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Continuous-time Markov chains as transformers
of unbounded observables

Vincent Danos1, Tobias Heindel2, Ilias Garnier1, Jakob Grue Simonsen2

1 École Normale Supérieure
2 University of Copenhagen, DIKU

Abstract. This paper provides broad sufficient conditions for the com-
putability of time-dependent averages of stochastic processes of the
form f(Xt) where Xt is a continuous-time Markov chain (CTMC), and f
is a real-valued function (aka an observable). We consider chains with
values in a countable state space S, and possibly unbounded fs.
Observables are seen as generalised predicates on S and chains are in-
terpreted as transformers of such generalised predicates, mapping each
observable f to a new observable Ptf defined as (Ptf)(x) = Ex(f(Xt)),
which represents the mean value of f at time time t as a function of the
initial state x.
We obtain three results. First, the well-definedness of this operator in-
terpretation is obtained for a large class of chains and observables by
restricting Pt to judiciously chosen rescalings of the basic Banach space
C0(S) of S-indexed sequences which vanish at infinity. We prove, under
appropriate assumptions, that the restricted family Pt forms a strongly
continuous operator semigroup (equivalently the time evolution map
t 7→ Pt is continuous w.r.t. the usual topology on bounded operators).
The computability of the time evolution map follows by generic arguments
of constructive analysis. A key point here is that the assumptions are
flexible enough to accommodate unbounded observables, and we give
explicit examples of such using stochastic Petri nets and stochastic string
rewriting. Thirdly, we show that if the rate matrix (aka the q-matrix)
of the CTMC is locally algebraic on a subspace containing f , the time
evolution of projections t 7→ (Ptf)(x) is PTIME computable for each x.
These results provide a functional analytic alternative to Monte Carlo
simulation as test bed for mean-field approximations, moment closure,
and similar techniques that are fast, but lack absolute error guarantees.

1 Introduction

The study of properties of stochastic processes is a currently highly active field of
research in computer science, but has been avidly studied in mathematics even
prior to Kolmogorov’s development of the axiomatic approach to probability.
For the particular case of continuous-time Markov chains (CTMCs), the crucial
property of interest is how it acts on a function from its underlying state space to
the reals – a “generalised predicate” in analogy to the usual notion of predicate
transformers in computer science [Koz83]. Here, we are interested in the problem



of computing time-dependent expectations of real-valued functions of the state
space (so-called observables) on a continuous-time Markov chain Xt. Ultimately,
one wants provably correct, practical algorithms that given some continuous-time
Markov chain Xt and some observable f computes the transient conditional mean
t 7→ (x 7→ Ex(f(Xt))), i.e., the average of f conditioned on the initial state as
a function of time. However, it is not a priori clear that this function is even
computable let alone practically so; hence, it must be established that there is
an algorithm that computes the transient conditional mean to arbitrary desired
precision. As the basic objects are typically (computable) real numbers, we will
employ the type 2 theory of effectivity (TTE) for computability.

It is useful to recall the nature of the objects that we manipulate and want
to compute in the finite case. A continuous-time Markov chain (CTMC) on
a finite state space S is entirely captured by its q-matrix, which is an S× S-
indexed real matrix in which every row sums to zero and all negative entries lie
on the diagonal. Any finite q-matrix Q induces a semigroup t 7→ Pt = etQ which
describes the time evolution of the CTMC. For any π on S (viewed as a row
vector), the map t 7→ πPt corresponds to the probability of being at any given
state at time t for the initial probabilistic state π. Therefore, if X0 is distributed
according to π, the associated stochastic process Xt is distributed according
to πPt. Dually, one can interpret a CTMC as a transformer of observables, using
the discrete time setting [Koz83] as an analogy. For any f : S → R (seen as a
column vector), Ptf = (x 7→

∑
y∈S pt,xyf(y)) is the vector of conditional means3

of f at time t as a function of the initial state. The function we seek to compute
is precisely t 7→ Ptf . Formally, Ptf is the (column) vector of conditional means
(i.e., (Ptf)(x) = Ex(f(Xt)) for x ∈ S) where Xt is the CTMC with transition
function Pt. For the finite state case, t 7→ Ptf = etQf is the unique solution to
the initial value problem

d
dtut = Qut
u0 = f

(1)

and this can be solved by any method for computing matrix exponentials or
numerical solvers for finite ODEs. In the countably infinite state case, observ-
ables are possibly unbounded–this makes computing transient conditional means
fundamentally harder than in the finite case and calls for more sophisticated
mathematics, as we shall describe in § 3.2.

For motivation, we give two paradigmatic examples of transient means. The
classic example of a stochastic process of the form f(Xt), i.e., a pair of a
CTMC Xt and an observable f , where Xt models a set of chemical reactions
with the molecule count of a certain chemical species as observable: states of Xt

are multisets over a finite set of species; then, we are interested in computing the
evolution of the mean count of a certain species.

3 By definition, Ex(f(Xt)) =
∫
ω∈Ω f(Xt(ω)) dpx for some suitable probability space

(Ω, p), where px is the probability measure p on Ω conditioned by X0 = x. Performing
a change of variables, Ex(f(Xt)) =

∫
S f dX

∗
t (px), where X∗t (px) is the image measure

of px through Xt. Since pt,x− = X∗t (px)(−), we deduce Ptf(x) = Ex(f(Xt)).



Another natural example native to computer science is a stochastic inter-
pretation of any string rewriting system as a CTMC Xt. An obvious class of
observables for string rewriting are functions f that count the occurrence of
a certain word as sub-string in each state of the CTMC Xt; note that this is
different from counting “molecules”, as there is always only a singe word! For
example, consider the string rewriting system with the single rule a � aba and
initial state a: the mean occurrence count of the letter a grows as the exponential
function et while the mean occurrence count of the word aa is zero at all times;
adding the rule ba � ab does not change the mean a-count but renders the mean
count of the word aa non-trivial.

Note that these two classes of models are only meant as simple examples
and the results of this paper are not geared towards any particular modelling
language for CTMCs; the results apply equally well to Kappa models [DFF+10]
or stochastic graph transformation.4

Our main result is a sufficient condition for Ex(f(Xt)) to be computable,
powerful enough to encompass many interesting unbounded observables. We
proceed by construction of a suitable computable Banach space where to restrict
our operators Pt, in such a way that they form a strongly continuous semigroup
(SCSG). It follows that the initial value problems corresponding to observables in
the domain of the generator of the semigroup admit computable solutions. The
construction of our Banach space rests on functional analytic techniques recently
developed in Ref. [Spi12,Spi15], which we combine with the work on SCSGs by
Weihrauch & Zhong [WZ07].

We do not assume that the reader has some acquaintance with continuous-
time Markov chains on a countable state space and recall the basic concepts of
transition functions and q-matrices (Def. 5 and 6) in the preliminaries. Having
said that, and both in order to save space and to keep the logic of the paper
clearly apparent, most of the mathematical material used is postponed to a series
of appendices.

2 Two motivating examples of CTMCs with observables

We illustrate our constructions with: (i) chemical reaction networks (CRN), aka
stochastic Petri nets, and (ii) stochastic string rewriting as a simple example of
(rule-based) modelling. In both cases, the construction of the q-matrix implied
by a model is readily done, and so is the definition of a natural set of unbounded
observables with clear relevance to the dynamics of a model: word occurrence
counts for stochastic string rewriting (Def. 2) and multiset inclusions for Petri
nets (Def. 3).

4 In fact, string rewriting is simply the restriction of stochastic graph transforma-
tion [HLM06] to directed, connected, acyclic, edge labelled graphs with in and out
degree of all nodes bounded by one, i.e., to graphs consisting of a unique maximal
path.



