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Abstract— Image quality has long been deemed a key challenge 

for Electrical Impedance Tomography (EIT). High quality image 

is of great significance for improving the qualitative and 

quantitative imaging performance in biomedical or industrial 

applications. In this paper, a novel image reconstruction 

algorithm for EIT using adaptive group sparsity constraint is 

proposed to obtain enhanced image quality. The proposed 

algorithm takes both the underlying structure characteristics and 

sparsity prior of the conductivity distribution into account to 

promote a solution with group sparsity structure and reduce the 

degree of freedom. Specifically, an adaptive grouping method is 

incorporated for efficient and dynamic pixel grouping when the 

conductivity distribution does not have a fixed structure or the 

prior knowledge of the structure is unavailable. Numerical 

simulation and phantom experiments are performed to validate 

the proposed algorithm. The results are compared with those 

using the Landweber iteration, Total Variation regularization and 

l1 regularization. Both simulation and experiment results confirm 

the significantly improved tomographic imaging quality using the 

proposed algorithm, which demonstrates great potential for 

multi-phase flow imaging and biological tissue imaging. 

 
Index Terms— Adaptive group sparsity, Electrical Impedance 

Tomography, image reconstruction, high quality imaging. 

 

I. INTRODUCTION 

LECTRICAL Impedance Tomography (EIT) is a 

tomographic imaging modality to non-intrusively  reveal 

the conductivity distribution in either the 2D or 3D sensing 

domain through boundary current injection and induced voltage 

measurements [1, 2]. In recent decades, this technique has been 

extensively exploited in industrial process imaging [3-5] and 

biomedical imaging [6], owing to its high-speed, non-radiation, 

and non-intrusive sensing ability. Compared with other 

tomography modalities, e.g., CT, the application scope of EIT 

has been promoted by its high temporal resolution, e.g., ~1000 

frames per second [1], but limited by the low spatial resolution, 

e.g., ~10% of the sensor diameter [7].  Aside of the research 

aspects of advanced instrumentation [1, 8], sensor optimization 

and sensing strategies [9, 10], the development of image 
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reconstruction algorithms capable of generating high quality 

tomographic images has especially been deemed a critical 

challenge for the realization of quantitative and high spatial 

resolution EIT imaging. 

 In recent years, a great deal of studies on the EIT image 

reconstruction problem have been reported in concerned with 

image quality improvement. A predominant way among them 

is to identify and then incorporate the known prior knowledge 

of the conductivity distribution as a constraint term in hope of 

achieving smaller image error and better spatial resolution. 

These methods include, for instance, the application of Total 

Variation regularization with adaptive mesh [11], pre-iterative 

Landweber [12], high-order differential operator based 

regularization [13], sparsity regularization [14] and sparsity 

representation [15] based algorithms, etc. Another prevailing 

studies based on direct methods, such as the dbar method and 

Calderon method, were also reported for electrical tomography 

to obtain the gray value of reconstructed image directly and 

independently [16-19]. In addition, an open-source Matlab 

toolkit named EIDORS was developed and has been widely 

used for three-dimensional EIT image reconstruction problems 

in the past decades [20], which integrates the most commonly 

used EIT image reconstruction algorithms. Beyond that, the 

comprehensive review of the state-of-the-art EIT image 

reconstruction algorithms is also well summarized and 

thoroughly discussed in [21] and [22]. In spite of existing 

achievements, it is still highly requisite to develop EIT image 

reconstruction algorithms with higher spatial resolution and 

smaller image error for the purpose of high definition 

conductivity imaging. 

In this paper, we propose a novel image reconstruction 

algorithm for EIT using an adaptive group sparsity constraint to 

achieve high quality conductivity imaging. The concept of 

sparsity gains popularity since last decade with the maturity of 

compressive sensing theory [23], which has been extensively 

investigated and applied in signal processing, image processing 

and solve of inverse problems such as image reconstruction 

problems of electrical-based tomography [14, 15]. Under some 

circumstances, the conductivity distribution of the sensing 

object is naturally sparse or sparse under certain basis, which 

can be regarded as prior knowledge and exploited to promote 

nonzero coefficients while suppresses the noise close to zeroes. 

