wet, dried for 48 hours at 70ºC, and weighed dry. 



Fire behavior quantification 

Meteorological conditions were monitored on a 17 m lift (located as shown in Fig. 1). This supported a 3D 

sonic anemometer (RM 80001V, R. M. Young Co.) and a weather station. For the purpose of this study, the 

weather station was used to obtain averaged data of wind and temperature conditions.  

 

e)  

Fig. 2. (a) Photograph of a typical FBP setup, (b) thin skin calorimeter, (c) bi-direction pressure probes, (d) 

thermocouple assembly, and (e) FBP site layout (PT: primary tower, ST: secondary tower; units in [cm]). 

Fire behavior was measured locally using a number of integrated sensors, positioned on two supporting 

towers for each site (Fig. 2e). Taken together, these sites are referred to as Fire Behavior Packages (FBP) 

(Fig. 1 and Fig. 2). The primary tower (6 m) supported six exposed K-Type thermocouples (sheath 

diameter of 250 μm), positioned at heights between 20-500 cm. The secondary tower (3.3 m) supported 

both bi-directional pressure probes for flow measurement [18] and thin-skin calorimeters (TSC) for heat 

flux measurement [19], as well as accompanying reference thermocouples for calibration purposes. All 

measurements were recorded at 50 Hz (CR3000, Campbell Scientific). Temperature measurements from 

the primary tower are considered here, and they are used to determine local flame height and spread rate. 



27 video cameras were also positioned around the sites in fire proof boxes, at different heights and angles, 

in order to capture visual observations of the local fire behavior. 

The energy release of the fire was quantified using the fireline intensity, I, the rate of energy release per 

unit length of fire front (kW.m
-1

). The first was by using a well-known method based on the rate of mass 

consumption [20]: 

 (1) 

where ∆hc is the low heat of combustion, taken as a general value for vegetative fuel of 18.7 MJ.kg
-1

 [20], 

∆m is the mass consumed per unit area (kg.m
-2

), R is the rate of spread (m.s
-1

). 

The second was by using a proposed empirical correlation between flame length and fireline intensity [20]: 

 (2) 

where L is the flame length (m). 

Firebrand collection 

Firebrands were collected in circular aluminum cans (diameter: 22 cm, height: 12 cm) as depicted in Fig. 3. 

Cans were filled with a small amount water to extinguish the firebrands upon landing and to prevent them 

for being blown out at high wind gusts. After the experiment the water was drained from the cans, 

individual particles were separated. A standardized photo (Fig. 3) was taken of the inside of each can. Once 

the photos were taken, cans were left open to air dry particles for 24 hours. The dried particles were 

collected and stored in a secure container. With this methodology it was not possible to distinguish between 

cold or hot particles or whether particles landed in smoldering of flaming state. All particles are reported as 

firebrands such that a conservative measurement of the firebrand flux is given.  

 

Fig. 3. Standardized photograph of the inside of a typical aluminum firebrand collection can (diameter: 22 

cm) with firebrands. 

Collection site 

Firebrand Collection sites (FCS) were located outside the burn unit on the other side of the fuel break (dirt 

road, 3 m wide). The location was downwind of the fire determined by the anticipated fire behavior and 

ignition technique. For this experiment three FCS (X, Y and Z), were used. The location of each is 

indicated in Fig. 1. FCS Z was the most southern, X the most northern with Y in between. Separation 

distances from FBPs and FCSs are summarized in Table 1. An overhead image depicting the locations of 

FBP and FCSs is given in Fig. 4. 

Table 1. Separation distances [m] between FBPs and FCSs. 

 FBP Z FBP Y FBP X 

FCS Z 27 29 60 

FCS Y 29 21 32 

FCS X 58 40 20 

 

,RmhI c 

,833.259 174.2LI 



 

Fig. 4. Location of FBP and FCS with observed fire propagation (large arrow, solid and dotted lines). 

FCS X and Z are accompanied by a FBP as described above. The orientation of the FBP and FCS were 

selected according to the anticipated fire behavior). FCS and FBP alignment was determined based on 

forecast northerly winds (although predominant wind direction varied from this). A typical FCS is shown in 

the photograph in Fig. 5 below. In addition to collections cans, a sonic anemometer was installed at 3 m 

height to monitor wind conditions during the experiment. Several cameras were place around the plot to 

record visual observations.  

