
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dual-Targeted Multifunctional Nanoparticles for Magnetic
Resonance Imaging Guided Cancer Diagnosis and Therapy

Citation for published version:
Nan, X, Zhang, X, Liu, Y, Zhou, M, Chen, X & Zhang, X 2017, 'Dual-Targeted Multifunctional Nanoparticles
for Magnetic Resonance Imaging Guided Cancer Diagnosis and Therapy', ACS Applied Materials &
Interfaces, vol. 9, no. 11, pp. 9986–9995. https://doi.org/10.1021/acsami.6b16486

Digital Object Identifier (DOI):
10.1021/acsami.6b16486

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACS Applied Materials & Interfaces

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 29. Apr. 2024

https://doi.org/10.1021/acsami.6b16486
https://doi.org/10.1021/acsami.6b16486
https://www.research.ed.ac.uk/en/publications/579c4092-1038-4727-9044-7304a5ea76b7


 

1 

 

Dual-Targeted Multifunctional Nanoparticles 

for Magnetic Resonance Imaging Guided 

Cancer Diagnosis and Therapy 

Xueyan Nan,
†
 Xiujuan Zhang,*,† Yanqiu Liu,

†
 Mengjiao Zhou,

†
 Xianfeng Chen,*,‡ 

and Xiaohong Zhang*,† 

†
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key 

Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 

Suzhou Jiangsu, 215123 (P. R. China). 

‡
Institute for Bioengineering, School of Engineering, University of Edinburgh, 

Edinburgh EH9 3JL, United Kingdom. 

Keywords: multifunctional nanocomposite; dual-target; magnetic resonance imaging; 

photothermal; chemotherapy 

  



 

2 

 

ABSTRACT 

Hybrid nanostructures with combined functionalities can be rationally designed to 

achieve synergistic effects for efficient cancer treatment. Herein, a multifunctional 

nano-platform is constructed, containing an inner core of an anticancer drug MTX 

surrounding by a nanometer-thin layer of gold as the shell with Fe3O4 magnetic 

nanoparticles (NPs) evenly distributed in the gold layer, and the outermost hybrid LA-

PEG-MTX molecules as surface coating agent (denoted as MFG-LPM NPs). This 

nanocomposite possesses very high drug loading capacity as the entire core is MTX 

and integrates magnetic- and active- targeting drug delivery, light-controlled drug 

release, magnetic resonance imaging (MRI), as well as photothermal and 

chemotherapy. With a strong near-infrared (NIR) absorbance at 808 nm, the 

nanocomposite enables temperature elevation and light-triggered MTX release. In vitro 

cytotoxicity studies indicate that the strategy of combining therapy leads to a synergistic 

effect with high cancer cell killing efficacy. In consistency with this, due to the high 

accumulation of MFG-LPM NPs at tumor site and their combinatorial chemo-

photothermal effects, 100% in vivo tumor elimination can be achieved. Additionally, in 

vivo MRI of tumor-bearing mice demonstrates an impressive performance of MFG-

LPM NPs as a T2 contrast agent. Therefore, such multifunctional nanocomposite has 

the potential to serve as an excellent theranostic agent that collectively integrates 

multiple functions for efficient MRI guided cancer diagnosis and treatment. 

 

1. INTRODUCTION 
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The advancement of multifunctional hybrid nanostructures for cancer diagnosis and 

treatment has attracted continuously increasing attention in the field of nanotechnology 

and biomedicine.1-7 For example, researchers have demonstrated that the combinatorial 

photothermal and chemotherapy can greatly improve the efficacy of cancer treatment 

and has the potential to overcome drug resistance.8-10 Photothermal therapy (PTT) is an 

approach to employ photothermal agents with a strong absorbance in the near-infrared 

(NIR) region to produce heat to kill target cells with minimal side effects. During last 

decades, a wide range of PTT agents such as gold nanomaterials (e.g., gold nanorods, 

nanocages, and nanoshells),11-15 carbon nanomaterials (e.g., carbon nanotubes, and 

graphene)16-20 and many other materials (e.g., polydopamine, poly(4-styrenesulfonate), 

and indocyanine green (ICG))21-22 have been widely explored. Chemotherapy is to use 

drugs to destroy cancer cells. For instance, methotrexate (MTX) has been commonly 

used in chemotherapy because the similarity of its molecule structure with folic acid 

lends itself an ability to combine with the overexpressed folate receptor on the surface 

