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A Kernel Independence Test for Geographical
Language Variation

Dong Nguyen
University of Twente

Jacob Eisenstein
Georgia Institute of Technology

Quantifying the degree of spatial dependence for linguistic variables is a key task for analyz-
ing dialectal variation. However, existing approaches have important drawbacks. First, they
are based on parametric models of dependence, which limits their power in cases where the
underlying parametric assumptions are violated. Second, they are not applicable to all types of
linguistic data: some approaches apply only to frequencies, others to boolean indicators of whether
a linguistic variable is present. We present a new method for measuring geographical language
variation, which solves both of these problems. Our approach builds on Reproducing Kernel
Hilbert Space (RKHS) representations for nonparametric statistics, and takes the form of a test
statistic that is computed from pairs of individual geotagged observations without aggregation
into predefined geographical bins. We compare this test with prior work using synthetic data as
well as a diverse set of real datasets: a corpus of Dutch tweets, a Dutch syntactic atlas, and a
dataset of letters to the editor in North American newspapers. Our proposed test is shown to
support robust inferences across a broad range of scenarios and types of data.1

1. Introduction

Figure 1 shows the geographical location of 1000 Twitter posts containing the word
hella, an intensifier used in expressions like I got hella studying to do and my eyes got
hella big (Eisenstein et al. 2014). While the word appears in major population centers
throughout the United States, the map suggests that it enjoys a particularly high level of
popularity on the west coast, in the area around San Francisco. But does this represent a
real geographical difference in American English, or is it the result of chance fluctuation
in a finite dataset?

Regional variation of language has been extensively studied in sociolinguistics and
dialectology (Chambers and Trudgill 1998; Grieve, Speelman, and Geeraerts 2011, 2013;
Lee and Kretzschmar Jr 1993; Nerbonne and Kretzschmar Jr 2013; Szmrecsanyi 2012). A
common approach involves mapping the geographic distribution of a linguistic variable
(e.g., the choice of soda, pop, or coke to refer to a soft drink) and identifying boundaries
between regions based on the data. The identification of linguistic variables that exhibit
regional variation is therefore the first step in many studies of regional dialects. Tradi-
tionally, this step has been based on the manual judgment of the researcher; depending
on the quality of the researcher’s intuitions, the most interesting or important variables
might be missed.

The increasing amount of data available to study dialectal variation suggests a
turn towards data-driven alternatives for variable selection. For example, researchers
can mine social media data such as Twitter (Doyle 2014; Eisenstein et al. 2010; Huang

1 Code is available at https://github.com/dongpng/geo-independence-testing
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Figure 1: 1000 geolocated tweets containing the word hella

et al. 2016) or product reviews (Hovy, Johannsen, and Søgaard 2015) to identify and
test thousands of dialectal variables. Despite the large scale of available data, the well-
known “long tail” phenomenon of language ensures that there will be many potential
variables with low counts. A statistical metric for comparing the strength of geographi-
cal associations across potential linguistic variables would allow linguists to determine
whether finite geographical samples — such as the one shown in Figure 1 — reveal a
statistically meaningful association.

The use of statistical methods to analyze spatial dependence has been only lightly
studied in sociolinguistics and dialectology. Existing approaches employ classical statis-
tics such as Moran’s I (e.g., Grieve, Speelman, and Geeraerts (2011)), join count analysis
(e.g., Lee and Kretzschmar Jr (1993)) and the Mantel Test (e.g., Scherrer (2012)); we
review these statistics in section 2. These classical approaches suffer from a common
problem: each type of test can capture only a specific parametric form of spatial linguis-
tic variation. As a result, these tests can incorrectly fail to reject the null hypothesis if the
nature of the geo-linguistic dependence does not match the underlying assumptions of
the test.

To address these limitations, we propose a new test statistic that builds on a rich
and growing literature on kernel embeddings for nonparametric statistics (Shawe-
Taylor and Cristianini 2004). In these methods, probability distributions, such as the
distribution over geographical locations for each linguistic variable, are embedded in a
Reproducing Kernel Hilbert Space (RKHS). Specifically, we employ the Hilbert-Schmidt
Independence Criterion (HSIC; Gretton et al. (2005a)). Due to its ability to compare ar-
bitrarily high-order moments of probability distributions, HSIC can be used to compare
arbitrary probability measures, by computing kernel functions on finite samples. Unlike
prior approaches, HSIC is statistically consistent: in the limit of a sufficient amount of
data, it will correctly determine whether the distribution of a linguistic feature is geo-
graphically dependent. As a further convenience, because it is built on kernel similarity
functions, HSIC can be applied with equal ease to any type of linguistic data, as long as
an appropriate kernel function can be constructed.

To validate this approach, we compare it against three alternative spatial statistics:
Moran’s I, the Mantel test, and join count analysis. For a controlled comparison, we use
synthetic data to simulate different types of regional variation, and different types of
linguistic data. This allows us to measure the capability of each approach to recover
true geo-linguistic associations, and to avoid Type I errors even in noisy and sparse
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data. Next, we apply these approaches to three real linguistic datasets: a corpus of Dutch
tweets, a Dutch syntactic atlas and letters to the editor in North American newspapers.

To summarize, the contributions of this article are:

• We show how the Hilbert-Schmidt Independence Criterion can be applied
to linguistic data. HSIC is a nonparametric test statistic, which can handle
both frequency and categorical data. It requires no discretization of
geographic data, and is capable of detecting arbitrary geo-linguistic
dependencies (section 3).

• We use synthetic data to compare the power and calibration of HSIC
against three alternatives: Moran’s I, the Mantel Test, and join count
analysis (section 4).

• We apply these methods to analyze dialectal variation in three empirical
datasets, in both English and Dutch, across a variety of registers (section 5).

2. Prior Work

This section describes prior work on global methods for quantifying the degree of
spatial dependence in a geotagged corpus.2 While other global spatial statistics exist,
we focus on the following three methods because they have been used in previous
work on dialect analysis: Moran’s I (Grieve, Speelman, and Geeraerts 2011), join count
analysis (Lee and Kretzschmar Jr 1993) and the Mantel test (Scherrer 2012).

We define a consistent notation across methods. Let xi represent a scalar linguistic
observation for unit i ∈ {1 . . . n} (typically, the presence or frequency of a linguistic
variable), and let yi represent a corresponding geolocation. For convenience, we define
dij as the spatial distance between yi and yj . Suppose we have n observations, so that the
data D = {(x1, y1), (x2, y2), . . . , (xn, yn)}. Our goal is to test the strength of association
between X and Y , against the null hypothesis that there is no association.

