

Edinburgh Research Explorer

SQL Nulls and Two-Valued Logic

Citation for published version:
Libkin, L & Peterfreund, L 2023, SQL Nulls and Two-Valued Logic. in Proceedings of the 42nd ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ’23). PODS '23, ACM
Association for Computing Machinery, pp. 11-20, 42nd ACM Symposium on Principles of Database
Systems , Seattle , Washington, United States, 18/06/23. https://doi.org/10.1145/3584372

Digital Object Identifier (DOI):
10.1145/3584372

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS
’23)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 03. May. 2024

https://doi.org/10.1145/3584372
https://doi.org/10.1145/3584372
https://www.research.ed.ac.uk/en/publications/3a45dfef-5099-44fd-bd1d-fe4aa18b91b6

SQL Nulls and Two-Valued Logic
Leonid Libkin

Liat Peterfreund

l@libk.in

liat.peterfreund@univ-eiffel.fr

ABSTRACT

The design of SQL is based on a three-valued logic (3VL), rather than

the familiar two-valued Boolean logic (2VL). In addition to true and
false, 3VL adds unknown to handle nulls. Viewed as indispensable

for SQL expressiveness, it is often criticized for unintuitive behavior

of queries and for being a source of programmer mistakes.

We show that, contrary to the widely held view, SQL could have

been designed based on 2VL, without any loss of expressiveness.

Similarly to SQL’s WHERE clause, which only keeps true tuples, we

conflate false and unknown for conditions involving nulls to obtain

an equally expressive 2VL-based version of SQL. This applies to

the core of the 1999 SQL Standard.

Queries written under the 2VL semantics can be efficiently trans-

lated into the 3VL SQL and thus executed on any existing RDBMS.

We show that 2VL enables additional optimizations. To gauge its

applicability, we establish criteria under which 2VL and 3VL seman-

tics coincide, and analyze common benchmarks such as TPC-H and

TPC-DS to show that most of their queries are such. For queries

that behave differently under 2VL and 3VL, we undertake a user

study to show a consistent preference for the 2VL semantics.

CCS CONCEPTS

• Information systems→Relational database query languages;

Relational database model; • Theory of computation→ Logic.

KEYWORDS

SQL; nulls; three-valued logic; Boolean logic; query equivalence;

query optimization; user study

ACM Reference Format:

Leonid Libkin and Liat Peterfreund. 2023. SQL Nulls and Two-Valued Logic.

In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS ’23), June 18–23, 2023, Seattle, WA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3584372.3588661

1 INTRODUCTION

To process data with nulls, SQL uses a three-valued logic (3VL), with

an additional truth value unknown. This is one of the most often

criticized aspects of the language, and one that is very confusing

to programmers [7]. Database texts are full of damning statements

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0127-6/23/06. . . $15.00

https://doi.org/10.1145/3584372.3588661

about the treatment of nulls, such as the inability to explain them

in a “comprehensible” manner [18], their tendency to “ruin ev-

erything” [9] and outright recommendations to “avoid nulls” [16].

The latter, however, is often not possible: in large volumes of data,

incompleteness is hard to avoid.

Issues related to null handling stem not just from the use of 3VL,

but from multiple and disparate ways of using it. To illustrate:

• Conditions, such as those in WHERE, are evaluated under

3VL, with any atomic condition involving a NULL resulting

in unknown. In the end, however, only true tuples are kept;
that is, false and unknown are conflated.

• Constraints, such as UNIQUE and foreign keys, are too eval-

uated under 3VL, but then a constraint holds if it does not

evaluate to false; that is, true and unknown are conflated.

• SQL’s NULL can also be viewed as a syntactic constant, mak-

ing two NULLs equal; this is how grouping and set operations

work.

Not only is the SQL programmer forced to use a logic different

from other languages they are familiar with, even that logic is

applied in different ways in different scenarios.

We now look at some examples where 3VL causes confusion even

for very simple SQL queries. As a starter, consider the rewriting of

IN subqueries into EXISTS ones. Queries

(Q1) SELECT R.A FROM R WHERE R.A NOT IN
(SELECT S.A FROM S)

and

(Q2) SELECT R.A FROM R WHERE NOT EXISTS
(SELECT S.A FROM S WHERE S.A=R.A)

would regularly be presented as equivalent (see, e.g., [45]). While

equivalent if both NOTs are removed, these queries differ in SQL:

if 𝑅 = {1, NULL} and 𝑆 = {NULL}, then Q1 returns no tuples, while

Q2 returns {1, NULL}. Such presumed, but incorrect, equivalence is

a trap many SQL programmers are not aware of (see [7, 9]).

As another example, consider two queries given as an illustration

of the HoTTSQL system for proving query equivalences [11]:

(Q3) SELECT DISTINCT X.A FROM R X, R Y

WHERE X.A=Y.A

(Q4) SELECT DISTINCT R.A FROM R

Queries Q3 and Q4 are claimed to be equivalent in [11], but this is

not the case: if 𝑅 = {NULL}, then Q3 returns an empty table while

Q4 returns NULL. In fairness, the reason why they are equivalent

in [11] is that HoTTSQL considers only databases without nulls.
Nonetheless, this is illustrative of the subtleties surrounding SQL

nulls: what [11] chose as an “easy” example of equivalence involves

two non-equivalent queries on a simple database containing NULL.

https://doi.org/10.1145/3584372.3588661
https://doi.org/10.1145/3584372.3588661

PODS ’23, June 18–23, 2023, Seattle, WA, USA Libkin and Peterfreund

Over the years, two main lines of research emerged for dealing

with these problems. One is to provide a more complex logic for

handling incompleteness [8, 12, 17, 24, 34, 46]. These proposals

did not take off, because the underlying logic is even harder for

programmers than 3VL. An alternative is to have a language with

no nulls at all, and thus resort to the usual two-valued logic. This

found more success, for example in the “3rd manifesto” [15] and

the Tutorial D language, as well as in the LogicBlox system [3]

and its successor [1], which use the sixth normal form to eliminate

nulls. But nulls do occur in most SQL databases and thus must be

handled; the world is not yet ready to dismiss them completely.

We thus pursue a different approach: a flavor of SQL with nulls,

but based on Boolean logic. This goal is to have a flavor of SQL

that can be offered as an alternative to coexist along with the 3VL

standard. To achieve this, we need to fulfill the following criteria.

(1) Do not make changes unless necessary: On databases without

nulls queries should be written exactly as before, and return

the same results;

(2) Do not lose any queries; do not invent new ones: The new

version of SQL should have exactly the same expressiveness

as its version based on 3VL;

(3) Do not make queries overly complicated: For each SQL query

using 3VL, the equivalent query in the two-valued should

not add joins, and be roughly of the same size.

We pursue these goals along two different routes. First, we pro-

vide theoretical evidence that our desiderata are fulfilled for the

core of SQL. Second, we go beyond theoretical results and supple-

ment them by preliminary evidence of the utility of a version of

SQL devoid of 3VL.

One may wonder why our goal is even achievable, considering

almost 40 years of SQL practice firmly rooted in 3VL. The reason

to pursue this line of work lies in two recent results that made

steps in the right direction, albeit for simpler languages. First, [28]

showed that in the most basic fragment of SQL capturing relational

algebra (selection-projection-join-union-difference), the truth value

unknown can be eliminated from conditions in WHERE. Essentially,
it rewrote conditions by adding IS NULL or IS NOT NULL, in a

way that they could never evaluate to unknown. Following that,

[14] considered many-valued first-order predicate calculi under

set semantics, and showed that no many-valued logic provides

additional expressive power over Boolean logic.

Results. We show that the elimination of unknown works for

SQL, including its core features from the 1992 Standard (full rela-

tional algebra expanded with arithmetic functions and comparisons,

aggregate functions and GROUP BY; comparisons of aggregates in

HAVING, subqueries connected by IN, EXISTS, ALL, ANY, and set

operations UNION, INTERSECT, EXCEPT, optionally with ALL), as
well as WITH RECURSIVE added in the 1999 Standard [18, 20].

The unknown appears when one evaluates a condition such as

R.A=S.A in which one or more arguments are NULL. Once a condi-
tion in WHERE is evaluated, only true tuples are kept, while unknown
or false ones are dismissed. A minimal change that ensures elimina-

tion of 3VL then brings this conflating unknown with false forward,
before the exit from the WHERE clause. One small variation lies in

treating conditions like NULL = NULL. One may still evaluate them

to false, or assume syntactic equality as in GROUP BY and evaluate

them to true. Either way, we obtain two-valued versions of SQL

satisfying our desiderata.

Replacing 3VL with 2VL does not necessitate any changes to the

underlying implementation of RDBMSs. A user can write a query

under a two-valued Boolean semantics; the query is then translated

into an equivalent one under the standard SQL semantics, which

any of the existing engines can evaluate.