of many types of cancer cells to effectively kill them.23 For combinatorial therapy, Kim 

et al have previously demonstrated that, when MTX is combined with photothermal 

therapy for rheumatoid arthritis, the therapeutic efficacy of 0.05% dosage of MTX is 

comparable to that of the treatment with a full dose.24 In using nanotechnology for these 

therapies, it is convenient to add different functions like surface modifying 

nanostructures with tumor recognizing ligands or guiding nanomaterials’ movement 

under magnetic field to realize specific targeting to cancer. Beyond combination of 

these characteristics for therapy, if the nanostructures can be imaged, additional 
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advantages will be realized as imaging is able to localize tumors, thereby precisely 

positioning laser irradiation for photothermal therapy, and enabling to monitor tumor 

development for determining subsequent therapy.25-26 This is very useful in further 

improving the efficacy of cancer treatment and meanwhile minimizing any potential 

negative effect.27-29 Each of these designs has its merit and the combination is capable 

of generating synergistic effect. Therefore, it is highly desirable to construct a 

multifunctional theranostic agent in one single nanosystem to achieve the 

comprehensive advantages of nanotechnology for efficient cancer treatment and early 

diagnosis. 

To fulfill this goal, it is important to carry out a rational design by identifying suitable 

imaging mode, therapeutics, and cancer targeting strategies. Among many imaging 

techniques, MRI has been widely used in clinic owing to its capacity of attaining 3D 

high-resolution images of living bodies and great imaging depth.30 To further improve 

the imaging quality, iron oxide nanoparticles (IONP) are often utilized as a T2 contrast 

agent.31 IONP has also been reported to achieve regulated drug release and targeted 

drug delivery under magnetic field.32 For photothermal therapy, gold nanostructures 

have been extensively researched due to their strong absorption in the first biological 

window (e.g., 808 nm), high photothermal conversion efficiency, and great 

biocompatibility.33 For chemotherapy, MTX can be directly self-assembled to the form 

of NPs without needing additional nanomaterials as a drug carrier, thereby achieving 

high drug load and potentially better safety profile. With these rationales, we developed 

a multifunctional nano-platform containing an inner core of MTX surrounding by a 
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nanometer-thin layer of gold as the shell with Fe3O4 magnetic NPs evenly distributed 

in the gold layer, and the outermost hybrid LA-PEG-MTX molecules as surface coating 

(Scheme 1). Such architecture represents a nano-platform that can collectively achieve 

magnetic- and active- targeted drug delivery, light-controlled drug release, MRI, 

photothermal therapy and chemotherapy for efficient cancer treatment. In this work, we 

have prepared this nano-platform, systematically investigated their physical and 

chemical properties, pharmacokinetics, and in vivo biodistribution, as well as tested 

their application for MRI, in vitro cell killing, and in vivo anticancer therapy. 

 

 

Scheme 1. MFG-LPM NPs are accumulated in tumor site via magnetic field guided 

targeting and surface ligands driven targeting and then internalized by folic acid-

receptor mediated endocytosis. Subsequently, NIR illumination is employed to 

generate heat for photothermal therapy and trigger the release of MTX for 

chemotherapy and iron oxide NPs for MRI. 

2. RESULTS AND DISCUSSION 

2.1. Preparation and Characterization of MFG-LPM NPs 
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Figure 1. Characterization of MFG-LPM NPs. (a) SEM image of MFG-LPM NPs. 

Inset: TEM image of an individual MFG-LPM NP. (b) EDX of MFG-LPM NPs under 

the SEM pattern. (c) UV-vis-NIR absorption spectra of MTX NPs and MFG-LPM NPs. 

(d) Time-dependent temperature changes of MFG-LPM NPs at different concentrations 

(5, 10, 20 and 40 µmol/L) under irradiation of a 808 nm laser with a power density of 

1 W/cm2 (standard laser illumination condition in all experiments unless otherwise 

stated). Water, PBS, 1640 medium and MTX NPs groups were used as references. 