2.1 Moran’s I

Grieve, Speelman, and Geeraerts (2011) introduced the use of Moran’s I (Cliff and
Ord 1981; Moran 1950) in the study of dialectal variation. To define the statistic, let
W = {wij}i,j∈{1...n} represent a spatial weighting matrix, such that larger values of wij

indicate greater proximity, and wii = 0. In their application of Moran’s I to a corpus of
newspaper letters-to-the-editor, Grieve et al. define W as,

wij =

{
1, dij < τ, i 6= j

0, dij ≥ τ, or i = j
(1)

2 Global methods test for dependence over the entire dataset. In some cases, there will be local dependence
in a few “hot spots”, even when global dependence is not detected, and local autocorrelation statistics
have been proposed to capture such dependences (Anselin 1995). For example, Grieve (2016) uses the
Getis-Ord Gi statistic (Getis and Ord 1992) in his analysis of regional American English. Local statistics
are particularly useful as an exploratory tool, but Grieve argues that the associated p-values are difficult
to interpret due to the issue of multiple comparisons. We therefore focus on global tests in this paper. The
adaptation of the proposed HSIC statistic into a local measure of dependence is an intriguing topic for
future work.
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where τ is some critical threshold (Grieve, Speelman, and Geeraerts 2011). When the
spatial weighting matrix is defined in this way, Moran’s I can be seen as a statistic that
quantifies whether observations xi and xj are more similar when wij = 1 than when
wij = 0.3

Moran’s I is based on a hypothesized autoregressive process X = ρWX + ε, where
X is a vector of the linguistic observations x1, . . . xn, and ε is a vector of uncorrelated
noise. Since X and W are given, the estimation problem is to find ρ so as to minimize
the magnitude of ε. To take a probabilistic interpretation, it is typical to assume that ε
consists of independent and identically distributed (IID) normal random variables with
zero mean (Ord 1975). Under the null hypothesis of no spatial dependence between
the observations in X , we would have ρ = 0. Note, however, that we may fail to reject
the possibility that ρ = 0 even in the presence of spatial dependence, if the form of this
dependence is not monotonic or nonlinear in W .

Because ρ is difficult to estimate exactly (Ord 1975), Moran’s I is used as an approx-
imation. It is computed as,

I =
n∑n

i (xi − x)2

∑n
i

∑n
j wij(xi − x)(xj − x)∑n

i

∑n
j wij

, (2)

where x = 1
n

∑
i xi. The ratio on the left is the inverse of the variance of X ; the ratio

on the right corresponds to the covariance between points i and j that are spatially
similar. Thus, the statistic rescales a spatially-reweighted covariance (the ratio on the
right of Equation 2) by the overall variance (the ratio on the left of Equation 2), giving
an estimate of the overall spatial dependence of X . A compact alternative notation is to
rewrite the statistic in terms of the vector of residuals R = {ri}i∈1...n, where the residual
ri = xi − x. This yields the form I = R>WR

R>R
, with R> indicating the transpose of the

column vectorR, and withW assumed to be normalized so that
∑

i,j wij = n. Moran’s I
values often lie between −1 and 1, but the exact range depends on the weight matrix
W , and is theoretically unbounded (de Jong, Sprenger, and van Veen 1984).

In hypothesis testing, our goal is to determine the p-value representing the likeli-
hood that a value of Moran’s I at least as extreme as the observed value would arise
by chance under the null hypothesis. The expected value of Moran’s I in the case of
no spatial dependence is − 1

n−1 . Grieve et al. compute p-values from a closed-form
approximation of the variance under the null hypothesis of total randomization. A
nonparametric alternative is to perform a permutation test, calculating the empirical
p-value by comparing the observed test statistic against the values that arise across
multiple random permutations of the original data.

In either case, Moran’s I does not test the null hypothesis of no statistical depen-
dence between the linguistic features X and the geo-coordinates Y . Rather, it tests
whether the estimated value of ρ would be likely to arise if there were no such de-
pendence. But if the nature of the geo-linguistic dependence defies the assumptions of
the statistic, then we risk incorrectly failing to reject the null hypothesis, a type II error.
Put another way, there are forms of strong spatial dependence for which ρ = 0, such as
non-monotonic spatial relationships. This risk can be somewhat ameliorated by careful

3 The matrix W can be defined in other ways. We can define a continuous-valued version of W by setting
wij = exp(−γdij), with dij equal to the geographical distance between units i and j. Alternatively, we
could define a topological spatial weighting matrix by setting wij = 1 when j is one of the k nearest
neighbors of i (Getis and Aldstadt 2010).
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choice of the spatial weighting matrix W , which could in theory account for non-linear
or even non-monotonic dependencies. However an exhaustive search for some W that
obtains a low p-value would clearly be an invalid hypothesis test, and so W must be
fixed before any test is performed. In some cases, the researcher may bring substantive
insights to the determination of W , and so the flexibility of Moran’s I in this sense could
be regarded as a positive feature. But there is little theoretical guidance, and a poor
selection of W will result in inflated type II error rates.

From a practical standpoint, Moran’s I is applicable to only some types of linguistic
data. In the study of dialect, X typically represents the frequency or presence of some
linguistic variable, such as the use of soda versus pop. We are unaware of applications of
Moran’s I to variables with more than two possibilities (e.g., soda, pop, coke). One possible
solution would be to perform multiple tests, with each alternant pitted against all the
others. But it is not clear how the p-values from these multiple tests should be combined.
For example, selecting the minimum p-value across the alternants would mean that the
null hypothesis would be more likely to be rejected for variables with more alternants;
averaging the p-values across alternants would have the opposite problem.

2.2 Join Count Analysis

If the linguistic data X consists of discrete observations, join count analysis is another
approach for detecting spatial dependence. For each pair of points (i, j), we compute
wijδ(xi = xj), where δ(xi = xj) returns a value of 1 if xi and xj are identical, and 0
otherwise. As in Moran’s I, wij is an element of a spatial weighting matrix, which could
be binary or continuous. The global sum of the counts is computed as,

num-agree =

n∑
i

n∑
j

wij(xixj + (1− xi)(1− xj)) (3)

=X>WX + (1−X)>W (1−X), (4)

with X> indicating the transpose of the column vector X . Note the similarity to the
numerator of Moran’s I, which can be written as R>WR. The number of agreements
can be compared with its expectation under the null hypothesis, yielding a hypothesis
test for global autocorrelation (Cliff and Ord 1981).

Join count analysis has been applied to the study of dialect by Lee and Kret-
zschmar Jr (1993), who take each linguistic observation xi ∈ {0, 1} to be a binary vari-
able indicating the presence or absence of a dialect feature. They then build a binary
spatial weighting matrix by performing a Delaunay triangulation over the geoloca-
tions of participants in dialect interviews, with wij = 1 if the edge (i, j) appears in
the Delaunay triangulation. A nice property of Delaunay triangulation is that points
tend to be connected to their closest neighbors, regardless of how distant or near those
neighbors are: in high-density regions, the edges will tend to be short, while in low-
density regions, the edges will be long. The method is therefore arguably more suitable
to data in which the density of observations is highly variable — for example, between
densely-populated cities and sparse-populated hinterlands.

Because join count statistics are based on counts of agreements, this form of analysis
requires that each xi is a categorical variable — possibly non-binary — rather than a
frequency. In this sense, it is the complement of Moran’s I, which can be applied to
frequencies, but not to non-binary discrete variables. Thus, join count analysis is best

5



Computational Linguistics Volume X, Number X

suited to cases where observations correspond to individual utterances (e.g., Twitter
data, dialect interviews), rather than cases where observations correspond to longer
texts (e.g., newspaper corpora).