As an extension of the conventional sparsity concept, the idea 

of group sparsity was further proposed recently to incorporate 

with the underlying structure of the solutions on the basis of the 
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sparse priors [24]. In this work, the group sparsity prior is 

investigated for high quality EIT imaging. An adaptive 

grouping method is proposed for efficient and dynamic pixel 

grouping for the case that the structure of target conductivity 

distribution is not fixed or the prior knowledge of the structure 

is unavailable. On this basis, an adaptive group sparsity 

constrained algorithm (AGSP) for EIT is further developed to 

improve spatial resolution and reduce image error. Compared 

with the reported algorithms [11-15, 21, 22], the novelty of 

AGSP includes: a) adaptively encoding of the structure 

characteristics of conductivity variation as prior information; b) 

integration of sparsity constraint on the group structures for 

superior noise reduction performance. The AGSP algorithm is 

comprehensively evaluated by numerical simulation study and 

phantom experiments. The performance is quantitatively 

compared with conventional iterative algorithms. Attributing to 

its enhanced spatial resolution and superior noise reduction 

performance, the AGSP algorithm can be potentially applied in 

the areas with relatively high requirement on spatial resolution 

and noise performance, for example, dispersed phase imaging 

in multi-phase flow applications [25], cancer cell spheroid 

imaging during cell culture process and tissue culture 

monitoring in biomedical applications [26]. 

The structure of the paper is organized as follows: Section II 

describes the principle of EIT. Section III demonstrates the 

AGSP algorithm. Section IV gives the numerical simulation 

and phantom experiment results. Finally, Section V illustrates 

the concluding remarks and discusses the future work. 

II. ELECTRICAL IMPEDANCE TOMOGRAPHY 

As shown in Fig. 1, given a bounded, simple connected 

domain Ω ∈ Rd, d ≥ 2, EIT is to estimate the conductivity 

distribution in Ω by successively injecting a pair of 

complementary alternating current, i.e., [Ie, –Ie] into the 

selected electrodes and measuring the induced boundary 

voltage, i.e., [Va, Vb] across another pair of electrodes. The 

relationship between conductivity distribution in the sensing 

domain and induced boundary voltage is expressed as 

 

=F( )V σ e                                      (1) 

 

where F is the nonlinear forward operator and e is noise; σ is the 

conductivity distribution in Ω. Eq. (1) can be linearized and the 

approximate relationship between conductivity variation Δσ 

and induced voltage change ΔV can be formulated as 

 

            = V J σ                                        (2) 

 

where J is the Jacobian matrix which is calculated by 

 

       
pixel

, = = c mcm

cm
k

k

V
x y I I dV


J u u


  

          (3) 

 

where Jcm(x, y) is the sensitivity at pixel (x, y) when the 

electrode pairs c and m are set as current injection and 

measurement electrodes, respectively; u(Ic) and u(Im) denote 

the electrical potential distribution in Ω when the cth and mth 

electrode pairs are selected as current injection, respectively. 

 Generally, based on Eq. (2), the conductivity variation in Ω 

can be estimated by solving the following constrained 

optimization problem: 

 

            min R( )

. . =s t




 

σ
σ

J σ V





                                  (4) 

 

where R is the regularization function, which incorporates a 

particular prior knowledge of the conductivity variation. 

III. ADAPTIVE GROUP SPARSITY CONSTRAINED METHOD 

A. Conventional Landweber Iteration, L1 Regularization and 

Total Variation Regularization Methods 

The subsection briefly introduces three prevailing iterative 

EIT image reconstruction algorithms which will be used as 

comparing algorithms in the following sections. 

The first method is Landweber iteration [27]. The updating 

form of Landweber iteration for EIT is expressed by 

 

            1 T ( )i i i   σ σ J V J σ
                         (5) 

 

where α is the step factor of each iteration. 

The second method is l1 regularization (or sparsity 

regularization) [15]. l1 regularization is effective for imposing 

sparsity constraint on conductivity variation. The EIT image 

reconstruction based on l1 regularization can be formulated as 

 

            1
min

. . =s t 

a
a

JΦa V





                                (6) 

 

where Δσ=Φa; a is the sparse coefficient vector of the 

conductivity variation distribution under certain basis, for 

instance, a wavelet basis or a learned dictionary. Specifically, 

Φ equaling identity matrix indicates the conductivity variation 

distribution is naturally sparse, and in this case Δσ=a. The l1 

norm of the coefficient vector, i.e., ||a||1, is then minimized for 

sparse recovery. Eq. (6) facilitates the recovery of a high 

dimensional signal with a much smaller number of 

measurements. In this work, the method reported by Ewout et 

al. [28] is adopted to solve Eq. (6). 