The synthesis of multifunctional NPs involved a multistep process. MTX NPs, the 

core of our designed nanocomposite, were prepared by a solvent exchange method. The 

digital image of a MTX NP suspension in water is shown in Figure S1. These NPs are 

negatively charged and have an average diameter of about 180 nm, as indicated by their 

scanning electron microscopy (SEM) image presented in Figure S2. The NPs were then 

surface functionalized with a cationic polymer poly(allylamine hydrochloride) (PAH) 

(M.W.: 15 kDa) by electrostatic interaction to obtain a positively charged surface 

(Figure S3). This positive charge was made use to conjugate negatively charged Fe3O4 

NPs and gold nanoseeds on their surface through electrostatic attraction. Subsequently, 
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hydroxylamine hydrochloride (NH2OH•HCl) was introduced to reduce the gold 

precursor chloroauric acid (HAuCl4) to form Au nanoshell on the surface of the 

nanocomposite. Figure S3 gives the values of the zeta-potential of different NPs at each 

stage of the preparation. Upon the modification of PAH to the initial negatively charged 

MTX NPs, the zeta potential switches from -3.42 to +34.76 mV. After the sequential 

conjugation of Fe3O4 NPs and gold nanoseeds on the surface of PAH-coated MTX NPs, 

the values of zeta potential of the nanostructures were respectively measured as +13.12 

and -0.59 mV. The evolution of the values of the zeta potentials demonstrates the 

successful alternating deposition of PAH, Fe3O4 NPs and gold nanoseeds. 

Representative SEM and transmission electron microscopy (TEM) images are 

displayed in Figure 1a and these reveal the successful preparation of the 

nanocomposite containing MTX core and Fe3O4 magnetic NPs and gold shell 

encapsulation (denoted as MFG NPs). The shell structure of MFG NPs can be 

confirmed by a high-angle annular dark field scanning TEM (HAADF-STEM) image 

in Figure S4a. The line profiles of the elemental composition determined by energy-

dispersive X-ray spectroscopy (EDX) and TEM elemental mapping image indicate the 

presence of Fe and gold (Figure 1b and S4b). At the end, to improve their water 

dispersity, biocompatibility, bioavailability, and specific targeting to folate receptor 

overexpressed cancer cells (Figure S5), the as-prepared MFG NPs were functionalized 

by LA-PEG-MTX through gold-thiol bonds (referred to MFG-LPM NPs) (Figure S6-

8).34,35 The final NPs display a hydrodynamic diameter of approximately 188 nm and 

possess high stability (Figure S9 and S10). During the synthesis process, the surface 
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plasmon resonance (SPR) peak of MTX NPs is broadened and significantly shifts to 

longer wavelengths after the formation of gold nanoshell on the surface (Figure 1c). 

This finding is consistent with previous reports involving similar Au nanoshells.36 It 

suggests that a rather thin gold nanoshell have been successfully established on the 

surface of the nanocomposite. It is known that SPR can transform the energy of 

absorbed laser light to heat.37 To investigate the influence of NIR laser irradiation on 

the temperature elevation, 3.0 mL of different concentrations of MFG-LPM NPs were 

placed in quartz cells and exposed to a 808 nm laser. Meanwhile, the temperature 

increase of water, PBS, RPMI 1640 medium and MTX NPs suspension was also studied 

for comparison. Evidently, the MFG-LPM NP suspensions lead to fast increase of 

temperature with extended irradiation time, while the control groups yield significantly 

smaller temperature changes. Moreover, a clear dose-dependent temperature increase 

profile is explored in the groups of MFG-LPM NPs from the figure. With the 

concentration of NPs increases from 5, 10, 20 to 40 μmol/L, the temperature increases 

by 16, 20, 25 and 30 °C, respectively (Figure 1d). These data indicate that MFG-LPM 

NPs can readily rise the temperature of samples to above 47 °C and therefore have a 

great photothermal effect upon irradiation with NIR laser. 

2.2. Fast Release of MTX from MTX-LPM NPs Triggered by NIR Light 
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Figure 2. (a) The time-dependent release profiles of free MTX from MTX NPs and 

MFG-LPM NPs with and without laser illumination. The red arrow indicates the onset 

of NIR irradiation. (b) Fluorescence microscopy images of KB cells after being treated 

with PBS, MTX NPs and MFG-LPM NPs under different conditions. The cells were 

double stained with calcein AM (green signal: living cells) and PI (red signal: dead 

cells). MF stands for magnetic field. (c) The viabilities of 4T1 cells at 48 h after 

incubation with a series of concentrations of different groups of NPs with and without 

NIR laser irradiation. 