We investigate the impact of this result from two different angles.

The first concerns optimizations. By changing the semantics we

change equivalences among queries. We show that the two-valued

version of SQL recovers certain optimizations, in particular those

often incorrectly assumed by programmers under 3VL.

Our second question concerns real-life usability of two-valued

SQL. To investigate this, we ask two questions:

(1) Does it happen often that the choice of logic, 3VL or 2VL,

has no impact on the query output?

(2) If there is a difference between 3VL and 2VL, which one

would users prefer?

Regarding (1), we observe that for many queries, there is actually

no difference between outputs while using 2VL or 3VL. We provide

sufficient conditions for this to happen, and then analyze queries

in commonly used benchmarks, TPC-H [44] and TPC-DS [43], to

show that a huge majority of queries fall in that category, giving us

the two-valued SQL essentially for free. This is not very surprising

since these benchmarks were written by experienced programmers

who know how to avoid semantic pitfalls.

When there is a difference, the only way to know what users

prefer is to ask the users. We thus designed an introductory user

survey asking about preference for 2VL or 3VL in both query out-

puts and query equivalence. As with every user survey, there is a

tradeoff between the costs of the running a survey and reliability

of its results. This being the first survey of the kind, we wanted to

get an initial indication of what users think; starting the project we

had no idea whether they would love the idea of 2VL, or reject it

outright, or fall somewhere in between. The survey of roughly 80%

practitioners and 20% academics showed that by – on average – the

margin of 2-to-1 users prefer 2VL. This should not be viewed as

the final word but rather as an initial confirmation of the feasibility

of the approach, and an invitation for a more detailed user study

before potential proposals for language changes.

Finally, we show an extension of our results: no other reasonable

(essentially, avoiding paradoxical behaviour) many-valued logic in

place of 3VL could give a more expressive language than SQL.

The choice of language. To prove results formally, we need a lan-

guage closely resembling SQL and yet having a formal semantics

one can reason about. Our choice is an extended relational algebra

(RA) similar to an algebra into which RDBMS implementations

translate SQL. It expands the standard textbook RA with bag se-

mantics, duplicate elimination, and several new features. Selection

conditions, in addition to the standard comparisons such as = and <,

include tests for nulls (as SQL’s IS NULL) and both IN or EXISTS
subqueries. We also add conditions 𝑡𝜔any(𝐸) and 𝑡𝜔all(𝐸) with the

semantics of SQL’s ANY and ALL (they check whether 𝑡𝜔𝑡 ′ holds
for some, respectively all, 𝑡 ′ in the result of 𝐸, where 𝜔 is one of

the standard comparisons). Selection conditions are evaluated ac-

cording to SQL’s 3VL. The algebra has aggregate functions and

SQL Nulls and Two-Valued Logic PODS ’23, June 18–23, 2023, Seattle, WA, USA

a grouping operation. It allows function application to attributes,

to mimic expressions in the SELECT clause. It also has an iterator

operation whose semantics captures SQL recursion.

Related work. The idea of using Boolean logic for nulls predates

SQL; it actually appeared in QUEL (the language of Ingres that

appeared in 1976 [41]; see details in the latest manual [32]). After-

wards, however, the main direction was in making the logic of nulls

more rather than less complicated, with proposals ranging from

three to six values [12, 17, 24, 34, 46] or producing more complex

classifications of nulls, e.g., [8, 47]. Elaborate many-valued logics

for handling incomplete and inconsistent data were also considered

in the AI literature; see, e.g., [4, 22, 25]. Proposals for eliminating

nulls have appeared in [1, 3, 15].

There is a large body of work on achieving correctness of query

results on databases with nulls where correctness assumes the

standard notion of certain answers [31]. Among such works are

[21, 26, 27, 35]. They assumed either SQL’s 3VL, or the Boolean

logic of marked nulls [31], and showed how query evaluation could

be modified to achieve correctness, but they did not question the

underlying logic of nulls. Our work is orthogonal to that: we are

concerned with finding a logic that makes it more natural for pro-

grammers to write queries; once this is achieved, one will need

to modify the evaluation schemes to produce subsets of certain

answers if one so desires. For connections between real SQL nulls

and theoretical models, such as marked or Codd nulls, see [29].

Some papers looked into handling nulls and incomplete data in

bag-based data models as employed by SQL [13, 30, 38], but none

focused on the underlying logic of nulls.

Finally, our user survey can be seen as complementary to the

extensive survey on the use of nulls [42]; that survey asked multiple

questions but not on replacing SQL’s logic of nulls.

Organization. Section 2 presents the syntax and the semantics of

the language. Section 3 shows how to eliminate unknown to achieve
our desiderata. Section 4 studies optimizations under 2VL. Section 5

discusses conditions under which 2VL and 3VL semantics are equiv-

alent. Section 6 studies applicability of our results. Extensions are

given in Section 7.

2 QUERY LANGUAGE: RAsql

Given the idiosyncrasies of SQL’s syntax, it is not an ideal language

– syntactically – to reason about. We know, however, that its queries

are all translatable into an extended RA; indeed, this is what is done

inside every RDBMS, and multiple such translations are described

in the literature [5, 10, 28, 37, 45]. Our language RAsql is close to

what real-life SQL queries are translated into.

2.1 Data Model

The usual presentation of RA assumes a countably infinite domain

of values. To handle languages with aggregation, we need to distin-

guish columns of numerical types. As not to over-complicate the

model, we assume two types: a numerical and non-numerical one

(we call it ordinary). This is without any loss of generality since

the treatment of nulls as values of all types is the same, except

numerical nulls that behave differently with respect to aggregation.

Assume the following pairwise disjoint countable infinite sets:

• Name of attribute names, and
• Num of numerical values, and
• Val of (ordinary) values.

Each name has a type: either o (ordinary) or n (numerical). If

𝑁 ∈ Name, then type(𝑁) ∈ {o, n} defines the type of elements in

column 𝑁 . Furthermore, type(𝑒) = n if 𝑒 ∈ Num and type(𝑒) = o if
𝑒 ∈ Val. We use a fresh symbol NULL to denote the null value.

Typed records and relations are defined as follows. Let 𝜏 :=

𝜏1 · · · 𝜏𝑛 be a word over the alphabet {o, n}. A 𝜏-record 𝑎 with arity
𝑛 is a tuple (𝑎1, · · · , 𝑎𝑛) where 𝑎𝑖 ∈ Num∪{NULL} whenever 𝜏𝑖 = n,
and 𝑎𝑖 ∈ Val ∪ {NULL} whenever 𝜏𝑖 = o.

For an 𝑛-ary relation symbol 𝑅 in the schema we write ℓ(𝑅) =

𝑁1 · · ·𝑁𝑛 ∈ Name𝑛 for the sequence of its attribute names. The

type of 𝑅 is the sequence type(𝑅) = type(𝑁1) · · · type(𝑁𝑛). A relation
R over 𝑅 is a bag of type(𝑅)-records (a record may appear more

than once). We write 𝑎 ∈𝑘 R if 𝑎 occurs exactly 𝑘 > 0 times in R.
A relation schema S is a set of relation symbols and their types,

i.e., a set of pairs (𝑅, type(𝑅)). A database𝐷 over a relation schemaS
associates with each (𝑅, type(𝑅)) ∈ S a relation of type(𝑅)-records.

2.2 Syntax

A term is defined recursively as either a numerical value in Num,

or an ordinary value in Val, or NULL, or a name in Name, or an
element of the form 𝑓 (𝑡1, · · · , 𝑡𝑘)where 𝑓 : Num𝑘 → Num is a𝑘-ary
numerical function (e.g., addition or multiplication) and 𝑡1, · · · , 𝑡𝑘
are terms that evaluate to values of numerical type.

An aggregate function is a function 𝐹 that maps bags of numerical

values into a numerical value. For example, SQL’s aggregates COUNT,
AVG, SUM, MIN, MAX are such.

The algebra is parameterized by a collection Ω of numerical and

aggregate functions.We assume the standard comparison predicates

.
=, /

.
=, <, >, ≤, ≥ on numerical values are available

1
.

Given a schema S and such a collection Ω, the syntax of RAsql

expressions and conditions over S ∪ Ω is given in Fig. 1, where 𝑅

ranges over relation symbols in S, each 𝑡𝑖 is a term, each 𝑁𝑖 , 𝑁
′
𝑖

is a name, each 𝑁 is a tuple of names, and each 𝐹𝑖 is an aggregate

function. In the generalized projection and in the grouping/aggre-

gation, the parts in the squared brackets (i.e., [�𝑁𝑖] and [�𝑁 ′
𝑖
])

are optional renamings.

