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Abstract.  We present new data and analyses revealing fundamental flaws in a critique of two 23 

recent meta-analyses of local-scale temporal biodiversity change.  First, the conclusion that 24 

short-term time series lead to biased estimates of long-term change was based on two errors in 25 

the simulations used to support it.  Second, the conclusion of negative relationships between 26 

temporal biodiversity change and study duration was entirely dependent on unrealistic model 27 

assumptions, the use of a subset of data, and inclusion of one outlier data point in one study.  28 

Third, the finding of a decline in local biodiversity, after eliminating post-disturbance studies, is 29 

not robust to alternative analyses on the original dataset, and is absent in a larger, updated 30 

dataset.  Finally, the undebatable point – noted in both original papers – that studies in the 31 

ecological literature are geographically biased, was used to cast doubt on the conclusion that, 32 

outside of areas converted to croplands or asphalt, the distribution of biodiversity trends is 33 

centered approximately on zero.  Future studies may modify conclusions, but at present, 34 

alternative conclusions based on the geographic-bias argument rely on speculation.  In sum, the 35 

critique raises points of uncertainty typical of all ecological studies, but does not provide an 36 

evidence-based alternative interpretation. 37 

Key words: biodiversity, meta-analysis, species richness, temporal change. 38 

INTRODUCTION 39 

Patterns of biodiversity over space and time represent the foundation of many ecological theories 40 

and conservation priortization schemes.  Concerns have been raised (Gonzalez et al. 2016) about 41 

two papers that collectively analyzed >250 individual datasets on biodiversity change through 42 

time from many parts of the world (Vellend et al. 2013, Dornelas et al. 2014).  Both of these 43 

studies found that the average magnitude of temporal change in alpha diversity across studies 44 

was indistinguishable from zero. Dornelas et al. (2014) additionally showed significant and 45 
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consistent temporal species turnover, thus highlighting marked shifts in community composition.  46 

The concerns of Gonzalez et al., which focus on species richness and diversity, are for the most 47 

part typical of those that could be directed at any ecological meta-analysis: different results 48 

might obtain in different places (underrepresented regions) or times (before people collected data 49 

of this nature), and it is possible to find data subsets that deviate from the overall pattern.  These 50 

concerns were used by Gonzalez et al. to call into question our conclusions. Some aspects of the 51 

Gonzalez et al. critique relied on their selective use of data and methods of analysis, while others 52 

focused on the nature of the data themselves and accompanying interpretations. 53 

Here we present analyses, as well as new data, to support the following conclusions: (1) Well-54 

replicated short-term time series do not provide biased estimates of long-term biodiversity 55 

trends.  The opposite conclusion presented by Gonzalez et al. was based on two errors in their 56 

simulation model and calculations. (2) There is no compelling evidence that studies of longer 57 

temporal duration show greater biodiversity decline.  On this point, the analyses presented by 58 

Gonzalez et al. were contingent on a single outlier data point and to unrealistic assumptions 59 

about model structure, and the results were not robust to the inclusion of additional data. (3) 60 

There is no evidence in our original analyses or using a larger, updated dataset that the results 61 

were biased due to combining the effects of disturbance with post-disturbance dynamics. In fact, 62 

selectively excluding post-disturbance dynamics is itself a source of bias.  (4) The ecological 63 

literature is indeed geographically biased, a fact discussed explicitly in both Vellend et al. (2013) 64 

and Dornelas et al. (2014).  The analysis of Gonzalez et al. on this issue supports the undebatable 65 

conclusion that new data (in this case from underrepresented regions) might modify conclusions 66 

from these meta-analyses, or from any other global-scale ecological meta-analysis.   67 