 Another iterative algorithm widely applied in EIT is Total 

Variation (TV) regularization [29]. TV regularization is 

 
Fig. 1.  Schematic illustration of EIT sensing principle. 
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particularly effective for estimating the conductivity variation 

distribution with a sharp boundary. The method can be 

formulated as 

 

            TV
min

. . =s t




 

σ
σ

J σ V





                                 (7) 

 

where ||Δσ||TV is the TV norm of the conductivity variation 

distribution, which equals to the l1 norm of the gradient of the 

conductivity variation distribution, as defined by 

 
2 2

, ,TV
,
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,

1

(D ( )) (D ( ))
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( )

v h
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σ σ σ

σ
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            (8) 

 

where (x, y) is the coordinate of a pixel in Ω. 
,D ( )v

x y σ  and 

,D ( )h

x y σ  are the derivatives of Δσ along the vertical and 

horizontal direction, respectively, and can be expressed as 

 

, 1,

,

1
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0
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D
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σ σ
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                  (9) 
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                (10) 

 

where, P is the number of pixels in each direction. As indicated 

by Eq. (8), TV regularization can be regarded as a particular 

form of sparsity regularization, which promotes a solution with 

sparse image gradient. In this work, Eq. (7) is solved by the 

gradient-based recovery method [30, 31], whose iteration form 

is given by 

                        

2
1

, , , ,2 TV

1
( ) ( )
2

i i i i

x y x y x y x y    σ σ V J σ σ
  
     

 
    

(11) 

 

where α is the iteration step size of the ith iteration. The gradient 

of TV norm is calculated using a smooth approximation 

strategy to avoid a zero denominator, which is expressed as 
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where ɛ is the relaxation parameter, which is 1e-7 in this work. 

 

B. The Proposed AGSP Algorithm 

Conventional sparsity regularization methods demonstrated 

in the last subsection make use of only the sparsity of 

conductivity variation distribution as prior knowledge, i.e., 

either the conductivity variation itself or its transform under 

certain basis or its gradient is sparse. To further improve the 

image recoverability, this work takes advantage of additional 

information about the underlying structure of the conductivity 

variation, which extends the scope of sparsity. In majority of 

EIT applications, the conductivity variation distributions 

contain group sparsity structure. Namely, the conductivity 

change with respect to the background substance naturally 

groups together rather than randomly distributes in the sensing 

domain. On this occasion, the combined constraint of sparsity 

and structure characteristics can be applied to reduce the degree 

of freedom and improve the recoverability. 

Fig. 2(a) illustrates the pixel mesh for solving the EIT image 

reconstruction problem in this work. The sensing domain is 

discretized into 64×64 pixels and 3228 pixels are in the circular 

area. To implement the combined constraint of sparsity and 

structure characteristics, the discretized pixels within the 

sensing domain should be grouped according to conductivity 

variation. An intuitive pixel-grouping example with fixed 

quadrate shape and total group number N=16 is shown in Fig. 

2(b) (note here in practical cases, more complicated grouping 

will be adopted based on the conductivity variation). Given that 

the conductivity variation vector Δσ can be divided into N 

disjoint groups 
1 2

{ , , ..., }
N

s s s  σ σ σ  and 1
UN

i si
 σ σ

which guarantees the complete cover, then to incorporate group 

sparsity prior, the EIT image reconstruction problem depicted 

by Eq. (4) can be formulated using the weighted group-sparse 

basis pursuit model with non-negative constraint as expressed 

below 

 

,2,1 2
1

min :

. . =

( ) 0

i

N

i sw
i

w

s t

g


 



 



σ

J σ

σ

V

σ σ

σ

，









  

                 (13) 

 

where ||Δσ||w,2,1 is the weighted l2,1 norm, which is proved to 

promote the group sparsity and generate a convex problem [24, 

32]; N is the number of groups and Si is the group index of the ith 

 
                               (a)                                                           (b) 

Fig. 2.  Schematic illustration of pixel grouping. (a) The mesh for image 
reconstruction. (b) A grouping example with 16 quadrate shape groups. 
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group. wi is the weight for the ith group. To further improve the 

noise reduction performance, the non-negative constraint is 

applied on the dot multiplication g(Δσ)∙Δσ, where the operator 

g is defined by 

 

1 1

T( ) [ ( ( )) ,... ( ( )) ,...]
i is s s sg sign sum sign sum  σ σ σH H  

                (14) 

 

where sign denotes the sign function; sum denotes the 

summation of a vector; 𝐇𝑆𝑖
= [1, 1, … , 1] is the all one vector 

with the same length of the pixel numbers within the ith group 

Si. 

A key challenge of implementing the proposed algorithm 

depicted in Eq. (13) is prompt and reasonable grouping of the 

conductivity variation based on the measurement, especially 

when there is no prior information available to predict the 

structure of conductivity variation. In this work, an adaptive 

grouping method is proposed to incorporate with Eq. (13) to 

tackle this problem. The basic idea is to group together the 

pixels with similar conductivity variation within a reasonable 

neighborhood of each inclusion. Fig. 3 shows the schematic 

illustration of the adaptive grouping method. First of all, the 

conductivity variation is estimated by the one-step Gaussian 

Newton solver with Laplacian regularization [13], which is 

expressed as 

 
T 1T Tˆ ( )  J J L L Vσ J

                      (15) 

 

where λ is the regularization factor. L is the four-connected 

region second order Laplacian operator matrix [13]. There are 

two reasons to adopt this method in our work: 1) the estimation 

generated from the method is good enough for grouping; 2) this 

method has a low computation cost which facilitates the 

real-time performance. 

