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a b s t r a c t 

The large-scale features of the global ocean circulation and the sensitivity of these features with respect 

to forcing changes are critically dependent upon the influence of the mesoscale eddy field. One such fea- 

ture, observed in numerical simulations whereby the mesoscale eddy field is at least partially resolved, is 

the phenomenon of eddy saturation, where the time-mean circumpolar transport of the Antarctic Circum- 

polar Current displays relative insensitivity to wind forcing changes. Coarse-resolution models employing 

the Gent–McWilliams parameterisation with a constant Gent–McWilliams eddy transfer coefficient seem 

unable to reproduce this phenomenon. In this article, an idealised model for a wind-forced, zonally sym- 

metric flow in a channel is used to investigate the sensitivity of the circumpolar transport to changes in 

wind forcing under different eddy closures. It is shown that, when coupled to a simple parameterised 

eddy energy budget, the Gent–McWilliams eddy transfer coefficient of the form described in Marshall 

et al. (2012) [ A framework for parameterizing eddy potential vorticity fluxes , J. Phys. Oceanogr., vol. 42, 

539–557], which includes a linear eddy energy dependence, produces eddy saturation as an emergent 

property. 

© 2017 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Studies of the response of the large-scale ocean circulation

o changing forcing scenarios in numerical ocean models require

ong time integrations that are prohibitively expensive even at

esoscale eddy permitting resolutions. Since this is expected to

emain the case for the foreseeable future, an ongoing challenge in

umerical ocean modelling is the representation of the unresolved

esoscale eddy field in coarse resolution models. A particularly

uccessful scheme that is employed is the Gent–McWilliams (GM)

arameterisation ( Gent and McWilliams, 1990; Gent et al., 1995 ),

hich parameterises mesoscale eddies via the introduction of a

on-divergent eddy transport velocity. The eddy transport veloc-

ty can be interpreted as arising from the difference between the

ulerian average of the velocity at fixed height and the thickness-

eighted average of the velocity at fixed density ( McDougall and

cIntosh, 2001 ), and modifies the advective transport of tracer

uantities. By definition, the non-divergent eddy transport velocity

onserves all moments of the advected quantities, and is thereby
∗ Corresponding author. 
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diabatic. The property of adiabatic stirring is particularly attrac-

ive, being shown to remove spurious heating and cooling in the

eep ocean, such as that associated with the Deacon cell in the

outhern Ocean ( Danabasoglu et al., 1994 ). 

To this point, studying the modelled oceanic response to chang-

ng atmospheric forcing in conjunction with the GM parameteri-

ation is of particular importance for emergent climatologies un-

er different forcing scenarios. Two important large-scale Southern

cean phenomena are of particular interest in this regard. The first

s “eddy saturation”, originally discussed in Straub (1993) from an

rgument based on critical stability, and here to be understood as

he relative insensitivity of the time-mean circumpolar transport

ith respect to wind forcing changes. The other is “eddy com-

ensation”, here to be understood as the reduced sensitivity of

he residual meridional overturning circulation with wind forcing

hanges (e.g., Meredith et al., 2012; Viebahn and Eden, 2012; Mun-

ay et al., 2013 ), which has consequences for the meridional trans-

ort of important tracers such as heat, salt and carbon. This article

ocuses on eddy saturation. 

As argued by Straub (1993) , if fluid interaction with topography

s the main sink for momentum input by wind stress, and conse-

uently the zonal abyssal flow is weak, then thermal wind shear is
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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the dominant contribution to circumpolar transport; Peña-Molino

et al. (2014) suggest that thermal wind shear accounts for at least

75% of the net circumpolar transport in the Southern Ocean. Thus

circumpolar transport is intimately linked to isopycnal slope, with

the slope steepness limited by baroclinic instability. Eddy satura-

tion arises through a balance between steepening of isopycnals by

wind stress, and flattening of isopycnals by the presence of the

mesoscale eddy field. While the question of whether the ocean is

in an eddy saturated state remains unconstrained by current ob-

servations, the reduction in circumpolar transport sensitivity with

varying wind stress has been observed in a variety of numerical

models that at least partially resolve a mesoscale eddy field (e.g.,

Hallberg and Gnanadesikan, 2006 ; Hogg and Blundell, 2006; Hogg

et al., 2008; Farneti and Delworth, 2010 ; Farneti et al., 2010) . In

Munday et al. (2013) , an eddy permitting one-sixth degree model

of a 20 ° wide ocean sector was integrated with varying wind forc-

ings. This eddy permitting model, employing a very small value of

the GM eddy transfer coefficient, showed near complete eddy sat-

uration. By contrast, in lower resolution half degree and two de-

gree variants of the same model, where larger values of the GM

eddy transfer coefficient were utilised, the resulting time-mean cir-

cumpolar transport displayed significant sensitivity with respect to

the wind forcing. Hogg and Munday (2014) found that although

the value of the time-mean circumpolar transport was affected by

the domain geometry, the relative insensitivity with changing wind

stress at eddy permitting resolution was robust. 

Thus it has been found that the GM scheme with a spatially

and temporally constant GM eddy transfer coefficient is unable to

represent eddy saturation (see also Farneti et al., 2015 ). With in-

creased wind forcing, a more vigourous eddy field is to be ex-

pected. Since the GM eddy transfer coefficient in some sense spec-

ifies the intensity and efficiency of the parameterised eddy field,

it is expected that a positive correlation between the strength of

wind forcing and the magnitude of the GM coefficient eddy trans-

fer is minimally required for emergent eddy saturation. Various

proposals already exist with a non-constant GM eddy transfer co-

efficient. In Visbeck et al. (1997) , using linear stability arguments, a

GM eddy transfer coefficient is proposed which depends upon the

stratification profile, as well as a mixing length. In Ferreira et al.

(2005) the eddy-mean-flow interaction in a global ocean model is

determined via an optimisation procedure, yielding diagnosed val-

ues for the GM eddy transfer coefficient. Their optimisation is used

to infer a GM eddy transfer coefficient which depends on the ver-

tical stratification, and has subsequently been incorporated into a

number of ocean general circulation models (e.g., Danabasoglu and

Marshall, 2007; Gent and Danabasoglu, 2011 ). The simulations de-

scribed in Gent and Danabasoglu (2011) do show some eddy com-

pensation, as a consequence of the dependence of the GM eddy

transfer coefficient on Southern Ocean stratification. However, as

discussed in Munday et al. (2013) , this mechanism precludes the

model from achieving full eddy saturation. 

Through the consideration of the eddy kinetic energy budget,

Cessi (2008) proposes a mixing length based eddy parameterisa-

tion, with a GM eddy transfer coefficient depending on the ocean

state and explicitly depending on the strength of the bottom drag.

An approach also based upon consideration of the eddy kinetic en-

ergy budget is discussed in Eden and Greatbatch (2008) (see also

Marshall and Adcroft, 2010 ), also employing a mixing length argu-

ment but utilising a local parameterised eddy kinetic energy bud-

get to inform the magnitude and spatial structure of the resulting

GM eddy transfer coefficient. While there is no conclusive observa-

tional evidence to suggest that the ocean is in an completely eddy

saturated regime, there is ample evidence from mesoscale eddy-

permitting model experiments that coarse resolution models with

current parameterisations appear unable to replicate eddy satura-
ion in a self-consistent way (e.g., the work Fyfe et al., 2007 varies

he GM eddy transfer coefficient manually with changing wind

tress). 

In Marshall et al. (2012) a geometric interpretation of the eddy-

ean-flow interaction for the quasi-geostrophic equations was de-

ived. A horizontally down-gradient closure for the horizontal eddy

uoyancy fluxes leads to a GM eddy transfer coefficient of the

orm 

= αE 
N 

M 

2 
, (1)

here E is the total (kinetic plus potential) eddy energy, and

/M 

2 = T is an Eady time-scale which depends on the mean strati-

cation, with N 

2 = −(g/ρ0 ) ∂ ρ
z 
/∂z and M 

2 = (g/ρ0 ) |∇ H ρ
z | , where

 is the gravitational acceleration, ρ0 is a reference density, ρz is

he mean density averaged at fixed height, and ∇ H is its horizon-

al gradient operator. A crucial point is that, if the eddy energy

s known, there are no undetermined dimensional parameters; the

nly freedom is to specify the non-dimensional geometric parame-

er α of magnitude less than or equal to one (see, e.g., Bachman

t al., 2017 ). A form similar to (1) also appears in Jansen et al.