2.3 The Mantel Test

The Mantel test can in principle be used to measure the dependence between any
two arbitrary signals. In this test, we compute distances for each pair of linguistic
variables, dx(xi, xj), and each pair of spatial locations, dy(yi, yj), forming a pair of
distance matrices Dx and Dy . We then estimate the element-wise correlation (usually,
the Pearson correlation) between these two matrices. Scherrer (2012) uses the Mantel test
to correlate linguistic distance with geographical distance, and Gooskens and Heeringa
(2006) correlate perceptual distance with linguistic distance. The Mantel test has also
been applied to non-human dialect analysis, revealing regional differences in the call
structures of Amazonian parrots by computing a linguistic distance matrix Dx directly
from spectral measurements (Wright 1996).

Because it is built around distance functions, the Mantel test is applicable to binary,
categorical, and frequency data — any kind of data for which a distance function can
be constructed. For spatial locations, a typical choice is to compute the distance matrix
based on the Euclidean distance between each pair of points. For binary or categorical
linguistic data, the entries of the linguistic distance matrix can be set to 0 if xi = xj , and
1 otherwise. For linguistic frequency data, we use the absolute difference between the
frequency values.

The role of hypothesis testing in the Mantel test is to determine the likelihood
that the observed test statistic — in this case, the correlation between the distance
matrices Dx and Dy — could have arisen by chance under the null hypothesis. In the
ideal case of perfect correlation, twice as much geographical distance should imply
twice as much as linguistic distance. But this situation is highly unlikely to obtain
in practice. In fact, as noted by Grieve (2014), such a perfect correlation cannot arise
from any linguistic data involving a single variable: even if a linguistic variable obeys
a perfect dialect continuum (e.g., varying in frequency from east to west), the distances
in the orthogonal north-south direction would diminish the resulting correlation. In
realistic settings in which the geo-linguistic dependence is obscured by noise, this can
dramatically diminish the power of the test. Note that even non-linear transformations
of the distance metric would not correct this issue. The key problem, as identified by
Legendre, Fortin, and Borcard (2015), is that the Mantel test is not designed to test for
independence between X and Y , but rather, the correlation between distances on X and
Y . When distances are the primary units of analysis — as, for example, in the work of
Gooskens and Heeringa (2006) — the test is applicable. But for the task of determining
whether a specific linguistic variable is geographically dependent, the test is incorrectly
applied; as we show in section 4, this results in inflated Type II error rates.

2.4 Other Related Work

Several computational studies attempt to characterize linguistic differences across ge-
ographical regions, although most of these studies do not perform hypothesis testing
on geographical dependence. A common approach is to aggregate geotagged social
media content into geographical bins. Some studies rely on politically defined units
such as nations and states (Hovy, Johannsen, and Søgaard 2015); however, isoglosses (the
geographical boundaries between linguistic features) need not align with politically-
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defined geographical units (Nerbonne and Kretzschmar Jr 2013). Other approaches
rely on automatically defined geographical units, induced by computational methods
such as geodesic grids (Wing and Baldridge 2011), KD-trees (Roller et al. 2012), Gaus-
sians (Eisenstein et al. 2010), and mixtures of Gaussians (Hong et al. 2012). While these
approaches offer insights about the nature of geographical language variation, they
do not provide test statistics that allow us to quantify the geographical dependence
of various linguistic features.

As described in the next section, our approach is based on Reproducing Kernel
Hilbert Spaces, which enable us to nonparametrically compare probability distribu-
tions. Another way in which kernel methods can be applied to spatial analysis is in
Gaussian Processes, which are often used to represent spatial data (Cressie 1988; Ecker
and Gelfand 1997). Specifically, we can define a kernel over space, so that a response
variable is distributed as a Gaussian with covariance defined by the kernel function.
For example, it might be possible to model the popularity of linguistic features as a
Gaussian Process, using the spatial covariance kernel to make smooth predictions at
unknown locations. Our approach in this paper is different, as we are interested in
hypothesis testing, rather than modeling and prediction. Another difference is that we
apply kernels to both the geographical and linguistic data sources, while a Gaussian
Process approach would make the parametric assumption that the linguistic signal is
Gaussian distributed with covariance defined by the spatial covariance kernel.

3. Hilbert-Schmidt Independence Criterion (HSIC)

Moran’s I, join count analysis, and the Mantel test share an important drawback: they do
not directly test the independence of language and geography, but rather, they test for
autocorrelation between X and Y , or between distances on these variables. Moran’s I
tests whether the parameter of a linear autoregressive model is nonzero; the Mantel test
is performed on the correlations between pairwise distances; join count statistics enable
tests of whether spatially adjacent units tend to have the same linguistic features. In each
case, rejection of the null hypothesis implies dependence between the geographical and
linguistic signals. However, each test can incorrectly fail to reject the null hypothesis if
its assumptions are violated, even if given an arbitrarily large amount of data.

We propose an alternative approach: directly test for the independence of geo-

graphical and linguistic variables, PXY
?
= PXPY . Our approach, which is based on the

Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al. 2005a, 2008), makes no
parametric assumptions about the form of these distributions. The proposed test is
consistent, in the sense that it will always reach the right decision, if provided enough
data (Fukumizu et al. 2007).4

To test independence for arbitrary distributions PXY , PX , and PY , HSIC employs
the framework of Reproducing Kernel Hilbert Spaces (RKHS). This framework will be
familiar to the computational linguistics community through its application to support
vector machines (Collins and Duffy 2001; Lodhi et al. 2002), where kernel similarity
functions between pairs of instances are used to induce classifiers with highly non-
linear decision boundaries. HSIC is a kernelized independence test, and it offers an
analogous advantage: by computing kernel similarity functions on pairs of observa-
tions, it is possible to implicitly compare probability distributions across high-order

4 HSIC was introduced as a test of independence by Gretton et al. (2008). In this paper, we present the first
application to computational linguistics.
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moments, enabling nonparametric independence tests that are statistically consistent.
An additional advantage of the RKHS framework is that it can be applied to arbitrary
linguistic data — including dichotomous, polytomous, continuous, and vector-valued
observations — as long as an appropriate kernel similarity function can be defined.

Intuitively, HSIC tests independence by approximating a measure of the discrep-
ancy between the joint geo-linguistic distribution PXY and the product of independent
distributions PXPY . The forms of these distributions are unknown; for example, PY

might be Gaussian, or it might be some complicated multimodal distribution. The
maximum mean discrepancy is a scalar function of the discrepancy between a pair of
distributions, which makes no assumption about the distributions’ parametric forms.
The maximum mean discrepancy will be large when linguistic similarity tends to co-
occur with geographical similarity, indicating an association between language and
geography that is unlikely to arise by chance. The key insight is that it is possible to
approximate the maximum mean discrepancy from a finite sample of observations,
by rewriting it as a sum of kernel similarity functions. These kernel functions should
quantify the similarity between each pair of instances as a scalar; they must also obey
some more technical properties, enumerated in section 3.3. If the kernel functions are
appropriately chosen, then the approximation is asymptotically consistent, meaning
that it will approach the exact maximum mean discrepancy in the limit of infinite data,
regardless of the forms of PX , PY , and PXY . (This property is not shared by the Mantel
test, which is superficially similar in that it operates on distances between pairs of
observations.) We now present the mathematical details of the method.