After obtaining the estimation, the center of variations can be 

identified by calculating the local maximum points, as the red 

points shown in the middle of Fig. 3. Then several large groups 

around each center can be formed while the remaining part 

generates a number of small groups per individual pixel. As a 

result, the idea will form a number of large groups based on the 

number of inclusions, whilst other individual pixels will not be 

grouped but counted as a small group. Regarding the large 

groups, two criteria are applied to determine the boundary of 

each group, which are depicted as following: 

a) Criterion 1: The first criterion empirically illustrates the 

boundary of the neighborhood of each inclusion, i.e., boundary 

1 as shown in the middle of Fig. 3. It determines the outermost 

border of each large group, which includes the pixels within a 

reasonable geometrical region. This is to avoid the situation 

that two pixels with a large distance are grouped together. 

Boundary 1 is calculated by the maximum diameter dmax as the 

yellow circles shown in the middle part of Fig. 3. The value of 

dmax is selected empirically according to specific applications, 

and in this work, dmax is set as 20 pixels. 

b) Criterion 2: The second criterion provides a finer boundary 

of each group inside the outermost border defined by the first 

criterion, i.e., boundary 2 as shown in the right part of Fig. 3. 

Boundary 2 is determined by the pixels with a conductivity 

variation equal to a quarter of the conductivity variation at the 

center of each inclusion, as shown in the red box on the right of 

Fig. 3. That is, the pixels with a conductivity variation larger 

TABLE I 

ADAPTIVE GROUP SPARSITY CONSTRAINED ALGORITHM 

Algorithm: Adaptive group sparsity constrained algorithm (AGSP) 

Input: The measured voltage vector ΔV, the maximum group diameter dmax, 

and the weight vector w 

Step 1: Estimate the conductivity variation distribution by the one-step 

Gaussian Newton solver with Laplacian regularization shown in Eq. (15). 

Step 2: Based on the estimated result ˆσ , calculate the mean ˆ
mean

σ  

and the standard deviation ˆ
std

σ  of its absolute value ˆσ . 

Step 3: Apply the filter defined as following: 

ˆ ˆ ˆ ˆ ˆ,
, 1,...,3228

ˆ ˆ ˆ ˆ0,

i i i mean std

i i mean std

if
i

if

    

   

σ σ σ σ σ

σ σ σ σ

   


  

 

Step 4: Calculate index vector D of all local maximum points of ˆσ . 

Step 5: Calculate the group index vector G: 

             for i=1: number of local maximum points  do 

                   for j=1:total pixel number  do 

                         if 
( )

1
ˆ ˆ

4j i
 

D
σ σ and 2

2max
( ) ( )

2
j i

d
DC C 

 

                                G(j)=i 

             (C is the coordinate vector of pixels) 

             k=1 

             for t ∈ all other elements in G do 

                      G(t(k))= number of local maximum points+k 

                      k=k+1 

Step 6: Solve the group-sparse basis pursuit model illustrated in Eq. (13). 

Output: The final estimated conductivity variation distribution. 

 

 

 
Fig. 3.  Schematic illustration of the adaptive grouping idea. 
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than a quarter of the maximum value at the center of each 

inclusion are regarded to be within boundary 2. 

The final pixel grouping set is calculated as the intersection of 

the two regions within boundary 1 and boundary 2. As the 

grouping result is calculated based on the one-step estimation, 

it may change slightly when the signal to noise ratio (SNR) of 

the voltage measurement becomes lower. However, the 

proposed AGSP does not require a precise estimation of the 

inclusion boundary, instead it only requires the inclusion is 

completely contained in the group. Therefore, with a 

reasonable SNR such as 50 dB or higher (which can be 

achieved by most of reported EIT systems), criterion 2 can 

generate a stable enough boundary of a group. Through the 

proposed method, the pixel groups associated with conductivity 

variation can be adaptively calculated and the group sparse 

prior can be effectively integrated into Eq. (13). Finally, the 

EIT image reconstruction problem is solved by using the 

modified group-sparse basis pursuit model illustrated in Eq. 

(13). The overall algorithm is named as adaptive group sparsity 

constrained algorithm (AGSP). The detail implementation of 

AGSP is illustrated in TABLE I. 