2.1 Stochastic string rewriting and word occurrences

Stochastic string rewriting can be thought of as never ending, fair competition
between all redexes of rules, “racing” for reduction; the formal definition is as
follows, in perfect analogy to Ref. [HLM06] which covers the case of graphs.

Definition 1 (Stochastic string rewriting). For each rule ρ = l � r ∈ Σ+×
Σ+ we define the q-matrix of ρ, denoted by Qρ, as the q-matrix Qρ = (qρuv)u,v∈Σ+

on the state space of words Σ+ with off-diagonal entries

qρuv =
∣∣{(w,w′) ∈ Σ∗ ×Σ∗

∣∣ u = wlw′, v = wrw′
}∣∣

for each pair of words u, v ∈ Σ+ such that u 6= v, and diagonal entries, qρuu =
−
∑
v 6=u q

ρ
uv for all u ∈ Σ+. For a finite set of rules R ⊆ Σ+ ×Σ+, we define

QR =
∑
ρ∈RQρ, and with additional choices of rate constants k : R � Q+, we

define QR,k =
∑
ρ∈R kρQρ.

For a given rule setR, each entry qRuv of the q-matrix corresponds to the propensity
to rewrite: it is just the number of ways in which u can be rewritten to v. We
shall usually work without rate constants for the sake of readability. Note that
the use of Σ+ for the left and right hand side of rules is convenient to get string
rewriting as a special case of graph transformation in a straightforward manner.

The occurrence counting function of a word as sub-string in the state of the
CTMC of R is as follows.

Definition 2 (Word counting functions). Let w ∈ Σ+ be a word. The w-
counting function, denoted by ]w : Σ+ → R≥0, maps each word x ∈ Σ+ to
]w(x) = |{(u, v) ∈ Σ∗ ×Σ∗ | x = uwv}|.

2.2 Stochastic Petri nets and sub-multiset occurrences

We recall the definition of stochastic Petri nets and occurrence counting of a
multisets. Note that for the purposes of the present paper, places and species are
synonymous.

Definition 3 (Multisets and multiset occurrences). A multiset over a
finite set P of places is a function x : P → N that maps each place to the number
of tokens in that place. Given a multiset, x ∈ NP , the x-occurrence counting
function ]x : NP → N is defined by

]x(y) =
{

y!
(y−x)! x ≤ y
0 otherwise

where z! =
∏
p∈P z(p)! is the multiset factorial for all z ∈ NP .

Definition 4 (Stochastic Petri net). Let P be a finite set of places. A stochas-
tic Petri net over P is a set

T ⊆ NP × R>0 × NP



where NP is the set of multisets over P, which are called markings of the net;
elements of the set T are called transitions. The q-matrix Ql,k,r on the set of
markings for a transition (l, k, r) ≡ l→k r ∈ T has off-diagonal entries

ql,k,rxy =
{
k · ]l(x) ]l(x) > 0, y = x− l + r

0 otherwise

where addition and subtraction is extended pointwise to NP . The q-matrix of T
is QT =

∑
(l,k,r)∈T Ql,k,r.

3 Preliminaries

For the remainder of the paper, we fix an at most countable set S as state space.

3.1 Transition functions and q-matrices

We first recall the basic definitions of transition functions and q-matrices. We
make the usual assumptions [And91] one needs to work comfortably: namely that
q-matrices are stable and conservative and that transition functions are standard
and also minimal as described at the end of § 3.1 (and detailed in Appendix A).

With these assumptions in place, transition functions and q-matrices determine
each other, and one can freely work with one or the other as is most convenient.

Definition 5 (Standard transition function [And91, p. 5f.]). A transition
function on S is a family {Pt}t∈R≥0 of S × S-matrices Pt = (pt,xy)x,y∈S with
non-negative, real entries pt,xy such that

1. limt↘0 pt,xx = 1 for all x ∈ S;
2. limt↘0 pt,xy = 0 for all x, y ∈ S such that y 6= x;
3. Pt+s = PtPs = (

∑
z∈S ps,xzpt,zy )x,y∈S for all s, t ∈ R≥0; and

4.
∑
z∈S pt,xz ≤ 1 for all x ∈ S and t ∈ R≥0.

Thus, each row of a transition function corresponds to a sub-probability measure,
and transition functions converge entry-wise to the identity matrix at time zero.
Unless stated otherwise, all transition functions in this paper are standard.

Taking entry-wise derivatives at time 0 gives a q-matrix.
Definition 6 (q-matrix). A q-matrix on S is an S× S-matrix Q = (qxy)x,y∈S
with real entries qxy such that qxy ≥ 0 (if x 6= y), qxx ≤ 0, and

∑
z∈S qxz = 0

for all x, y ∈ S.
Conversely, for each q-matrix, there exists a unique entry-wise minimal transition
function that solves Equation (2) [And91, Theorem 2.2],

d
dtPt = QPt, P0 = I (2)

which is called the transition function of Q. From now on, we assume that all
transition functions are minimal solutions to Equation (2) for some q-matrix Q
(cf. Definition 15, see also [Nor98, p. 69]).



3.2 The Abstract Cauchy problem for Ptf

Abstract Cauchy problems (ACPs) in Banach spaces [Ein52], are the classic
generalisation of finite-dimensional initial value problems. (See Appendices C
and D for details.) Concretely, we want to obtain Ptf as unique solution ut of
the following generalisation of our earlier equation (1):

d
dtut = Qut (t ≥ 0)
u0 = f

(acp)

where f is an observable and Q is a linear operator which plays the role of the
q-matrix.

There are a few points worth noting. First, the topological vector space of all
observables RS cannot be equipped with a suitable complete norm. Therefore, one
has to look for a Banach subspace B ⊂ RS wherein to interpret the above equation.
There are several ways to do this, and they are not equally interesting. Second,
as Ptf = ut is the desired solution, and P0 = I, it follows that d

dtPtf |t=0 = Qf .
If this derivative does not exist, Qf is simply not defined. In fact, as is clear from
the examples, we can only expect Q to be partially defined and an unbounded
operator.5 On the positive side, if Pt is a strongly continuous semigroup (Def. 20)
on B, meaning limh↘0 Phf = f for all f in B, and we take Q as its generator
defined on a subspace of B (Def. 21) by the above formula, then Ptf is the unique
solution of (acp), provided f is in the domain of Q [EN00, Proposition II.6.2].

Even better, in this case, not only does (acp) have Ptf as unique solution,
but we get an explicit approximation scheme:

Ptf = lim
n→∞

etAnf (3)

where θ is a constant of the SCSG such that nI −Q is invertible for n > θ and
An = nQ(nI −Q)−1 is called a Yosida approximant.6 The Yosida approximants
are the cornerstone of the generation theorems [EN00, Corollary 3.6] that allow
one to pass from the generator Q to the corresponding SCSG. The constant θ
also bounds the growth of the SCSG in norm, that is to say ‖Pt‖ ≤ Meθt for
some M . This should already make clear that Equation (3) is crucial to obtain
error bounds for results on the computability of SCSGs. In fact it is the starting
point of the proof of the main result on the computability of SCSGs [WZ07,
Theorem 5.4.2,p. 521].

It remains to see whether we can find a Banach space to build ACPs which
accomodate interesting (specifically unbounded) observables.

5 Even when Qf is defined, one has to check Qf = Qf , that is to say: 1/h(Phf − f)
converges to Qf in the Banach space norm. But this will turn out to be easy compared
to finding sufficient conditions for Qf to be defined.