Figure 2a shows the time-dependent release profiles of free MTX from MTX NPs 

and MFG-LPM NPs with or without irradiation by a laser. It is clear that the release of 

MTX from MFG-LPM NPs is the lowest among the four groups in the case of without 

laser irradiation. The reason may be that the outer Au nanoshell is able to confine MTX 

within the core of the nanocomposite. This will prevent quick liberation of MTX when 

the nanocomposite is in blood circulation after systemic delivery, thereby reducing the 

side effect and enabling high drug accumulation in tumor tissues. In comparison, with 
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NIR laser irradiation (starting at the time point of “2 h”) for 10 min, an abrupt drug 

release is observed from MFG-LPM NPs, while the release of MTX from MTX NPs 

does not change with the same treatment. The released percentage of MTX from MFG-

LPM NPs increases by approximately 20% over the 3-day observation period when 

compared with the case of no NIR laser irradiation. A possible explanation is that MFG-

LPM NPs can strongly absorb NIR light and transform the energy to local temperature 

elevation, which in turn promotes the motion of MTX molecules and leads to enhanced 

MTX release.38 

2.3. In Vitro Chemo-Photothermal Combination Therapy 

To evaluate the efficacy of the dual-targeted photothermal cancer ablation of our 

designed NPs, different groups of KB cells were treated with MTX NPs, hollow Au 

nanoshells, MFG-LP NPs (multifunctional nanocomposite with LA-PEG surface 

coating), and MFG-LPM NPs (multifunctional nanocomposite with LA-PEG-MTX 

surface coating) with the same MTX concentration for 12 h, and then irradiated by a 

laser. For the group of hollow Au nanoshells, the Au amount remained the same as that 

in other groups. To enable magnetic field-aided targeted delivery of nanomedicine, a 

magnet was placed next to part of cells during experiments. A separate group of KB 

cells incubated with PBS solution was also studied for comparison. After laser 

irradiation, all groups of cells were further incubated for 12 h at 37 °C. Subsequently, 

the cells were stained with Calcine AM and propidium iodide (PI) to mark living 

(green) and dead (red) cells, respectively. For the two PBS groups with and without 

laser illumination, vast majority of cells is alive (Figure 2b). This reveals that the used 
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laser power is not sufficient to damage cells. In comparison, it is appealing to find that 

almost all cells incubated with MFG-LPM NPs are killed in the group with NIR light 

irradiation, while the cells in other groups are only partially killed after incubation, even 

in the case of under laser irradiation (Figure S11). More attractively, because of the 

localized accumulation of MFG-LPM NPs induced by the applied magnetic field, only 

the cells nearby the magnet are effectively ablated. There are no dead cells in the other 

field. The reason is that almost all MFG-LPM NPs are transferred to the area with 

applied magnetic field and there is negligible amount in the other side (Figure 2b). 

For systematic quantitative assessment of the drug efficacy of our NPs, we 

investigated their cell killing capacity when incubate with three cell lines (KB, 4T1 and 

MRC-5). KB, 4T1 and MRC-5 cells were individually treated with different 

concentrations of MTX NPs, hollow Au nanoshells and MFG-LPM NPs for 24, 48 and 

72 h. As presented in Figure 2c and S12-14, for all three types of cells, MFG-LPM NPs 

show time- and dose-dependent toxicities. Among the tested samples, hollow Au 

nanoshells display the least toxicity in the case of without NIR irradiation. In 

comparison, when NIR laser is applied, the cell viabilities dramatically decreased, 

implying the photothermal ablation capability of Au nanoshells. When there is no laser 

irradiation, MFG-LPM NPs exhibit much lower toxicities than MTX NPs at the same 

drug concentrations. This can be ascribed to the encapsulation of Au nanoshells on the 

surface of MTX NPs, which inhibits the release of MTX from MFG-LPM NPs. In great 

contrast, if with NIR laser illumination, a distinct toxicity is observed with the evidence 

of the death of most cancer cells at 72 h for MFG-LPM NPs. By overall comparison 
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among all groups, it is worth noting that the cell-killing efficiency of MFG-LPM NPs 

is tremendously increased comparing with single photothermal therapy using hollow 

Au nanoshells or chemotherapy with MTX NPs, proving the enhanced antitumor effect 

of combinational chemo-photothermal therapy. These observations reveal that the 

combination of photothermal and chemotherapy in MFG-LPM NPs enables their 

significantly enhanced therapeutic efficacy. 