In TABLE I, the adaptive pixel grouping result is firstly 

calculated through Step 1 to Step 5. The grouping result is 

illustrated by a group index vector G whose length is the same 

as the total number of pixels. In Step 2, the absolute value of the 

estimated conductivity variation from Step 1 is adopted in order 

to deal with the situation with either positive or negative or 

bi-direction conductivity changes. Then in Step 3, the absolute 

conductivity variance is filtered using a threshold defined by 

the summary of its mean and standard deviation. The filter is to 

eliminate the noise that may affect the calculation of local 

maximum points in Step 4. Furthermore, all of the local 

maximum points which demotes the centers of large groups are 

identified. While in Step 5, pixels belong to the same large 

group are identified by the aforementioned two criteria and 

given the same group index value in G. At the end, in Step 6, 

the grouping index vector G denoting the pixel grouping result 

is integrated with Eq. (13) to iteratively estimate the 

conductivity variation. 

To solve Eq. (13), the alternating direction method of 

multipliers (ADMM) can be adopted [32, 33]. ADMM is a 

method to solve convex optimization problems by breaking 

them into easier sub-problems [32]. ADMM solves the 

optimization problem with the following form: 

 

   
,

min

. .

f h

s t

x z
x z

Ax + Bz = E

 



                             (16) 

 

By introducing an auxiliary variable z, Eq. (13) can be firstly 

rewritten as the following equivalent form 

 

,2,1 2
1

min :

. . , =

( ) 0

i
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i

w
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z z

z σ J

σ
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                  (17) 

 

where Eq. (17) can be further rewritten using the augmented 

Lagrangian problem form as an unconstrained form: 

 

T 21
1 2

2,
1

T 22
2 2

min ( ) || || ...
2

( ) || ||
2

i

N

i s

i

w


 

   

σ z
z μ z σ z σ

μ J σ V J σ V







    

  

     (18) 

 

where μ1 and μ2 are multipliers and η1 and η2 are penalty 

parameters. Eq. (18) has been proved to converge to the 

solution of Eq. (17) [32] and is tackled using the algorithm 

illustrated in TABLE II. By applying ADMM, Eq. (18) is 

broken into the Δσ-subproblem and the z-subproblem. The 

Δσ-subproblem is a convex quadratic problem which can be 

directly solved in one step while the z-subproblem can be 

rewritten as 

                  

T 21

1 1 2
2

1

21

2
2

1 1

arg min ( || ||
2

1
arg min ( || ||

2

)

M( ))

i

i

i i i

i i i i
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z z μ z z

z z μ

σ
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  (19) 

 

where M( )
isσ  is a function of 

isσ which has no effect on the 

result therefore can be taken as a constant in the z-subproblem. 

Eq. (19) has a closed form solution by applying the group-wise 

soft thresholding [33]. Note that the non-negative constraint 

g(Δσ)∙Δσ ≥ 0 is applied during each iteration. 

For the proposed AGSP, appropriate weight wi chosen based 

on prior knowledge may improve recovery performance, and 

for the simplest case, wi=1 can be applied to treat each group 

equally. Moreover, a smaller weight can be given to the large 

groups compared with other small groups to promote the 

sparsity of the estimation for large groups. For instance, the 

weight can be calculated by 

TABLE II 

ADMM FOR THE MINIMIZATION PROBLEM IN EQ. (18) 

Initialization: Starting point (z, Δσ, μ1, μ2, η1, η2, α1, α2) 

iteration: 

      a) solve the Δσ-subproblem: 

          
T 21

1 1 2

T 2

2 2

arg min || || ...
2

|| ||
2

k k k

k k







  

  

σ

2

μ z

μ J J

σ σ σ

σ σ V


   

 

 

      b) solve the z-subproblem: 

          T 21

1 1 2
2

1

arg min || ||
2i

N

k i s

i

w



z

z z μ z z σ




     

      c) update the multipliers: 

          ) 
1 1 1

μ = μ - η (z σ


  

          
2 2

  
2 2

μ = μ η (J - )σ V  

until a stopping criterion is satisfied. 
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        (20) 

 

where Nb is the number of large groups and Ns is the number of 

small groups; N is the total number of groups. Eq. (20) shows a 

weighting example that the weight of large group is half of that 

of the small group under the assumption that ∑ 𝑤𝑖 = 1𝑁
𝑖=1 . The 

influence of weight on image quality is further discussed in 

Section IV. 

In summary, several remarks of the proposed AGSP method 

are as following: 

1) A group index vector with the same length as the total 

pixel number is defined to denote the adaptive grouping 

result. 

2) Pixels within the same group have the same group index 

value. 

3) The group contains more than one pixel is defined as a 

large group in the following context. 

4) The group contains only one pixel is defined as a small 

group in the following context. 

5) The groups may overlap. 