The size of an expression is defined the size of its parse tree. We

assume that comparisons between tuples are spelled out as Boolean

combinations of atomic comparisons: e.g., (𝑥1, 𝑥2) = (𝑦1, 𝑦2) is 𝑥1 =

𝑦1 ∧ 𝑥2 = 𝑦2 and (𝑥1, 𝑥2) < (𝑦1, 𝑦2) is 𝑥1 < 𝑦1 ∨ (𝑥1 = 𝑦2 ∧ 𝑥2 < 𝑦2).

In what follows, we restrict our attention to expressions with

well-defined semantics (e.g., we forbid aggregation over non-numeri-

cal columns or functions applied to arguments of wrong types).

2.3 Semantics

To make reading easier, we present the semantics by recourse to

SQL, but full and formal definitions exist too and are found in the

full version [36]. The semantics function

J𝐸K𝐷,[

1
We focus, without loss of generality, on these predicates; our results apply also for

predicates of higher arities, e.g., BETWEEN in SQL.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Libkin and Peterfreund

Terms: 𝑡 := 𝑛 | 𝑐 | NULL | 𝑁 | 𝑓 (𝑡1, · · · , 𝑡𝑘) 𝑛 ∈ Num, 𝑐 ∈ Val, 𝑁 ∈ Name, 𝑓 ∈ Ω

Expressions: 𝐸 := 𝑅 (base relation)

𝜋𝑡1[�𝑁 ′
1
], · · ·,𝑡𝑚[�𝑁 ′

𝑚]
(𝐸) (generalized projection w/ optional renaming)

𝜎\ (𝐸) (selection)

𝐸 × 𝐸 (product)

𝐸 ∪ 𝐸 (union)

𝐸 ∩ 𝐸 (intersection)

𝐸 − 𝐸 (difference)

Y(𝐸) (duplicate elimination)

Group�̄� , ⟨𝐹1(𝑁1)[�𝑁 ′
1
], · · ·,𝐹𝑚 (𝑁𝑚)[�𝑁 ′

𝑚]⟩(𝐸) (grouping/aggregation w/ optional renaming)

Atomic conditions: 𝑎𝑐 := t | f | isnull(𝑡) | 𝑡 𝜔 𝑡 ′ | 𝑡 ∈ 𝐸 | empty(𝐸) | 𝑡 𝜔 any(𝐸) | 𝑡 𝜔 all(𝐸) 𝜔 ∈ { .=, /.=, <, >, ≤, ≥}

Conditions: \ := 𝑎𝑐 | \ ∨ \ | ¬\ | \ ∧ \

Figure 1: Syntax of RAsql

defines the result of the evaluation of expression 𝐸 on database 𝐷

under the environment [. The environment [is a partial mapping

from the set Name of names to the union Val ∪ Num ∪ {NULL}. It
provides values of parameters of the query. This is necessary to

give semantics of subqueries that can refer to attributes from the

outer query.

Given an expression 𝐸 of RAsql and a database 𝐷 , the value of

𝐸 in 𝐷 is defined as J𝐸K𝐷,∅ where ∅ is the empty mapping (i.e., the

top level expression has no parameters).

Similarly to SQL queries, each RAsql expression 𝐸 produces

tables over a list of attributes; this list will be denoted by ℓ(𝐸).

2.3.1 Base relations and generalized projections. A base relation 𝑅

is SQL’s SELECT * FROM R. Generalized projection captures SQL’s
SELECT clause. Each term 𝑡𝑖 is evaluated, optionally renamed, and

added as a column to the result. For example

SELECT A, B, A+2 AS C, A*B AS D FROM R

is written as 𝜋𝐴,𝐵,add2(𝐴)�𝐶,mult(𝐴,𝐵)�𝐷 (𝑅), where add2(𝑥) := 𝑥 + 2

and mult(𝑥,𝑦) := 𝑥 · 𝑦. Projection follows SQL’s bag semantics

with terms evaluated along with their multiplicity. For instance if

(2, 3) ∈2 𝑅 and (1, 6) ∈3 𝑅 then the result of 𝜋mult(𝐴,𝐵)
(𝑅) contains

the tuple (6) with multiplicity 5.

2.3.2 Conditions and selections. SQL uses three-valued logic and its

conditions are evaluated to either true (t), or false (f), or unknown

(u). Logical connectives are used to compose conditions, and truth

values are propagated according to Kleene logic below.

∧ t f u

t t f u

f f f f

u u f u

∨ t f u

t t t t

f t f u

u t u u

¬
t f

f t

u u

Atomic condition isnull(𝑡) is evaluated to t if the term 𝑡 is NULL,
and to f otherwise. Comparisons 𝑡 𝜔 𝑡 ′ are defined naturally when

the arguments are not NULL. If at least one argument is NULL, then
the value is unknown (u).

The condition 𝑡
.
= 𝑡 ′, where 𝑡 = (𝑡1, . . . , 𝑡𝑚) and 𝑡 ′ = (𝑡 ′

1
, . . . , 𝑡 ′𝑚)

that compares tuples of terms is the abbreviation of the conjunction

∧𝑚
𝑖=1

𝑡𝑖
.
= 𝑡 ′

𝑖
, and the comparison 𝑡 /

.
= 𝑡 ′ abbreviates

∨𝑚
𝑖=1

𝑡𝑖 /
.
= 𝑡 ′

𝑖
.

Comparisons <, ≤, ≥, > of tuples are defined lexicographically.

The condition 𝑡 ∈ 𝐸, not typically included in RA, tests whether

a tuple belongs to the result of a query, and corresponds to SQL’s

IN subqueries. If 𝐸 evaluates to the bag containing 𝑡1, · · · , 𝑡𝑛 then

𝑡 ∈ 𝐸 stands for the disjunction ∨𝑛
𝑖=1

𝑡
.
= 𝑡𝑖 . Other predicates not

typically included in RA presentation, though included here for

direct correspondence with SQL, are ALL and ANY comparisons.

The condition 𝑡 𝜔 any(𝐸) checks whether there exists a tuple 𝑡 ′ in
𝐸 so that 𝑡 𝜔 𝑡 ′ holds, where 𝜔 is one of the allowed comparisons.

Likewise, 𝑡 𝜔 all(𝐸) checks whether 𝑡 𝜔 𝑡 ′ holds for every tuple 𝑡 ′

in 𝐸 (in particular, if 𝐸 returns no tuples, this condition is true). If

𝜔 is
.
= or /

.
=, conditions with any and all are applicable at either

ordinary or numerical type; if 𝜔 is one of <, ≤, >, ≥, then all the

components of 𝑡 and all attributes of 𝐸 are of numerical type.

The condition empty(𝐸) checks if the result of 𝐸 is empty, and

corresponds to SQL’s EXISTS subqueries. Note that EXISTS sub-

queries can be evaluated to t or f, whereas IN subqueries can also

be evaluated to u. The semantics of composite conditions is defined

by the 3VL truth-tables.

Selection evaluates the condition \ for each tuple, and keeps

tuples for which \ is t (i.e., not f nor u). Operations of generalized

projection and selection correspond to sequential scans in query

plans (with filtering in the case of selection).

2.3.3 Bag operations and grouping/aggregations. The operation Y

is SQL’s DISTINCT: it eliminates duplicates and keeps one copy of

each record. Operations union, intersection, and difference, have the

standard meaning under the bag semantics, and correspond, respec-

tively, to SQL’s UNION ALL, INTERSECT ALL, and EXCEPT ALL.
Dropping the keyword ALL amounts to using set semantics for

both arguments and operations.

Cartesian product has the standard meaning and corresponds to

listing relations in the FROM clause.

We use SQL’s semantics of functions: if one of its arguments is

NULL, then the result is null (e.g., 3 + 2 is 5, but NULL + 2 is NULL).

SQL Nulls and Two-Valued Logic PODS ’23, June 18–23, 2023, Seattle, WA, USA

Finally, we describe the operator Group�̄� , ⟨�̄� ⟩(𝐸). The tuple 𝑁

lists attributes in GROUP BY, and the 𝑖’th coordinate of �̄� is of the

form 𝐹𝑖 (𝑁𝑖) where 𝐹𝑖 is an aggregate over the numerical columns

𝑁𝑖 optionally renamed 𝑁 ′
𝑖
if [�𝑁 ′

𝑖
] is present. For example

SELECT A, COUNT(B) AS C, SUM(B) FROM R GROUP BY A

will be expressed by Group𝐴, ⟨𝐹count(𝐵)[�𝐶],𝐹sum(𝐵)⟩(𝑅) where

𝐹count({𝑎1, . . . , 𝑎𝑛}) := 𝑛 and 𝐹sum({𝑎1, . . . , 𝑎𝑛}) := 𝑎1 + · · · + 𝑎𝑛 .