Each FCS contained 50 water cans in which firebrands were collected. The FCS was laid out with three 

legs: left, center, right. The center leg was aligned with the FBP in the burn unit. Left and right legs were 

oriented with a 45 angle on the center sampling location. Each leg had two rows of cans. Each row had 8 

(left/right) or 9 (center) cans. Cans were separated by a nominal distance of 0.5 m (in one row) and each leg 

was approximately 4.5 m in length. The total area in which firebrands were collected was 1.83 m
2
.   

  

Fig. 5. Photograph of a typical FCS.  



Video analysis 

Several video cameras were positioned in the FCS to view the inside some of the cans in order to observe 

particles landing during the fire as a function of time (Fig. 6.a). Post-fire analysis of the video footage 

allowed determination of the timing of important events, such as first and last firebrand arriving and the 

duration of the firebrand collection, which is required to determine a firebrand flux (e.g. [pcs.m
-2

.s
-1

]). 

Knowing the time frame in which firebrands are collected as well as the location of the fire front provides a 

means to correlate the firebrand flux to a separation distance and, subsequently, characteristics of fire 

behavior. This is crucial because the purpose of this project is to provide a methodology that allows the 

linkage of firebrand flux to a particular fire behavior.  

a)  b)  

Fig. 6. (a) Close up of cans in FCS with camera protective housing above it; (b) Platform for standardized 

photography of cans. 

Data analysis techniques 

An image analysis program was developed to measure the projected area of particles from images taken of 

each pan [15]. Images were taken a constant distance from the pan using a platform as shown in Fig. 6.b. A 

typical image of the inside of the can is presented in Fig. 3 

Images were cropped to analyze the inside of the can only. After cropping, the image was converted into a 

greyscale. Thresholding was then carried out by applying a black and white cutoff (BW cutoff) of pixel 

intensity to create a binary image. This was set manually to 0.6-0.65. To ensure consistency between 

images a fixed light source was used. A minimum particle size threshold of 7.5×10
-6

 m
2
 was used to 

differentiate between the particles of interest and image artifacts. To verify the results from the image 

analysis, the program was run with varying size cutoffs until the number of particles counted by the 

program matched the number counted manually in a random selection of 10 cans.  

A calibration of the pixel-to-area conversion factor and the BW cutoffs was made with a well-defined 

reference particle (US penny). The program was run with three BW cutoffs (0.88, 0.9, and 0.92) which 

gave an average pixel area of 32014 (±1.89%). Using this and the known cross-section area of the reference 

particle, the pixel-to-area conversion factor was found to be 8.90×10
-9

 m
2
.px

-1
.  

The image analysis provides (1) the total number [pcs] of firebrands per can and (2) the projected area [m
-2

] 

of each firebrand per can. This data was processed to provide a firebrand flux [pcs.m
-2

.s
-1

] of firebrands per 

can, leg and FCS, using the area of the collection cans and the duration of the firebrand collection (assessed 

by video analysis). 

RESULTS AND DISCUSSION 

General features 

The burn was conducted on March 18
th

, 2016, and ignition was at approximately 17:55 EST. During the 

burn period, mean ambient temperature was around 13 °C and mean relative humidity was 22%. The 

average wind speed was 1.4 ± 0.6 m/s (mean ± 1 SD) and the direction was WNW. Occasional gusts of up 

to 4.4 m/s were observed, as well as lulls of 0.5 m/s (1-minute maximum and minimum values).  



Ignition was carried out using drip-torches, with two simultaneous lines being drawn out along the north 

and west roads (starting from point A in Fig. 1), taking approximately 15 minutes to complete. The fire 

swept inward from the two roads, with the western portion turning somewhat, so that the fireline impacted 

the measurement areas from a west-northwesterly direction (Fig. 4). FBP Z was approached first. The 

northern ignition spread more slowly with less intensity due to the non-alignment with the wind. Evidence 

of high intensity fire behavior in the center of the plot is given by the area of heavy consumption of canopy 

fuel seen in Fig. 1 (dark area in the middle of the image). The total burn was determined to last 

approximately 25-30 min. 

FMC for all forest floor fuels and surface fuels were 31 ± 11%. For the canopy, pine needle and 1-h FMC 

were 122 ± 7%.  The pre-burn, post-burn, and consumption values of the different fuel classes are given in 

Table 2. The LiDAR measurements provided an estimated a canopy height in the range 14-22 m. 

Table 2. Average fuel consumption for the burn unit. 