2015) — implied by their Eqs. (9) and (11) — but with the eddy ki-

etic energy in place of the full eddy energy, and motivated by the

nverse energy cascade being controlled by the rate of eddy energy

eneration through baroclinic instability as per Larichev and Held

1995) . However the form derived in Marshall et al. (2012) pro-

ides an explicit upper bound on the relevant geometric parameter

; no other dimensional scaling is possible provided the geometric

arameter α is bounded away from zero. Moreover, here the eddy

nergy is determined prognostically via the solution of a dynamical

quation which is coupled to the equations for the mean state. 

This article assesses the ability of the Marshall et al. (2012) GM

ddy transfer coefficient to reproduce eddy saturation, via numeri-

al calculations in an idealised, zonally averaged, two-dimensional

cean channel model. The idealised numerical model is motivated

y the physical model discussed in Marshall et al. (2017) , where

ddy saturation was demonstrated through considerations of the

omentum and eddy energy budget, together with the scaling

or the GM eddy transfer coefficient given by Eq. (1) . The ability

f the Marshall et al. (2012) scheme to produce eddy saturation

s compared against a number of alternative approaches, includ-

ng approaches based upon mixing length arguments, and based

pon the Visbeck et al. (1997) proposal. Since the Marshall et al.

2012) variant requires information about the eddy energy, the

volution of the mean state is coupled to a prognostic equation

or the parameterised domain integrated eddy energy (cf. the local

udget for the eddy kinetic energy in Eden and Greatbatch, 2008 ).

The paper proceeds as follows. In Section 2 the GM scheme and

he Marshall et al. (2012) parameterisation variant are revisited, fo-

using in particular on the energetics of the problem, and provid-

ng physical and mathematical arguments as to why the Marshall

t al. (2012) variant may be expected to have skill in producing

mergent eddy saturation. Section 3 contains the details of the ide-

lised numerical model and of the other parameterisation variants

onsidered in this work. The implementation of the parameteri-

ation variants and their results are presented in Section 4 for a

ase where the GM eddy transfer coefficient is assumed to be con-

tant over the domain, and in Section 5 for a case where the GM

ddy transfer coefficient is spatially varying, focusing on the case

here a spatial structure depending upon the vertical stratification

s enforced. The paper concludes in Section 6 , where the results are

iscussed, and a recipe for implementation in a global circulation

odels is proposed. 
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. Gent–McWilliams and energetic constraints 

.1. The Gent–McWilliams scheme and the energetic consequences 

The GM scheme parameterises the effects of baroclinic eddies

ia the introduction of an adiabatic stirring of the mean density,

cting to decrease the available potential energy of the system

e.g., Gent and McWilliams, 1990 ). Limiting consideration to the

oussinesq case, the mean density equation, zonally averaged at

onstant density ( Andrews, 1983; McDougall and McIntosh, 2001;

oung, 2012 ), is 

∂ρ# 

∂t 
+ 

∂( ̂ v ρ# ) 

∂y 
+ 

∂(w 

# ρ# ) 

∂z 
= 0 , (2)

here ρ# is the mean density field associated with averaging at

onstant density (see Young, 2012 ), with the thickness-weight av-

raged meridional velocity at constant density given by 

ˆ 
 = v 

(
∂ρ

∂z 

)−1 
∣∣∣∣∣
ρ# 

∂ρ# 

∂z 
, (3) 

nd w 

# defined such that (again following Young, 2012 ) 

∂ ̂  v 
∂y 

+ 

∂w 

# 

∂z 
= 0 . (4) 

ollowing McDougall and McIntosh (2001) , 

ˆ 
 = 

( 

0 

ˆ v 
w 

# 

) 

= 

( 

0 

v z 

w 

z 

) 

+ 

( 

0 

v ∗
w 

∗

) 

= u 

z + u 

∗, (5)

here u 

z 
is the velocity zonally averaged at constant height, and

 

∗ is the eddy transport velocity, with 

∂ v z 

∂y 
+ 

∂ w 

z 

∂z 
= 

∂v ∗

∂y 
+ 

∂w 

∗

∂z 
= 0 . (6)

he GM scheme then takes the form 

 

∗ = ∇ ×
( −κs 

0 

0 

) 

= 

( 

0 

−∂ ( κs ) /∂z 
∂ ( κs ) /∂y 

) 

, (7) 

here κ is the GM eddy transfer coefficient, and s is the slope of

he mean density surfaces 

 = −
(

∂ρ# 

∂y 

)(
∂ρ# 

∂z 

)−1 

. (8) 

The energetic consequences of the GM scheme are as follows.

onsider the zonally averaged hydrostatic Boussinesq equations in

he form 

∂ u 

z 

∂t 
+ v z 

∂ u 

z 

∂y 
+ w 

z ∂ u 

z 

∂z 
− f v z = F 

z − D 

z 
, (9a) 

∂ v z 

∂t 
+ v z 

∂ v z 

∂y 
+ w 

z ∂ v 
z 

∂z 
+ f u 

z = − 1 

ρ0 

∂ p z 

∂y 
, (9b) 

 = − 1 

ρ0 

∂ p z 

∂z 
− gρ# 

ρ0 

. (9c) 

Here contributions from Reynolds stresses are neglected, it is

ssumed that all significant forcing F 
z 

and dissipation D 

z 
occurs

n the zonal mean momentum equation, and ρ# is used in place

f ρz in the hydrostatic relation (consistent with the discussion in

ppendix B of McDougall and McIntosh, 2001 ). A budget for the

ean energy may be obtained by multiplying by the mean veloc-

ty, integrating over the domain, using incompressibility and the

ean density equation, and assuming that the normal components
f both u 

z 
and u 

∗ vanish on all boundaries. The resulting budget

ecomes 

d 

d t 

∫ ∫ [ 
1 

2 

ρ0 u 

z 
u 

z + 

1 

2 

ρ0 v z v z + ρ# gz 

] 
d y d z 

= 

∫ ∫ 
ρ0 u 

z 
( F 

z − D 

z 
) d y d z + 

∫ ∫ 
w 

∗gρ# d y d z. (10) 

he last term is a conversion term which, via substituting w 

∗ from

q. (7) and performing an integration by parts, results in 

d 

d t 

∫ ∫ [ 
1 

2 

ρ0 u 

z 
u 

z + 

1 

2 

ρ0 v 
z v z + ρ# gz 

] 
d y d z 

= 

∫ ∫ 
ρ0 u 

z 
( F 

z − D 

z 
) d y d z −

∫ ∫ 
ρ0 κ

M 

4 

N 

2 
d y d z, (11) 

ith horizontal and vertical buoyancy frequencies M and N respec-

ively, where 

 

2 = 

g 

ρ0 

∣∣∣∣∂ρ# 

∂y 

∣∣∣∣, N 

2 = − g 

ρ0 

∂ρ# 

∂z 
. (12)

he final term in Eq. (11) is the conversion of eddy energy to mean

nergy. It follows that the eddy energy equation takes the form

see Appendix A for a more complete derivation) 

d 

d t 

∫ ∫ 
ρ0 E d y d z = 

∫ ∫ 
ρ0 κ

M 

4 

N 

2 
d y d z − �, (13)

here it is assumed that the eddy energy source from external

orcing is negligible compared to the eddy energy generation given

n the first term on the right hand side of (13) . Here, ρ0 E is the

ddy energy density, and � represents the dissipation of eddy en-

rgy, for example via topographic form stress. A simple model for

his dissipation term is 

= −λ

∫ ∫ 
ρ0 E d y d z, (14)

here λ is a dissipation time scale. The eddy energy budget

13) then becomes 

d 

d t 

∫ ∫ 
E d y d z = 

∫ ∫ 
κ

M 

4 

N 

2 
d y d z − λ

∫ ∫ 
E d y d z. (15)

he first right-hand-side term in Eq. (13) , which is a stratification

eighted integral of the GM eddy transfer coefficient, is a conse-

uence of the GM scheme but is independent on the precise vari-

nt of the GM eddy transfer coefficient used. 