SHORT-TERM TIME SERIES DO NOT PROVIDE BIASED ESTIMATES OF LONG-TERM TRENDS 68 
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As we show below, a key component of the Gonzalez et al. critique is incorrect (i.e., not a matter 69 

of selective interpretation).  Simulations of species richness (S) over 50-year periods and 70 

subsequent calculations of log ratios (log(Safter/Sbefore)) or slopes of richness on time during 71 

shorter time intervals (5, 10, 20 years) were used to argue that “Estimates of biodiversity change 72 

are systematically biased when syntheses are based on datasets composed primarily of short time 73 

series”.  Gonzalez et al. made two different errors, the first of which applies only to log ratios, 74 

the second of which applies to both log ratios and slopes: 75 

(i) When calculating a mean effect size for “short” windows of time, Gonzalez et al. did not take 76 

into account the fact that a log ratio across, for example, a 10-year period is only expected 77 

(mathematically) to capture one fifth of the amount of change that occurs over 50 years.  In other 78 

words, they did not multiply the average of 10-year windows by 5 before comparing with the 50-79 

year effect size.  This is equivalent to the argument that, hypothetically, temperature only went 80 

up by 0.5C per decade, so the estimate of the “real” increase of 2.5C over 50 years is biased.   81 

(ii) The second problem is less obvious, but no less important, and it accounts for apparent 82 

diversity increases in medium-sized time windows (e.g., 20 years) when a 50-year period shows 83 

a richness decline initially, followed by an increase, and then a leveling off (see Fig. 1a-c).  The 84 

problem is that with a bounded range of 50 years, “randomly” chosen segments of 20 years 85 

severely over-represent the middle portion of the time series.  In another well-known ecological 86 

context, this is called the mid-domain effect to explain peak species richness at central latitudes 87 

or altitudes (Colwell and Lees 2000).  However, whereas the boundaries in space are real, the 88 

temporal boundaries are not, as time may be considered infinite in both directions.  The first 89 

point in the time series, for example, is only part of one 20-year segment in the “population” 90 

from which the Gonzalez et al. simulations sample, 0:20.  The second time point is part of two 91 
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segments, 0:20 and 1:21, and so on.  Time points 20-30, on the other hand, are each part of 20 92 

different segments.  So, with the decline in richness happening early during the 50-year time 93 

span, seemingly random samples of 20 years mostly miss the decline, while “detecting” a 94 

transient increase only because it happens to occur in the middle portion of the time series.  The 95 

apparent bias detected by Gonzalez et al. is an artefact of their simulation analysis focusing on an 96 

arbitrary bounded time interval (Fig. 1). 97 

If one examines sequential, non-overlapping portions of any length of a given time series, the 98 

average log ratio captures precisely the rate of change over the entire time series.  Simulations 99 

are not required to demonstrate this point, although we provide one corrected example from 100 

Gonzalez et al. (Fig. 1), in addition to the following explanation from first principles.  Imagine 101 

we have a species-richness (S) time series of five points, t0:t4, and thus four year-to-year 102 

transitions.  The log ratio from beginning to end is log(S4/S0).  The average of one-year intervals 103 

is: 104 

= (log(S1/S0) + log(S2/S1) + log(S3/S2) + log(S4/S3)) / 4 105 

= (log(S1) – log(S0) + log(S2) – log(S1) + log(S3) – log(S2) + log(S4) – log(S3)) / 4 106 

= (log(S4) – log(S0))/4 107 

= log(S4/S0)/4 108 

So, as long as we account for the fact that the one-year intervals cover only one quarter of the 109 

full time series (i.e., we multiply this by four), we recover the original “target” log ratio for the 110 

full time series precisely (see also Fig. 1g).  The same result will hold for two-year intervals in 111 

this time series, 10-year intervals of a 50-year time series, or any other combination.  The same 112 

precise mathematical equivalence does not hold for slopes, but it is equally true that there is no 113 
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systematic bias introduced by the fact of sampling a subset of a longer time series.  An 114 

incomplete sample of the portions of the longer time series will introduce variance (as is always 115 

the case with sampling), but not systematic bias (Fig. 1).  The conclusion, based on simulations, 116 