Note that 𝑁 could be empty; this corresponds to computing aggre-

gates over the entire table, without grouping, for example, as in

SELECT COUNT (B), SUM (B) FROM R.

Example 1. We start by showing how queries 𝑄1–𝑄4 from the

introduction are expressible in RAsql:

𝑄1 = 𝜎¬(𝑅.𝐴∈𝑆)
(𝑅)

𝑄2 = 𝜎empty(𝜎𝑅.𝐴=𝑆.𝐴(𝑆))
(𝑅)

𝑄3 = Y

(
𝜋𝑋 .𝐴 (𝜎𝑋 .𝐴=𝑌 .𝐴 (𝜌𝑅.𝐴→𝑋 .𝐴(𝑅) × 𝜌𝑅.𝐴→𝑌 .𝐴(𝑅)))

)
𝑄4 = Y (𝜋𝑅.𝐴(𝑅))

A more complex example is a query 𝑄5 below; it is a slightly sim-

plified (to fit in one column) query 22 from TPC-H [44]:

SELECT c_nationkey, COUNT(c_custkey)
FROM customer

WHERE c_acctbal >

(SELECT avg(c_acctbal)
FROM customer WHERE c_acctbal > 0.0 AND
c_custkey NOT IN (SELECT o_custkey FROM orders))

GROUP BY c_nationkey

Below we use abbreviations 𝐶 for customer and 𝑂 for orders,

and abbreviations for attributes like 𝑐_𝑛 for c_nationkey etc. The

NOT IN condition in the subquery is then translated as ¬(𝑐_𝑐 ∈
𝜋𝑜_𝑐 (𝑂)), the whole condition is translated as \ := (𝑐_𝑎 > 0) ∧
¬(𝑐_𝑐 ∈ 𝜋𝑜_𝑐 (𝑂)) and the aggregate subquery becomes

𝑄𝑎𝑔𝑔 := Group∅, ⟨𝐹avg(𝑐_𝑎)⟩
(
𝜋𝑐_𝑎(𝜎\ (𝐶))

)
.

Notice that there is no grouping for this aggregate, hence the empty

set of grouping attributes. Then the condition in the WHERE clause

of the query is \ ′ := 𝑐_𝑎 > any(𝑄𝑎𝑔𝑔) which is then applied to 𝐶 ,

i.e., 𝜎𝑐_𝑎>any(𝑄𝑎𝑔𝑔)
(𝐶), and finally grouping by 𝑐_𝑛 and counting of

𝑐_𝑎 are performed over it, giving us

Group𝑐_𝑛, ⟨𝐹count(𝑐_𝑐)⟩ (𝜎𝑐_𝑎>any(𝑄𝑎𝑔𝑔)
(𝐶)) .

Putting everything together, we have the final RAsql expression:

Group𝑐_𝑛, ⟨𝐹count(𝑐_𝑐)⟩
(
𝜎
𝑐_𝑎>any

(
Group∅,⟨𝐹avg (𝑐_𝑎)⟩

(
𝜋𝑐_𝑎 (𝜎\ (𝐶))

)) (𝐶)

)
.

ADDING RECURSION. We now incorporate recursive queries, a

feature added in the SQL 1999 standard with its WITH RECURSIVE
construct. While extensions of relational algebra with various kinds

of recursion exist (e.g., transitive closure [2] or fixed-point operator

[33]), we stay closer to SQL as it is. Specifically, SQL uses a special

type of iteration – in fact two kinds depending on the syntactic

shape of the query [39].

Syntax of RA
rec

sql
. Recall that ∪ stands for bag union, i.e., multiplic-

ities of tuples are added up, as in SQL’s UNION ALL. We also need

the operation 𝐵1 ⊔ 𝐵2 defined as Y(𝐵1 ∪ 𝐵2), i.e., union in which a

single copy of each tuple is kept. This corresponds to SQL’s UNION.
An RA

rec

sql
expression is defined with the grammar of RAsql in

Fig. 1) with the addition of the constructor `𝑅.𝐸 where 𝑅 is a fresh

relation symbol (i.e., not in the schema) and 𝐸 is an expression of the

form 𝐸1∪𝐸2 or 𝐸1⊔𝐸2 where both 𝐸1 and 𝐸2 are RA
rec

sql
expressions

and 𝐸2 may contain a reference to 𝑅.

In SQL, various restrictions are imposed on query 𝐸2, such as

the linearity of recursion (at most one reference to 𝑅 within 𝐸2),

restrictions on the use of recursively defined relations in subqueries,

on the use of aggregation, etc. These eliminate many of the common

cases of non-terminating queries. Here we shall not impose these

restrictions, as our result is more general: passing from 3VL to two-

valued logic is possible even if such restrictions were not in place.

Semantics of RA
rec

sql
. Similarly to the syntactic definition, we dis-

tinguish between the two cases.

For `𝑅.𝐸1 ∪ 𝐸2, the semantics J`𝑅.𝐸1 ∪ 𝐸2K𝐷,[is defined by the

following iterative process:

(1) 𝑅𝐸𝑆0, 𝑅0 := J𝐸1K𝐷,[

(2) 𝑅𝑖+1 := J𝐸2K𝐷∪𝑅𝑖 ,[, 𝑅𝐸𝑆𝑖+1 := 𝑅𝐸𝑆𝑖 ∪ 𝑅𝑖+1

with the condition that if 𝑅𝑖 = ∅, then the iteration stops and 𝑅𝐸𝑆𝑖
is returned.

For `𝑅.𝐸1 ⊔ 𝐸2, the semantics is defined by a different iteration

(1) 𝑅𝐸𝑆0, 𝑅0 := JY(𝐸1)K𝐷,[

(2) 𝑅𝑖+1 :=JY(𝐸2)K𝐷∪𝑅𝑖 ,[−𝑅𝐸𝑆𝑖 , 𝑅𝐸𝑆𝑖+1 :=𝑅𝐸𝑆𝑖 ∪ 𝑅𝑖+1

with the same stopping condition as before.

Note that while for queries not involving recursion only the

environment changes during the computation, for recursion the

relation that is iterated over (𝑅 above) changes as well, and each

new iteration is evaluated on a modified database.

3 ELIMINATING UNKNOWN

To replace 3VL with Boolean logic, we need to eliminate the un-

known truth value. In SQL, u arises in WHERE which corresponds

to conditions in RAsql. It appears as the result of evaluation of

comparison predicates such as =, ≤, /.= etc. Consequently, it also

arises in IN, ANY and ALL conditions for subqueries.

In comparisons, u appears due to the rule that if one parameter is
NULL, then the value of the predicate is u. Thus, we need to change

this rule, and to say what to do when one of the parameters is

NULL. In doing so, we are guided by SQL’s existing semantics of

conditions in WHERE. While those can evaluate to t, f, or u, in the

end only the true values are kept: that is, u and f are conflated. SQL
does it at the end of evaluating a condition; thus a natural approach

to a two-valued version of SQL is to use the same rule throughout
the evaluation.

This is a natural proposal, and in fact we shall that this results in

a version of SQL satisfying our desiderata. It may have a potential

drawback with respect to optimizations. Namely, both NULL
.
= NULL

and NULL /
.
= NULL evaluate to f, and thus NULL /

.
= NULL cannot be

equivalent to ¬(NULL
.
= NULL). This however can easily be resolved

by treating conditions consistent with syntactic equality differently.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Libkin and Peterfreund

3.1 The two-valued semantics J K2VL2VL2VL

and J K===

As explained above, in the new semantics J K2VL2VL2VL

we only need to

modify the rule for comparisons of terms, 𝑡 𝜔 𝑡 ′. In the simplest

case (f instead of u) this is done by

J𝑡 𝜔 𝑡 ′K2VL2VL2VL

𝐷,[:=

{
t J𝑡K[, J𝑡

′K[̸= NULL, and J𝑡K[𝜔 J𝑡 ′K[
f otherwise

The rest of the semantics is exactly the same as before. Note that

in conditions like 𝑡
.
= 𝑡 ′, or 𝑡 ∈ 𝐸, or 𝑡 𝜔 all(𝐸), and 𝑡 𝜔 any(𝐸), the

conjunctions and disjunctions will be interpreted as the standard

Boolean ones, since u no longer arises.

A more elaborate version J K=== takes into account syntactic equal-

ity. It is the same as the J K2VL2VL2VL

semantics except for three compar-

isons compatible with equality:
.
=, ≤ and ≥. For them, it is as follows

J𝑡 𝜔 𝑡 ′K===𝐷,[:=

{
t J𝑡 𝜔 𝑡 ′K2VL2VL2VL

𝐷,[= t or J𝑡K[= J𝑡 ′K[= NULL

f otherwise

and keeping the rest as in the definition of J K2VL2VL2VL

. The only difference

is that now conditions NULL
.
= NULL, NULL ≤ NULL, and NULL ≥

NULL evaluate to true.