.2. Marshall et al. (2012) geometric framework and consequences 

In Marshall et al. (2012) a geometric framework for the eddy

uxes is proposed. In particular a horizontally down-gradient clo-

ure for the horizontal eddy buoyancy fluxes yields 

= αE 
N 

M 

2 
, (16) 

here α is a non-dimensional geometric eddy efficiency parameter

hat is bounded in magnitude by one. Provided αN / M 

2 is bounded

way from zero and infinity, this implies that the magnitude of the

M eddy transfer coefficient should scale with the eddy energy

 . This is the case if the mean density has a non-trivial gradient

n both the horizontal and vertical directions, and if the geomet-

ic parameter α is bounded away from zero. Note that the depen-

ence on the eddy energy is linear, as opposed to a square root

ependence that is suggested by a mixing-length based argument

e.g., Cessi, 2008; Eden and Greatbatch, 2008 ). A linear dependence

f the eddy energy may be obtained as in Jansen et al. (2015) if

he length scale has a dependence on square root of the eddy en-

rgy also. With this form, once information about the eddy energy

s known, for example from the solution of a parameterised eddy
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energy budget, then the only remaining freedom is in the specifi-

cation of the non-dimensional geometric parameter α bounded in

magnitude by one (see, e.g., Bachman et al., 2017 ). 

The physical implications of this closure are described in

Marshall et al. (2017) . Here we highlight the relevant properties in

terms of the expected scaling of the eddy energy on α and the dis-

sipation, and further the implications for the scaling of the emer-

gent zonal transport, eddy energy, and GM eddy transfer coeffi-

cient. 

With Eq. (16) , the eddy energy budget (15) becomes 

d 

d t 

∫ ∫ 
E d y d z = 

∫ ∫ 
( αsN − λ) E d y d z, (17)

where s = −M 

2 /N 

2 . In particular, in steady state, the balance ∫ ∫ 
( αsN − λ) E d y d z = 0 (18)

holds. Note that, from thermal wind shear, ∣∣∣∣∂ u 

z 

∂z 

∣∣∣∣ = 

1 

| f | sN 

2 , (19)

and hence ∫ ∫ (
α

| f | 
N 

∣∣∣∣∂ u 

z 

∂z 

∣∣∣∣ − λ

)
E d y d z = 0 . (20)

This is an expression of an eddy energy weighted balance between

the eddy energy generation rate due to the eddies, given by the

first integrand term, and the eddy energy dissipation rate, given

by the second. The integral balance can be achieved if the verti-

cal shear increases with the dissipation rate λ, and decreases with

the geometric parameter α. Note that, following the argument of

Straub (1993) , the zonal mean transport, defined as 

transport = 

∫ L y 

0 

∫ 0 

−L z 

u 

z 
d y d z (21)

and making the assumption that u z (−L z ) = 0 , scales with the ver-

tical shear appearing as a factor in the first integrand term. Hence

Eq. (20) suggests that the zonal transport defined in Eq. (21) scales

with the dissipation rate λ, and scales inversely with the geomet-

ric parameter α, but not explicitly on the external forcing F 
z 
. For

an appropriately smooth eddy energy the following scaling (see

Appendix B for details) √ ∫ ∫ ( | f | 
N 

∣∣∣∣∂ u 

z 

∂z 

∣∣∣∣
)2 

d y d z ∼ λ

α
(22)

is further suggested, again indicating increased transport with in-

creasing λ, and decreased transport with increased α, but not on

the external forcing F 
z 

(cf. Marshall et al., 2017 ). 

These scalings may be interpreted as follows. Increasing λ
means the emergent eddy generation rate needs to increase to

maintain the integral balance (20) , which is achieved via changes

in the emergent stratification profile, resulting in steeper isopyc-

nals and thus a larger transport. An analogous explanation for de-

creasing α suggests an increase in the transport. 

Similar scalings of the emergent eddy energy and GM eddy

transfer coefficient may be derived. Consider the mean energy

equation along with (16) . At steady state and assuming the dis-

sipation of the mean is small, the mean energy equation is ∫ ∫ (
αE 

| f | 
N 

∣∣∣∣∂ u 

z 

∂z 

∣∣∣∣ − F 
z 
u 

z 

)
d y d z = 0 . (23)

For fixed λ, and assuming saturation such that u z and N do not

depend on the forcing parameter, Eq. (23) suggest that E ∼ | F z | . As

a consequence, since κ = αE(N/M 

2 ) , but N / M 

2 is largely invariant

to changes in forcing, this results in κ ∼ | F z | . On the other hand,
he functional dependence of the emergent eddy energy and GM

ddy transfer coefficient on varying λ and α is not so straightfor-

ard, since it is the vertical stratification weighted transport that

s more directly influenced by these two parameters. 

The suggested dependencies and scalings for the emergent

roperties are then: (i) the transport (21) to be independent of the

agnitude of forcing, increasing with increased dissipation and de-

reasing with increased α; (ii) GM eddy transfer coefficient κ to

cale linearly with the magnitude of wind forcing; (iii) eddy en-

rgy level to increase linearly with the magnitude of wind forc-

ng. These scalings are confirmed later via diagnosing the emergent

roperties from the simulation data. 

. Numerical implementation 

The Marshall et al. (2012) variant for the GM eddy trans-

er coefficient given by Eq. (16) , together with the parameterised

ddy energy budget in Eq. (15) , is implemented in a simpli-

ed two-dimensional model, similar to that employed in Marshall

1997) and Marshall and Radko (2003) (see also Gent et al., 1995 ).

he channel model is described in Section 3.1 , and the other pa-

ameterisations to be tested against the Marshall et al. (2012) pa-

ameterisation are detailed in Section 3.2 . 

.1. Channel model 

A linear equation of state is considered, with ρ = ρ0 (1 + βS (S −
 0 ) − βT (T − T 0 )) , where S is salinity, T is temperature, βS , T are ex-

ansion coefficients, and T 0 and S 0 are a reference temperature and

alinity respectively. The prognostic equation for the mean density

s (cf. Gent et al., 1995 ) 

∂ρ# 

∂t 
+ 

∂ 

∂y 
( ̂ v ρ# ) + 

∂ 

∂z 
(w 

# ρ# ) = 0 . (24)

he mean density is advected by the residual velocity ˆ u =
(0 , ̂  v , w 

# ) T , which is the sum of the Eulerian circulation u 

z 
and

he eddy induced transport velocity u 

∗. The domain is chosen

o be ( y, z ) ∈ (0 , L y ) × (−L z , 0) , and the equation is solved with

o-normal-flow boundary conditions ˆ u · n = 0 on boundaries. The

odel is integrated in time until it reaches a steady state, with

he convergence criterion to be defined. 

As a simple model for a forced-dissipative configuration, the

ulerian circulation appearing in the prognostic Eq. (24) is taken

o satisfy the f -plane steady state equation 

f v z = 

1 

ρ0 

∂ 

∂z 
(τs − τb ) , 

∂ v z 

∂y 
+ 

∂ w 

z 

∂z 
= 0 , (25)

nd the thermal wind Eq. (19) , where τ s is the surface wind stress,

nd τ b is a representation of the bottom form stress (see Marshall,

997 ). At the surface, the wind stress is 

s (y, z = 0) = 

τ0 

2 

(
1 − cos 

2 πy 

L y 

)
, (26)

ith peak wind stress τ 0 , linearly decreasing to zero within the

pper grid cell of the model. The bottom stress τ b is chosen to

xactly cancel the local surface wind stress, i.e., τb = τs , applied

ithin the bottom cell, representing the bottom form stress across

opographic barriers ( Munk and Palmén, 1951 ). A choice of τ 0 ef-

ectively specifies the Eulerian circulation associated with the Dea-

on cell (cf. Marshall, 1997 ). The state ρ# determines the eddy in-

uced transport velocity (0 , v ∗, w 

∗) T through Eq. (7) , which is then

sed to form the residual velocity to time step the prognostic Eq.

24) . Assuming that u z vanishes at the sea floor due to topography

locking the flow, u z may be diagnosed via thermal wind shear re-

ation (19) . 
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Table 1 

Parameter values used in the numerical model. The values of a , b and c are chosen 

to roughly coincide with the stratification profiles from the World Ocean Circula- 

tion Experiment ( Gouretski and Kolterman, 2004; Koltermann et al., 2011 ) for the 

Southern Ocean. 