2.4. In Vivo Blood Circulation and Biodistribution of MFG-LPM NPs 

 

Figure 3. (a) The evolution of the concentration of MFG-LPM NPs in blood circulation 

after intravenous injection. The unit is a percentage of injected dose per gram tissue (% 

ID g-1). (b) Biodistribution of MFG-LPM NPs in mice at 12 h after intravenous 

injection. (c) In vivo MRI of tumors (the right side tumor was applied with a magnetic 

field (MF), but the left side tumor experienced no MF). 

To investigate the in vivo behaviors of MFG-LPM NPs, we firstly studied their 

pharmacokinetics. MFG-LPM NPs were administered to BALB/c mice through 

intravenous injection and the blood samples were collected after different time points. 

The concentrations of MFG-LPM NPs in blood were determined through measurement 
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of Au3+ by inductively coupled plasma atomic optical emission spectroscopy (ICP-

OES). As shown in Figure 3a, the half-life of MFG-LPM NPs during blood circulation 

is approximately 2.9 h. As a comparison, the half-life of MTX free molecules is only 

26.5 min.39 The prolonged blood circulation of MFG-LPM NPs is probably a result of 

their surface PEG coating and also their particle size. The extended circulation time in 

blood will favor their accumulation in tumor site through the EPR effect. After studying 

the blood circulation of MFG-LPM NPs, we also interrogated their in vivo 

biodistribution profiles. In the experiments, 200 μL of MFG-LPM NPs with 0.5 mg/mL 

MTX were intravenously injected to 4T1 tumor-bearing BALB/c mice and the mice 

were sacrificed at 2, 6, 12 and 24 h afterwards. Next, three mice’s major organs were 

collected followed by solubilization in aqua regia to determine the concentration of 

Au3+ by ICP-OES. In one group, a magnet was placed next to the tumor to induce 

improved NP accumulation in the tumor site. The organs of an untreated mouse were 

used as controls to measure the Au background signal. The results indicate that high 

levels of MFG-LPM NPs are detected in tumors, liver and spleen in all groups (Figure 

3b and S15). Attractively, the accumulation of MFG-LPM NPs in the tumor with 

applied magnetic field is constantly higher than others, demonstrating the advantage of 

combining surface ligands induced active targeting, magnetic field aid targeting, and 

the passive EPR effect.40 

Tumor imaging was performed in 4T1 tumor-bearing mice at one day after 

intravenous injection of MFG-LPM NPs. Firstly we demonstrated the MRI of tumors 

without magnetic field. As shown in Figure S16, the tumors in both right and left sides 
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show obvious darkening effects in T2-weighted MRI. Next, to achieve magnetic field-

aided targeting, a magnet was placed on the right side tumor of a mouse for 30 min. In 

this case, due to the magnetic field, majority of the MFG-LPM NPs will be transported 

to the right side tumor and very low amount is able to reach the left side (similar effect 

to the experiment shown in Figure 2b). Therefore, the tumor in the left side displays 

very bright signal and the right side exhibits obvious darkening effects in T2-weighted 

MRI (Figure 3c). These results suggest that MFG-LPM NPs can be simultaneously a 

contrast agent for MRI and a carrier for magnetic field-aided targeted drug delivery. 

2.5. In Vivo Targeted Chemo-Photothermal Therapy 

 

Figure 4. (a) In vivo antitumor activities of different treatments on 4T1 tumor bearing 

BALB/c mice (n = 6 in each group). (b) Representative photos of mice on the 7th and 

15th day after injection of different materials for treatment. (c) The survival rate of 

different groups of mice at different times after treatments. During the experiments, 

when the tumor volume was over 1000 mm3, the mouse was withdrawn and considered 

as death. (d) The evolution of the body weight of mice at different points. The weight 

was normalized to initial value of each mouse. 
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The in vivo therapeutic efficacy of MFG-LPM NPs was studied using 4T1 tumor 

bearing BALB/c mice as an animal model. Eight groups of mice (n = 6 in each group) 

were assessed upon injection of different materials, including: PBS (negative control 

group) (Group Ⅰ), PEGylated MTX NPs (Group Ⅱ), PEGylated MTX NPs with laser 

illumination (Group Ⅲ), hollow Au nanoshells with laser illumination (Group Ⅳ), 

PBS with laser illumination (Group Ⅴ), MFG-LPM NPs (Group Ⅵ), MFG-LPM NPs 

with laser illumination but without magnetic field (Group Ⅶ), MFG-LPM NPs with 

laser illumination and magnetic field (Group Ⅷ). The dose of MTX was maintained as 