3.2 Capturing SQL with J K2VL2VL2VL

and J K===

We now show that the two semantics presented above fulfill our

desiderata for a two-valued version of SQL. Recall that it postulated

three requirements: (1) that no expressiveness be gained or lost

compared to the standard SQL; (2) that over databases without nulls

no changes be required; and (3) that when changes are required

in the presence of nulls, they ought to be small and not affect

significantly the size of the query. These conditions are formalized

in the definition below.

Definition 1. A semantics J K′ of queries captures the semantics
J K of RAsql if the following are satisfied:

(1) for every expression 𝐸 of RAsql there exists an expression 𝐺
of RAsql such that, for each database 𝐷 ,

J𝐸K′𝐷 = J𝐺K𝐷 ;

(2) for every expression 𝐸 of RAsql there exists an expression 𝐹 of
RAsql such that, for every database 𝐷 ,

J𝐸K𝐷 = J𝐹K′𝐷 ;

(3) for every expression 𝐸 of RAsql, and every database𝐷 without
nulls, J𝐸K𝐷 = J𝐸K′𝐷 .

When in place of RAsql above we use RArecsql , then we speak of capu-
tring the semantics of RArecsql .

If the size of expressions 𝐹 and𝐺 in items (1) and (2) is at most linear
in the size of 𝐸, we say that the semantics is captured efficiently. □

Our main result is that the two-valued semantics of SQL capture

its standard semantics efficiently.

Theorem 1. The J K2VL2VL2VL and J K=== semantics of RArecsql expressions,
and of RAsql expressions, capture their SQL semantics J K efficiently.

Note that the capture statement for RAsql is not a corollary of

the statement of RA
rec

sql
.

Running 2VL on existing RDBMSs

We sketch one direction of the proof of Theorem 1, namely from

J K2VL2VL2VL

and J K=== to J K.
From J·K2VL2VL2VL

to J K, we define the translation toSQL2VL() that spec-

ifies how to take a query 𝐸 written under the 2VL semantics that

conflates uwith f and translate it into a query toSQL2VL(𝐸) that gives

the same result when evaluated under the usual SQL semantics:

J𝐸K2VL2VL2VL

𝐷 = JtoSQL2VL(𝐸)K𝐷 for every database 𝐷 . Thus, toSQL2VL(𝐸)

can execute a 2VL query in any existing implementation of SQL.

To do so, we define translations of conditions and queries by mu-

tual induction. Translations trt2VL(·), trf2VL(·) on conditions \ ensure

J\K2VL2VL2VL

𝐷,[= t if and only if Jtrt2VL(\)K𝐷,[= t

J\K2VL2VL2VL

𝐷,[= f if and only if Jtrf2VL(\)K𝐷,[= t

(note that J\K2VL2VL2VL

𝐷,[produces only t and f). Then we go from 𝐸 to

toSQL2VL(𝐸) by inductively replacing each condition \ with trt2VL(\).

The full details of the translations are in Figure 2.

Basic: trt2VL(\) := \ for \ := t | f | isnull(𝑡) | 𝑡 𝜔 𝑡 ′

trt2VL(empty(𝐸)) := empty(toSQL2VL(𝐸))

trt2VL(𝑡 𝜔 any(𝐸)) := 𝑡 𝜔 any(toSQL2VL(𝐸))

trt2VL(𝑡 𝜔 all(𝐸)) := 𝑡 𝜔 all(toSQL2VL(𝐸))

Comp.: trt2VL(\1 ∨ \2) := trt2VL(\1) ∨ trt2VL(\2)

trt2VL(\1 ∧ \2) := trt2VL(\1) ∧ trt2VL(\2)

trt2VL(¬\) := trf2VL(\)

Basic: trf2VL(\) := ¬\ for \ := t | f | isnull(𝑡)

trf2VL(𝑡 𝜔 𝑡 ′) := isnull(𝑡) ∨ isnull(𝑡 ′) ∨ ¬𝑡 𝜔 𝑡 ′

trf2VL(empty(𝐸)) := ¬empty(toSQL2VL(𝐸))

trf2VL(𝑡 𝜔 any(𝐸)) := empty(𝜎¬\ (toSQL2VL(𝐸)))

trf2VL(𝑡 𝜔 all(𝐸)) := ¬empty(𝜎\ (toSQL2VL(𝐸)))

where \ := trf2VL(𝑡 𝜔 ℓ(𝐸))

Comp.: trf2VL(\1 ∨ \2) := trf2VL(\1) ∧ trf2VL(\2)

trf2VL(\1 ∧ \2) := trf2VL(\1) ∨ trf2VL(\2)

trf2VL(¬\) := trt2VL(\)

Figure 2: trt2VL(·) and trf2VL(·) of basic and composite conditions

Example 2. We now look at translations of queries 𝑄1–𝑄5 of Ex-

ample 1. That is, suppose these queries have been written assuming

the two-valued 2VL semantics; we show how they would then look

in conventional SQL. To start with, queries 𝑄2, 𝑄3, and 𝑄4 remain

unchanged by the translation.

The query toSQL2VL(𝑄1) is 𝜎isnull(𝑅.𝐴)∨¬(𝑅.𝐴∈𝜎¬isnull(𝑆.𝐴)
𝑆)

(𝑅). In

SQL, this is equivalent to

SELECT R.A FROM R

WHERE R.A IS NULL OR R.A NOT IN
(SELECT S.A FROM S WHERE S.A IS NOT NULL)

SQL Nulls and Two-Valued Logic PODS ’23, June 18–23, 2023, Seattle, WA, USA

In toSQL2VL(𝑄5), the condition (𝑐_𝑎 > 0) ∧ ¬(𝑐_𝑐 ∈ 𝜋𝑜_𝑐 (𝑂)) in the

subquery is translated by trt2VL(·) as

(𝑐_𝑎 > 0) ∧
(
isnull(𝑐_𝑐) ∨ ¬(𝑐_𝑐 ∈ 𝜎¬isnull(𝑜_𝑐)

(𝜋𝑜_𝑐𝑂))
)

which is then used in the aggregate subquery 𝑄𝑎𝑔𝑔 (see details in

Example 1 at the end of Section 2.3); the rest of the query does not

change. In SQL, these are translated into additional IS NULL and

IS NOT NULL conditions in the WHERE of the aggregate query:

WHERE c_acctbal > 0.0 AND (c_custkey IS NULL OR
c_custkey NOT IN (SELECT o_custkey FROM orders

WHERE o_custkey IS NOT NULL))

This translation of 𝑄5 makes no extra assumptions about the

schema. Having additional information (e.g., that c_custkey is the

key of customer) simplifies translation even further; see Section 5.

From J K=== to J K, we define the translation toSQL===() that spec-

ifies how to take a query 𝐸 written under the syntactic equality

semantics and translate it into a query toSQL===(𝐸) where J𝐸K===𝐷 =

JtoSQL===(𝐸)K𝐷 for every 𝐷 . Similarly to before, we define trans-

lations of conditions and queries by mutual induction such that

translations trt
===

(·), trf
===

(·) on conditions \ ensure

J\K===𝐷,[= t if and only if Jtrt
===

(\)K𝐷,[= t

J\K===𝐷,[= f if and only if Jtrf
===

(\)K𝐷,[= t

and we go from 𝐸 to toSQL===(𝐸) by inductively replacing each condi-

tion \ with trt
===

(\). The full details of the translations are in Figure 3.

Example 3. Following the previous example, we look at the trans-

lation toSQL===(·) of queries 𝑄1–𝑄5. In these translations we often

see the condition of the form

\[𝑡, 𝑡 ′] =

(
isnull(𝑡) ∧ isnull(𝑡 ′)

)
∨(

¬isnull(𝑡) ∧ ¬isnull(𝑡 ′) ∧ 𝑡
.
= 𝑡 ′

)
.

Query 𝑄1, which is equivalent to 𝜎¬(𝑅.𝐴 .=any(𝑆)) (𝑅), is translated

as 𝜎empty(𝜎\ [𝑅.𝐴,𝑆.𝐴]
(𝑆)) (𝑅). Query 𝑄2 is translated into the same

expression. Query 𝑄3 is translated as

Y

(
𝜋𝑋 .𝐴 (𝜎\ [𝑋 .𝐴,𝑌 .𝐴]

(𝜌𝑅.𝐴→𝑋 .𝐴(𝑅) × 𝜌𝑅.𝐴→𝑌 .𝐴(𝑅)))
)
.