Parameter Value Units Description 

( L y , L z ) (20 0 0, 3) km domain size 

( �y , �z ) (10, 0.1) km grid spacing 

C 0.1 — CFL number 

s max 5 × 10 −2 — slope clipping value s in generating the 

eddy induced transport velocity 

N 2 
min 

5 × 10 −6 s −2 minimum value of N 2 in the integrands 

ξ 1 10 −13 — tolerance for switching off convective 

sorting scheme 

ξ 2 10 −15 — tolerance for solution convergence 

f 0 −10 −4 rad s −1 Coriolis parameter 

ρ0 10 0 0 kg m 

−3 reference density 

g 9.8 m s −2 gravitational acceleration 

a 28 kg m 

−3 base density for ρ# (t = 0) given in (28) 

b −0 . 6 kg m 

−3 factor for ρ# (t = 0) given in (28) 

c 750 m e -folding depth for ρ# (t = 0) given in 

(28) 
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The prognostic equations are discretised in space using a uni-

orm resolution Arakawa C-grid ( Arakawa and Lamb, 1977 ) with

 - and z -direction grid spacings of �y and �z respectively. The

ensity ρ# is defined at the cell centres, fluxes and derivatives of
# on cell interfaces, with appropriate interpolation of the fields

here required. The boundary conditions are implemented by set-

ing boundary fluxes to zero. The forcing and dissipation are taken

o be applied over the top and bottom cells. A fourth order Runge–

utta method is employed to time step the prognostic Eq. (24) and

ddy energy Eq. (15) , with a variable �t chosen at the end of each

ime step so as to target a desired Courant number C ( Courant

t al., 1928 ), 

ax 

( | ̂ v | 
�y 

, 
| w 

# | 
�z 

)
�t ≤ C. (27) 

or numerical stability in integrating the parameterised eddy en-

rgy equation, the variable time step is further restricted so that

t ≤ 12 hours. The calculations are initialised with an exponential

ensity profile 

# (t = 0) = ρ0 + a + be z/c , (28)

here a , b , c are as in Table 1 , informed by the World Ocean Cir-

ulation Experiment ( Gouretski and Kolterman, 2004; Koltermann

t al., 2011 ) data. 

To avoid unbounded velocities associated with weak stratifica-

ion, the slope tapering of Gerdes et al. (1991) with tapering func-

ion 

 gkw 

(z) = min 

(
1 , 

(
s max 

| s (z) | 
)2 

)
(29) 

s employed, and it is ˜ s = F gkw 

(y, z) s that is used in computing

he parameterised eddy transport velocity (7) . The advective form

f the GM scheme is employed (e.g., Griffies et al., 1998; Griffies,

998 ). In equations in which a division by the vertical stratifica-

ion N 

2 appears (e.g. the first right-hand-side term of Eq. (15) ) this

s replaced with 

˜ 
 

2 = max 
(
N 

2 
min , N 

2 
)

(30) 

ith a chosen value of the minimum vertical stratification N 

2 
min 

.

ests have shown the value N 

2 
min 

determines somewhat the eddy

nergy growth: too large a value and the eddy energy growth is

nhibited, while too small a value results in very large eddy energy

rowth with non-negligible contributions from the model at depth.

During time stepping a basic convection scheme is applied,

ith each vertical water column sorted by density within each
unge–Kutta stage. The convection scheme facilitates the develop-

ent of out-cropping at the surface, which would otherwise be

onstrained by the initially constant surface density and the no-

ormal-flow boundary condition. The convection scheme is dis-

bled when 

 = 

∫ | ρ# 
2 − ρ# 

1 | 2 d y d z ∫ | ρ# 
1 
| 2 d y d z 

< ξ1 , (31) 

here ρ# 
1 , 2 are outputs that are separated in time by some thresh-

ld (taken to be at least 50 days in dimensional time), and ξ 1 is a

ser-defined tolerance. A solution is deemed to have converged to

 steady state when E < ξ2 , for some convergence threshold ξ 2 <

1 . For each of the two cases (spatially constant in Section 4 and

tratification dependent in Section 5 ) an initial steady state control

un of the GEOM variant, with a wind forcing of τ0 = 0 . 2 N m 

−2 

as computed, and used to tune the free parameters of the other

arameterisations. Subsequently, all other calculations were each

estarted from a previously converged solution at a nearby param-

ter value and integrated for a maximum of a further 100 years

f τ0 > 0 . 1 N m 

−2 , and for a maximum of a further 500 years if

0 ≤ 0 . 1 N m 

−2 . If a steady state was not reached in this time the

alculation was excluded from further analysis; this criterion af-

ects only the stratification dependent case. 

Model parameter values are provided in Table 1 . 

.2. Alternative GM eddy transfer coefficients 

For comparison, a number of alternative variants based on ex-

sting parameterisation schemes are also implemented in the ide-

lised numerical model. A scheme that employs a mixing length

ssumption and has dependence on the eddy energy is given by 

= αML 

√ 

E L, (32) 

here αML is some non-dimensional parameter (without a formal

ound) and L is a mixing length scale to be specified. This scheme

as a weaker dependence on the eddy energy. An approach of this

orm is described in Eden and Greatbatch (2008) , where the eddy

nergy is replaced with the eddy kinetic energy, and the length

cale is taken to be the minimum of the Rhines scale and the

ossby deformation radius (their Eq. 25 ). Setting the mixing length

qual to the Rhines scale increases the eddy kinetic energy ex-

onent to 3/4, and hence this is closer to the linear energy scal-

ng in Eq. (16) . A similar mixing length approach is taken in Cessi

2008) where a statistically steady version of (15) is utilised to de-

ive a form of the GM eddy transfer coefficient that has explicit

ependence on the bottom drag. In Cessi (2008) , the eddy kinetic

nergy is used in place of the eddy energy, and L is chosen to be

he Rossby deformation radius. 

Note that the derivation of Eden and Greatbatch (2008) , in their

q. (26) , suggests that the GM eddy transfer coefficient should

ave a linear dependence on the eddy kinetic energy. However in

heir work the chosen length scale implicitly sets the magnitude of

he eddy kinetic energy. Here, instead, the eddy energy is parame-

erised directly. In Jansen et al. (2015) a mixing length which scales

ith the square root of the eddy kinetic energy is discussed, yield-

ng a form equivalent to the scaling of (16) , with the eddy kinetic

nergy again used in place of the eddy energy. 

Based on instability arguments, Visbeck et al. (1997) proposed

= αVMHS 
L 2 

T 
= αVMHS L 

2 M 

2 

N 

, (33) 

here αVMHS is some non-dimensional parameter (again without

 formal bound). This variant has no explicit dependence on the

ddy energy, and instead depends only on the mean stratification.

n Section 3 d of Visbeck et al. (1997) the length scale L is related
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Table 2 

Functional dependence of the four considered variants on the eddy energy E , the 

horizontal stratification M , and the vertical stratification N , expressed in the form 

κ∝ E A M 

B N C . Where relevant the mixing length parameter has been set equal to the 

Rossby deformation radius L D = NH/ | f | . 
Variant Functional form A B C 

CONST κ = κ0 = κ0 E 
0 M 

0 N 0 0 0 0 

GEOM κ = αET = αE 1 M 

−2 N 1 1 −2 1 

ML κ = αML 

√ 

E L D = αML (H/ f 0 ) E 
1 / 2 M 

0 N 1 1/2 0 1 

VMHS ∗ and VMHS κ = αVMHS L 
2 
D /T = αVMHS (H 2 / f 2 0 ) E 

0 M 

2 N 1 0 2 1 
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to the grid scale, Rossby deformation radius, and the width of the

baroclinic zone. 

Diagnosing diffusivities from a 4 ° global numerical ocean model

constrained using observation data and via an adjoint based opti-

misation, in Ferreira et al. (2005) , it is suggested that 

κ = κ0 S, S = 

N 

2 

N 

2 
ref 

, (34)

where κ0 is some reference GM eddy transfer coefficient value,

and S imparts a spatial structure to the GM eddy transfer coef-

ficient that is dependent on the vertical stratification. The use of

such a structure function results in a GM eddy transfer coefficient

that is large towards the ocean surface whilst being small in the

deep ocean where the stratification is weak. The reference value

κ0 is normally taken to be constant (e.g., Ferreira et al., 2005; Dan-

abasoglu and Marshall, 2007; Gent and Danabasoglu, 2011 ). 

3.3. Summary 

In summary, the four variants for the GM eddy transfer coeffi-

cient considered in this article are: 

• a constant GM eddy transfer coefficient, denoted CONST; 
• the Marshall et al. (2012) derived variant, denoted GEOM; 
• a mixing length variant similar to the approach of Eden and

Greatbatch (2008) and Cessi (2008) , denoted ML; 
• a scheme similar to that described in Visbeck et al. (1997) , de-

noted VMHS ∗. 