6) The grouping method guarantees complete cover. 

IV. RESULTS AND DISCUSSION 

The proposed AGSP is comprehensively evaluated in this 

section by numerical simulation and a series of phantom 

experiments. The performance of AGSP is compared with that 

of the conventional Landweber iteration (Eq. (5)), l1 

regularization (Eq. (6)), and TV regularization algorithm (Eq. 

(7)), which are popularly applied in image reconstruction and 

denoise problems. 

 

A. Numerical Simulation 

As illustrated in Fig. 4(a), a 16-electrode EIT sensor is 

modelled in COMSOL Multiphysics for numerical evaluation 

of the proposed AGSP algorithm. The diameter of the sensor is 

95 mm. The background substance is saline with a conductivity 

value of 0.05 S  m–1. Four conductivity variation phantoms, i.e., 

phantom 1 to phantom 4, are established, as shown from Fig. 

4(b) to Fig. 4(e) respectively. Phantom 1 simulates a large air 

bubble (non-conductive) with an object-sensor diameter ratio 

of 20%. Phantom 2 simulates five dispersed small air bubbles 

with two different object-sensor diameter ratios, i.e., 4% (left 

top bubbles) and 5% (right below bubbles). Phantom 3 

simulates three objects with an object-sensor diameter ratio of 

10% and different conductivities, i.e., 0.03 S  m–1 of the left 

object, 0.01 S  m–1 of the right object and 1e+7 S  m–1 of the 

bottom object. Phantom 4 simulates two conductive objects 

(1e+7 S  m–1) with an object-sensor diameter ratio larger than 

10% and different shapes. 

In simulation, to obtain the boundary voltage data, the 

adjacent sensing strategy is applied and a data frame is 

composed of 104 measurements [34]. All the measurement data 

contain white noise with 50 dB SNR. When implementing the 

Landweber iteration, l1 regularization, TV regularization and 

the proposed AGSP algorithm, the maximum iteration number 

is set as 500 and the stopping tolerance is select to be 1e-7. The 

iteration will stop if either condition is firstly met. The 

algorithm parameters, such as step factors and weights are 

empirically determined based on a series of practices and the 

same parameters are applied to the test phantoms, as illustrated 

in the first row of TABLE III. 

To quantitatively evaluate the accuracy of the reconstructed 

images, the relative image error (IE) and correlation coefficient 

(CC) between the normalized conductivity variation and the 

true phantom are employed. The definition of IE and CC is 

expressed as 

 

true

true

IE
 



σ σ

σ


                                (21) 
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where Δσ and Δσtrue are the reconstructed conductivity 

variation and true conductivity variation, respectively; p is the 

number of pixels and in this work p=3228; Δσi and Δσavr are the 

ith element  and the average of the reconstructed conductivity 

variation, respectively; Δσtrue,i and Δσtrue,avr are the ith element 

and the average of the true conductivity variation, respectively. 

TABLE III illustrates the image reconstruction results, 

relative image error and correlation coefficient based on the 

Landweber iteration, TV regularization, l1 regularization and 

the proposed AGSP algorithm. The pixel grouping result of 

each phantom is shown in TABLE IV, where the large groups 

are highlighted using different colors while the small groups are 

depicted with the same light green color. Phantom 1 is designed 

to evaluate the reconstruction performance of large objects. The 

ratio of the object and sensor diameter is 20%. Compared with 

             
(a)                                (b)                                   (c)                                   (d)                                    (e) 

Fig. 4.  The modelled EIT sensor and simulation phantoms. (a) The 16-electrode EIT sensor. (b) Phantom 1. (c) Phantom 2. (d) Phantom 3. (e) Phantom 4. 
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Landweber iteration, TV regularization and l1 regularization, 

the reconstructed image using AGSP show significantly 

improved noise reduction performance as well as more accurate 

position and shape. The result based on AGSP has a much 

smaller image error, i.e., 47.47%, and higher correlation 

coefficient, i.e., 0.9192, in comparison with other algorithms. 

Note that for large objects, the l1 regularization provides an 

estimation with too small size. Phantom 2 evaluates multiple 

small objects with slightly different size and close location. The 

two spheres located near the bottom are close to each other. The 

grouping result in TABLE IV indicates that the two spheres 

near bottom are clustered into a big group due to the low spatial 

resolution of the conventional algorithm in step 1, TABLE I. 