6 In case f does not belong to the domain of the infinitesimal generator Q, (3) will
generate a ‘mild’ solution that is a solution to the integral form of (acp) which might
not be differentiable everywhere.



solution
(finite S)

generalisation
(countably infinite S)

IVP
transient
distributions

d
dtπt = πtQ
π0 = π

πt = πeQt
πt = πPt

Pt SCSG on L1(S), in general

IVP
transient
conditional means

d
dtut = Qut
u0 = f

ut = eQtf

supi∈S−qii <∞
or Feller

supi∈S−qii =∞
not Feller

ut = Ptf
Pt SCSG on

L∞(S) or C0(S)

[Spi12, Theorem 6.3]
or

open problem
Table 1. Transition functions acting on Banach spaces: state of the art

3.3 Banach space wanted!

Table 1 gives an overview of initial value problems for transient distributions (first
row) and transient conditional means (second row). Transient distributions are
summable sequences, and transition functions form SCSGs [Reu57] and therefore
allow for a well-posed corresponding ACP. But the classic example of a Banach
space to reason about conditional means [RR72] is the space C0(S) of functions
vanishing at infinity, i.e., functions f : S → R such that for all ε > 0, the set
{x ∈ S | f(x) ≥ ε} is finite, equipped with the supremum norm (Def. 17). The
corresponding processes are called Feller transition functions [And91, § 1.5] and
verify a principle of finite velocity of information flow (for all t, y, pt,xy vanishes
as x goes to infinity).

4 Spieksma’s theorem

A solution is provided by a result of Spieksma [Spi12, Theorem 6.3], which
constructs a Banach space for a given q-matrix Q and an observable f of interest.
The formulation will be in terms of so-called drift functions.

Definition 7 (Drift function). Let Q be a q-matrix on S, and let c ∈ R.
A function W : S → R>0 is called a c-drift function for Q if for all x ∈ S
(QW )(x) :=

∑
y∈S qxyW (y) ≤ cW (x).

We will say that W is a drift function for Q if there exists c ∈ R such that it is a
c-drift function for Q. One can show that PtW ≤ ectW in this case. Thus, drift
functions control their own growth under the transition function.

We also need to work with weighted variants of C0(S).

Definition 8 (Weighted C0(S)-spaces). Let S be a set and let W : S→ R>0
be a positive real-valued function, referred to as a weight. The Banach space
C0(S,W ) consists of functions f : S → R such that f/W vanishes at infinity,
where (f/W)(x) = f(x)/W (x). The norm ‖_‖W on such functions f is ‖f‖W =
supx∈S |f(x)/W (x)|.



As C0(S,W ) is isometric to C0(S) it is indeed a Banach space. It is also a
closed subspace of L∞(S,W ), the set of functions such that f/W is bounded. We
will use later the fact that:

Lemma 1. Finite linear combinations of indicator functions,7 form a dense
subset of C0(S)

Indeed, suppose S = N for convenient notations, and define gn = f truncated
after n. It is easy to see that gn converges to f in the ‖_‖W norm. In fact,
‖gn − f‖W = supx>n |f(x)|/W (x)→ 0 iff f/W vanishes at infinity.

Now the idea is to find positive drift functions V,W for Q such that V ∈
C0(S,W ), i.e., such that V/W vanishes at infinity. Thus, both functions can grow
at most exponentially in mean and V is negligible compared to W at infinity.
Intuitively, functions on the order of V are as good as functions vanishing at
infinity, in the case of Feller processes [RR72], i.e., CTMCs such that transition
functions induce SCSGs on C0(S).

Theorem 1. Let Pt be a transition function on S with q-matrix Q, let V,W : S→
R>0 be drift functions for Q such that V ∈ C0(S,W ). Then:

1. Pt induces an SCSG on C0(S,W ).
2. For all f ∈ C0(S,W ), Ptf is given by Equation (3) in C0(S,W ) where Q is

the generator of Pt.

The first part of the theorem is proved in [Spi12, Theorem 6.3]; the second part
follows from the general theory of ACPs. Note that f does not need to be in the
domain of Q, in which case we only obtain a ‘mild’ solution to the ACP, i.e., a
solution to its integral form which might not be everywhere differentiable. If on
the other hand, f is in the domain of Q, then Ptf is continuously differentiable.

We have now covered the mathematical ground needed to make sense of
conditional means of not necessarily bounded observables. This, however, does
not immediately yield an algorithm for computing transient means, as it does not
yet ensure that transient means are computable even in presence of a complete
specification of the underlying system. Even transient conditional probabilities
can fail to be computable [AFR11]! Before we proceed to computability questions,
let us return to our two classes of examples.

4.1 Applications: string rewriting and Petri nets

We now give examples of drift functions for stochastic string rewriting and Petri
nets. The former case is well-behaved since the mean letter count grows at most
exponentially. The case of Petri nets will be more subtle and we shall give an
example of an explosive Petri net such that we can nevertheless reason about
conditional means of unbounded observables.

For string rewriting, we have canonical drift functions.
7 The indicator function 1x is defined as usual as 1x(y) = δxy.



Lemma 2 (Powers of length are drift functions). Let R ⊆ Σ+ ×Σ+ be a
finite string rewriting system and let n ∈ N+ be a positive natural number. There
exists a constant cn ∈ R>0 such that |_|n : Σ+ → R≥0 is a cn-drift function.

Proof. The proof is deferred to Appendix E.

Now, we can apply Spieksma’s method to get a Banach space for reasoning about
conditional means and moments of word counting functions.

Corollary 1 (Stochastic string rewriting). Let R be a finite string rewriting
system, let n ∈ N \ {0}, and let |_| : Σ+ � N be the word length function. The
transition function Pt of q-matrix QR is a SCSG on C0(Σ+, |_|n).

Thus, all higher conditional moments of word counting functions can be accom-
modated in a suitable Banach space. The case of Petri nets is more subtle, since,
in general, the (weighted) token count is not a drift function.

Example 1. Consider the Petri net with single transition 2A→1 3A and with one
place A. The token count ]A is not a drift function. In fact, the corresponding
CTMC is explosive (by [Spi15, Theorem 2.1]).

Our final example is an extension of the previous explosive CTMC with a new
species whose count can nevertheless be treated using Theorem 1.

Example 2 (Unobserved explosion). Consider the Petri net with transitions

{2A→1 3A,B →1 2B}.

The underlying CTMC is explosive, and we cannot apply Theorem 1 to compute
the transient conditional mean of the A-count for the exact same reason as in
Example 1. However, we can do so for the B-count, using the weight function
W = ]B

2 and observable f = ]B. Putting V = f allows to apply Spieksma’s
recipe (ruling out states with B-count 0 for convenience). The conditional mean
E2A+B(]B(Xt)) can be best understood by adding a coffin state, on which both
the A- and B-count are zero and in which the Markov chain resides after (the
first and only) explosion.

5 Computability

We follow the school of type-2 theory of effectivity, as reviewed in Appendix G
following [BHW08]. A real number x is computable iff there is a Turing machine
that on input d ∈ N (the desired precision), outputs a rational number r with
|r − x| < 2−d. Next, a function g : R → R is computable if there is a Turing
machine that, for each x ∈ R, takes an arbitrary Cauchy sequence with limit x as
input and generates a Cauchy sequence that converges to g(x)–where convergence
has to be sufficiently rapid, e.g., by using the dyadic representation of the reals.

Computability extends naturally to any Banach space B other than R. We
only need a recursively enumerable dense subset on which the norm, addition



and scalar multiplication are computable, thus making B a computable Banach
space (Definition 30); usually, the dense subset is induced by a basis of a dense
subspace. For weighted C0-spaces (with computable weight functions) and their
duals, we fix an arbitrary enumeration of all rational linear combinations of
indicator functions 1x; for the Banach space of bounded linear operators on
weighted C0-spaces we use the standard construction for continuous function
spaces [WZ07, Lemma 3.1]. A SCSG Pt is computable if the function t 7→ Pt
from the reals to the Banach space of bounded linear operators is computable.
The computable SCSGs correspond to those obtained from CTMCs through
Theorem 1.