Each of these four variants are considered subject to two ap-

proximations, with implementation details given in the appropri-

ate sections. This first is where the GM eddy transfer coefficient is

assumed to be spatially constant. The second is one where the GM

eddy transfer coefficient has an imposed spatial structure set by

S from Eq. (34) , to be in line with more modern numerical mod-

els (e.g., Danabasoglu and Marshall, 2007; Gent and Danabasoglu,

2011 ). Where relevant all length scales are set equal to the Rossby

deformation radius L D = NH/ | f | . All the implemented variants are

coupled to the parameterised eddy energy Eq. (15) , although this

plays a prognostic role only for the GEOM and ML variants. 

The use of a prescribed spatial structure for the GM eddy trans-

fer coefficient contradicts somewhat with the original intention of

the scheme described in Visbeck et al. (1997) . Thus a variant, de-

noted VMHS, is additionally considered, which uses the full local

dependence as specified in Eq. (33) . Note, however, the length scale

is still set equal to the Rossby deformation radius, which differs

from the length scale used in Visbeck et al. (1997) . 
Table 3 

Parameter values employed in the GEOM calculations. The v

0 . 2 N m 

−2 , λ = 2 × 10 −7 s −1 and α = 0 . 1 . 

Parameter Values 

τ 0 0.01, 0.05 to 1.00 in 0.05 spacing 

λ (0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0) × 1

α (0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.20, 0.30, 0.
The four parameterisation variants differ in their functional de-

endence on the eddy energy and the mean stratification, as sum-

arised in Table 2 . 

. Spatially constant Gent–McWilliams eddy transfer coefficient 

.1. Implementation details 

In this section the case of spatially constant GM eddy trans-

er coefficient is considered, employing the CONST, GEOM, ML and

MHS ∗ variants described in Section 3.3 . The CONST variant is sim-

ly employed by taking a constant value of κ . To obtain a spatially

onstant GM eddy transfer coefficient for the GEOM variant with

= αE(N/M 

2 ) , the terms are appropriately re-arranged, and inte-

rating over the domain leads to 

= α

∫ ∫ 
E d y d z ∫ ∫ 

(M 

2 /N) d y d z 
. (35)

he domain integrated eddy energy 
∫ ∫ 

E d y d z is computed by solv-

ng (15) . 

For the ML variant, an analogous approach yields 

= αML 

∫ ∫ √ 

E d y d z ∫ ∫ 
(1 /L ) d y d z 

. 

owever the domain integral of the square root of the eddy en-

rgy is not available. Use of the Cauchy–Schwarz inequality (e.g.,

q. B.1 with p = q = 2 ) leads to 

 ∫ √ 

E d y d z ≤
√ 

L y L z 

√ ∫ ∫ 
E d y d z , 

nd so the ML variant is implemented as 

= α1 

√ 

L y L z 
√ ∫ ∫ 

E d y d z ∫ ∫ 
(1 /L ) d y d z 

. (36)

ere a prescribed value for the new parameter α1 is chosen. 

For the VMHS ∗ variant the form 

= α2 

∫ ∫ 
L 2 (M 

2 /N) d y d z 

L y L z 
, (37)

s used. The VMHS variant with fully local dependence on the

ean state is considered in Section 5 . 

The initial state is spun up from rest first using the GEOM vari-

nt, with τ0 = 0 . 2 N m 

−2 , λ = 2 × 10 −7 s −1 and α = 0 . 1 . The asso-

iated initial and equilibrium states are shown in Fig. 1 . The equi-

ibrium state here has a transport of around 77 Sv and a domain

verage parameterised eddy energy (divided by the reference den-

ity ρ0 ) of around 0 . 01 m 

2 s −2 , the latter being similar to the level

iven in the observations of Meredith and Hogg (2006) . From this

ontrol run and taking the mixing length L to be the Rossby de-

ormation radius L D = NH/ | f | for the ML and VMHS ∗ variants, the

mergent κ and end state ρ# are used to calibrate κ for CONST, α1 

or the ML variant in (36) and α2 for the VMHS ∗ variant in (37) ,

hich are used for subsequent calculations where τ 0 and λ are

aried. The GEOM parameter values used in the parameter sweep

s given in Table 3 . 
alue for the control run displayed in Fig. 1 is for τ0 = 

Units Description 

N m 

−2 peak wind stress 

0 −7 s −1 eddy energy dissipation rate 

40, 0.50) — non-dimensional GEOM factor 
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Fig. 1. Initial stratification and equilibrium stratification from the spinup of the control run with τ0 = 0 . 2 N m 

−2 , λ = 2 × 10 −7 s −1 and α = 0 . 1 using the GEOM variant 

(leading to an emergent κ = 800 m 

2 s −1 ). The same contour levels are used for both panels. 

Fig. 2. Transport at varying ( a ) peak wind forcing τ 0 and ( b ) eddy energy dissipation rate λ for the four parameterisation variants. 
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.2. Results 

The transport associated with the equilibrium states with vary-

ng values for τ 0 and λ are shown in Fig. 2 . It is clear that CONST

nd VMHS ∗ show significant sensitivity of the mean transport with

espect to the peak wind stress. By contrast, the ML variant shows

educed sensitivity. Notably, the GEOM variant shows very low

ensitivity to varying wind stress, and thus exhibits emergent eddy

aturation. For varying eddy energy dissipation rate λ, CONST and

MHS ∗ are by construction independent of λ, while the ML and

EOM variants show increased transport with increased dissipa-

ion. These observed behaviours are consistent with the analysis

iven in Section 2.2 . 

Denoting the domain average by 

·〉 = 

1 

L y L z 

∫ ∫ 
(·) d y d z, (38)

he emergent κ and 〈 E 〉 are shown in Fig. 3 . The ML and VMHS ∗

ariants show a sub-linear dependence of the emergent κ on the

eak wind stress τ 0 , while the GEOM variant exhibits an almost

inear dependence. For the ML and GEOM variants the emergent

decreases with increasing λ. The scaling of κ and 〈 E 〉 with peak

ind stress τ 0 , for the GEOM variant, is consistent with the ar-

uments given in Section 2.2 . It is found here that increasing the

issipation decreases the emergent eddy energy level. 

The emergent eddy saturation property of the GEOM variant is

ot limited to this parameter set. Fig. 4 shows contour plots of

he transport in ( τ , λ) and ( τ , α) parameter space. As expected,
0 0 
here is very little dependence of the transport on τ 0 and only at

xtreme parameter values is a variability seen in the contour plot.

his shows robustness of the insensitivity to strength of peak wind

ver a range of parameters. 

To show how the other emergent properties of the GEOM vari-

nt depend on α and λ, the transport, GM eddy transfer coefficient,

nd domain averaged eddy energy over ( λ, α) parameter space are

hown in Fig. 5 . Increasing α reduces the mean transport as ex-

ected, from the discussion in Section 2.2 . The GM eddy transfer

oefficient κ is found to increase with increasing α. The values

f the emergent κ are consistent with the emergent transport, al-

hough large values are observed where the parameterised eddies

re very efficient (small λ, large α). The eddy energy has a more

omplex dependence on α, but for weaker dissipation increasing α
eads to a decrease in the eddy energy. 

. Stratification dependent Gent–McWilliams eddy transfer 

oefficient 

.1. Implementation details 

In this section a dependence of the GM eddy transfer coeffi-

ient on the vertical stratification is introduced, again with four

ariants based upon the CONST, GEOM, ML, and VMHS ∗ discussed

n Section 3.2 . The simplest CONST variant is now replaced with

he form proposed in Ferreira et al. (2005) 

= κ0 S, S = 

N 

2 

N 

2 
. (39)
ref 
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Fig. 3. Emergent ( a , b ) κ and ( c , d ) domain integrated eddy energy 〈 E 〉 at varying peak wind forcing τ 0 ( a , c ) and eddy energy dissipation rate λ ( b , d ), for the four 

parameterisation variants. 

Fig. 4. Contour plot of the emergent transport (in Sv) for the GEOM variant over ( a ) ( τ 0 , λ) space (with α = 0 . 1 ), and ( b ) ( τ 0 , α) space (with λ = 2 × 10 −7 s −1 ≈ 0 . 017 day 
−1 

). 

The values for the parameter sweep are given in Table 3 . 
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This imparts a vertical as well as horizontal spatial structure to the

GM eddy transfer coefficient. Unlike Ferreira et al. (2005) , how-

ever, since the simple dynamical model employed here has no

restoring boundary conditions at the surface to maintain a sur-

face stratification, the use of N 

2 
ref 

at the ocean surface as in Ferreira

et al. (2005) is perhaps not a suitable choice. Instead, N 

2 
ref 

is taken

to be N 

2 
min 

here. With this, no tapering of S is employed. A Gaus-

sian ten by ten point smoother with a three point standard devi-

ation was applied to the density field ρ# before taking derivatives

to form S, for numerical stability reasons. 