While 𝑄4 remains unchanged, in the subquery of 𝑄5, the condition

(𝑐_𝑎 > 0) ∧ ¬(𝑐_𝑐 ∈ 𝜋𝑜_𝑐 (𝑂)) is translated to

(¬isnull(𝑐_𝑎) ∧ 𝑐_𝑎 > 0) ∧
(
empty(𝜎\ [𝑜_𝑐,𝑐_𝑐]

(𝑂))

)
.

Notice that the size of expressions toSQL2VL(𝐸) and toSQL===(𝐸) is

indeed linear in 𝐸.

4 RESTORING EXPECTED OPTIMIZATIONS

Recall queries 𝑄1 and 𝑄2 from the introduction. Intuitively, one

expects them to be equivalent: indeed, if we remove the NOT from

both of them, then they are equivalent. And it seems that if con-

ditions \1 and \2 are equivalent, then so must be ¬\1 and ¬\2. So

what is going on there?

Recall that the effect of the WHERE clause is to keep tuples for

which the condition is evaluated to t. So equivalence of condi-

tions \1 and \2, from SQL’s point of view, means J\1K𝐷,[= t ⇔

Basic: trt
===

(\) := \ for \ := t | f | isnull(𝑡)

trt
===

(𝑡 𝜔 𝑡 ′) := ¬isnull(𝑡) ∧ ¬isnull(𝑡 ′) ∧ 𝑡 𝜔 𝑡 ′

for 𝜔 ∈ {<, >, ̸=}
trt

===
(𝑡 𝜔 𝑡 ′) := (isnull(𝑡) ∧ isnull(𝑡 ′)) ∨

(¬isnull(𝑡) ∧ ¬isnull(𝑡 ′) ∧ 𝑡 𝜔 𝑡 ′)
for 𝜔 ∈ {≤, ≥, .=}

trt
===

(empty(𝐸)) := empty(toSQL===(𝐸))

trt
===

(𝑡 𝜔 any(𝐸)) := ¬empty (𝜎\ (toSQL===(𝐸)))
trt

===
(𝑡 𝜔 all(𝐸)) := empty (𝜎¬\ (toSQL===(𝐸)))

where \ := trt
===

(𝑡 𝜔 ℓ(𝐸))

Comp.: trt
===

(\1 ∨ \2) := trt
===

(\1) ∨ trt
===

(\2)

trt
===

(\1 ∧ \2) := trt
===

(\1) ∧ trt
===

(\2)

trt
===

(¬\) := trf
===

(\)

Basic: trf
===

(\) := ¬\ for \ := t | f | isnull(𝑡)

trf
===

(𝑡 𝜔 𝑡 ′) := isnull(𝑡) ∨ isnull(𝑡 ′)∨
(¬isnull(𝑡) ∧ ¬isnull(𝑡 ′) ∧ ¬𝑡 𝜔 𝑡 ′)

for 𝜔 ∈ {<, >, ̸=}
trf

===
(𝑡 𝜔 𝑡 ′) := (isnull(𝑡) ∧ ¬isnull(𝑡 ′))∨
∨ (¬isnull(𝑡) ∧ ¬isnull(𝑡 ′) ∧ ¬𝑡 𝜔 𝑡 ′)

∨(isnull(𝑡 ′) ∧ ¬isnull(𝑡))

for 𝜔 ∈ {≤, ≥, .=}
trf

===
(empty(𝐸)) := ¬empty(toSQL===(𝐸))

trf
===

(𝑡 𝜔 any(𝐸)) := empty(𝜎\ (toSQL===(𝐸)))

trf
===

(𝑡 𝜔 all(𝐸)) := ¬empty(𝜎¬\ (toSQL===(𝐸)))

where \ := trt
===

(𝑡 𝜔 ℓ(𝐸))

Comp.: trf
===

(\1 ∨ \2) := trf
===

(\1) ∧ trf
===

(\2)

trf
===

(\1 ∧ \2) := trf
===

(\1) ∨ trf
===

(\2)

trf
===

(¬\) := trt
===

(\)

Figure 3: trt
===

(·) and trf
===

(·) of basic and composite conditions

J\2K𝐷,[= t for all 𝐷 and [. Of course in 2VL this is the same as

stating that J\1K𝐷,[= J\2K𝐷,[due to the fact that there are only

two mutually exclusive truth values. In 3VL this is not the case

however: we can have non-equivalent conditions that evaluate to t

at the same time.

With the two-valued semantics eliminating this problem, we

restore many query equivalences. It is natural to assume them

for granted even though they are not true under 3VL, perhaps

accounting for some typical programmer mistakes in SQL [7, 9]. In

terms of RAsql expressions, these equivalences are as follows.

Proposition 1. The following equivalences hold, ★ ∈ {2VL,===}:
(1) J𝜎\ (𝐸)K★𝐷,[= J𝐸 − 𝜎¬\ (𝐸)K★𝐷,[

(2) J𝑡 ∈ 𝐸K★𝐷,[= f if and only if J𝜎𝑡 .=ℓ(𝐸)
(𝐸)K★

𝐷,[
= ∅

(3) J𝑡 𝜔 any(𝐸)K★𝐷,[= f if and only if J𝜎𝑡 𝜔 ℓ(𝐸)
(𝐸)K★

𝐷,[
= ∅

(4) J𝑡 𝜔 all(𝐸)K★𝐷,[= t if and only if J𝜎¬(𝑡 𝜔 ℓ(𝐸))
(𝐸)K★

𝐷,[
= ∅

for every RArecsqlexpression 𝐸, tuple 𝑡 of terms, condition \ , database
𝐷 , and environment [.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Libkin and Peterfreund

Neither of those is true in general under SQL’s 3VL semantics.

5 TWO-VALUED SEMANTICS FOR FREE

Theorem 1 shows that every query written under 2VL semantics

can be translated into a query that runs on existing RDBMSs and

produces the same result. But ideally we want the same query

to produce the right result, without any modifications. We now

show that this happens very often, for a very large class of queries,

including majority of benchmark queries used to evaluate RDBMSs.

A key to this is the fact some attributes cannot have NULL in them, in

particular those in primary keys and those declared as NOT NULL.
We provide a sufficient condition that a query produces the same

result under the 2VL and 3VL semantics, for a given list of attributes

that cannot be NULL. It is an easy observation that this equivalence

in general is undecidable; hence we look for a sufficient condition.

It is defined in two steps. The first tracks attributes in outputs of

RA
rec

sql
queries that are nullable, i.e., can have NULL in them. The

second step restricts nullable attributes in queries.

Tracking nullable attributes. We define recursively the sequence

nullable(𝐸) of attributes of an expression 𝐸; those may have a

NULL in them; others are guaranteed not to have any. We assume

that nullable(𝑅) for a base relation 𝑅 is defined in the schema: it is

the subsequence of attributes of 𝑅 that are not part of 𝑅’s primary

key nor are declared with NOT NULL. Others are as follows:

• nullable(Y(𝐸)) = nullable(𝜎\𝐸) := nullable(𝐸);

• nullable(𝐸1 × 𝐸2) := nullable(𝐸1) · nullable(𝐸2);

• For ∪ and ∩, assume that ℓ(𝐸1) = 𝐴1 · · ·𝐴𝑛 and ℓ(𝐸2) =

𝐵1 · · ·𝐵𝑛 . Then nullable(𝐸1 op𝐸2) = 𝐴𝑖1 · · ·𝐴𝑖𝑘 where 𝑖 𝑗
is on the list if: for ∪, either 𝐴𝑖 𝑗 ∈ nullable(𝐸1) or 𝐵𝑖 𝑗 ∈
nullable(𝐸2), and for ∩ both𝐴𝑖 𝑗 ∈ nullable(𝐸1) and 𝐵𝑖 𝑗 ∈
nullable(𝐸2);

• nullable(𝐸1 − 𝐸2) := nullable(𝐸1);

• nullable(`𝑅.𝐸1 op𝐸2) = nullable(𝐸1 ∪ 𝐸2);

• nullable(𝜋𝑡1, · · ·,𝑡𝑚 (𝐸)) := 𝑡𝑖1 · · · 𝑡𝑖𝑘 where 𝑡𝑖 𝑗 ’s are those

terms that mention names in nullable(𝐸).

• nullable(Group�̄�, ⟨𝐹1(𝑁1), · · ·,𝐹𝑚 (𝑁𝑚)⟩(𝐸)) :=
¯𝑀 ′ ¯𝐹 ′ where ¯𝑀 ′

is the sequence obtained from �̄� by keeping names that are

in nullable(𝐸), and
¯𝐹 ′ is obtained from 𝐹1(𝑁1), · · · , 𝐹𝑚(𝑁𝑚)

by keeping 𝐹𝑖 (𝑁𝑖) whenever 𝑁𝑖 is in nullable(𝐸). In the last

two rules, if renamings are specified, names are changed

accordingly.