“that short time series can provide unreliable estimates of a known trend” (Gonzalez et al. 2016) 117 

is simply incorrect. 118 

LOCAL BIODIVERSITY TRENDS IN STUDIES OF DIFFERENT DURATION 119 

The argument that short-term time series bias estimates of temporal biodiversity trends was used 120 

by Gonzalez et al. as a springboard to asking whether longer duration studies tend to show 121 

biodiversity declines.  In this section, we address this issue for the two original studies in turn. 122 

Using the data from Vellend et al. (2013), Gonzalez et al. modeled the log ratio of species 123 

richness at the end and start of a study (see previous section) as a function of the duration of that 124 

study, finding a statistically significant (p = 0.04) but weak relationship (Fig. 2a).  They 125 

emphasized the conclusion that longer-duration studies tend to show richness declines, although 126 

by allowing for a non-zero intercept, their results also require explaining a nonsensical positive 127 

biodiversity trend in studies that last zero years.  If one makes the ecologically realistic 128 

assumption that the log ratio must be zero at duration = 0 (i.e., a zero intercept), not only is the 129 

slope not significant, but its raw value is actually positive rather than negative (Fig. 2B).  This 130 

illustrates the potentially major influence of assumptions about model structure on the spurious 131 

detection of weak statistical relationships. 132 

Given the controversy sparked by Vellend et al. (2013), we have since expanded the data set by 133 

37% to include studies published through the end of 2014 (the original paper had studies 134 

published up to July 2012; see Metadata S1 for data and computer code).  The methods were 135 
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identical to those in Vellend et al. (2013), except that we did not additionally read through the 136 

references of all new papers to find additional data sets.  With the larger data set of 212 studies 137 

(the 2013 paper had 155), there is no significant relationship between local richness change and 138 

study duration, regardless of whether one allows for a non-zero intercept (Fig. 2c,d). 139 

The data in Dornelas et al. (2014) includes studies with diversity estimates for at least three time 140 

points, thus allowing the estimation of slopes of diversity vs. time, rather than only before-after 141 

log ratios.  There is no significant relationship between the diversity-time slope and study 142 

duration (Fig. 3a,b).  Gonzalez et al. chose instead to calculate log ratios using the data in 143 

Dornelas et al. (2014; see Dataset S1 in that paper), thereby excluding most of the data used by 144 

Dornelas et al, and reported a significant negative relationship between log ratios and study 145 

duration (Fig. 3c).  Again their analysis allowed for a non-zero intercept; if the intercept is fixed 146 

at zero – as expected after no time has elapsed – the relationship is not significant (Fig. 3d).  In 147 

addition, the Gonzalez et al. result is highly sensitive to one outlier, depending not just on a 148 

single study (reference 90 in Dornelas et al. 2014), but on a single data point in that study 149 

(species richness = 43 in 1911, and <20 for the next 90 years).  In the absence of that one data 150 

point, the relationship is not statistically significant, regardless of whether one assumes a zero or 151 

non-zero intercept (Fig. 3e,f). 152 

In sum, the evidence provided by Gonzalez et al. to support their claim that longer-duration 153 

studies tend to show biodiversity decline is exceedingly weak at best.  Their conclusions depend 154 

on specific and unrealistic assumptions, and provide negligible predictive value.  Whether using 155 

the realistic assumption of zero biodiversity change at duration = 0, using a larger data set, taking 156 

account of an outlier, or analyzing slopes instead of log ratios, we find no convincing evidence 157 

that estimates of biodiversity change depend on study duration.  In any given time series, it is 158 

Page 7 of 20 Ecology



VELLEND ET AL., PAGE 8 OF 17 

 

clearly possible (and indeed likely) that trend detection will depend on the particular period of 159 

time analyzed.  In our analyses, the observed trends were evenly spread above and below zero 160 

for the range of durations, and well-populated with data (<50 years or so).  There is thus, at 161 

present, no evidence to support Gonzalez et al.’s conclusion that longer-duration studies 162 

systematically show average local biodiversity declines.  We recognize that all of these analyses 163 

were carried out with respect to baselines determined by the beginning of the time series 164 

involved. There will be cases where ecosystems have lost or gained biodiversity before these 165 

observations began, but at present we cannot assess the frequency of these different scenarios.  166 