The GEOM variant becomes κ = κ0 S = αE(N/M 

2 ) , where again

α is a prescribed constant. Re-arranging, integrating over the do-

main, and now assuming that κ0 is a constant in space leads to

κ = κ0 S = 

(
α

∫ ∫ 
E d y d z ∫ ∫ 

(M 

2 /N) S d y d z 

)
S. (40)

The domain integrated eddy energy 
∫ ∫ 

E d y d z is computed by solv-

ing Eq. (15) as before. 
For the ML variant, an analogous approach yields 

= 

(
αML 

∫ ∫ √ 

E d y d z ∫ ∫ 
(S/L ) d y d z 

)
S, 

nd use of the Cauchy–Schwarz inequality leads to 

= 

( 

α1 

√ 

L y L z 
√ ∫ ∫ 

E d y d z ∫ ∫ 
(S/L ) d y d z 

) 

S. (41)

ere a prescribed value for the parameter α1 is again chosen. 

For the variant based on Visbeck et al. (1997) , with the GM

ddy transfer coefficient given by κ = κ0 S = αVMHS (M 

2 /N) L 2 , two

orms are used. Assuming κ0 is a constant in space results in the

MHS ∗ variant 

= 

(
α2 

∫ ∫ 
L 2 (M 

2 /N) d y d z ∫ ∫ 
S d y d z 

)
S. (42)
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Fig. 5. Contour plot of the emergent ( a ) transport (in Sv), ( b ) κ (in m 

2 s −1 ) and ( c ) 〈 E 〉 (in m 

2 s −2 ) of the GEOM variant over λ and α space, at τ0 = 0 . 2 N m 

−2 . The values 

for the parameter sweep are given in Table 3 . 

Fig. 6. Equilibrium stratification and final GM eddy transfer coefficient distribution of the control run with α = 0 . 1 , τ0 = 0 . 2 N m 

−2 and λ = 2 × 10 −7 s −1 using the GEOM 

variant. This leads to an emergent reference GM eddy transfer coefficient κ0 = 10 . 1 m 

2 s −1 with the choice of N 2 
ref 

= N 2 
min 

, and a domain maximum GM eddy transfer 

coefficient of κmax = 2900 m 

2 s −1 . The contour levels for the stratification profile are the same as for Fig. 1 . 
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lternatively the form (33) may be used directly, resulting in the

MHS variant 

= α3 
M 

2 

N 

L 2 , (43) 

here now α3 is a prescribed constant. This latter form introduces

n additional explicit dependence on the local value of M and the

ocal mixing length L . 

As for the previous constant GM eddy transfer coefficient case,

he initial state is spun up from rest first using the GEOM vari-

nt, with τ0 = 0 . 2 N m 

−2 , λ = 2 × 10 −7 s −1 and α = 0 . 1 . The ini-

ial state is the same one shown in Fig. 1 , and Fig. 6 shows the

quilibrium stratification profile and the associated spatially vary-

ng GM eddy transfer coefficient. This equilibrium state here has

 transport of around 66 Sv and a domain average parameterised

ddy energy of around 0 . 009 m 

2 s −2 . From this control run and

aking the mixing length L to be the Rossby deformation radius

 D = NH/ | f | as before for the ML and VMHS ∗ variants, the emer-

ent κ and end state ρ# are used to calibrate κ0 for CONST in

39) , α1 for ML in (41) and α2 for the VMHS ∗ in (42) , which are

sed for subsequent calculations where τ and λ are varied. For
0 
he direct VMHS variant, the functional dependence of κ on M and

 differs from the functional dependence specified by S . Here an

nitial value of α3 in (43) is chosen manually so that a similar level

f transport is obtained, though note that the results presented

ere are still slightly detuned. Other simulation details are kept

he same as in Table 1 except that the convergence tolerance ξ 2 

s now set to 5 × 10 −13 , as there is more variability given that κ
s allowed to vary over space. No minimum or maximum values of

are imposed. Calculations are restarted from a previously con-

erged calculation for 500 model years, and those that do not con-

erge within the period are excluded from the diagrams. The same

alues displayed in Table 3 are used for the parameter sweep. 

.2. Results 

The resulting transport with varying τ 0 and λ for the five

arameterisation variants is shown in Fig. 7 . The GEOM variant,

hough possessing a slight increase in transport as τ 0 is increased,

gain exhibits relative insensitivity of the transport to changes in

ind forcing. It is notable that the ML variant also show a re-

uction of the sensitivity of the mean transport with respect to
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Fig. 7. Transport at varying ( a ) peak wind forcing τ 0 and ( b ) eddy energy dissipation rate λ for the five parameterisation variants, showing only converged solutions. 

Fig. 8. Emergent domain maximum GM eddy transfer coefficient κmax (panel a , b ) and domain integrated eddy energy 〈 E 〉 (panels c , d ) at varying peak wind forcing τ 0 

(panels a , c ) and eddy energy dissipation rate λ (panels b , d ), for the five parameterisation variants. Non-converged solutions have been omitted. 
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the peak wind stress compared to its respective case with spa-

tially constant GM eddy transfer coefficient. The GEOM variant

once again exhibits a strong dependence on the eddy energy dissi-

pation rate λ. 

Fig. 8 shows the emergent domain maximum GM eddy transfer

coefficient κmax , and 〈 E 〉 , for varying τ 0 and λ, again only show-

ing converged solutions. As before, for varying τ 0 , a roughly linear

trend of κ with τ 0 is seen in the GEOM variant. Varying λ again

does not affect CONST, VMHS ∗, or VMHS by definition, while this

has some effect on the ML variant and somewhat larger effect on

the GEOM variant. For the ML and especially GEOM variants, in-

creasing λ decreases κ0 . Further, the eddy energy level is found to

decrease with increased dissipation. 

The emergent eddy saturation for the GEOM variant is again

found to be robust over a range of parameters, as shown in Fig. 9 .

Fig. 10 shows contour plots of the emergent properties with vary-

ing λ and α. In both figures, non-converged states have been

greyed out. Although showing much more variability than the

analogous spatially constant κ case in Fig. 5 , there is a pattern

of increased transport at increasing λ or decreasing α, and of de-

creased κ0 at increasing λ or decreasing α. Note the region with

low λ and large α has small transport, large 〈 E 〉 and thus large

κmax . The resulting parameterised eddies in the large λ and small

α region are very weak, and it may be seen that the oscillations

of the mean state appears to persist and have not been deemed to

converge according to the imposed criterion. 
. Conclusions 

.1. Summary 

In this article the problem of emergent eddy saturation in

oarse resolution ocean modelling with parameterised mesoscale

ddies has been considered. Specifically, an idealised zonally av-

raged channel configuration was used to test the sensitivity of

ean zonal transports with respect to the strength of surface

ind forcing, and additionally with respect to the strength of to-

al eddy energy dissipation and closure parameters. Variants of

he Gent and McWilliams (1990) scheme have been tested, with

 constant GM eddy transfer coefficient, a GM eddy transfer co-

fficient with a stratification dependence based upon that de-

cribed in Visbeck et al. (1997) , a GM eddy transfer coefficient

ith a mixing-length inspired energy dependence (e.g., Eden and

reatbatch, 2008; Cessi, 2008 ), and a GM eddy transfer coeffi-

ient derived from the geometric framework described by Marshall

t al. (2012) . For the schemes with eddy energy dependence a pa-

ameterised equation for the domain integrated eddy energy was

olved. By integrating over the domain, specific closures were de-

ived, falling into two classes — one where the GM eddy trans-

er coefficient was spatially constant, and one where the GM eddy

ransfer coefficient had a spatial structure based upon that de-

cribed in Ferreira et al. (2005) . A form with additional stratifica-
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Fig. 9. Contour plot of the emergent transport over ( a ) ( τ 0 , λ) space (with α = 0 . 1 ), and ( b ) ( τ 0 , α) space (with λ = 2 × 10 −7 s −1 ≈ 0 . 017 day 
−1 

). Regions with non-converged 

solutions have been greyed out. The values for the parameter sweep are given in Table 3 . 