Restricting the nullable attributes. Their use is restricted under nega-

tion in selection conditions.We say that𝜎\ (𝐸) is null-free if for every
sub-condition of \ of the form ¬\ ′ the following hold:

• the constant NULL does not appear in \ ′;
• for every atomic condition 𝑡 𝜔 𝑡 ′ in \ ′, no name in 𝑡, 𝑡 ′ is in
nullable(𝐸);

• for every atomic condition 𝑡 ∈ 𝐹, 𝑡 𝜔 any(𝐹) or 𝑡 𝜔 all(𝐹)

in \ ′, the set nullable(𝐹) is empty and no name in 𝑡 is in

nullable(𝐸).

Theorem 2. Let 𝐸 be an RArecsql expression. If every subexpression
of 𝐸 of the form 𝜎\ (𝐹) is null-free, then

J𝐸K2VL2VL2VL
𝐷,[= J𝐸K===𝐷,[= J𝐸K𝐷,[.

We clarify here that by a subexpression we mean expressions

that are given by subtrees of the parse-tree of an expression.

Example 4. Consider the queries from our running example. Theo-

rem 2 applies to𝑄1, 𝑄4 if 𝑅.𝐴 is a key, and to𝑄2, 𝑄3 if both 𝑅.𝐴 and

𝑆.𝐴 are keys in 𝑅 and 𝑆 respectively. In query 𝑄5 from our running

example we have the condition (𝑐_𝑎 > 0) ∧ ¬(𝑐_𝑐 ∈ 𝜋𝑜_𝑐 (𝑂)). Note

that if 𝑐_𝑐 is a key it is not in nullable(𝑄5). If, in addition, 𝑜_𝑐 is

specified as NOT NULL in table 𝑂 , then Theorem 2 says that for

𝑄5 its SQL and each of the two-valued semantics J·K2VL2VL2VL

and J·K===
coincide.

6 APPLICABILITY OF 2VL SEMANTICS

To gauge the level of applicability of our results, we answer two

questions here: (a) how often do the 3VL and 2VL semantics cooin-

cide, so the user can safely forget the unknown? and (b) when 2VL

and 3VL semantics differ, which one is preferred by users?

How often do the semantics coincide?

To answer this, we look at popular relational performance bench-

marks: TPC-H [44] containing 22 queries, and TCP-DS [43] contain-

ing 99 queries. Ameticulous analysis of queries in those benchmarks

shows that the following satisfy conditions of Theorem 2:

• All of TPC-DS queries;
• 21 out of 22 (i.e., 95%) TPC-H queries.

Thus, out of 121 benchmark queries, only one (Q16 of TPC-H) failed

the conditions. It means that 120 of those 121 queries produce the

same results under 2VL and 3VL semantics. These benchmarks were

constructed to represent typical workloads of RDBMSs, meaning

that many queries will not be affected by a switch to 2VL.

Which one is preferred by users?

For some queries, as we have seen, 3VL and 2VL do differ. The lack

of those in benchmarks might be partly explained by the fact that

those queries are written by experienced programmers who tend to

avoid NULL pitfalls. When such queries do occur, is it more natural

to expect SQL programmers to follow 3VL or 2VL?

To provide a preliminary answer to this question, we designed

a short 10-question user survey. It should be noted that this ap-

proach is very common in social sciences, but in our field socio-

technological aspects perhaps do not get the attention they deserve,

at least for forming research agenda (with a few exceptions though

such as [40, 42]). This survey is intended to be a preliminary one,

to gauge the level of potential applicability.

The survey started with queries where 3VL vs 2VL makes no dif-

ference and asked if users agree with SQL’s output. It then showed

three queries with different 3VL and 2VL results and asked users

which one they preferred. It then showed three pairs of queries

equivalent under 2VL but not 3VL and asked users whether they

want these queries to be equivalent. Finally, it showed a foreign

key constraint involving nulls, and asked whether it should hold.

Of 57 received responses, 81% came from database practitioners

and 19% from academics. The results are shown in Figure 4. The

first column is for queries where results coincide (i.e., the 2VL

column here is the same as the 3VL column). The next three columns

SQL Nulls and Two-Valued Logic PODS ’23, June 18–23, 2023, Seattle, WA, USA

are about outputs of queries, the following three are about query

equivalences, and the last one about a foreign key constraint.

0

25

50

75

100

2VL=3VLQuery1 Query2 Query3 Eq1 Eq2 Eq3 K+FK

Prefer 2VL Prefer 3VL Don't know/Other

Figure 4: Results of the user survey

To summarize:

• When 2VL and 3VL coincide, by a 10-to-1 margin users agree

with SQL’s behavior.

• When 2VL and 3VL do not coincide, by a 3-to-1 margin (on

average) users prefer query outputs under 2VL.

• For query equivalence, users still prefer 2VL but slighly less

convincingly, by 60% to 40% on average.

• Foreign keys, when SQL switches from true to not false, are
truly confusing to users who are almost evenly split between

2VL, 3VL, and "do not know".

We reiterate that these results should not be interpreted as the

definitive answer on the right choice of the semantics, but rather

as a strong indication of 2VL’s feasibility and the need of more

extensive user surveys to justify alternatives to (rather than outright

replacement of) SQL’s 3VL semantics.

7 ROBUSTNESS: OTHER MANY-VALUED

LOGICS

We now show the robustness of the equivalence result, by proving

that no other many-valued logic could have been used in place of

SQL’s 3VL in a way that would have altered the expressiveness of

the language. In fact, SQL’s 3VL, known well before SQL as Kleene’s
logic [6], is not the onlymany-valued proposed to handle nulls; there

were others with 3,4,5, and even 6 values [12, 24, 34, 46]. It is thus

natural to ask if using one of those would give us a more expressive

language? We now give the negative answer, extending a partial

result from [14] that was proved for first-order logic under several

restrictions on the connectives of the logic. We extend it to the full

language RA
rec

sql
, and eliminate previously imposed restrictions.

A many-valued propositional logic MVL is given by a finite

collection T of truth values with t, f ∈ T, and a finite set Γ of logical
connectives 𝛾 : T

arity(𝛾) → T. We assume thatMVL includes at least
the usual connectives ¬,∧,∨ whose restriction to {t, f} follows the

rules of Boolean logic (so that queries on databases without nulls

would not produce results that differ from their normal behavior).

The only condition we impose on MVL is that ∨ and ∧ be as-

sociative and commutative; otherwise we cannot write conditions

\1 OR · · · OR \𝑘 and \1 AND · · · AND \𝑘 without worrying about the

order of conditions. Not having commutativity and associativity

is also problematic for optimizing conditions in WHERE, as such
optimizations assume Boolean algebra identities.

A semantics J KMVL
of RAsql conditions is determined by the

semantics of comparisons 𝑡𝜔𝑡 ′; it then follows the connectives

of MVL to express the semantics of complex condition, and the

expressions of RAsql and RA
rec

sql
follow the semantics of SQL.

Such a semantics J KMVL
is SQL-expressible for atomic predicates if:

(1) without nulls, it coincides with SQL’s semantics J K;
(2) for each truth value 𝜏𝜏𝜏 ∈ T and each comparison 𝜔 there is a

condition \𝜔,𝜏𝜏𝜏 (𝑡, 𝑡 ′) that evaluates to t in SQL if and only if

𝑡 𝜔 𝑡 ′ evaluates to 𝜏𝜏𝜏 in J KMVL
.

These conditions simply exclude pathological situations when

conditions like 1 ≤ 2 evaluate to truth values other than t, f, or

when conditions like “NULL
.
= 𝑛 evaluates to t” are not expressible

in SQL (say, NULL
.
= 𝑛 is t iff the 𝑛th Turing machine in some

enumeration halts on the empty input). Anything reasonable is

permitted by being expressible.

Theorem 3. For a many-valued logic MVL in which ∧ and ∨
are associative and commutative, let J KMVL be a semantics of RAsql
or RArecsql expressions based on MVL. Assume that this semantics
is SQL-expressible for atomic predicates. Then it captures the SQL
semantics.

Different many-valued semantics are not pure theoretical in-

ventions; for example, in MS SQL Server one can switch off the

ansi_nulls option to obtain a different MVL of nulls that will be

covered by Theorem 3.

8 CONCLUSIONS

We showed that one of the most criticized aspects of SQL and one

that is the source of confusion for numerous SQL programmers –

the use of the three-valued logic – was not really necessary, and

perfectly reasonable two-valued semantics exist that achieve ex-

actly the same expressiveness as the original three-valued design.

Of course with all the legacy SQL code based on 3VL, the ultimate

goal is not to replace it but rather propose alternatives. Such alter-

natives can apply not only to SQL but also to newly designed query

languages such as GQL for graph data [19, 23].