For simplicity, motivated by the observation that we do not lose any of the
intended applications to rule-based modeling, we restrict to row- and column-
finite q-matrices with rational entries in our main result.

Theorem 2 (Computability of CTMCs as observation transformers).
Let Q be a q-matrix on S, let V,W : S→ R≥0 be positive drift functions for Q
such that V ∈ C0(S,W ). If

– the q-matrix Q is row- and column-finite, consists of rational entries, and is
computable as a function Q : S2 → Q, and

– W : S→ Q is computable,

the following hold.

1. The SCSG Pt, i.e., the function t 7→ Pt, is computable.
2. The evolution of conditional means (t, f) 7→ Ptf is computable.
3. The evolution of means (π, t, f) 7→ πPtf is computable for all π : S→ R such

that
∑
x∈S W (x)|π(x)| <∞.

Proof. We will apply a result by Weihrauch&Zhong on the computability of SC-
SGs [WZ07, Theorem 5.4]. Applying this result requires some extra information:

1. the SCSG Pt must be bounded in norm by eθt for some positive constant θ;
2. we must have a recursive enumeration of a dense subset of the graph of the

infinitesimal generator of the SCSG Pt.

We first show that the constant θ, featuring in Theorem 1, i.e., the witness
that W is a θ-drift function for Q, satisfies ‖Pt‖ ≤ eθt (using the first part of the
proof of Theorem 6.3 of Ref. [Spi12]). Next, we obtain a recursive enumeration
of a dense subset A ⊆ Q of the domain of the generator Q by applying Q to
all rational linear combinations of indicator functions 1x. Note that for the
latter, we use that indicator functions belong to the domain of the generator and
Q1x = Q1x (see Proposition 2).

Now, by Theorem 5.4.2 of Ref. [WZ07], we obtain the first two computability
results, as θ,A, 1 is a so-called piece of type IG-information [WZ07, p. 513].
Finally, the third point amounts to showing computability of the duality pairing

〈_,_〉 : L1(S,W )× C0(S,W )→ R

where L1(S,W ) is (isomorphic to) the dual of C0(S,W ) (Lemma 3).



This theorem immediately gives computability of the CTMCs and (conditional)
means for stochastic string rewriting and Petri nets discussed in Sect. 4. Note
that the theorem does not assume that V itself is computable; its role is to
establish that the transition functions is a SCSG, but V plays no role in the
actual computation of the solution. Note also that the algorithms that compute
the functions t 7→ Pt, (t, f) 7→ Ptf , and (π, t, f) 7→ πPtf push the responsibility
to give arbitrarily good approximations of the respective input parameters π, t
and f to the user. This however is no problem for any of our examples or rule-
based models in general: t is typically rational, f is computable and even to the
natural numbers, and π is often finitely supported or a Gaussian.

Remark 1 (Domain of the generator). The difficulty in working with SCSGs is to
find a tractable description of the domain of their generator. Such a description
is important for two reasons: first, as said before the theorem, for computability,
we need a recursively enumerable dense subset of the graph of the domain of the
generator; second, as the unique solution to the ACP is also differentiable, it is
useful for numerical integration.

Computability ensures existence of algorithms computing transient means,
but yields no guarantees of the efficiency of such algorithms. We now proceed to
a special case that (i) encompasses a number of well-known examples, including
context-free string rewriting, and (ii) leads to PTIME computability, by reducing
the problem of transient conditional means to solving finite linear ODEs.

6 The finite dimensional case and PTIME via ODEs

We now turn to the special case where we can restrict to finite dimensional
subspaces B ⊆ RS.8 The prime example will be word counting functions and
context-free string rewriting systems. Hyperedge replacement systems [DKH97],
the context-free systems of graph transformation, can be handled mutatis mu-
tandis. The main result is PTIME computability of conditional means. For
convenience, we extend the usage of the term locally algebraic as follows.

Definition 9 (Locally algebraic). We call a q-matrix Q on S locally algebraic
for an observable f ∈ RS if the set {Qnf | n ∈ N}, containing all multiple
applications of the q-matrix Q to the observable f , is linearly dependent, i.e., if
there exists a number N ∈ N such that the application QNf of the N -th power is
a linear combination

∑N−1
i=0 αiQ

if of lower powers of Q applied to f .

Using local algebraicity of a q-matrix Q for an observable f , one can generate
a finite ODE with one variable for each conditional mean E[Qnf(Xt) | X0 = x]
(as detailed in the proof of Theorem 3); then, recent results from computable
analysis [PG16] entail PTIME complexity.

8 Every such finite dimensional subspace is a Banach space.



Theorem 3 (PTIME complexity of conditional means). Let Q be a q-
matrix on S, let x ∈ S, let f : R → S be a function such that f(x) is a computable
real and QNf =

∑N−1
i=0 αiQ

if for some N ∈ N and computable coefficients αi.
The time evolution of the conditional mean Ptf(x), i.e., the function t 7→

Ptf(x), is computable in polynomial time.

Proof. Consider the N -dimensional ODE with one variable En for each n ∈
{0, . . . , N − 1} with time derivative

d
dtEn(t) =

{
En+1(t) if n < N − 1∑N−1
i=0 αiEi(t) if n = N − 1

and initial condition En(0) = Qnf(x). Solving this ODE is in PTIME [PG16]
(even over all of R≥0, using the “length” of the solution curve as implicit input).
Finally, Ei(t) = PtQ

if(x) is the unique solution.

Note that the linear ODE that we construct has a companion matrix as evo-
lution operator, which allows to use special techniques for matrix exponentia-
tion [TR03,BCO+07].

Proposition 1 (Local algebraicity of context-free string rewriting). Let
R be a string rewriting system, let w ∈ Σ+, let m ∈ N. The q-matrix QR of the
string rewriting system R is locally algebraic for the m-th power of w-occurrence
counting ]wm if R ⊆ Σ ×Σ+.

Proof. For every product of word counting functions
∏m
i=1 ]wi , applying the

q-matrix QR to this product yields the observable QR
∏m
i=1 ]wi . Using previous

work on graph transformation [DHHZS15], restricted to acyclic, finite, edge
labelled graphs that have a unique maximal path (with at least one edge),
the observable QR

∏m
i=1 ]wi

is a linear combination
∑k
j=1 αj

∏kj

l=1 ]wj,l
of word

counting functions ]wj,l
(with all kj ≤ m). Moreover, if R is context-free (R ⊆

Σ ×Σ+), we have
∑kj

l=1 |wj,l| ≤
∑m
i=1 |wi| for all j ∈ {1, . . . , k}. Thus, we stay

in a subspace that is spanned by a finite number of products of word counting
functions.

Corollary 2. For context-free string rewriting, conditional means and moments
of word occurrence counts are computable in polynomial time.

We conclude with a remark on lower bounds for the complexity.

Remark 2. The complexity of computing transient means, even for context-free
string rewriting, is at least as hard as computing the exponential function. This
becomes clear if we consider the rule a→ aa, and the observable of a-counts ]a.
Now, the time evolution of the ]a-mean conditioned on the initial state to be a,
i.e., the function t 7→ Ea(]a(Xt)), is exactly the exponential function et. Tight
lower complexity bounds for the exponential function are a longstanding open
problem [Ahr99].



7 Conclusion

The main result is computability of transient (conditional) means of Markov
chains Xt “observed” by a function f , i.e., stochastic processes of the form f(Xt).
For this, we have described conditions under which a CTMC, specified by its
q-matrix, induces a continuous-time transformer Pt that acts on observation
functions. In analogy to predicate transformer semantics for programs, this
should be called observation transformer semantics for CTMCs; formally, Pt is a
strongly continuous semigroup on a suitable function space. Finally, motivated
by important examples of context-free systems – be it the well-known class from
Chomsky’s hierarchy or the popular preferential attachment process (covered
in previous work [DHHZS15]) – we have considered the special case of locally
finite q-matrices. For this special case, we obtain a first complexity result, namely
PTIME computability of transient conditional means.