5 mg/Kg in the relevant groups. All mice were administered with two doses on Day 0 

and 7, except that those in Group Ⅷ received only one dose on Day 0. For the groups 

needing laser illumination, on Day 1 and 8 (24 hours after each injection), an NIR laser 

was used to irradiate the tumors for 10 min. During experiments, the tumor sizes of the 

mice were measured on daily basis. The results reveal that there is large variation in 

tumor growth rates among groups. As illustrated in Figure 4a, the tumors in Group Ⅰ 

and Ⅴ (PBS control group and PBS with laser treatment group) rapidly increase with 

a comparable growth rate. Using Group I as the negative control, the tumor inhibition 

rate of group Ⅴ is only 7.4%, indicating that the laser irradiation with 1 W/cm2 power 

density has negligible influence on tumor growth. In contrast, in the two groups treated 

with MTX NPs with or without laser illumination, the tumor growth is moderately 

inhibited, with a similar inhibition rate of about 35.0%. MFG-LPM NPs have lower 

anticancer effect than both MTX NPs groups (Group Ⅱ and Ⅲ) when there is no 

laser illumination, showing a tumor inhibition rate of 23.5%. This is in line with the in 
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vitro results and the reason can be ascribed to the Au nanoshell’s slowing down the 

release of MTX from MFG-LPM NPs. It is appealing that a single injection of hollow 

Au nanoshells is able to partially damage the tumor under NIR illumination (date not 

shown). With a boost of another injection, the tumor inhibition rate reaches 45.7%. 

When combining Au nanoshells for photothermal therapy and MTX for chemotherapy 

in Group Ⅶ (without magnetic field), the tumor growth is significantly inhibited with 

negligible increase in volume. When a boost injection is given, the tumor can be 

eliminated (the tumor inhibition rate is 100%). Most attractively, the tumors of the mice 

in Group Ⅷ can be effectively restrained and ablated only within a short period (the 

tumor inhibition rate is 100%), in which the mice were administered with MFG-LPM 

NPs and under the aid of magnetic field and NIR light. At one day after laser 

illumination, small scars were found on the skin of tumors with a dark gray color, 

eventually falling off on the 15th day (Figure 4b). There was no tumor recurrence 

during the 35-day experimental period. These findings clearly show that the integrated 

combination of magnetic- and active- targeted chemotherapy and photothermal 

treatments in MFG-LPM NPs provides an excellent synergistic effect. All of the mice 

in the group treated with MFG-LPM NPs and exposed to laser irradiation are able to 

survive in the whole observation period of 35 days, while the mice in all other groups 

have life spans from 21 to 34 days (Figure 4c).  

2.6. In Vivo systematic toxicity 
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Figure 5. (a) Serum biochemistry data of mice at 35 days after treatment. (b) The 

complete blood biochemical panel data analysis of mice at 35 days after treatment. The 

control group was healthy mice. (c) H&E stained organ slices of the mice after 35 days 

MFG-LPM NPs-based chemo-photothermal treatment. 

The in vivo toxicity and possible side effects of nanomedicines have to be carefully 

studied before their potential application in clinic. To verify the applicability of MFG-

LPM NPs in vivo, we measured the body weight of each mouse on daily basis during 

the treatment period. It is appealing that there is no dramatic weight loss in all groups 

(Figure 4d). This indicates that our NPs do not possess acute toxicity at the 

administered dose. Then we carefully monitored the influences of MFG-LPM NPs on 

BALB/c mice in our experiment. The tumor bearing mice were sacrificed at the end of 

the treatment (35 days after the first dose) for blood analysis and histological 

examination (n = 5). The same analysis was also done to age-matched healthy mice for 

comparison (n = 5). The blood analysis (Figure 5a) indicates that no visible hepatic 
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and kidney disorder is shown in the mice after treatment. Beyond this, the different 

biological indicators of the treated mice are within normal range (Figure 5b). In organ 

histology, no sign of organ damage and inflammation was observed (Figure 5c), 

suggesting the minimal side effects of MFG-LPM NPs in in vivo. The organ coefficients 

of liver, spleen, kidney, heart and lung in tumor bearing mice are 6.368±0.048%, 

0.680±0.074%, 1.622±0.016%, 0.594±0.088% and 0.737±0.063%, respectively, very 

similar to those in healthy mice. Overall, all of these data evidence that MFG-LPM NPs 

induce no significant side effect in in vivo cancer therapy, demonstrating a significant 

prospect for efficient and safe cancer therapy in potential clinical applications. 