Fig. 10. Contour plot of emergent ( a ) transport (in Sv), ( b ) κ0 (where N 2 
ref 

= N 2 
min 

, in m 

2 s −1 ) and ( c ) 〈 E 〉 (in m 

2 s −2 ) of the GEOM variant over λ and α space, at 

τ0 = 0 . 2 N m 

−2 . The values for the parameter sweep are given in Table 3 . Regions with non-converged solutions have been greyed out. 
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ion dependence, closer to the original proposal of Visbeck et al.

1997) , was additionally tested. 

It was found that the scheme derived from the geometric

ramework of Marshall et al. (2012) led to almost complete emer-

ent eddy saturation, with little or no significant dependence of

he mean transport on the surface wind stress magnitude. This

ack of dependence was additionally observed for a wide range

f eddy energy dissipation time scales and parameterisation pa-

ameter values. Moreover, it was found that the changes to the

quilibrium stratification profile with different values of peak wind

tress were small (not shown). Furthermore, the dependence of the

ransport and other emergent quantities are consistent with the

hysical and mathematical arguments given in Section 2.2 . On the

ther hand, the use of a basic spatially and temporally constant

M eddy transfer coefficient led to a very significant dependence

f the mean zonal transport with respect to the wind stress, sim-

lar to behaviour reported in low resolution ocean model tests de-

cribed in Munday et al. (2013) . Variants based upon the Visbeck

t al. (1997) and upon mixing length arguments were generally

ound to have a somewhat reduced sensitivity, but did not exhibit

ull eddy saturation. 
α  

b  
.2. Discussion and future work 

This work focuses on eddy saturation, but an equally important

rocess that has not been investigated in this work is the ability

f the GM eddy transfer coefficient variants in showing eddy com-

ensation. In particular, the extent of eddy compensation depends

pon both the magnitude and the spatial structure of the eddy

nduced transport, and the degree to which it cancels with the

ocal Eulerian circulation ( Meredith et al., 2012 ). The model con-

idered in this article has no representation for ocean basins and

ence is unsuitable for studying eddy compensation. An investiga-

ion into the ability of the Marshall et al. (2012) variant of the GM

ddy transfer coefficient in showing emergent eddy compensation

ould require a more sophisticated eddy energy budgets than the

ne employed here, and is left as future work. 

Assuming that the eddy energy is given via a parameterised

ddy energy budget, the only remaining freedom in the Marshall

t al. (2012) variant is in the specification of the non-dimensional

eometric parameter α, as all dimensional information on the

agnitude of the GM eddy transfer coefficient is already pro-

ided by the eddy energy and mean stratification. In this work

was chosen to have a constant value of 0.1, which was guided

y the diagnoses of the equilibrated states in a three-layer wind
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forced quasi-geostrophic double gyre simulation ( Marshall et al.,

2012 ) and an Eady spindown simulation of the hydrostatic prim-

itive equations ( Bachman et al., 2017 ). In diagnostic calculations

α is not a constant, and in particular α was found in Bachman

et al. (2017) to vary depending on whether the system is in a lin-

ear growth phase or in later phases of the spindown evolution. It is

perhaps of theoretical interest to have α evolving in time to cap-

ture the initial instability, finite-amplitude regime, and transition

into an equilibrated state, although this is beyond the scope of the

current work. 

In this paper we have found that the functional dependence for

the GM eddy transfer coefficient proposed in Marshall et al. (2012) ,

which incorporates energetic constraints through the solution of

a parameterised eddy energy budget, yields near total emergent

eddy saturation in a highly idealised configuration. While the de-

gree of saturation in the ocean is not known, numerical models

do appear to support this dynamically interesting regime, and this

parameterisation variant is able to show emergent eddy saturation.

A clear extension would be to implement and test this scheme in

a global ocean model. Since the GM scheme is normally already

built into global ocean circulation model as a core component, it

would appear the main additional challenge would be (i) to add

a parameterised eddy energy budget that couples with the GM

scheme, and (ii) derive an appropriate form for a local parame-

terised eddy energy budget. The domain integrated eddy energy

budget employed here is much too restrictive for use in a global

ocean model. We envisage the scheme may be implemented into

an operational global circulation model as follows: 

1. Solve for the provisional eddy transport velocities, with a pre-

ferred vertical profile for the eddy transfer coefficient, utilising

the standard GM scheme; 

2. Vertically integrate the implied eddy form stress and com-

pare with the theoretical prediction derived from the Marshall

et al. (2012) geometric framework, using a prescribed non-

dimensional parameter α; 

3. Solve for the parameterised, vertically integrated eddy energy

budget, analogous to Eden and Greatbatch (2008) but for the

full, rather than kinetic, eddy energy; 

4. Rescale the eddy transport velocities, equivalent to rescaling the

GM eddy transfer coefficient, uniformly over the vertical col-

umn such that each vertical integral of the eddy form stress

matches the theoretical prediction from the Marshall et al.

(2012) geometric framework. 

By applying the energetic constraint in the vertical integral of

the eddy form stresses, the recipe given above succeeds in retain-

ing the positive-definite conversion of mean to eddy energy asso-

ciated with the GM scheme, as well as the derived energetic con-

straint given in the Marshall et al. (2012) geometric framework. 

In a closure for ocean turbulence one must typically tune the

closure parameters in order to match a desired large-scale or

mean state of interest. However for many key questions in phys-

ical oceanography, it is not only the mean state itself, but also the

sensitivity of that mean state to external changes, which is of in-

terest. This is, for example, critical to the understanding of the long

time response of the ocean and broader climate system to long

term forcing changes. The Gent–McWilliams closure is now a key

component in large scale climate relevant ocean modelling, but it

has been found that existing variants of the scheme in wide use,

in particular with a constant Gent–McWilliams eddy transfer co-

efficient, do not yield accurate representations of ocean transport

sensitivities with respect to changed in wind forcing (e.g., Farneti

and Gent, 2011; Gent and Danabasoglu, 2011 ). This work provides

the first evidence that the phenomenon of eddy saturation may be

captured without major changes to the existing Gent–McWilliams

closure, simply by employing the Marshall et al. (2012) form for
he GM eddy transfer coefficient, derived from first principles with

o tunable dimensional parameters, coupled with a parameterised

ddy energy budget. A proposal on how this scheme may be im-

lemented into a global circulation model via the addition of a pa-

ameterised eddy energy equation has been given here. Investiga-

ions into implementing this into a general circulation model, as

ell as theoretical developments for a parameterised eddy energy

udget, are under investigation. 
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ppendix A. Eddy energetics 

In Section 2.1 the integrated mean energy equation is consid-

red. Here a corresponding integrated eddy energy equation is de-

ived. 

Eddy equations, associated with the mean Eq. (9) , are 

∂u 

′ z 
∂t 

+ u 

∂u 

′ z 
∂x 

+ v 
∂u 

′ z 
∂y 

+ w 

∂u 

′ z 
∂z 

+ u 

′ z ∂ u 

z 

∂x 
+ v ′ z ∂ u 

z 

∂y 
+ w 

′ z ∂ u 

z 

∂z 
− f v ′ z

= −u 

′ z ∂u 

′ z 
∂x 

z 

− v ′ z ∂u 

′ z 
∂y 

z 

− w 

′ z ∂u 

′ z 
∂z 

z 

− 1 

ρ0 

∂ p ′ z 
∂x 

+ F ′ z − D 

′ z , (A.1a)

∂v ′ z 
∂t 

+ u 

∂v ′ z 
∂x 

+ v 
∂v ′ z 
∂y 

+ w 

∂v ′ z 
∂z 

+ u 

′ z ∂ v 
z 

∂x 
+ v ′ z ∂ v 

z 

∂y 
+ w 

′ z ∂ v 
z 

∂z 
+ f u 

′ z 

= −u 

′ z ∂v ′ z 
∂x 

z 

− v ′ z ∂v ′ z 
∂y 

z 

− w 

′ z ∂v ′ z 
∂z 

z 

− 1 

ρ0 

∂ p ′ z 
∂y 

, (A.1b)

 = − 1 

ρ0 

∂ p ′ z 
∂z 

− gρ ′ z 
ρ0 

. (A.1c)

( . . . ) ′ z denotes an eddy component associated with a zonal average

t fixed height – for example ρ′ z = ρ − ρz . It is assumed through-

ut this section that f ′ z = 0 , and that g and ρ0 are spatially and

emporally constant. In the following it is further assumed that the

ean and eddy velocities 
(
0 , v z , w 

z 
)T 

and 

(
u ′ z , v ′ z , w 

′ z )T 
ar e incom-

ressible and have zero normal component on domain boundaries.