3.1 Comparing Probability Distributions

The maximum mean discrepancy (MMD) is a nonparametric statistic that compares two
arbitrary probability distributions. In the HSIC test, this statistic is used to compare the
joint distribution PXY with the product of marginal distributions PXPY . The MMD is
defined as,

MMD(P,Q) = sup
f
(EP [f(X)]− EQ[f(Y )]), (5)

where we take the supremum f over a set of possible functions, and compute the
difference in the expected values under the distributions P and Q. Clearly, if P = Q,
then MMD = 0, but the challenge is to estimate MMD for arbitrary P and Q, based only
on finite samples from these distributions.

To explain how to do this, we introduce some concepts from Reproducing Kernel
Hilbert Spaces (RKHS). Let k : X × X 7→ R+ denote a kernel function, mapping from
pairs of observations (xi, xj) to reals. A classical example is the radial basis function
(RBF) kernel on vectors, where k(xi,xj) = exp

(
−γ||xi − xj ||22

)
. Many other kernel func-

tions are possible; the conditions for valid kernels are enumerated in section 3.3.
For any instance x, the kernel function k defines a corresponding feature map

k(·, x) : X 7→ R+, which is the function that arises by fixing one of the arguments of the
kernel function to the value x. The “reproducing” property of RKHS implies an identity
between kernel functions and inner products of feature maps:

k(xi, xj) = 〈k(·, xi), k(·, xj)〉. (6)
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Thus, even though the feature map may be an arbitrarily complex function of x, we
can compute inner products of feature maps by computing the kernel similarity func-
tion over the associated instances. The MMD can be expressed in terms of such inner
products, and thus, can be computed in terms of kernel similarity functions.

For a probability measure P , the mean element of P is defined as the expected feature
map, µP = EP k(·, x). The MMD can then be computed in terms of kernel functions of the
mean elements,

MMD2(P,Q) = 〈µP , µP 〉+ 〈µQ, µQ〉 − 2〈µP , µQ〉. (7)

If µP = µQ, then the MMD is zero. The key observation is that µP = µQ if and only
if P = Q, so long as an appropriate kernel similarity function is chosen (Fukumizu et al.
2007); see section 3.3 for more on the choice of kernel functions.

Each of the inner products in Equation 7 corresponds to an expectation that can be
estimated empirically from finite samples {x1, x2, . . . , xm} and {y1, y2, . . . , yn},

MMD2(P,Q) =Ex,x′∼P k(x, x
′) + Ey,y′∼Qk(y, y

′)− 2Ex∼P,y∼Qk(x, y) (8)

M̂MD2(P,Q) =
1

m2

m∑
i,j

k(xi, xj) +
1

n2

n∑
i,j

k(yi, yn)−
2

nm

m∑
i=1

n∑
j=1

k(xi, yj). (9)

The full derivation is provided by Gretton et al. (2008). Having shown how to estimate
a statistic on whether two probability measures are identical, we now use this statistic
to test for independence.

3.2 Derivation of HSIC

To construct an independence test over random variables X and Y , we test the MMD
between the joint distribution PXY and the product of marginals PXPY . In this setting,
each observation i corresponds to a pair (xi, yi), so we require a kernel function on
paired observations, k((xi, yi), (xj , yj)). We define this as a product kernel,

k((xi, yi), (xj , yj)) = kX (xi, xj)kY(yi, yj), (10)

where kX and kY are kernels for the linguistic and geographic observations respectively.
Using the product kernel, we can define mean embeddings for the distributions

PXY and PXPY , enabling the application of the MMD estimator from Equation 9.
The Hilbert-Schmidt Independence Criterion (HSIC) is precisely this application of
maximum mean discrepancy to compare the joint distribution against the product of
marginal distributions.

Concretely, let us define the Gram matrix Kx so that (Kx)i,j = kX (xi, xj) for all pairs
i, j in the sample. Analogously, (Ky)i,j = kY(yi, yj). Then the HSIC can be estimated

9
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from a finite sample of m observations as

ĤSIC =
1

n2

m∑
i,j

(Kx)i,j(Ky)i,j +
1

n4

m∑
i,j,q,r

(Kx)i,j(Ky)q,r −
2

n3

m∑
i,j,q

(Kx)i,j(Ky)i,q (11)

=
trKXHKYH

n2
, (12)

where tr indicates the matrix trace and H is a centering matrix, H = Im − 1
n11

>. With
this definition of H , we have,

(KXH)ij =kX (xi, xj)−
1

n

∑
j′

kX (xi, xj′) (13)

(KYH)ij =kY(yi, yj)−
1

n

∑
j′

kY(yi, yj′). (14)

These two terms can be seen as mean-centered Gram matrices. By computing the
trace of their matrix product, we obtain a cross-covariance between the Gram matrices.
This trace is directly proportional to the maximum mean discrepancy between PXY

and PXPY . If X and Y are dependent, then large values of kX (xi, xj) will imply large
values of kY(yi, yj) — similar geography implies similar language — and so the cross-
covariance will be greater than zero. If X and Y are independent, then large values of
kX (xi, xj) are not any more likely to correspond to large values of kY(yi, yj), and so the
expectation of this cross-covariance will be zero.

3.3 Kernel Functions

To apply HSIC to the problem of detecting geo-linguistic dependence, we must define
the kernel functions kX and kY . In the RKHS framework, valid kernel functions must
be symmetric and positive semi-definite. To ensure consistency of the kernel-based
estimator for MMD, the kernel must also be characteristic, meaning that it induces an
injective mapping between probability measures and their corresponding mean ele-
ments (Fukumizu et al. 2007): each probability measure P must correspond to a single
unique mean element µP . Muandet et al. elaborate these and other properties of several
well-known kernels (Muandet et al. 2016, Table 3.1).

For the spatial kernel kY , we employ a Gaussian radial basis function (RBF), which is
a widely used choice for vector data. Specifically, we define kY(yi, yj ; γ) = exp(−γd2i,j),
where d2ij is the squared Euclidean distance between yi and yj , and γ is a parameter of
the kernel function. We also employ the RBF in kX when the linguistic observations
take on continuous values, such as frequencies or phonetic data. The RBF kernel is
symmetric, positive semi-definite, and characteristic.5

5 Flaxman recently proposed a “kernelized Mantel test”, in which correlations are taken between kernel
similarities rather than distances (Flaxman 2015). The resulting test statistic is similar, but not identical to
HSIC. Specifically, while HSIC centers the kernel matrix against the local mean kernel similarities for
each point, the kernelized Mantel test centers against the global mean kernel similarity. This makes the
test more sensitive to distant outliers. We implemented the kernelized Mantel test, and found its
performance to be similar to the classical Mantel test, with lower statistical power than HSIC. Flaxman
made similar observations in his analysis of the spatiotemporal distribution of crime events.
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The parameter γ corresponds to the “length-scale” of the kernel. Intuitively, as this
parameter increases, the kernel similarity drops off more quickly with distance. In this
paper, we follow the popular heuristic of setting γ to the median of the data (y1, . . . yn),
as proposed by Gretton et al. (2005b). We empirically test the sensitivity of HSIC to
this parameter in section 4. More recent work offers optimization-based approaches for
setting this parameter (Gretton et al. 2012), but we do not consider this possibility here.