3. CONCLUSION 

In summary, we have synthesized MFG-LPM NPs as a multifunctional platform to 

integrate magnetic- and active- targeted drug delivery, MRI, NIR light-induced drug 

release and photothermal and chemotherapy into one system. The resulting MFG-LPM 

NPs have surface plasmon absorbance in the NIR region, thereby enabling NIR-

triggered temperature increase and MTX release. Both in vitro and in vivo studies 

indicate a synergistic effect in killing cancer cells by the combination of magnetic-field-

guided drug delivery and chemo-photothermal therapy. Moreover, in vivo MRI of 

tumor-bearing mice can be attained using MFG-LPM NPs to act as a T2 contrast agent. 

Collectively, this smart “all-in-one” nanosystem can serve as a promising theranostic 

agent for effective cancer diagnosis and therapy, possibly leading to an effective clinical 

application. 
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4. EXPERIMENTAL SECTION 

4.1. Materials 

MTX was purchased from Energy-Chemical (Shanghai, China). Dimethylsulfoxide 

(DMSO), FeCl3, FeCl2•4H2O, NaOH, ethanol, sodium citrate, sodium borohydride 

(NaBH4), dichloromethane (CH2Cl2), trifluoroacetic acid (TFA), hydroxylamine 

hydrochloride (NH2OH•HCl), triethylamine (TEA), Triton X-100, sodium 

dodecylsulphate (SDS), Tris, and potassium carbonate (K2CO3) were ordered from 

Sinopharm Chemical Reagent Co. (China). Poly(allylamine hydrochloride) (PAH), 

poly(maleic anhydride-alt-1-octadecene) (PMHC18), (α+) Lipoic acid (LA), , 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), hydrogen tetra-

chloroaurate (III) hydrate (HAuCl4•3H2O), EDC, and N-hydroxy-succinamide (NHS) 

were obtained from Sigma Aldrich (Milwaukee, WI). Boc(NH)-PEG-NH2 was 

purchased from Suzhou DMD BioMed Ltd. Penicillin-streptomycin solution, Roswell 

Park Memorial Institute-1640 (RPMI-1640), and Fetal bovine serum (FBS) medium 

were ordered from Invitrogen (San Diego, CA). 

4.2. Characterization 

The morphology of NPs were observed by SEM (FEI Quanta 200 FEG) and TEM 

(FEI Tecnai G2 F20 S-TWIN). The UV-vis absorption spectra of NPs were recorded 

using a Perkin-Elmer Lambda 750 UV/vis/NIR spectrophotometer. The amount of 

MTX was assessed from the absorbance of samples at 306 nm. Dynamic light scattering 

(DLS) analysis was carried out on a Zetasizer Nano ZS (Malvern Instruments, Malvern, 
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U.K.) to determine the size and zeta potential of NPs. 1H NMR spectra of samples in 

deuterated solvents were analyzed by a Bruker Avance 400 spectrometer. 

4.3. Preparation of MTX NPs 

MTX NPs were synthesized through solvent exchange. During the preparation, 

MTX/DMSO solution (250 µL, 1 × 10-3 M) was dropwisely added to water (5 mL) 

under vigorous stirring. After 5 min stirring, the sample was incubated at room 

temperature for 72 hours. 

4.4. Synthesis of Fe3O4 NPs 

Fe3O4 NPs were prepared as follows: FeCl2•4H2O (1.148 g) and FeCl3 (1.057 g) were 

mixed in water (30 mL) under stirring followed by heating the mixture to 60 °C and 

keeping for 30 min. Subsequently, this mixture was added to NaOH solution (25 mL, 1 

M) to obtain a black-colored mixture. Then more NaOH solution was dropwisely added 

until the pH value reached 11. Next, sodium citrate (0.248 g) was added and the mixture 

was heated to and kept at 80 °C for 1 h, followed by cooling to room temperature. The 

black product was then dissolved in ethanol. The undispersed residue was removed by 

centrifugation. At the end, these produced Fe3O4 NPs were redispersed in distilled 

water. 

4.5. Preparation of Gold NPs 

Gold NPs were synthesized by reducing chloroauric acid with sodium boronhydride 

(NaBH4). Briefly, sodium citrate solution (2 mL, 1.0 wt %) were added to 100 ml of 

deionized water and stirred for 3 min. Then HAuCl43H2O (1 mL, 1.0 wt %) was added 

with stirring. Five minutes later, NaBH4 (1 mL, 0.1 wt %) in sodium citrate solution 
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(1.0 wt %) was promptly injected followed by 15 min reaction to obtain sodium citrate 

stabilized gold NPs. 