However, the group sparsity structure still stands and the 

TABLE III 

IMAGE RECONSTRUCTION RESULTS BASED ON NOISY SIMULATION DATA  (SNR=50 DB)  

Phantom 
Landweber L1 TV AGSP 

Step factor α in Eq.(5): 2  Step factor solving Eq. (6): 2  Step factor α in Eq. (11): 2  dmax: 20; w: Eq. (20), λ: 0.01 

     

IE [%] 87.87 85.64 64.13 47.47 

CC 0.6840 0.6238 0.8212 0.9192 

     

IE [%] 244.6 100.1 202.8 64.88 

CC 0.2374 0.4567 0.3108 0.7621 

     

IE [%] 177.6 61.16 154.7 42.21 

CC 0.4769 0.7940 0.4562 0.9098 

     

IE [%] 126.4 97.70 85.07 64.59 

CC 0.5351 0.7346 0.6586 0.8092 

  
TABLE IV 

PIXEL GROUPING RESULT OF EACH PHANTOM 

Phantom 1 Phantom 2 Phantom 3 Phantom 4 

 

Large group 

number: 

1 

Small group 

number: 

2977  

Large group 

number: 

4 

Small group 

number: 

2601  

Large group 

number: 

3 

Small group 

number: 

2725  

Large group 

number: 

2 

Small group 

number: 

2817 
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proposed AGSP algorithm is able to further distinguish these 

two objects after iteration whilst the other algorithms fail to 

achieve the same performance. Phantom 3 tests objects with 

three different conductivity values and phantom 4 validates 

objects with different geometry shapes. For all the test 

phantoms, the proposed AGSP algorithm demonstrates 

superior imaging quality with more accurate object shapes, 

locations, and significantly improved image errors (below 65%) 

and correlation coefficients (above 0.7621), compared with 

other given algorithms. 

Fig. 5 illustrates the comparison of elapsed time between the 

Landweber iteration, TV regularization, l1 regularization and 

AGSP. The image reconstruction is performed using Matlab 

2013a installed on a windows desktop with an Intel Xeon CPU 

(X5650 @ 2.67 GHz, 2 processors) and 24 GB memory. 

According to [21], the computation cost each iteration of the 

ADMM is O(mn) when applied to solve Eq. (13). While the 

computation cost of solving Eq. (7) using the gradient method 

is O(nn). As indicated by Fig. 5, the elapsed time of all 

phantoms using AGSP is below 0.6 seconds, less than that of 

other given methods, reassuring a lower computation cost and 

the feasibility of real-time implementation of AGSP in the 

future. 

Fig. 6 illustrates the effect of weight value of AGSP on 

image quality, using phantom 3 as an example. Two weighting 

strategies are considered, i.e., weighting based on Eq. (20) and 

weighting using all one vector. Fig. 6(b) shows the image using 

the same weight for all groups. The correlation coefficient and 

image error of Fig. 6(b) are 0.8764 and 51.65, respectively. It is 

shown that comparable but slightly lower image quality is 

obtained if the same weight values are adopted. The result 

validates that by giving a smaller weight to the large group and 

a larger weight to the small group as formulated by the 

weighting strategy in Eq. (20), the imaging quality can be 

further improved as the sparsity of the estimation is promoted. 

 

B. Experiment Results 

The performance of AGSP algorithm is further validated by 

phantom experiments in this subsection. An EIT system for 

real-time 3D biomedical and industrial imaging is developed in 

the Agile Tomography Group at the University of Edinburgh. 

Fig. 7(a) illustrates the picture of the system. The system 

supports up to 32 electrodes and the working frequency ranges 

from 10 kHz to 1 MHz. The highest temporal resolution are 

1014 frames per second and the highest SNR tested on a saline 

phantom is 73 dB. 

Fig. 7(b) illustrates the 16-electrode EIT sensor used in the 

experiments. The inner diameter of the sensor is 95 mm. The 

background substance is saline with a conductivity of 0.05 S 

m–1 for all test phantoms. In experiments, the current excitation 

frequency is selected as 10 kHz and the current amplitude is set 

as 1.5 mA peak to peak. The adjacent sensing strategy is 

adopted and the amplitude data of the boundary voltage is 

acquired for image reconstruction. 

As illustrated in the first column of TABLE III, four 

experiment phantoms were imaged, i.e., three glass rods 

(object-sensor diameter ratio is 6%), a glass rod (object-sensor 

diameter ratio is 6%) and a metal rod (object-sensor diameter 

ratio is 7%), three plastic rods (object-sensor diameter ratio is 

16%), and three metal rods (object-sensor diameter ratio is 6%). 

When implementing the algorithms, the maximum iteration of 

Landweber iteration, l1 regularization, TV regularization and 

AGSP algorithm is set to be 500 and the stopping tolerance is 

set to be 1e-7. Other algorithm parameters are the same with the 

simulation setup and can be found in the first row of TABLE III. 

In order to quantitatively evaluate the reconstruction accuracy, 

the image reconstruction results are normalized to [-1, 1] and 

relative image error and correlation coefficient depicted in Eq. 