EFFECTS OF DISTURBANCE 167 

Another concern of Gonzalez et al. (see also Eisenhauer et al. 2016) was the simultaneous 168 

inclusion of (i) studies that characterize the effects of disturbance (“impacts”) and (ii) studies that 169 

characterize recovery from disturbance (“recovery”).  If our goal had been to assess only the 170 

direct effects of disturbance (e.g., Supp and Ernest 2014), this would indeed have been 171 

inappropriate.  But that was not the goal of either original paper.  In a world with fire, grazing, 172 

logging, and other disturbances of varying intensity and frequency, to include only the effects of 173 

such disturbances and to ignore locations recovering from past disturbances constitutes the 174 

introduction of a bias in itself.  Gonzalez et al. pursued this line of inquiry by selecting studies 175 

classified as “post-disturbance”, “post-fire”, and “cessation of grazing”, for elimination from the 176 

Vellend et al. (2013) dataset (i.e., leaving the impact-only data subset). 177 

Unlike the primary analyses in Vellend et al. (2013), Gonzalez et al. analyzed raw log ratios 178 

rather than those expressed as change per decade, and they weighted studies by the square root of 179 

sample size.  The result was a distribution of effect sizes with an upper confidence limit that was 180 

slightly negative (1% loss).  However, this significant result depends on the combined influence 181 
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of the two analysis modifications introduced by Gonzalez et al.  Using the original unweighted 182 

analyses and only the data reported in Vellend et al. (2013), the 95% credible intervals for the 183 

impact-only data subset selected by Gonzalez et al. overlap zero both for raw log ratios, if only 184 

slightly ([-0.095, 0.012] or between 9% loss and 1% gain), and for change expressed per decade 185 

([-0.061, 0.031]).  More importantly, using the larger, updated dataset, the upper credible 186 

intervals are well above zero (raw log ratio: [-0.053, 0.034]; per decade: [-0.038, 0.032]), 187 

allowing us to reject the conclusion that eliminating “recovery” studies reveals an average 188 

decline in local plant biodiversity.  189 

More generally, we disagree with the argument that disturbances (anthropogenic or otherwise) 190 

are generally expected to cause a decline in local biodiversity.  Empirical studies testing the 191 

effect of disturbance on species diversity find a wide range of results, including no effects, 192 

positive effects, negative effects, and hump-shaped relationships (Mackey and Currie 2001; Supp 193 

and Ernest 2014; Newbold et al. 2015; Vellend et al. 2017).  Even logging – implicitly 194 

emphasized in Gonzalez et al.’s analysis of forest cover change – is often followed by a short-195 

term increase in local plant diversity (due to colonization of early-successional species) and a 196 

subsequent longer-term decline back to levels similar to old-growth forest (Halpern and Spies 197 

1995; Duguid and Ashton 2013).  In this scenario, capturing only the long-term “recovery” phase 198 

would bias results against positive trends rather than negative trends.  The opposite scenario (the 199 

concern of Gonzalez et al.) certainly exists as well, with biodiversity potentially decreasing after 200 

disturbance.  Disturbance does not have a unidirectional effect with a single recovery trajectory, 201 

so even if studies captured some phases of the disturbance cycle more than others, the 202 

consequences would not be easily predictable.  203 
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In sum, both short-term and longer-term changes in local biodiversity caused by disturbance are 204 

relevant to understanding temporal biodiversity trends, and the empirical data indicate highly 205 

context dependent effects of disturbance on the magnitude and direction of biodiversity change. 206 

THE ECOLOGICAL LITERATURE IS INDEED GEOGRAPHICALLY BIASED 207 

Ecological studies of all kinds have been conducted far more often in Europe and North 208 