The obvious next step is to implement our theoretical results since one cannot
expect that the general algorithms of Weihrauch & Zhong [WZ07] perform well
for every SCSG on a computable Banach space. For example, the Gauss-Jordan
algorithm for infinite Matrices [Par12] should already be more practicable for
inverting the operator nI −Q from Equation (3) compared to the brute force
approach used by Weihrauch & Zhong [WZ07]. Computability ensures existence
of algorithms for computing transient means, but yields no guarantees of the
efficiency of such algorithms.

Even if it should turn out that efficient algorithms are a pipe dream – after
all, transient probabilities pt,xy are a special case of transient conditional means –
we expect that already implementations that are slow but to arbitrary desired
precision will be useful for gauging the quality of approximations of the “mean-
field” of a Markov process, especially in the area of social networks [Gle13],
but possibly also for chemical systems [SSG15]. Theoretically, they are a valid
alternative to Monte Carlo simulation, or even preferable.
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A From Transition functions to q-matrices and back

Transition functions are usually a derived concept of (homogeneous) continuous-
time Markov chains (CTMC) with countable state space S (see Definitions 13
and 14). However, taking them as first class entity (following Anderson’s text-
book [And91]) is more convenient for the exposition of the present paper as it
allows one to work without any non-trivial measure theoretic prerequisites.9 We
have a countable state space S, as usual.

Definition 10 (Transition function [And91, p. 5f.]). An R≥0-indexed fam-
ily Pt = (pt,xy)x,y∈S of S × S-matrices with non-negative, real entries pt,xy is
called a transition function on S if

1. P0 = I := (δxy)x,y∈S;
2. Pt+s = PtPs = (

∑
z∈S ps,xzpt,zy )x,y∈S for all s, t ∈ R≥0;

3.
∑
z∈S pt,xz ≤ 1 for all x ∈ S and t ∈ R≥0.

A transition function Pt is called honest if
∑
z∈S pt,xz = 1 for all x ∈ S and

t ∈ R≥0 and it is called dishonest if it fails to be honest; finally, it is called
standard if limt↘0 pt,xx = 1 holds for all x ∈ S (and thus limt↘0 pt,xy = δxy
holds for all x, y ∈ S).

The first two properties in Definition 10 make transition functions monoids of
real-valued S×S-matrices equipped with matrix multiplication; the last property
requires that rows induce sub-probability measures.10 Thus, an honest transition
function Pt consists of proper probability matrices, i.e., the entries of every row
sum up to 1. Unless explicitly allowed to be non-standard, we shall assume
transition functions to be standard, i.e., entry-wise continuous at time 0.
9 The reader familiar with CTMCs might object that in shifting focus from Markov
chains to pairs of initial distributions and transition functions, we lose information.
However, “[a]ll the probabilistic information about the process, insofar as it concerns
only countably many time instants, is contained in the transition function and initial
distribution. One could almost say that the transition function is the Markov chain.”
[And91, p. 4].

10 A sub-probability measure on an at most countable set S (equipped with the σ-
algebra of all subsets) can be safely identified with a function to the non-negative
reals f : S→ R≥0 that sums up to at most 1, i.e., such that

∑
x∈S f(x) ≤ 1 holds.



Example 3 (Yule-Furry process). The Yule-Furry process of parameter β > 0,
the archetypal example of a branching process, can be thought of as a simplistic
model of population growth; for n0 ≤ n, its transition probabilities have the
following closed form.

pt,n0 n =
(
n− 1
n− n0

)
(e−βt)n0(1− e−βt)n−n0

Using the metaphor of population growth, if we start with a population of size 1,
the probability at time t to have grown to exactly size n ≥ 1 is e−βt(1−e−βt)n−1.

Typically, transition functions of CTMCs do not have simple closed expressions
for their entries; the Yule-Furry process is one of the few exceptions. In contrast,
taking (time) derivatives of transition functions (at time zero) typically yields
natural functions, intuitively corresponding to a flow of probability mass; for a
Yule process of parameter β with initial population n0, we think of n0 independent
individuals that can replicate at any given moment in time, and thus the outflow
of probability mass is −βn0.

Transition functions are always entry-wise differentiable [Kol51,Aus55] and
the derivatives at time zero p′0,xy form the so-called q-matrix of the transition
function [And91, p. 14]. Provided that all states are stable, i.e., p′0,xx 6= −∞ for
all x ∈ S, q-matrices of transition functions can safely be identified with stable
q-matrices according to the following definition [And91, Theorem 2.2].

Definition 11 (q-Matrix [And91, p. 64]). A q-matrix is an S × S-matrix
Q = (qxy)x,y∈S with entries real numbers or −∞ such that

∞ > qxy ≥ 0 (if x 6= y), −∞ ≤ qxx ≤ 0, and
∑
z∈S qxz ≤ 0

hold for all x, y ∈ S; it is stable (resp. conservative) if qx := −qxx < ∞ (resp.∑
z∈S qxz = 0) holds for all x ∈ S.

In this paper, we assume q-matrices to be stable and conservative. For each
q-matrix Q = (qxy)x,y∈S on an at most countable state space S, the Kolmogorov
backward equation

d
dtPt = QPt, P0 = I (4)

has a unique minimal non-negative solution Pt = (pt,xy)x,y∈S (see, e.g., The-
orem 2.2 of Ref. [And91]), which is a possibly dishonest transition function.

Definition 12 (Transition functions of q-matrices). For a stable q-matrix Q
on S, the transition function of q-matrix Q, is the unique minimal transition
function Pt solving the Kolmogorov backward equation, i.e., any other transition
function P̃t = (p̃t,xy)x,y∈S that solves Equation (4) satisfies p̃t,xy ≥ pt,xy for all
(t, x, y) ∈ R≥0 × S× S.

In case of a finite state space, all the above is trivial: the transition function Pt
is just the matrix exponential eQt, and similarly, if the entries of the q-matrix are



bounded. In general, the hard part is to find for a given q-matrix a corresponding
transition function, while the opposite direction, passing from a transition function
to its q-matrix, is always via differentiation [Kol51,Aus55]; however, with the
usual assumptions on CTMCs (as in Norris’s standard textbook [Nor98]), q-
matrices are stable and conservative, which allows to pass back and forth between
transition functions and q-matrices without complications [And91, Theorem 2.2].

B Markov chains

For completeness sake, we recall the classic definitions of continuous-time Markov
chains in terms of a stochastic process satisfying the Markov property. However,
note that all proofs rely on the functional analytic perspective described in
Appendix A, which does not hinge on any non-trivial measure theory. The
following definitions are based on [And91].
Definition 13 (Continuous-time Markov chain (CTMC)). A stochastic
process {Xt}t∈R≥0 , defined on a probability space (Ω,F ,Pr), with values in a
countable set S (to be called the state space of the process), is called a continuous-
time Markov chain (CTMC) if for any finite set 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ tn+1
of “times”, and corresponding set i1, i2, . . . , in−1, i, j of states in S we have

Pr
(
Xtn+1 = j

∣∣ Xtn = i,Xtn−i
= in−1, . . . Xt1 = i1

)
= Pr

(
Xtn+1 = j

∣∣ Xtn = i
)

whenever
Pr
(
Xtn = i,Xtn−i

= in−1, . . . Xt1 = i1

)
> 0.