(21) and Eq. (22) are calculated regarding each phantom. Note 

that the reconstructed images are only normalized for the 

calculation of image error and correlation coefficient but not in 

the displayed images. 

TABLE III illustrates the image reconstruction results and 

corresponding quantitative evaluation based on Landweber 

iteration, l1 regularization, TV regularization and the proposed 

AGSP algorithm. The pixel grouping results and detail group 

numbers of each phantom are given in TABLE V. 

 
(a)                                                  (b) 

Fig. 7.  The experimental facility. (a) The in-house developed EIT system. (b)  
The 16-electrode EIT sensor. 

 

 
  

 
Fig. 5.  Comparison of elapsed time of the image reconstruction procedure for 
each simulation phantom. 

 

           

  
IE: 51.65 IE: 42.21 

CC: 0.8764 CC: 0.9098 

                     (a)                                                           (b) 

Fig. 6.  Comparison of different weight values of AGSP on image quality of 
Phantom 3. (a) Weight value equals one. (b) Weight calculated based on Eq. 

(20). 
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Overall, comparable results with simulation are obtained. 

The proposed AGSP algorithm achieves much smaller image 

error below 55%, and higher correlation coefficients above 

0.84 for the first and the third phantoms, while slightly larger 

errors for the second and the last phantoms due to the 

challenging setup. Whilst the compared algorithms, i.e., 

Landweber iteration, l1 regularization and TV regularization 

suffer from much larger image errors and smaller correlation 

coefficients and cannot distinguish the small objects close to 

each other. From the results, significant image noise reduction 

and resolution improvement have been observed by using the 

AGSP method, indicating much better image quality in 

comparison with the conventional l1 and TV algorithms. 

Additionally, the grouping results demonstrated in TABLE 

VIII regarding each phantom are reasonable and show 

similarity with the simulation study. 

TABLE V 

IMAGE RECONSTRUCTION RESULTS BASED ON EXPERIMENT DATA   

Phantom 
Landweber L1 TV AGSP 

Step factor α in Eq.(5): 2  Step factor solving Eq. (6): 2  Step factor α in Eq. (11): 2  dmax: 20; w: Eq. (20), λ: 0.01 

     

IE [%] 246.4 87.34 240.8 54.04 

CC 0.3393 0.6238 0.3328 0.8410 

     

IE [%] 366.8 94.20 335.8 61.53 

CC 0.2845 0.5206 0.2788 0.7842 

     

IE [%] 90.44 65.01 71.73 52.41 

CC 0.6342 0.7725 0.7251 0.8571 

     

IE [%] 367.3 107.70 267.7 75.40 

CC 0.2592 0.4112 0.2454 0.6649 

  
TABLE VI 

PIXEL GROUPING RESULT OF EACH PHANTOM 

Phantom 1 Phantom 2 Phantom 3 Phantom 4 

 

Large group 

number: 

3 

Small group 

number: 

2711  

Large group 

number: 

2 

Small group 

number: 

2781  

Large group 

number: 

3 

Small group 

number: 

2624  

Large group 

number: 

2 

Small group 

number: 

2872 
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In summary, the experiment results further confirm the 

superior performance of the proposed AGSP algorithm under 

practical setup. The AGSP algorithm can be expected to 

generate high quality tomographic images especially for the 

applications requiring enhanced spatial resolution and noise 

deduction performance, such as cell spheroid imaging in cell 

culture process sensing and dispersed air bubbles imaging in 

multiphase flow measurement. 

V. CONCLUSIONS 

In this paper, a novel image reconstruction algorithm using 

adaptive group sparsity constrained (AGSP) is proposed. The 

EIT-image-reconstruction problem is modelled with a weighted 

group-sparse basis pursuit model with nonnegativity constraint. 

To facilitate fast group structure extraction, an adaptive pixel 

grouping method is incorporated for dynamic, self-adapting 

conductivity variation grouping. The proposed AGSP method 

efficiently utilizes the underlying group sparsity structure as 

prior knowledge for enhanced imaging performance. Both 

numerical simulation and static phantom experiments on 

several challenging conductivity phantoms were carried out for 

performance evaluation. The results are thoroughly compared 

with conventional Landweber iteration, l1 regularization and 

TV regularization. The results indicate that the proposed AGSP 

algorithm is able to generate superior tomographic images with 

higher image quality, better noise deduction performance and 

improved spatial resolution, in comparison with the other given 

algorithms. 

Future work will study the real-time application of AGSP 

algorithm and investigate the performance of the proposed 

algorithm in some challenging applications such as the cell 

spheroid imaging and real-time monitoring in biomedical 

research and dispersed bubble identification in multi-phase 

flow measurement. 
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