Linguistic data is often binary or categorical. In this case, we use a Delta kernel (also
sometimes called a Dirac kernel). This kernel is simply defined as kX (xi, xj) = 1 if xi =
xj and 0 otherwise. The Delta kernel has been used successfully in combination with
HSIC for high-dimensional feature selection (Song et al. 2012; Yamada et al. 2014), and
is symmetric, positive semi-definite, and characteristic for discrete data. For continuous
or vector-valued linguistic variables, the RBF kernel can again be applied.

3.4 Scalability

The size of each Gram matrix is the square of the number of observations. For large
datasets, this will be too expensive to compute. Following Gretton et al. (2005a), we
employ a low-rank approximation to each Gram matrix, using the incomplete Cholesky
decomposition (Bach and Jordan 2002). Specifically, we approximate the symmetric ma-
trices KX and KY as low-rank products, KX ≈ AAT and KY ≈ BBT , where A ∈ Rn×rA

and B ∈ Rn×rB . The approximation quality is determined by the parameters rA and rB ,
which are set to ensure that the magnitudes of the residuals K −AAT and L−BBT are
below a predefined threshold. HSIC may then be approximated as:

ĤSIC =
trKXHKYH

n2
, (15)

≈ tr(AAT )H(BBT )H

n2
, (16)

=
tr(BT (HA))(BT (HA))T

n2
(17)

where the matrix product HA can be computed without explicitly forming the n× n
matrix H , due to its simple structure. Alternative methods for scaling the computation
of HSIC are discussed in a recent note by Zhang et al. (2016).

4. Synthetic Data

Real linguistic datasets lack ground truth about which features are geographically
distinct, making it impossible to use such data to quantitatively evaluate the proposed
approaches. We therefore use synthetic data to compare the power and sensitivity of
the various approaches described above. Our main goals are: (1) to calibrate the p-
values produced by each approach in the event that the null hypothesis is true, using
completely randomized data; (2) to test the power of each approach to capture spatial
dependence, particularly under conditions in which the spatial dependence is obscured
by noise.

We compare HSIC with specific instantiations of the methods described in section 2,
focusing on previous published applications of these methods to dialect analysis. Specif-
ically, we consider the following methods:

11
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Moran’s I We follow Grieve, Speelman, and Geeraerts (2011), using a binary spatial
weighting matrix with a distance threshold τ , usually set to the median of the dis-
tances between points in the dataset6. This method is not applicable to categorical
data.

Join counts We follow the approach of Lee and Kretzschmar Jr (1993), who define a
binary spatial weighting matrix from a Delaunay triangulation, and then compute
join counts for linked pairs of observations. This method is not applicable to
frequency data.

Mantel test We use Euclidean distance for the geographical distance matrix. For con-
tinuous linguistic data, we also use Euclidean distance; for discrete data, we use a
delta function.

For all approaches, a one-tailed significance test is appropriate, since in nearly
all conceivable dialectological scenarios we are testing only for the possibility that
geographically proximate units are more similar than they would be under the null
hypothesis. For some methods, it is possible to calculate a p-value from the test statistic
using a closed form estimate of the variance. However, for consistency, we employ a
permutation approach to characterize the null distribution over the test statistic val-
ues. We permute the linguistic data x, breaking any link between geography and the
language data, and then compute the distribution of the test statistic under many such
permutations.

4.1 Data Generation

To ensure the verisimilitude of our synthetic data, we target the scenario of geo-tagged
tweets in the Netherlands. For each municipality i, we stochastically determine the
number and location of the tweets as follows:

Number of data points For each municipality, the number of tweets ni is chosen to
be proportional to the population, as estimated by Statistics Netherlands (CBS).
Specifically, we draw ñi ∼ Poisson(µobs × populationi) and then set ni = ñi + 1,
ensuring that each municipality has at least one data point. The parameter µobs

controls the frequency of the linguistic variable. For example, a common ortho-
graphic variable (e.g., “g-deletion”) might have a high value of µobs, while a rare
lexical variable (e.g., soda versus pop) might have a much lower value. Note that
µobs is shared across all municipalities.

Locations Next, for each tweet t, we determine the location yt by sampling without
replacement from the set of real tweet locations in municipality i (the dataset is
described in section 5.3). This ensures that the distribution of geo-locations in the
synthetic data matches the real geographical distribution of tweets, rather than
drawing from a parametric distribution which may not match the complexity
of true geographical population distributions. Each location is represented as a
latitude and longitude pair.

For each variable, each municipality is assigned a frequency vector θi, indicating the
relative frequency of each variable form: e.g., 70% soda, 30% pop. We discuss methods
for setting θi below, which enable the simulation of a range of dialectal phenomena.

6 Other types of spatial weighting matrices might give different results. We leave this for future work.
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(a) Angle: 0 degrees (east to west) (b) Angle: 120 degrees

Figure 2: Synthetic frequency data with dialect continua in two different angles

We simulate both counts data and frequency data. In counts data — such as geo-
tagged tweets — the data points in each instance in municipality i are drawn from a
binomial or multinomial distribution with parameter θi. In frequency data, we observe
only the relatively frequency of each variable form for each municipality. In this case,
we draw the frequency from a Dirichlet distribution with expected value equal to θi,
drawing φt ∼ Dirichlet(sθi), where the scale parameter s controls the variance within
each municipality.

4.2 Calibration

Our first use of synthetic data is to examine the p-values obtained from each method
when the null hypothesis is true — that is, when there is no geographical variation
in the data. The p-value corresponds to the likelihood of seeing a test statistic at least
as extreme as the observed value, under the null hypothesis. Thus, if we repeatedly
generate data under the null hypothesis, a well-calibrated test will return a distribution
of p-values that is uniform in the interval [0, 1]. We would expect to observe p < .05
in exactly 5% of cases, corresponding to the allowed rate of Type I errors (incorrect
rejection of the null hypothesis) at the threshold α = 0.05.

To measure the calibration of each of the proposed tests, we generate 1,000 random
datasets using the procedure described above, and then compute the p-values under
each test. In these random datasets, the relative frequency parameters θi are the same for
all municipalities, which is the null hypothesis of complete randomization. To generate
the binary and categorical data, we use µobs = 10−5, meaning that the expected num-
ber of observations is one per hundred thousand individuals in the municipality; for
comparison, this corresponds roughly to the tweet frequency of the lengthened spelling
hellla in the 2009-2012 Twitter dataset gathered by Eisenstein et al. (2014).

To visualize the calibration of each test, we use quantile-quantile (Q-Q) plots, com-
paring the obtained p-values with a uniform distribution. A well-calibrated test should
give a diagonal line from the origin to (1, 1). Figure 3 shows the Q-Q plots obtained from
each method on each relevant type of data (recall that not all methods can be applied to
all types of data, as described in the previous section).