If for all 0 ≤ s ≤ t and all i, j ∈ S the equation

Pr
(
Xt = j

∣∣ Xs = i
)

= Pr
(
Xt−s = j

∣∣ X0 = i
)

holds, the stochastic process {Xt}t∈R≥0 is homogeneous.
As described by Anderson [And91, p. 4], all probabilistic information about

a CTMC is given by their transition function.
Definition 14 (Transition function of a CTMC). Let {Xt}t∈R≥0 be a ho-
mogeneous CTMC. The t-dependent matrix Pt = (pt,ij)i,j∈S with

pt,ij = Pr
(
Xt = j | X0 = i

)
for all i, j ∈ S and t ∈ R≥0 is the transition function of the CTMC.

We only consider homogeneous CTMCs that are stable, standard11 and
minimal (cf. Assumption 2.1 of Ref. [Spi12]).
Definition 15 (Stable, standard, minimal). Let {Xt}t∈R≥0 be a homoge-
neous CTMC. It is stable if the q-matrix of its transition function is stable, it is
standard if its transition function is standard, and it is minimal if its transition
function is the minimal transition function that solves the Kolmogorov (backward)
equation (4).
11 Note that Anderson only considers standard transition functions [And91, p. 6].



C Linear operators on Banach spaces

In the present paper, we only consider vector spaces over the field R. We recall
some core definitions (see also [EN00, Appendices A and B]).

Definition 16 (Banach space). A Banach space is a complete normed vector
space.

We now give examples of Banach sequence spaces, i.e., Banach spaces con-
sisting of functions f : S→ R from a fixed set S, which will always be the state
space of some CTMC is this paper.

Definition 17 (C0-spaces). A function f : S → R vanishes at infinity if for
all ε > 0, f(x) < ε holds for almost all x ∈ S, i.e., the set {x ∈ S | f(x) ≥ ε}
is finite. The Banach space C0(S) is the Banach space that consists of all func-
tions f : S→ R that vanish at infinity and its norm ‖_‖ is given by ‖f‖ =
supx∈S |f(x)|.

The duals of C0-spaces exists and are isomorphic to L1-spaces; however,
C0-spaces are in general not isomorphic to their double dual (which is isomorphic
to the corresponding L∞-space).

Definition 18 (L1-spaces). A function f : S → R is summable if the sum∑
x∈S |f(x)| converges (for some order of summation). The Banach space L1(S)

consists of summable functions and its norm ‖_‖ is given by ‖f‖ =
∑
x∈S |f(x)|.

Definition 19 (Linear operators, bounded linear operators). Let B be
a Banach space. A linear operator on B is a pair (A,D(A)) where D(A) ⊆ B
is a linear subspace, called domain, and A is a linear map A : D(A) → B. A
linear operator on B is bounded if there exists a constant K ∈ R≥0 such that
‖A(u)‖ ≤ K‖u‖ holds for all u ∈ D(A). We denote by L(B) the set of all linear
operators (A,D(A)) on B that are bounded and defined on the whole space, i.e.,
satisfy D(A) = B.

D Abstract Cauchy problems of SCSGs

Every transition function Pt = (pt,xy)x,y∈S (of some CTMC Xt with state
space S) induces a partial function on the vector space RS that maps a function
f : S → R to the function Ptf := (x 7→

∑
y∈S pt,xyf(y)) (of the same “type”

S→ R) whenever the respective sums converge absolutely for all states x ∈ S,
and it is undefined on f otherwise. This function is indeed always a linear operator
on the vector space of bounded functions [And91, Sect. 1, Lemma 4.4.]. However,
we are interested in a stronger property (Theorem 1).

Definition 20 (Strongly continuous semigroup). Let B be a Banach space,
and let L(B) be the set of bounded linear operators on B with B as domain of
definition. A strongly continuous semi-group (SCSG) on B is a family {Pt}t∈R≥0

of bounded linear operators Pt ∈ L(B) satisfying



1. P0 = IB , the identity on B;
2. Pt+s = PtPs for all s, t ∈ R≥0; and
3. limh↘0 ‖Phf − f‖ = 0 holds for all f ∈ B.12

In the finite state case, each transition functions Pt can be obtained from their
q-matrix Q – simply by taking the matrix exponential Pt = etQ. In general, a
SCSG is only the limit of a sequence of matrix exponentials of bounded operators,
the so-called Yosida-approximants (see, e.g. Ref. [EN00]). Part of the intricacy
is explained by the fact that the time derivative d

dtPtf at 0, i.e., the limits
limh↘0 1/h(Phf − f), do not exists for all elements f of the Banach space. This
brings us to a new object, which is typically related but in general not identical
to the q-matrix (cf. [Reu57, Theorem 2]).

Definition 21 (Infinitesimal generator). The infinitesimal generator Q of
a strongly continuous semigroup Pt on a Banach space B is defined by

Qf = lim
h↘0

1/h(Phf − f)

for all f ∈ dom(Q) =
{
f ∈ B

∣∣ The limit limh↘0 1/h(Phf − f) exists.
}
.

Infinitesimal generators determine the semigroup uniquely [EN00, Theo-
rem 1.4]. To understand why, note first that it is sufficient to describe each Pt on
a dense subset of the Banach space; the domain of definition of the infinitesimal
generator is simply the canonical such subset. Finally, for each f in the domain of
the domain of the generator, the function t 7→ Ptf is characterised as the unique
differentiable solution to the abstract Cauchy problem [Ein52] in Equation (5).

d
dtut = Qut (t ≥ 0) (5)

u0 = f

E Drift functions for observables

Powers of length are drift functions (Lemma 2)

Let R ⊆ Σ+ ×Σ+ be a finite string rewriting system and let n ∈ N+ be
a positive natural number. There exists a constant cn ∈ R>0 such that
|_|n : Σ+ → R≥0 is a cn-drift function.

Proof. Let K = maxl�r∈R |r|; it is a (rough) bound for the maximal length
“growth” of rules in R. Define cn = (2K)n|R|. For all words v ∈ Σ+ and all rules
l � r ∈ R,

(Ql�r|n|)(v) =
∑
w∈Σ+

ql�rvw |w|n (by definition of Ql�r|n|)

12 This last condition, in presence of the first two, is equivalent to continuity of the
function t 7→ Pt, from R≥0 to L(B), if we consider L(B) with the strong operator
topology.



=
∑

w∈Σ+\{v}

ql�rvw |w|n −

 ∑
w∈Σ+\{v}

ql�rvw


︸ ︷︷ ︸

ql�r
v

|v|n (by conservativity)

=
∑

w∈Σ+\{v}

ql�rvw (|w|n − |v|n)

≤
∑

w∈Σ+\{v}

ql�rvw ((|v|+K)n − |v|n) (by definition of K)

≤ ((|v|+K)n − |v|n)
∑

w∈Σ+\{v}

ql�rvw

≤ |v|((|v|+K)n − |v|n) (≤ |v| redexes of l � r in v)

= |v|
n∑
k=1

(
n

k

)
|v|n−kKk

(by Binomial Theorem and cancelling −|v|n)

≤ |v|
n∑
k=1

(
n

k

)
|v|n−kKk

≤ |v|
n∑
k=1

(
n

k

)
|v|n−kKk|v|k−1Kn−k

= |v|
n∑
k=1

(
n

k

)
|v|n−1Kn

≤ 2nKn|v|n

The desired follows since QR =
∑
l�r∈RQl�r.

F Spieksma, corrigendum
The statement of Theorem 6.3 of Ref. [Spi12] contains an error (corrected in our
version) that can be spotted if one tries to fill in the details that are left out at
the end of Spieksma’s proof in op. cit. A counterexample is given in Appendix I.
The following proposition gives a useful and correct weakening of her statement,
on a non-empty subset of the domain of the generator of the relevant SCSGs.
Proposition 2. Let Pt be a transition function on S with q-matrix Q such
that there exists a positive function W : S → R>0 and a constant θ such that
QW ≤ θW , (i.e., (QW )(x) ≤ θW (x) for all x ∈ S). Let the family {Pt}t∈R≥0

be a SCSG on C0(S,W ), witnessed by V ∈ C0(S,W ) that is positive and a drift
function for Q.