Fuel  Pre-burn [T.ha
-1

] Post-burn [T.ha
-1

] Consumption [T.ha
-1

] 

Canopy (pitch pine)    

 Pine needles, 1-hr, 10-hr 26.24 ± 0.88 16.48 ± 3.90 9.70 ± 8.72 

Shrub fuel    

 1-hr stems 5.35 ± 0.36 2.04 ± 1.19 3.31 ± 1.24 

Forest floor    

 Fine 13.94 ± 5.68 4.20 ± 2.50 9.74 ± 6.20 

 1-hr wood 1.31 ± 0.98 0.76 ± 0.64 0.55 ± 1.17 

Local fire behavior 

A qualitative analysis of the video footage revealed that the fire approached FBP Z in a crowing state (Fig. 

7.a). As the fire traveled from Z to Y to X it reduced in intensity. At FBP X it was a moderate intensity 

shrub fire. Beyond FBP X, the fire continued to reduce until it burned out. This can also be seen in Fig. 7.c, 

as plot X is just outside of the region of significant canopy fuel consumption. 

 

Fig. 7. Still shots from video footage observing the fire behavior at each FBP: (a) fire is at FBP Z, (b) at 

FBP Y, and (c) at X. The camera in (a) and (b) is located just in front of FCS Y. The camera in (c) in front 

of FCS X. The line indicates the location of FBP in each site.  

The rate of spread between FBP Z and FBP X was estimated by determining the fire arrival time (taken as 

the time of gas temperature exceeding 300 °C). From this, the fire was found to travel between the two sites 

in 197 s. With a separation of 57 m, this yielded a spread rate of 0.289 ± 0.014 m.s
-1

 (considering a 5% 

uncertainty in the estimation of arrival time from the video). The average surface fuel consumption (forest 

floor and shrub material) was 1.36 ± 0.64 kg.m
-2 

(Table 2).
 
Using Eq. 1, a fireline intensity of 7.35 ± 3.48 

MW.m
-1

 is estimated, with the high variability coming from the variability in fuel consumption estimates 

(Table 2). This only considers surface fuel involvement, which video evidence (Fig. 7.c) and aerial imagery 

(Fig. 1) suggest is representative of FBP X. However, FBP Z was on the edge of the region of significant 

canopy consumption, and adding the average contribution from this fuel (Table 2) gives a fire intensity of 

12.59 ± 5.87 MW.m
-1

. This is 1.7 times the value for plot X. Note that the value should likely be on the 

upper end of this range (around 18 MW.m
-1

), as the parcel-wide average canopy consumption 

underestimates the peaks in such regions. 



A quantification of the differences in fire behavior can also be made by examining the temperature 

measurements at the two sites (Fig. 8). Residence times were determined by identifying the first and last 

temperatures >300 °C, using a 1-second moving average of the signals.  

a)   

b)   

Fig. 8. Temperature evolution (PT) as the fire front passes through FBP Z (a) and X (b). For clarity, only 

three TCs measurements are shown here (6 total).  

This temperature threshold is based upon observations for vegetative fuels [21]. From this, the flame 

intermittency can be determined at each height (Table 3), and the difference in flame characteristics can be 

seen between the two sites. Assuming that intermittencies below ~0.5 are above mean flame height, 

minimum mean flame heights of 2.4 m and 5.0 m are estimated for the two sites. These estimates are rough, 

and moving flames with fluctuating angles complicate the interpretation of intermittency, but the values are 

supported by video footage from the sites. If it is assumed that flame height is equivalent to flame length, 

Eq. 2 gives intensities of ~1.7 MW.m
-1 

and 8.6 MW.m
-1

 for FBP X and FBP Z, respectively. These, are 

lower than the values from Eq. 1, however, this variation can be accounted for by the variations in local 

fuel consumption, actual flame length, etc. Nevertheless, the temperature data serves to highlight the 

substantial difference in fire behavior over the distance between the two measurement sites.  

Table 3. Analysis of flame heights at FBP X and Z via flame intermittency. 

 

Flame intermittency [-] 

TC ID (height from ground) [m] 0.2 0.6 1.2 2.4 3.6 5.0 

FBP X 0.75 0.45 0.44 0.46 0.18 0.00 

FBP Z 0.85 0.71 0.99 0.88 0.67 0.69 

Firebrand collection  

Several firebrand collection results are discussed: (1) spatial variation in firebrand density within FCS, (2) 

duration of firebrand collection and timing of firebrand showers, (3) the total firebrand flux and (4) 

firebrand flux size distribution. A link between firebrand flux and fire exposure (separation and fire 

intensity) is made. 
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Spatial variability of firebrand collection  

Fig. 9 shows typical firebrand collection data separated into each row of cans for FCS X (similar trends are 

seen for other sites). The firebrand density is the number of firebrands collected per unit area. Results 

indicate low variability between rows and legs. The firebrand density collected in two cans side by side has 

the same variability as cans separated by ~4.5 m (no clear trend was seen along the length of each leg front 

to back either). This gives high confidence in the data collected. 