HSIC and Moran’s I each have tuning parameters that control the behavior of the
test: the kernel bandwidth in HSIC and the distance cutoff in Moran’s I. A simple
heuristic is to use the median Euclidian distance d: in Moran’s I, we use d as the distance
threshold for constructing the neighborhood matrix W ; in HSIC, we use 1

d
2 as the

kernel bandwidth parameter. Figure 3 shows that by basing these parameters on the
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Figure 3: Quantile-quantile plots comparing the distribution of the obtained p-values
with a uniform distribution. The y-axis is the p-value returned by the tests. The x-axis
shows the corresponding quantile for a uniform distribution on the range [0,1]. The
approaches that optimize the parameters, i.e., the cutoff for Moran’s I (MI) and the
bandwidth for HSIC (H), lead to a skewed distribution of p-values.

median distance between pairs of points, we get well-calibrated results. However, some
prior work takes an alternative approach, sweeping over parameter values to obtain
the most significant results (Grieve, Speelman, and Geeraerts 2011). In our experiments
we sweep across the distance cutoff for Moran’s I, and the bandwidth for the spatial
distances in HSIC. This distorts the calibration, meaning that the resulting p-values are
not reliable. This is most severe for Moran’s I with type I error rates of 11.7% (binary
data) and 14.3% (frequency data) when the significance threshold α is set to 5%. Given
that such parameter sweeps are explicitly designed to maximize the number of positive
test results — and not the overall calibration of the test — this is unsurprising. We
therefore avoid parameter sweeps in the remainder of this article, and rely instead on
median distance as a simple heuristic alternative.

4.3 Power

Next, we consider synthetic data in which there is geographical variation by construc-
tion. We assess the power of each approach by computing the fraction of simulations for
which the approaches correctly rejected the null hypothesis of no spatial dependence,
given a significance threshold of α = 0.05. We again use the Netherlands as the stage for
all simulations, and consider two types of geographical variation.

Dialect continua We generate data such that the frequency of a linguistic variant in-
creases linearly through space, as in a dialect continuum (Heeringa and Nerbonne
2001). In most of the synthetic data experiments below, we average across a range
of angles, from 0◦ to 357◦ with step sizes of 3◦, yielding 120 distinct angles in total.
Each angle aligns differently with the population distribution of the Netherlands,
so we also assess sensitivity of each method to the angle itself. Figure 2 shows two
synthetic datasets with dialect continua in different angles.

Geographical centers Second, we consider a setting in which variation is based on one
or more geographical centers. In this setting, all cities within some specified range
of the center (or one of the centers) have some maximal frequency value θi; in
other cities, this value decreases as distance from the nearest center grows. This
corresponds to the dialectological scenario in which a variable form is centered on
one specific city, as in, say, the association of the word hella with the San Francisco
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(d) Moran’s I: Centers

Figure 4: Power across different parameter settings. Higher values indicate a greater
likelihood of correctly rejecting the null hypothesis.

metropolitan area. We average across twenty five possible centers: the capitals
of each of the twelve provinces of the Netherlands; the national capital of the
Netherlands (Amsterdam); the two most populous cities in each of the twelve
provinces. For each setting, we randomly generate synthetic data four times,
resulting in a total of 100 synthetic datasets for this condition.

Parameter settings. We use these data generation scenarios to test the sensitivity of HSIC
and Moran’s I to their hyperparameters, by varying the kernel bandwidths in HSIC
(Figures 4a and 4b) and the distance threshold in Moran’s I (Figures 4c and 4d). The
sensitivity of HSIC to the bandwidth value decreases as the number of data points
increases (as governed by µobs), especially in the case of dialect continua. The sensitivity
of Moran’s I to the distance cutoff value decreases with the amount of data in the
case of dialect continua, but in the case of center-based variation, Moran’s I becomes
more sensitive to this parameter as there is more data. For both methods, the same
trends regarding the best performing parameters can be observed. In the case of dialect
continua, larger cutoffs and bandwidths perform best, but in the case of variation based
on centers, smaller cutoffs and bandwidths lead to higher power. Overall, there is no
single best parameter setting, but the median heuristics perform reasonably well for
both types of variation.

Direction of dialect continua. We simulate dialect continua by varying the frequency
of linguistic variables linearly through space. Due to the heterogeneity of population
density, different spatial angles will have very different properties: for example, one
choice of angle would imply a continuum cutting through several major cities, while
another choice might imply a rural-urban distinction. Figure 5 shows the power of the
methods on binary data (there are two variant forms, and each instance contains exactly
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Figure 5: Relationship between the statistical power of each test and the angle of the
dialect continuum across the Netherlands.
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Figure 6: Results on synthetic frequency data (σ = 0.1) with outliers

one of them), in which we vary the angle of the continuum. HSIC is insensitive to the
angle of variation, demonstrating the advantage of this kernel nonparametric method.
Moran’s I is relatively robust, while join count analysis performs poorly across the
entire range of settings. The Mantel test is remarkably sensitive to the angle of variation,
attaining nearly zero power for some scenarios of dialect continua. This is caused by the
complex interaction between the underlying linguistic phenomenon and the east-west
variation of the population density of the Netherlands. For example, when the dialect
continuum is simulated at an angle of 105 degrees, the south east of the Netherlands
has a higher usage of the variable, but this is only a very small region due to the shape
of the country. The Mantel test apparently has great difficulty in detecting geographical
variation in such cases.

Outliers. In the frequency-based synthetic data, each instance uses each variable form
with some continuous frequency — this is based on the scenario of letters-to-the-editors
of regional newspapers, as explored in prior work (Grieve, Speelman, and Geeraerts
2011). We test the robustness of each approach by introducing outliers: randomly se-
lected data points whose variable frequencies are replaced at random with extreme
values of either 0 or 1. As shown in Figure 6, HSIC is the most robust against outliers,
while the performance of the Mantel test is the most affected by outliers (recall that join
count analysis applies only to discrete observations, so it cannot be compared on this
measure).

Overall. We now compare the methods by averaging across various settings simulating
dialect continua (Figure 7) and variation based on centers (Figure 8). To generate the
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Figure 7: Dialect continua
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Figure 8: Centers

categorical data, we vary µobs in our experiments, with a higher µobs resulting in more
tweets and consequently less variation on the municipality level. As expected, the
power of the approaches increases as µobs increases in the experiments on the categorical
data, and the power of the approaches decreases as σ increases in the experiments on
the frequency data. The experiments on the binary and categorical data show the same
trends: HSIC performs the best across all settings. Join count analysis does well when
the variation is based on centers, and Moran’s I does best for dialect continua. Moran’s I
performs best on the frequency data, especially in the case of variation based on centers.

4.4 Summary

In this section, we evaluated each statistical test for geographical language variation on
a battery of synthetic data. HSIC and the Mantel test are the only approaches applicable
to all data types (binary, categorical and frequency data). Overall, HSIC is more effective
than the Mantel test, which is much more sensitive to the specifics of the synthetic data
scenario, such as the angle of the dialect continuum. HSIC is robust against outliers,
and performs particularly well when the number of data points increases. Join count
analysis is suitable for capturing non-linear variation, but its power is low compared
to other approaches in the analysis of dialect continua. Conversely, when the linguistic
data is binary, Moran’s I performs well on dialect continua, but its power is low in
situations of variation based on centers. In our experiments on frequency data, Moran’s I
performs well in both scenarios.
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5. Empirical Data

We now assess the spatial dependence of linguistic variables on three real linguistic
datasets: letters to the editor (English), a syntactic atlas of the Dutch dialects, and
Dutch geotagged tweets. In each dataset, we compute statistical significance for the geo-
linguistic dependence of multiple linguistic variables. To adjust the significance thresh-
olds for multiple comparisons, we use the Benjamini-Hochberg procedure (Benjamini
and Hochberg 1995) to bound the overall false discovery rate (FDR).