For all f ∈ C0(S,W ) that satisfy ‖f‖V <∞ and Qf ∈ D(Q), we have

Qf = Qf = lim
h↘0

1/h(Ptf − f), (6)

i.e., the latter limit exists in C0(S,W ), and in particular f ∈ D(Q).



G Computable analysis

We collect the main definitions and terminology from [BHW08], as required
in [WZ07].

G.1 Naming schemes for sets

The central point of computable analysis in the tradition of the type-2 theory of
effectivity (aka tte) are so-called representations of elements of sets (that later
will always come equipped with a topology).

Definition 22 (Notations, representations, naming systems). Let X be
a set, and let Σ be finite alphabet. A notation of X is a surjective partial function
ν :⊆ Σ∗ → X, and, similarly, a representation is a surjective partial function
δ :⊆ Σω → X; finally, a naming system for X is a notation or a representation
of X. Given an element x ∈ X and a naming system of X, a γ-name is an
element of γ−1({x}) (which thus is a finite or infinite string over Σ that is
mapped to x).

G.2 Computable reals

There are several equivalent definitions of computable real numbers [BHW08,
Theorem 3.2].

Definition 23 (Computable real [BHW08, Definition 3.1]). A real num-
ber x ∈ R is computable if {q ∈ Q | q < x} is a decidable set (of rational
numbers).

Definition 24 (Computable sequence of reals [BHW08, Definition 3.8]).
A sequence (xn)n∈N of real numbers is called computable if there exists a com-
putable sequence (qk)k∈N of rational numbers such that |xn − q〈n,i〉| < 2−i for all
n, i ∈ N.

Definition 25 ([BHW08, Definition 3.11.]).

1. If (rn)n∈N is a convergent sequence of real numbers with limit x, and m : N→
N is a function such that i ≥ m(n) implies |x− ri| < 2−n (for all i, n ∈ N),
we call the function m a modulus of convergence of the sequence (rn)n∈N.

2. A sequence (rn)n∈N of real numbers converges computably if it has a com-
putable modulus of convergence.

G.3 Computable functions on infinite sets

A function f :⊆ Rn → R is computable if there is an oracle Turing machine that,
given any k ∈ N, may ask for arbitrarily good rational approximations of the



input x ∈ dom(f);13 after finitely many steps, it writes a rational number q on
the output tape with |f(x)− q| < 2−k [BHW08, Definition 4.1.]. However, for the
purposes of computability, instead of using oracle Turing machines, it suffices to
consider a simpler model, namely Turing machines with infinite I/O, i.e., Turing
machines equipped with one infinite input and one infinite output tape that are
read only and one-way write only, respectively. This computation model allows
for a natural notion of computability on infinite strings.

Definition 26 (Computable stream functions [BHW08, Definition 4.7]).
Let Σ be an alphabet. A function F :⊆ Σω → Σω is computable if there exists
a Turing machine that, given a stream p ∈ dom(F ) on the input tape, writes
the output stream F (p) on the one-way output tape, and that, given a stream
p ∈ Σω dom(F ) does not write infinitely many symbols on the output tape (and
instead moves to the halting state at some point).

If X is a space, a (computable) representation of X is a (computable) map
δX :⊆ Σω → X.

A particular representation that we shall invariably use for R with the usual
(Euclidean metric) is ρ, given as follows: Let, for each n ∈ N, Qn = {m2−−n :
m ∈ Z}, and let QD =

⋃
nQn be the set of dyadic numbers. Let νD : N→ QD

be any computable bijective numbering such that if 〈·, ·, ·〉 : N3 → N is a
computable pairing function, we have νD(〈i, j, k〉) = (i−j)2−k. The representation
ρ : {0, 1}∗ → R is now defined by

dom(ρ) = {p ∈ {0, 1}∗ : ∀k.(νD(p(k) ∈ Qk∧|νD(p(k))−νD(p(k+1)| <−(k+1))))}

and
ρ(p) = lim

n
νD(p(n)

Note that ρ is merely a representation that uses rapidly converging Cauchy
sequences and that the choice of {0, 1}∗ is immaterial: we could have chosen a
larger alphabet, or even a unary alphabet if need be.

The above definitions carry over with ease to computation between arbitrary
sets w.r.t. suitable representations.

Definition 27 (Computable function [BHW08, Definition 4.7]). Let Σ
be an alphabet, and let f :⊆ X → Y be a function; moreover, let δX :⊆ Σω → X
and δY :⊆ Σω → Y be representations. A function F :⊆ Σω → Σω is called
a (δX , δY )-realizer of f if δY F (p) = fδX(p) holds for all p ∈ dom(fδX), i.e.,
such that for any δX-name of some x ∈ dom(f), the value F (p) is a δY -name of
f(x). The function f is (δX , δY )-computable if a computable (δX , δY )-realizer
of f exists.

13 Thus, the oracle Turing machine may ask finitely many questions of the kind “Give
me a vector p ∈ Qn of rational numbers with d(x, p) < 1/2i,” where the exponent i
may depend on the answers to the previous questions.



G.4 Computable metric spaces
Definition 28 (Computable metric space [BHW08, Definition 7.1]). A
triple B = (X, d, α) is called a computable metric space, if
1. d : X ×X → R is a metric on X,
2. α : N→ X is a sequence such that the set {α(n) | n ∈ N} is dense in X,
3. d ◦ (α× α) : N2 → R is a computable map (with R equipped with the repre-

sentation ρ).
Observe in the above definition that countable metric spaces are separable spaces
and they come with a choice of a dense subset via an enumeration.
Definition 29 (Cauchy representation, rapid convergence [BHW08, Def-
inition 7.2]). Let (X, d, α) be a computable metric space. Then we define the
Cauchy representation δX :⊆ Σω → X by

δX(01n0+101n1+101n2+1 . . .) := lim
i→∞

α(ni)

for any sequence (ni)i∈N such that (α(ni))i∈N converges rapidly (and δX(p) is
undefined for all other input sequences p ∈ Σω) where a sequence (xi)i∈N converges
rapidly, if it converges and d(xi, limn→∞ xn) < 2−i for all i ∈ N.
It is easily seen that the earlier representation ρ of R can easily be made into a
Cauchy representation in the above sense.
Definition 30 (Computable Banach space). A tuple B = (B, ‖_‖, α) is
called a computable Banach space if
1. (B, ‖_‖) is a Banach space,
2. (B, d, α) such that d(x, y) = ‖x− y‖ is a computable metric space (using the

representation ρ of R and the Cauchy representation δB of B
3. addition (x, y) 7→ x+ y and scalar multiplication (a, x) 7→ ax are computable

operations (with the above representations).

H Computability of duality pairing

Weighted C0-spaces C0(S,W ) and their duals L1(S,W ) with recursively enumer-
able S will be equipped with a recursive enumeration α of all finite rational linear
combinations of indicator functions 1x of states x ∈ S (observe that the set of
such finite linear combinations is countable and can obviously be enumerated by
an algorithm). As the indicator functions themselves are computable, and the
map W → Q+ is computable, it follows easily that both spaces are computable
Banach spaces. Moreover, we equip the product space L1(S,W )×C0(S,W ) with
the sum of the norms of the underlying spaces, i.e., ‖(π, f)‖ = ‖π‖∗W + ‖f‖W
where ‖f‖W = supx∈S |f(x)|/W (x) and ‖π‖∗W =

∑
x∈S W (x)|π(x)|. Finally, we

choose a recursive enumeration of all linear combinations of the set⋃
x∈S

{(1x, 0), (0,1x)}

to make the product space a computable Banach space.