America, and nearby waters, than elsewhere.  In the case of our meta-analyses, we are unable at 209 

present to estimate with confidence how local biodiversity has changed in under-recorded or 210 

unrecorded regions, such parts of Africa or the Indian Ocean.  This is a challenge for global 211 

analysis of biodiversity change, and we hope that highlighting this challenge will instigate more 212 

data collection in these regions. However, while any given subset of data might deviate slightly 213 

from the overall pattern, there was no obvious signal that geographic bias led to bias against 214 

finding biodiversity decline.  For example, in Vellend et al. (2013), the estimated mean log ratios 215 

of species richness change over time for South America (N = 12), Asia (N = 9), Australia (N = 216 

5), and Africa (N = 2) were all positive.  One could choose to conduct an analysis giving greater 217 

weight to these understudied regions: this would shift the estimated central tendency towards 218 

biodiversity increases rather than decreases.  In addition, the analyses of Gonzalez et al. show 219 

that one of the original meta-analyses had an underrepresentation of places with high recent 220 

human impacts (Vellend et al. 2013), while the other had an overrepresentation of places with 221 

high human impacts (Dornelas et al. 2014), and yet both studies show a similar distribution of 222 

temporal changes in local diversity. 223 

Gonzalez et al. have identified some important axes along which we might improve the future 224 

representativeness of biodiversity studies (e.g., regional diversity, human impacts), but 225 

ultimately only new data from underrepresented regions can speak directly to what is happening 226 
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in those parts of the world, and thus prompt a potential re-assessment of conclusions.  Local 227 

biodiversity change is very much dependent on specific, local circumstances, and new and 228 

interesting results from poorly known regions may well emerge in the future.  Improving the 229 

spatial representation of these regions is a high priority in obtaining better estimates of local 230 

biodiversity change. 231 

In sum, Gonzalez et al. present analyses to demonstrate a point noted in both original papers: the 232 

data are geographically biased.  Precisely the same limitation applies to most ecological 233 

synthesis and meta-analysis papers (e.g., Cardinale et al. 2012, Hooper et al. 2012, Elahi et al. 234 

2015, Haddad et al. 2015), in which there was no such vigorous effort to quantify geographic 235 

bias and its attendant consequences for limiting the scope of conclusions.  We are working with 236 

the best data available, and continue to assemble data, to directly document temporal biodiversity 237 

change at the local scale.  Converting natural ecosystems to croplands or parking lots causes a 238 

local loss of biodiversity (Newbold et al. 2015), but otherwise there is a great deal of variation 239 

but no clear tendency for the net temporal local biodiversity trend to be different from zero 240 

across the sites in the available data (Vellend et al. 2013, Dornelas et al. 2014, Elahi et al. 2015). 241 

TO CONCLUDE 242 

We agree with Gonzalez et al. concerning the need for better biodiversity monitoring in the 243 

future.  Our knowledge of a great many places on earth is quite limited, and many drivers of 244 

biodiversity change are expected to push in opposite directions (Vellend et al. 2017).  For 245 

example, non-native species introductions typically increase regional-scale species richness (Sax 246 

and Gaines 2003, Winter et al. 2009), and in areas that are currently cold and humid (e.g., 247 

temperate-zone mountain tops), species richness is also expected to increase due to climate 248 

warming (Pauli et al. 2012).  On the other hand, nitrogen deposition often causes plant diversity 249 
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to decline (Simkin et al. 2016), and for some taxa habitat fragmentation can do the same (Haddad 250 

et al. 2015).  How different forces balance out in the future can best be determined by systematic, 251 

long-term monitoring – a major priority for future research in ecology and conservation. 252 

Causes and trends of local biodiversity, and therefore any applied consequences, are just as 253 

described: local.  The global average across many local trends is thus of applied significance 254 

only indirectly, via framing arguments about the consequences of biodiversity change (e.g., 255 