5.1 Letters to the Editor

In their application of Moran’s I to English dialects in the United States, Grieve, Speel-
man, and Geeraerts (2011) compile a corpus of letters-to-the-editors of newspapers to
measure the presence of dialect variables in text. To compute the frequency of the lexical
variables, letters are aggregated to core-based statistical areas (CBSA), which are defined
by the United States to capture the geographical region around an urban core. The
frequency of 40 manually selected lexical variables is computed for each of 206 cities.

We use the Mantel test, HSIC, and Moran’s I to assess the spatial dependence of
variables in this dataset. Join count analysis was excluded, because it is not suitable for
frequency data. We verified our implementation of Moran’s I by following the approach
taken by Grieve et al.: we computed Moran’s I for cutoffs in the range of 200 to 1000
miles and selected the cutoff that yielded the lowest p-value. The obtained cutoffs and
test statistics closely followed the values reported in the analysis by Grieve et al., with
slight deviations possibly due to our use of a permutation test rather than a closed-form
approximation to compute the p-values.

After adjusting the p-values using the false discovery rate (FDR) procedure, a 500-
mile cutoff results in three significant linguistic variables.7 However, recall that the
approach of selecting parameters by maximizing the number of positive test results
tends to produce a large number of Type I errors. When setting the distance cutoff to
the median distance between data points, none of the linguistic variables were found to
have a significant geographical association. Similarly, HSIC and the Mantel test also
found no significant associations after adjusting for multiple comparisons. Figure 9
shows the proportion of significant variables according to Moran’s I based on different
thresholds. The numbers vary considerably depending on the threshold. The figure also
suggests that the median distance (921 miles) may not be a suitable threshold for this
dataset.

5.2 Syntactic Atlas of the Dutch Dialects (SAND)

Dialect atlases are frequently used in the study of dialect. In this section we demonstrate
the use of the discussed methods on SAND (Barbiers et al. 2005, 2008), an online elec-
tronic atlas that maps syntactic variation of Dutch varieties in the Netherlands, Belgium,
and France.8 The data was collected between the years of 2000 and 2005. SAND has
been used to measure the distances between dialects, and to discover dialect regions
(Spruit 2006; Tjong Kim Sang 2015). To our knowledge, we are the first to use statistical

7 Grieve et al. report five significant variables. In our analysis, there are two variables with FDR-adjusted
p-values of 0.0559

8 http://www.meertens.knaw.nl/sand/
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Figure 9: The proportion of variables detected to be significant (p < .05) by Moran’s I
by varying the distance cutoff (without adjusting for multiple comparisons).

methods to quantify the degree of spatial dependence of the linguistic variables in this
atlas. Compared to the other empirical datasets that we consider, this data is smaller
and many variables contain more than two variants.

In our experiments, we consider only locations within the Netherlands (157 loca-
tions). The number of variants per linguistic variable ranges from one (due to our re-
striction to the Netherlands) to eleven. We do not include Moran’s I in our experiments,
since it is not applicable to linguistic variables with more than two variants. We apply
the remaining methods to all linguistic variables with twenty or more data points and
at least two variants, resulting in a total of 143 variables.

Table 1 lists the 10 variables with the highest HSIC values. Statistical significance at a
level of α = 0.05 is detected for 65.0% of the linguistic variables using HSIC, 78.3% when
using join count analysis, and 52.4% when using the Mantel test. The three methods
agree on 99 out of the 143 variables, and HSIC and join count analysis agree on 118
variables. From manual inspection, it seems that the non-linearity of the geographical
patterns may have caused difficulties for the Mantel test. Figure 10 is an example of a
variable where HSIC and join count analysis both had an FDR-adjusted p < .05, but the
Mantel test did not detect a significant association.

5.3 Twitter

Our Twitter dataset consists of 4,039,786 geotagged tweets from the Netherlands, writ-
ten between January 1, 2015 and October 31, 2015. We manually selected a set of linguis-
tic variables (Table 2), covering examples of lexical variation (e.g., two different words
for referring to french fries), phonological variation (e.g., t-deletion), and syntactic vari-
ation (e.g., heb gedaan (‘have done’) vs. gedaan heb (‘done have’)). We are not aware of any
previous work on dialectal variation in the Netherlands that uses spatial dependency
testing on Twitter data. The number of tweets per municipality varies dramatically, and
for the less frequent linguistic variables there are no tweets at all in some municipalities.
In our computation of Moran’s I, we only include municipalities with at least one tweet.

Table 2 shows the output of each statistical test for this data. Some of these linguistic
variables exhibit strong spatial variation, and are identified as statistically significant by
all approaches. An example is the different ways of referring to french fries (friet versus
patat, Figure 11a), where the figure shows a striking difference between the south and
the north of the Netherlands. Another example is Figure 11b, which shows two different
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Table 1: Highest ranked variables by HSIC. All
methods had an adjusted p-value < .05 for all
variables, except variable 2:30b (Mantel: p =
.118.

Map id Description

1:84b Free relative, complementizer
following relative pronoun

1:84a Short subject and object relative,
complementizer following relative
pronoun

1:80b ONE pronominalisation
1:33a Complementizer agreement 3 plural
1:76a Reflexive pronouns; synthesis
2:36b Form of the participle of

the modal verb willen ‘want’
1:29a Complementizer agreement 1 plural
1:69a Correlation weak reflexive pronouns
2:30b Interruption of the verbal cluster;

synthesis I
2:61a Forms for iemand ‘somebody’

.
Figure 10: SAND map 16b, book 1.
Finite complementizer(s) following
relative pronoun (N=112).
HSIC: p=.024; Mantel: p=.506;
Join counts: p=.002.

ways of saying ‘for a little while’ (efkes versus eventjes). The less common form, efkes is
mostly used in Friesland, a province in the north of the Netherlands.

Examples of linguistic variables where the approaches disagree are shown in Fig-
ure 12. The first case (Figure 12a) is an example of lexical variation, with two different
ways of saying bye in the Netherlands. A commonly used form is doei, while houdoe is
known to be specific to North-Brabant, a Dutch province in the south of the Nether-
lands. HSIC and join count analysis both detect a significant pattern, but Moran’s I and
the Mantel test do not. The trend is less strong than in the previous examples, but the
figure does suggest a higher usage of houdoe in the south of the Netherlands.

Another example is t-deletion for a specific phrase (niet meer versus nie meer), as
shown in Figure 12b. Previous dialect research has found that geography is the most
important external factor for t-deletion in the Netherlands, with contact zones, such as
the Rivers region in the Netherlands (at the intersection of the dialects of the southern
province of North-Brabant, the south-west province of Zuid-Holland and the Veluwe
region), having high frequencies of t-deletion (Goeman 1999). Both HSIC and join
count analysis report an FDR-adjusted p < .05, while for Moran’s I, the geographical
association does not reach the threshold of significance.