As for future lines of research, one is to sharpen the definition

of the language to get even closer to everyday SQL. Another direc-

tion is to adapt works like [21, 27] to return results with certainty

guarantees, but under 2VL as opposed to SQL’s semantics. And

most importantly we shall explore avenues of having some of these

proposals adapted in relational DBMSs.

ACKNOWLEDGMENTS

This work was supported by a Leverhulme Trust Research Fellow-

ship; EPSRC grants N023056 and S003800; and Agence Nationale de

la Recherche project ANR-21-CE48-0015 (Verigraph). We are grate-

ful to Molham Aref and Paolo Guagliardo for helpful discussions,

PODS ’23, June 18–23, 2023, Seattle, WA, USA Libkin and Peterfreund

and to survey respondents for their willingness to participate. Part

of this work was done while the second author was affiliated with

ENS, PSL University.

REFERENCES

[1] RelationalAI Documentation. https://docs.relational.ai. Accessed: April 2023.

[2] R. Agrawal. Alpha: An extension of relational algebra to express a class of

recursive queries. IEEE Trans. Software Eng., 14(7):879–885, 1988.
[3] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veld-

huizen, and G. Washburn. Design and implementation of the LogicBlox system.

In SIGMOD, pages 1371–1382, 2015.
[4] O. Arieli, A. Avron, and A. Zamansky. What is an ideal logic for reasoning with

inconsistency? In IJCAI, pages 706–711, 2011.
[5] V. Benzaken and E. Contejean. A Coq mechanised formal semantics for realistic

SQL queries: formally reconciling SQL and bag relational algebra. In Proceedings
of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2019, pages 249–261. ACM, 2019.

[6] L. Bolc and P. Borowik. Many-Valued Logics: Theoretical Foundations. Springer,
1992.

[7] S. Brass and C. Goldberg. Semantic errors in SQL queries: A quite complete list.

J. Syst. Softw., 79(5):630–644, 2006.
[8] K. S. Candan, J. Grant, and V. S. Subrahmanian. A unified treatment of null values

using constraints. Inf. Sci., 98(1-4):99–156, 1997.
[9] J. Celko. SQL for Smarties: Advanced SQL Programming. Morgan Kaufmann, 2005.

[10] S. Ceri and G. Gottlob. Translating SQL into relational algebra: Optimization,

semantics, and equivalence of SQL queries. IEEE Trans. Software Eng., 11(4):324–
345, 1985.

[11] S. Chu, K. Weitz, A. Cheung, and D. Suciu. Hottsql: proving query rewrites with

univalent SQL semantics. In PLDI, pages 510–524. ACM, 2017.

[12] M. Console, P. Guagliardo, and L. Libkin. Approximations and refinements of

certain answers via many-valued logics. In KR, pages 349–358. AAAI Press, 2016.
[13] M. Console, P. Guagliardo, and L. Libkin. On querying incomplete information

in databases under bag semantics. In IJCAI, pages 993–999, 2017.
[14] M. Console, P. Guagliardo, and L. Libkin. Propositional and predicate logics of

incomplete information. Artif. Intell., 302:103603, 2022.
[15] H. Darwen and C. J. Date. The third manifesto. SIGMOD Record, 24(1):39–49,

1995.

[16] C. J. Date. Database in Depth - Relational Theory for Practitioners. O’Reilly, 2005.
[17] C. J. Date. A critique of Claude Rubinson’s paper nulls, three-valued logic, and

ambiguity in SQL: critiquing Date’s critique. SIGMOD Record, 37(3):20–22, 2008.
[18] C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley, 1996.

[19] A. Deutsch, N. Francis, A. Green, K. Hare, B. Li, L. Libkin, T. Lindaaker, V. Marsault,

W. Martens, J. Michels, F. Murlak, S. Plantikow, P. Selmer, O. van Rest, H. Voigt,

D. Vrgoc, M. Wu, and F. Zemke. Graph pattern matching in GQL and SQL/PGQ.

In SIGMOD, pages 2246–2258. ACM, 2022.

[20] A. Eisenberg and J. Melton. SQL: 1999, formerly known as SQL 3. SIGMOD Rec.,
28(1):131–138, 1999.

[21] S. Feng, A. Huber, B. Glavic, and O. Kennedy. Uncertainty annotated databases -

A lightweight approach for approximating certain answers. In SIGMOD, pages
1313–1330. ACM, 2019.

[22] M. Fitting. Kleene’s logic, generalized. J. Log. Comput., 1(6):797–810, 1991.

[23] N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault, W. Martens,

F. Murlak, L. Peterfreund, A. Rogova, and D. Vrgoč. A researcher’s digest of GQL.

In ICDT, volume 255 of LIPIcs, pages 1:1–1:22, 2023.
[24] G. H. Gessert. Four valued logic for relational database systems. SIGMOD Record,

19(1):29–35, 1990.

[25] M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial

intelligence. Computational Intelligence, 4:265–316, 1988.
[26] S. Greco, C. Molinaro, and I. Trubitsyna. Approximation algorithms for querying

incomplete databases. Inf. Syst., 86:28–45, 2019.
[27] P. Guagliardo and L. Libkin. Making SQL queries correct on incomplete databases:

A feasibility study. In PODS, pages 211–223. ACM, 2016.

[28] P. Guagliardo and L. Libkin. A formal semantics of SQL queries, its validation,

and applications. Proc. VLDB Endow., 11(1):27–39, 2017.
[29] P. Guagliardo and L. Libkin. On the Codd semantics of SQL nulls. Information

Systems, 86:46–60, 2019.
[30] A. Hernich and P. G. Kolaitis. Foundations of information integration under bag

semantics. In LICS, pages 1–12. IEEE Computer Society, 2017.

[31] T. Imielinski and W. Lipski. Incomplete information in relational databases.

Journal of the ACM, 31(4):761–791, 1984.

[32] Ingres 9.3. QUEL Reference Guide, 2009.
[33] L. Jachiet, P. Genevès, N. Gesbert, and N. Layaïda. On the optimization of

recursive relational queries: Application to graph queries. In SIGMOD, pages
681–697. ACM, 2020.

[34] Y. Jia, Z. Feng, and M. Miller. A multivalued approach to handle nulls in RDB.

In Future Databases, volume 3 of Advanced Database Research and Development
Series, pages 71–76. World Scientific, Singapore, 1992.

[35] L. Libkin. SQL’s three-valued logic and certain answers. ACM Trans. Database
Syst., 41(1):1:1–1:28, 2016.

[36] L. Libkin and L. Peterfreund. Handling SQL nulls with two-valued logic. CoRR,
abs/2012.13198, 2022.

[37] M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics of SQL queries. ACM
Trans. Database Syst., 16(3):513–534, 1991.

[38] C. Nikolaou, E. V. Kostylev, G. Konstantinidis, M. Kaminski, B. C. Grau, and

I. Horrocks. The bag semantics of ontology-based data access. In IJCAI, pages
1224–1230, 2017.

[39] PostgreSQLDocumentation, Version 9.6.1. www.postgresql.org/docs/manuals,
2016.

[40] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The ubiquity of

large graphs and surprising challenges of graph processing. Proc. VLDB En-
dow., 11(4):420–431, 2017.

[41] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and implementation

of INGRES. ACM Trans. Database Syst., 1(3):189–222, 1976.
[42] E. Toussaint, P. Guagliardo, L. Libkin, and J. Sequeda. Troubles with nulls, views

from the users. Proc. VLDB Endow., 15(11):2613–2625, 2022.
[43] Transaction Processing Performance Council. TPC Benchmark™ DS Standard

Specification, 2017. Revision 3.2.0.

[44] Transaction Processing Performance Council. TPC Benchmark™ H Standard
Specification, 2018. Revision 2.18.0.

[45] J. Van den Bussche and S. Vansummeren. Translating SQL into the relational

algebra. Course notes, Hasselt University and Université Libre de Bruxelles, 2009.

[46] K. Yue. A more general model for handling missing information in relational

databases using a 3-valued logic. SIGMOD Record, 20(3):43–49, 1991.
[47] C. Zaniolo. Database relations with null values. JCSS, 28(1):142–166, 1984.

https://docs.relational.ai

	Abstract
	1 Introduction
	2 Query Language: RAsql
	2.1 Data Model
	2.2 Syntax
	2.3 Semantics

	3 Eliminating unknown
	3.1 The two-valued semantics 6 2VL-.4 and =-.4
	3.2 Capturing SQL with 6 2VL-.4 and =-.4

	4 Restoring expected optimizations
	5 Two-valued semantics for free
	6 Applicability of 2VL semantics
	7 Robustness: other many-valued logics
	8 Conclusions
	References