Hooper et al. 2012).  Given the data at hand, we can reject the notion of local biodiversity loss as 256 

the general rule, and whether new data reveal a ratio of positive vs. negative trends at 50:50, 257 

60:40 (positive mean), or 40:60 (negative mean), context dependence and site-specificity would 258 

remain the dominant pattern.  The most generally applicable statement we can make at present is 259 

that in most situations we expect substantial changes in species composition – that is, species 260 

turnover – with important implications for biodiversity conservation efforts (Dornelas et al. 261 

2014, Magurran 2016).   262 
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Figure captions 329 

FIG. 1. Mean ± standard deviation of log ratios (log(Safter/Sbefore)) and slopes (species richness vs. 330 

time) for repeated samples of short time series sampled from a longer (50-year) duration data set.  331 

(a) A reproduction of Fig. S3D from Gonzalez et al., showing one example of species richness 332 

dynamics over time that appeared to lead to especially biased results.  (b,c) Results of 1000 333 

seemingly random samples of different duration conducted according to the methods of 334 

Gonzalez et al.; these results appear to show an average positive trend among moderate-duration 335 

samples, despite a long-term negative (log ratio) or flat (slope) trend over the full duration.  (d,e) 336 

Log ratio results when correcting separately for duration (problem (i) in main text) and overlap 337 

(problem (ii) in main text); here we see that just accounting for the duration of data subsets 338 

removes bias from short-duration samples, while correcting for overlap removes any tendency 339 

for positive average trends.  (f) Slope results after correcting the overlap problem.  (g) Log ratio 340 

results after correcting for both problems; here the averages are precisely equal to the long-term 341 

trend.  Note that when correcting for overlap, we only use durations that are multiples of the 50-342 

year total time span. 343 

FIG. 2. Relationships between local plant species richness change over time (y-axis) and the 344 

duration of a study, modeled assuming either a non-zero y-intercept (a,c) or a zero y-intercept 345 

(b,c), using the original data in Vellend et al. (2013) (a,b) or an expanded dataset (c,d; new data 346 

points shown in red).  The effect size for temporal richness change is expressed as the log ratio 347 

of species richness in the final year of study (SR2) and in the initial year of study (SR1). Lines 348 

represent the estimated effect size with credible intervals.  See Appendix S1 for statistical 349 

methods and Metadata S1 for all data and computer code.   350 

Page 16 of 20Ecology



VELLEND ET AL., PAGE 17 OF 17 

 

FIG. 3. Relationships between species richness change over time (y-axis) and the duration of a 351 

study, using data from Dornelas et al. (2014).  Relationships were modeled assuming either a 352 

non-zero y-intercept (a,c,e) or a zero y-intercept (b,e,f), using either slopes (a,b) or log ratios (c-353 

f) to express temporal biodiversity change, and either including one outlier (a-d, “Original 354 

dataset”) or not (e,f, “Modified dataset”).  Lines represent the estimated effect size with credible 355 

intervals.  See Appendix S1 for statistical methods and Metadata S1 for all data and computer 356 

code. 357 
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(a) 50-year species richness time series (b) Gonzalez et al. results: log ratios (LR) (c) Gonzalez et al. results: slopes 

(d) LR: corrected for duration (e) LR: corrected for overlap 

(f) Slopes: corrected for overlap 

(g) LR: corrected for duration & overlap 
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c) Updated dataset − with intercept
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d) Updated dataset − intercept = 0
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a) Original dataset (slopes) − with intercept
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b) Original dataset (slopes) − intercept = 0
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c) Original dataset (log ratios) − with intercept
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d) Original dataset (log ratios) − intercept = 0
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e) Modified dataset (log ratios) − with intercept

−5.0

−2.5

0.0

2.5

5.0

0 25 50 75 100

● ●

●

●
●

● ●

●
●●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●●

●
●

●
●

●

● ●

●
● ●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●
●●●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

f) Modified dataset (log ratios) − intercept = 0
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