 

Fig. 9. Spatial variability of firebrand density distribution for FCS X. Each data series represents one row in 

the indicated leg. 

Duration of collection and timing of firebrand showers 

Video analysis provided information on the arrival of individual firebrands, from which it was possible to 

determine a duration of firebrand collection. Arrival time of firebrands is valuable information because it 

can be linked to the position of the fire front. In the analysis provided herein, it is assumed that the particles 

observed at a specific instant in the video analysis originated from the fire behavior at that time. Thus, it is 

assumed that the firebrand travel time is short (t → 0 s). Although this is a strong assumption analysis from 

previous studies [14] indicates that most firebrands travel relatively short distances. Estimation of the fire 

position based on the firebrand travelling in a straight line at the average wind speed suggests that an 

increase in travel distance on the order of 130%. While this may be significant for longer range firebrands, 

the absolute error resulting from short range firebrand showers is small. Improving this measurement 

further would require detailed knowledge of the exact origin and path of a given firebrand. A summary of 

events of interest is given in Table 4.  

Table 4. Results of video analysis: first and last particle arriving, duration of firebrand collection, and 

timing of firebrand showers. Times are from ignition. 

  FCS Z FCS Y FCS X 

1
st
 firebrand arriving [mm:ss] 12:13 12:50 13:24 

Firebrand showers [mm:ss] 16:38-18:40 17:53-19:00 18:05-19:37 

Last firebrand arriving [mm:ss] 18:47 20:23 19:11 

Duration of collection [s] 394 513 407 

The arrival time of the first particles in FCS Z and FCS Y is very similar (5 min before fire front arrival at 

FBP Z), whereas, firebrands arrive slightly later at FCS X (4 min before fire front arrival at FBP Z). 

Separation distances are given in Table 1 and are shown in Fig. 4. It can be deduced that firebrand travel 

distances are significantly greater than 30 m in this fire (separation distances of FCS to FBP). It is possible 

to obtain a rough estimate of the fire front position at the time of the first firebrand arrival. For this, it is 

assumed that the ROS estimated earlier (0.289 m.s
-1

) is a characteristic value for this fire (in the area where 

it was calculated). In 5 min, the fire front travelled approximately 90 m. Therefore, at the time of arrival of 
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first particle in FCS Z, the fire line was 90 m in front of the FBP Z. Thus, firebrand travelled in excess of 

100 m before landing in the collection sites. This is likely an underestimation, since firebrand travel time is 

not considered, and the added time between generation and collection would imply an even greater 

separation distance at the time of generation.  

A large flux of firebrands (‗firebrand shower‘) was observed for approximately 1-2 min depending on the 

plot. These showers occurred at consecutive times from FCS Z to Y to X. This may be explained by the 

location of each plot in relation to the fire front movement. The firebrand showers for FCS Z and Y 

occurred at the time when the fire front was located around and after FBP Z. The separation distance of the 

FCS to the source (fire front) at the time of firebrand showers is consistently around 20-30 m for FCS Z 

and Y. Separation distance for FCS X is likely shorter, because it is closer to the fuel break. 

The total duration of firebrand collection is, on average, 438 ± 65 s for each plot. The timing of firebrand 

collection is an important parameter because it allows the formulation of a firebrand flux [pcs.m
-2

.s
-1

] 

which can be used in WUI hazard assessments and laboratory studies, as explored below. The results 

obtained for this fire did not suggest any particular trends in collection time between FCS Z, Y and X, even 

though they had variation in fire exposure and separation distance. More experimentation is required to 

fully understand if there are any relations between fire behavior, separation distance and the time span of 

ember showers.  

Total firebrand flux  

The total firebrand flux is now calculated from the firebrand density, and the duration of firebrand 

collection in each FCS is summarized in Table 5. 

Table 5. Firebrand collection analysis: firebrand density, duration of collection and total firebrand flux. 

  
FCS Z FCS Y FCS X 

 
Firebrand density [pcs.m

-2
] 536 463 335 

 
Time span [s] 394 513 407 

 
Total firebrand flux [pcs.m

-2
.s

-1
] 1.361 0.902 0.824 

 

A trends in the firebrand density and total firebrand flux can be observed, primarily that higher number 

fluxes of firebrands are present at sites with higher fire intensity. Two factors explain this trend: (1) fire 

intensity and (2) separation distance to source. FCS Z was exposed to the highest flux, X to the lowest and 

Y mid-range. These results reflect the changes in fire behavior discussed above (fire traveling from FBP Z 

to X and with decaying intensity). Therefore, it can be deduced that FCS Z had a higher exposure compared 

to X. The firebrand flux was reduced by 39% from FCS Z to X. Similarly, the fire intensity was reduced by 

40% from FBP Z to X (using averaged values from Eq.2 estimates). Although a significant correlation 

would be premature, these data analyses show the linkage between realistic wildfire behavior and firebrand 

generation.  