Lemma 3 (Computability of duality pairing). Let S be a recursively enu-
merable set, and let W : S→ Q+ be a computable function. The dual pairing

〈, 〉 : L1(S,W )× C0(S,W )→ R,

mapping (π, f) to
∑
x∈S π(x)f(x), is computable.

Proof. For any two elements (π, f), (π′, f ′) ∈ L1(S,W )×C0(S,W ) of the product
space, if π′ is finitely supported, i.e., the set of states K = {x ∈ S | π′(x) 6= 0} is
finite, we have the following estimate for the distance of 〈π′, f ′〉 and 〈π, f〉 in R.

|〈π′, f ′〉 − 〈π, f〉| = |
∑
x∈S

π′(x)f ′(x)− π(x)f(x)| (7)

≤
∑
x∈S

|π′(x)f ′(x)− π(x)f(x)|

=
∑
x∈K
|π′(x)f ′(x)− π(x)f(x)|

+
∑

x∈S\K

|0− π(x)f(x)| (by definition of K)

=
∑
x∈K
|π′(x)f ′(x)− π(x)f(x)|

+
∑

x∈S\K

∣∣∣∣W (x)π(x) f(x)
W (x)

∣∣∣∣
≤
∑
x∈K
|π′(x)f ′(x)− π(x)f(x)|

+ ‖f‖W
∑

x∈S\K

|W (x)π(x)| (by definition of ‖f‖W )

≤
∑
x∈K
|π′(x)f ′(x)− π(x)f(x)|

+ ‖f‖W
∑

x∈S\K

|W (x)(π(x)− π′(x)︸ ︷︷ ︸
0

)|

≤
∑
x∈K
|π′(x)f ′(x)− π(x)f(x)| (8)

+ ‖f‖W ‖π − π′‖∗W (by definition of ‖_‖∗W )

Moreover, putting ex = f(x)− f ′(x) and φx = π(x)− π′(x),

π(x)f(x) = π(x)(f ′(x) + ex)
= π(x)ex + π(x)f ′(x)
= π(x)ex + (φx + π′(x))f ′(x)
= π(x)ex + φxf

′(x) + π′(x)f ′(x). (9)



Next, we describe an algorithm that for each desired precision ε = 2−d as input,
first, makes three successive requests for approximations (π′, f ′) of (π, f) of
ascending precision based on the estimate from (8) and Equation (9), followed
by computation of a rational approximation r of 〈π, f〉, before finally, giving the
result r as output by writing up to d+1 digits of precision in binary representation.

1. Request (π1, f1) as approximation of (π, f) up to precision 1. Store F ′ =
2‖f1‖W + 1; now we have F ′ > ‖f‖W as a save over-approximation of the
norm ‖f‖W of f .

2. Request (π2, f2) as approximation of (π, f) up to precision min{ε/3F ′, 1}). This
ensures ‖f2‖W ‖π − π2‖∗W < ε/3 (cf. (8)). Moreover, with ψx = π(x)− π2(x),∑

x∈S

|ψxf2(x)| =
∑
x∈S

W (x)|ψx| |f2(x)|/W (x)

≤ ‖f2‖W
∑
x∈S

|W (x)ψx|

= ‖f2‖W ‖π − π2‖∗W
< ε/3 (10)

3. Compute the support of π2, i.e., K2 = {x ∈ S | π2(x) 6= 0} using the
representation of (π2, f2). Compute M = maxx∈K2 W

−1(x).
4. Request (π3, f3) up to precision min{ε/3M2‖π2‖∗W , ε/3F

′, 1}.∑
x∈K2

|π(x)(f(x)− f3(x))| ≤ ‖f − f3‖W
∑
x∈K2

|π(x)|

≤ ε/3M2‖π2‖∗W
∑
x∈K2

|W (x)π(x)/W (x)|

≤ ε/3M2‖π2‖∗WM
∑
x∈K2

|W (x)π(x)|

≤ ε/3M2‖π2‖∗WM
∑
x∈K2

W (x)|π(x)|

≤ ε/3M2‖π2‖∗WM‖π‖∗W
≤ ε/3M2‖π2‖∗WM2‖π2‖∗W
= ε/3 (11)

5. Compute
r = 〈π2, f3〉

thus, the second approximation of π2 to keep the support K2, and the best
approximation of f3.

6. Return enough digits of r in the dyadic representation, d+ 1 after the dyadic
point.



To show that the algorithm is correct, we derive as in (8)

|r − 〈π, f〉| = |〈π2, f3〉 − 〈π, f〉|
≤
∑
x∈K |π2(x)f3(x)− π(x)f(x)|

+‖f‖W ‖π − π2‖∗W
and then, as in 9, we obtain

≤
∑
x∈K

∣∣∣π2(x)f3(x)−(
π(x)(f3(x)− f(x)) + ψxf3(x) + π2(x)f3(x)

)∣∣∣
+‖f‖W ‖π − π2‖∗W

=
∑
x∈K |−π(x)(f3(x)− f(x))− ψxf3(x)|

+‖f‖W ‖π − π2‖∗W
≤
∑
x∈K |π(x)(f3(x)− f(x))|+ |ψxf3(x)|

+‖f‖W ‖π − π2‖∗W
≤
∑
x∈K |π(x)(f3(x)− f(x))|+ |ψxf3(x)|

+‖f‖W ‖π − π2‖∗W
and then as in (10) and (11)

≤ ε/3M2‖π2‖∗WM2‖π2‖∗W + ‖f3‖W ‖π − π2‖∗W
+‖f‖W ‖π − π2‖∗W

≤ ε/3 + ‖f3‖Wε/3F ′ + ‖f‖Wε/3F ′ < ε.

I Counterexample [Spi12, Theorem 6.3]

Example 4 (Counterexample to Theorem 6.3 of Ref. [Spi12]). Consider the pos-
itive natural numbers N \ {0} as state space of a CTMC with q-matrix Q on
S = N \ {0} given by

qxy =


x2 y = x− 1
−x2 y = x 6= 1
0 y = x = 1

(12)

and consider the function W (x) = x2, which is positive as x > 0. Now, W is a
drift function since, for x > 1, we have

QW (x) =
∑
y∈S

qxyW (y)

=
x∑

y=x−1
qxyW (y)

= qx(x−1)
(
W (x− 1)−W (x))

)
= qx(x−1)

(
(x− 1)2 − x2)

)
< 0 ≤W (x)



and QW (1) = 0 ≤W (1). Thus, Q is a drift function.
Next, the identity function

V (x) = x

on S belongs to C0(S,W ) and is positive. Moreover,

QV (x) = qx(x−1)
(
V (x− 1)− V x)

)
= qx(x−1)

(
x− 1− x)

)
= −qx(x−1)

= −x2

and QV (1) = 0, whence

QV (x) = −(x)2 · 1S\{1}(x).

This implies that V is also a drift function and hence the minimal transition
function Pt with q-matrix Q is a SCSG on C0(S,W ), applying the first part of
Theorem 6.3 of Ref. [Spi12].

Finally, we have ‖V ‖V = 1 <∞ an also ‖QV ‖W = ‖−W‖W = 1 <∞. Thus,
by the second part of Theorem 6.3 of Ref. [Spi12], we conclude that V belongs
to the domain D(Q) of the generator Q. This means by definition that the limit

lim
h↘0

PhV − V
h

exists in C0(S,W ), thus V ∈ D(Q), and QV ∈ C0(S,W ). Now QV = QV in
analogy to Sect. 1.4 of Ref [And91] which leads to QV ∈ C0(S,W ), which is
false: QV = −(·)2 · 1S\{1} and −(·)2 · 1S\{1} /∈ C0(S, (·)2)!
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