Multiplying Eq. (A.1a) by u ′ z , equation (A.1b) by v ′ z , zonally av-

raging at constant height, using the hydrostatic relation (A.1c) ,

nd integrating over the domain, leads to the integrated eddy ki-

etic energy budget 
 ∫ 

ρ0 Kd y d z = 

∫ ∫ 
ρ0 u 

′ z ( F ′ z − D 

′ z ) 
z 
d y d z 

−
∫ ∫ 

ρ0 

[
∂ u 

z 

∂y 
u 

′ z v ′ z z + 

∂ u 

z 

∂z 
u 

′ z w 

′ z z 

+ 

∂ v z 

∂y 
v ′ z v ′ z z + 

∂ v z 

∂z 
v ′ z w 

′ z z 
]

d y d z, 

−
∫ ∫ 

g w 

′ z ρ ′ z z d y d z, (A.2)

ith eddy kinetic energy (per unit volume) 

0 K = 

1 

ρ0 u 

′ z u 

′ z z + 

1 

ρ0 v ′ z v ′ z 
z 
. (A.3)
2 2 
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ow from the density equation 

∂ρ

∂t 
+ 

∂ ( uρ) 

∂x 
+ 

∂ ( v ρ) 

∂y 
+ 

∂ ( wρ) 

∂z 
= 0 , (A.4)

ultiplying by the height z , zonally averaging at constant height,

nd integrating over the domain, leads to 

 ∫ 
w 

′ z ρ ′ z z d y d z = 

∫ ∫ ∂ 
(
ρz z 

)
∂t 

d y d z −
∫ ∫ 

w 

z ρz d y d z 

= 

∫ ∫ ∂ 
(
ρ# z 

)
∂t 

d y d z − ∂ ( ρ∗z ) 

∂t 
d y d z 

−
∫ ∫ 

w 

z ρz d y d z, (A.5) 

here ρ∗ = ρ# − ρz is the difference between the two mean

ensities. Assuming that the eddy transport velocity ( 0 , v ∗, w 

∗) T 

as zero normal component on domain boundaries, multiplying

q. (2) by the height z and integrating over the domain yields 

 ∫ ∂ 
(
ρ# z 

)
∂t 

d y d z = 

∫ ∫ 
w 

# ρ# d y d z. (A.6)

ombining Eqs. (A .2) , (A .5) , and (A .6) leads to the integrated eddy

nergy budget 

d 

d t 

∫ ∫ 
ρ0 Ed y d z = 

∫ ∫ 
ρ0 u 

′ z ( F ′ z − D 

′ z ) 
z 
d y d z 

−
∫ ∫ 

ρ0 

[
∂ u 

z 

∂y 
u 

′ z v ′ z z + 

∂ u 

z 

∂z 
u 

′ z w 

′ z z 

+ 

∂ v z 

∂y 
v ′ z v ′ z z + 

∂ v z 

∂z 
v ′ z w 

′ z z 
]

d y d z 

−
∫ ∫ 

w 

∗gρ# d y d z −
∫ ∫ 

w 

z 
gρ∗d y d z, (A.7) 

ith total eddy energy (per unit volume) 

0 E = 

1 

2 

ρ0 u 

′ z u 

′ z z + 

1 

2 

ρ0 v ′ z v ′ z 
z − ρ∗gz. (A.8) 

The first right-hand-side term in Eq. (A.7) is the eddy energy

eneration due to forcing in the horizontal momentum equations.

he second right-hand-side term is the mean-to-eddy energy con-

ersion due to the eddy Reynolds stresses. The third right-hand-

ide term is the mean-to-eddy energy generation due to the eddy

ransport velocity, and corresponds exactly to the conversion term

ppearing in the mean energy Eq. (10) . The final term is an ad-

itional conversion term which arises from the direct application

f an average at constant height to the hydrostatic relation (see

he discussion in McDougall and McIntosh, 2001 , appendix B). Re-

lacing ρ# with ρz in Eq. (9c) would lead to the appearance of a

orresponding term in the integrated mean energy equation. 

ppendix B. Deriving Eq. (22) 

If both the GM eddy transfer coefficient and the eddy energy

issipation scale with the eddy energy, then there is an apparent

egeneracy in the eddy energy Eq. (15) . If, for example, the scaling

actors are constant, then the integrated eddy energy can be fac-

ored out, leading to a balance between the rates of eddy energy

eneration and dissipation. In this appendix this property is for-

alised somewhat via the use of appropriate integral inequalities. 

It is assumed that functions f and g are suitably smooth

uch that Hölder’s inequality (e.g., Doering and Gibbon, 1995 ,

ppendix A ) 

 

f g ‖ L 1 ≤ ‖ 

f ‖ L p ‖ 

g ‖ L q , ‖ 

f ‖ L p = 

(∫ 
| f | p d

)1 /p 

, 
1 

p 
+ 

1 

q 
= 1 , 

(B.1) 
ay be applied. Choosing the Hölder conjugates p = 2 and q = 2

i.e. a generalised Cauchy–Schwartz inequality) and applying the

bove inequality to the steady state eddy energy Eq. (15) leads to

‖ 

E ‖ L 1 ≤ α‖ 

E ‖ L 2 

∥∥∥∥ | f | ρ0 

gN 

∣∣∣∣∂ u 

z 

∂z 

∣∣∣∣
∥∥∥∥

L 2 

. (B.2) 

otice that the L 1 norm is the integral of the absolute value, and

o ‖ E ‖ L 1 = 

∫ ∫ 
E d y d z. From this, it follows that 

λ

α

‖ E‖ L 1 

‖ E‖ L 2 
= 

˜ C 

∥∥∥∥ | f | ρ0 

gN 

∣∣∣∣∂ u 

z 

∂z 

∣∣∣∣
∥∥∥∥

L 2 

, (B.3) 

or ˜ C ∈ (0 , 1] . Although ‖ E ‖ L 1 ≤ ‖ E ‖ L 2 (a consequence of Hölder’s

nequality), if ‖ E ‖ L 1 ≈ ‖ E ‖ L 2 then the relation (22) is suggested

rom this bound. Note that this implies a lower bound on the

eighted norm on the right hand side. 

Some more progress may be made if the norms of the deriva-

ives may be assumed to be small. Assuming a bounded Lip-

chitz domain, the ‖ E ‖ L 2 term may be controlled by utilising

he Gagliardo–Nirenberg interpolation inequality ( Nirenberg, 1959 ,

ection 2 ; see also Appendix A of Doering and Gibbon, 1995 ),

hich states that 

 D 

j f ‖ L p ≤ C 1 ‖ D 

m f ‖ 

a 
L r ‖ f ‖ 

1 −a 
L q + C 2 ‖ f ‖ L s , 

1 

p 
= 

j 

d 
+ 

(
1 

r 
− m 

d 

)
a + 

1 − a 

q 
(B.4) 

ith D being a weak derivative, d is the dimensionality of the do-

ain, 1 ≤ r , q ≤ ∞ , j / m ≤ a ≤ 1, and s > 0 is arbitrary. This does

ot cover some exceptional cases, though they are not of inter-

st here. The constants C 1, 2 only depend on the domain and the

hoice of the parameter values. For d = 2 here, taking j = 0 , p = 2

nd s = 1 , it is noted that m = 1 , r = 1 and a = 1 is one option

which is a form of the Sobolev inequality; e.g., Evans 1998 , Sec-

ion 5.6.1), and taking s = 1 and f = E results in 

 E ‖ L 2 ≤ C 1 ‖ D E ‖ L 1 + C 2 ‖ E ‖ L 1 . (B.5)

f m = 1 , r = 2 , a = 1 / 2 and q = 1 instead, then 

 E ‖ L 2 ≤ C 1 ‖ D E ‖ 

1 / 2 

L 2 
‖ E ‖ 

1 / 2 

L 1 
+ C 2 ‖ E ‖ L 1 , (B.6)

hich is analogous to the inequality of Nash (1958) . Other possi-

ilities exist involving higher derivatives. Either way, assuming that

he terms involving the derivatives are small compared to C 2 ‖ E‖ L 1 ,
hen the relation (22) again follows, with a constant of proportion-

lity that only depends on the domain and the parameter values

hosen in the Gagliardo–Nirenberg interpolation inequality and is

ounded away from zero and infinity. Again, this implies a lower

ound on the weighted norm on the right hand side. 
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