We also present preliminary results on using HSIC as an exploratory tool on the
same Twitter corpus. To focus on active users who are most likely tweeting on a personal
basis, we exclude users with 1,000 or more followers and users who have fewer than 50
tweets, resulting in 8,333 users. We exclude infrequent words (used by fewer than 100
users) and very frequent words (used by 1000 users or more), resulting in a total of
5,183 candidate linguistic variables. We represent the usage of a word by each author
as a binary variable, and use HSIC to compute the level of spatial dependence for each
word.

The top 10 words with the highest HSIC scores are groningen (city), zwolle (city),
eindhoven (city) arnhem (city), breda (city), enschede (city), nijmegen (city), leiden (city),
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Linguistic variables Description N Moran’s I HSIC Mantel Join counts

Friet / patat french fries 842 0.0004 0.0002 0.0003 0.0003
Proficiat / gefeliciteerd congratulations 14,474 0.0004 0.0002 0.0080 0.0003
Iedereen / een ieder everyone 13,009 0.8542 0.0002 0.8769 0.0432
Doei / aju bye 4,427 0.7163 0.0050 0.2570 0.3868
Efkes / eventjes for a little while 969 0.0036 0.0002 0.0003 0.0003
Naar huis / naar huus to home 3, 942 0.8542 0.1090 0.1245 0.9426
Niet meer / nie meer not anymore 11,596 0.0793 0.0002 0.5590 0.0329
Of niet / of nie or not 1,882 0.8357 0.1010 0.4191 0.9426
-oa- / -ao- e.g., jao versus joa 754 0.0004 0.0002 0.0003 0.0003
Even weer / weer even for a little while again 921 0.0004 0.0002 0.0003 0.0003
Have + participle e.g., heb gedaan (‘have done’)

vs. gedaan heb (‘done have’)
1,122 0.8587 0.2849 0.6668 0.0255

Be + participle e.g., ben geweest (‘have been’)
vs. geweest ben (‘been have’)

1,597 0.0793 0.2849 0.7862 0.0051

Spijkerbroek / jeans jeans 1,170 0.7796 0.0002 0.0080 0.0003
Doei/ houdoe bye 4,491 0.5016 0.0002 0.6668 0.0047
Bellen / telefoneren to call by telephone 4,689 0.2730 0.0003 0.9781 0.5941

Table 2: Twitter results. The p-values were calculated using 10,000 permutations and
corrected for multiple comparisons.

(a) French fries (friet versus patat),
N=844

(b) For a little while (efkes versus event-
jes), N=970

Figure 11: Highly significant linguistic variables on Twitter. Grey indicates areas with
no data points. The intensity indicates the number of data points.

(a) Bye (doei versus houdoe), N=4,491 (b) t-deletion (niet meer vs. nie meer),
N=11,596

Figure 12: Linguistic variables on Twitter where tests disagreed

21



Computational Linguistics Volume X, Number X

(a) Usage of joh (b) Usage of dadelijk

Figure 13: Linguistic features on Twitter

twente (region) and delft (city). While these words do not reflect dialectal variation
as it is normally construed, we expect their distribution to be heavily influenced by
geography. Manual inspection revealed that many English words (e.g., his, very) have
high geographical dependence. English speakers are more likely to visit tourist and
commercial centers, so it is unsurprising that these words should show a strong geo-
graphical association. The top-ranked non-topical word is proficiat, occurring at rank
34 according to HSIC. Proficiat had previously been identified as a candidate dialect
variable, and was included in our analysis in Table 2; this replication of prior dialecto-
logical knowledge validates the usage of HSIC as an exploratory tool. Less well known
are joh (an interjection) and dadelijk (‘immediately’/‘just a second’), which are ranked
respectively at #60 and #71 by HSIC. The geographical distributions of these words
are shown in Figures 13a and 13b; both seem to distinguish the southern part of the
Netherlands from the rest of the country. The identification of these words speaks to the
potential of HSIC to guide the study of dialect by revealing geographically-associated
terms.9

6. Conclusion

We have reviewed four methods for quantifying the spatial dependence of linguistic
variables: Moran’s I, which is perhaps the best-known in sociolinguistics and dialec-
tology; join count analysis; the Mantel test; and the Hilbert-Schmidt Independence
Criterion (HSIC), which we introduce to linguistics in this paper. Of these methods, only
HSIC is consistent, meaning that it converges to an accurate measure of the statistical
dependence between X and Y in the limit of sufficient data. In contrast, the other
approaches are based on parametric models. When the assumptions of these models
are violated, the power to detect significant geo-linguistic associations is diminished.
All three of these methods can be modified to account for various geographical distri-
butions: for example, the spatial weighting matrix employed in Moran’s I and join count
analysis can be constructed as a non-linear or non-monotonic function of distance (Getis
and Aldstadt 2010), the distances in the Mantel test can be censored at some maximum

9 The top 10 words with the highest Moran’s I scores are similar: groningen, eindhoven, friesland (province),
leeuwarden (city), zwolle, proficiat, drachten (city), carnaval (a festival), brabant (province), enschede (city).
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value (Legendre, Fortin, and Borcard 2015), and so on. However, such modifications
require the user to have strong prior expectations of the form of the geolinguistic depen-
dence, and open the door to p-value hacking through iterative “improvements” to the
test. In contrast, HSIC can be applied directly to any geotagged corpus, with minimal
tuning. By representing the underlying probability distributions in a Hilbert space,
HSIC implicitly makes a comparison across high-order moments of the distributions,
thus recovering evidence of probabilistic dependence without parametric assumptions.

These theoretical advantages are borne out in an analysis of synthetic data in
section 4. We consider a range of realistic scenarios, finding that the power of Moran’s I,
the Mantel test, and join count analysis depends on the nature of the geographical
variation (e.g., dialect continua versus centers), and in some cases, even on the direction
of variation. Overall, we find that HSIC, while not the most powerful test in every
scenario, offers the broadest applicability and the least potential for catastrophic failure
of any of the proposed approaches.

We then showed how to apply these tests to a diverse range of real datasets in
section 5: frequency observations in letters to the editor, binary and categorical ob-
servations in a dialect atlas, and binary observations in social media. We find that
previous results on newspaper data were dependent on the procedure of selecting the
geographical distance cutoff to maximize the number of positive test results; using all
other test procedures, the significance of these results disappears (section 5.1). On the
dialect atlas, we find that the fraction of statistically significant variables ranges from
55.2% to 78.3% depending on the statistical approach (section 5.2). On the social media
data, we obtain largely similar results from the four different tests, but HSIC detects the
largest number of significant associations, identifying cases in which geography and
population density were closely intertwined (section 5.3).

To conclude, we believe that kernel embeddings of probability measures offer a
powerful new approach for corpus analysis. In this paper, we have focused on measur-
ing geographical dependence, which can be used to test and discover new dialectal lin-
guistic variables. But the underlying mathematical ideas may find application in other
domains, such as tracking change over time (Popescu and Strapparava 2014; Štajner and
Mitkov 2011), or between groups of authors (Koppel, Argamon, and Shimoni 2002).
Of particular interest for future research is the use of structured kernels, such as tree
kernels (Collins and Duffy 2001) or n-gram kernels (Lampos et al. 2015), which could
test for structured linguistic phenomena such as variation in syntax (Johannsen, Hovy,
and Søgaard 2015) or phonological change (Bouchard-Côté et al. 2007).
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