Firebrand flux distribution 

The total firebrand flux cannot distinguish between particle size, which is desirable information to have in 

order to fully characterize risks associated with a firebrand shower. The total size distribution of the 

firebrand flux for each FCS is shown in Fig. 10. The size classes were chosen according to [14, 15], with 

one additional group, capturing fine particles (0.75-5×10
-5

 m
2
) due to the high number of particles in this 

size range that were deemed as not ash. 



  

Fig. 10. Firebrand flux size distribution for all FCSs. The inlay provides more detail on the largest size 

classes (error bars: standard 5% error due to temporal uncertainty). 

Similar to observations from the total firebrand flux, a variation in the size distribution can also be 

identified. The flux for low and medium size particles (≤ 30×10
-5

 m
2
) is highest for FCS Z and lowest for 

X. As was discussed above, FCS Z has the highest exposure from the fire due to its proximity to the most 

intense fire behavior. As the separation distance to the most intense fire behavior increases from Z to Y to 

X, the flux distribution decreases. As the fire moves closer towards FCS Y and X it decreases in intensity, 

generating fewer firebrands. More detailed characterization of the firebrand flux is given in Table 6. 

Table 6. Firebrand collection analysis: Firebrand flux size distribution. 

Size group [m
2
] Flux  distribution [pcs.m

-2
.s

-1
] Reduction from FCS Z [%] 

 
FCS Z FCS Y FCS X FCS Y FCS X 

0.75 - 5 (x10
-5

) 1.0473 0.6858 0.6483 34 38 

 5 - 10 0.1873 0.1352 0.1034 28 45 

 10 - 20 0.0856 0.0618 0.0537 28 37 

 20 - 30  0.0236 0.0075 0.0054 68 77 

 30 - 50  0.0118 0.0043 0.0081 64 32 

 > 50  0.0059 0.0075 0.0054 -26 9 

The percent reduction of the flux from FCS Z to Y and X is relatively consistent for particles <20×10
-5

 m
2
. 

For each size category the flux reduces 28-34% from Z to Y and 37-45% from Z to X It is more variable 

for larger particles, however, since few particles of this size are collected it is difficult to draw definitive 

conclusions.  

CONCLUSIONS 

This study presents a novel and reliable methodology for collecting firebrands from field-scale fires in 

order to characterize typical firebrand fluxes. The goal was to provide fundamental insight into firebrand 

generation and quantify the risk of firebrand exposure as a function of fire behavior. This will aid fire risk 

assessments in the WUI and provide experimental data to assess firebrand generation in model applications. 

Although firebrands have been collected and characterized in previous studies (field and laboratory), this 

work presents advances in quantifying firebrand flux data with a correlation to the observed fire behavior.  

The data analysis described allowed the quantification of relevant fire behavior (rate of spread and 

intensity) and firebrand flux [pcs.m
-2

.s
-1

]. The local rate of spread was 0.289±0.014 m.s
-1

. Fire intensity was 

estimated between 7.35±3.48 MW.m
-1

 to 12.59±5.87 MW.m
-1 

depending on the location. Total firebrand 

flux was estimated between 0.824-1.361 pcs.m
-2

.s
-1

 depending on the location of collection and the 

associated fire behavior. The collection area with highest firebrand flux was correlated to the highest fire 
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intensity and the lowest flux to the lowest fire intensity. Visual observations coupled with fire behavior 

measurements showed that periods of high intensity firebrand showers occurred up to 100 m ahead of the 

fire front. At greater separation distances, lower particle fluxes were observed.  

The presented methodology resulted in usable and reliable outcomes with a high level of consistency. The 

remaining challenge in applying this methodology to real wildfires is understanding the required fire 

behavior measurements. Future development of this methodology should address the following issues 

which have been identified: (1) deployment of a larger sensor network to quantify fire behavior over the 

relevant distances; (2) improved firebrand flux resolution data with visual observations; (3) improved 

assumptions of firebrand transport time; and (4) improved assessment of separation distance between 

firebrand showers and fire front. Improvements in these areas will provide a step forward in the causes and 

quantification of firebrand generation and consequently improve hazard assessment for WUI communities. 
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