4.6. Synthesis of LA-PEG-MTX, C18-PEG-MTX and C18-PEG-FA 

We firstly produced Boc(NH)-PEG-LA according to previously reported method.41 

Subsequently, Boc(NH)-PEG-LA was reacted with trifluoroacetic acid (2 mL) for 24 

h, followed by drying the reaction solution with nitrogen. The product was placed in 10 

mL of water and undergone extraction by CH2Cl2. Next, the organic solvent was 

evaporated and the product was dissolved in water and then lyophilized (termed NH2-

PEG-LA). 

For production of MTX-PEG-LA, MTX (45.4 mg) were reacted with NHS (143.7 

mg) in DMSO (5 mL) for 1 h the presence of EDC (38.3 mg), and then the mixture was 

added with NH2-PEG-LA (250 mg) for reaction of 24 h. At the end, the solution was 

placed in a dialysis bag (MWCO 5000) for 1-day dialysis followed by filtration and 

lyophilization. The product was indicated as MTX-PEG-LA. 

The synthesis of C18-PEG-MTX and C18-PEG-FA were similar to that of PEG-

MTX-LA except that LA and MTX were replaced with C18PMH and FA, respectively, 

in the reaction. 

The chemical structures were confirmed by 1H NMR. Figure S7 and S8 exhibits the 

1H NMR spectra of MTX, LA-PEG-NH2, MTX-PEG-LA, C18PMH-PEG-NH2, FA, 

C18PMH-PEG-MTX and C18PMH-PEG-FA. As in the 1H NMR spectra of MTX-

PEG-LA, the peaks at 1.86-1.91, 3.5-3.7, and 8.55 ppm are characteristic to LA, PEG 

and MTX, respectively (Figure S7). As in the 1H NMR spectra of C18PMH-PEG-FA 
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and C18PMH -PEG-MTX (Figure S8), the peaks at 1.25 and 8.60 are belong to 

C18PMH and FA, respectively. These results demonstrate the successful conjugation 

of LA-PEG-MTX, C18PMH-PEG-MTX and C18PMH-PEG-FA. 

4.7. Synthesis of MFG-LP and MFG-LPM NPs 

MFG-LP and MFG-LPM NPs were synthesized as follows: 80 μL of 1.0 mg/mL of 

PAH solution was mixed with 4 mL of MTX NPs suspension. The excess volume of 

PAH was poured off after centrifugation to precipitate the NPs and the NPs were 

washed with fresh water. Then 200 μL of Fe3O4 NPs and gold NPs solution were added 

to the MTX NP solution with active stirring at room temperature. Subsequently, for 

growth of a thin layer of gold shell on the surface of these NPs, HAuCl4 (1.5 mL, 1%) 

was added into water (100 mL) containing K2CO3 (25 mg). The solution became 

colorless after 30 minutes. This solution was then aged for a whole day. Next, 4 mL of 

the Fe3O4 NPs and gold NPs coated MTX NPs dispersion was mixed with 4-6 mL of 

the aged solution. Following this, NH2OH•HCl (400 μL, 2 M) was injected. At about 2 

minutes after injection, the color of the solution turned from colorless to blue green, 

and this indicates the formation of gold nanoshell (referred to MFG NPs). LA-PEG and 

LA-PEG-MTX were then individually added into the mixture solution to surface 

modify the MFG NPs. At the end, the surface modified NPs were precipitated by 

centrifugation followed by repeated water washing. 

After Au nanoshell was formed on MTX NPs, the product was dispersed in DMSO 

to remove the core followed by centrifugation to obtain hollow Au nanoshells. 

4.8. Release of MTX from MFG-LPM NPs 
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The release profiles of MTX from MFG-LPM NPs upon NIR laser irradiation were 

investigated at 37 °C. Two milliliters of MFG-LPM NPs suspension were placed in a 

dialysis bag (MWCO 5000) and then the bag was immersed into 50 mL of PBS with 

stirring. After 2 hours, the suspension was exposed to NIR laser irradiation for 10 min. 

At different time internals, PBS (2 mL) containing liberated MTX were collected. The 

release pool was replenished with fresh PBS after each sample collection. The amount 

of the released MTX was measured by determining its absorbance at 306 nm. The 

experiments were performed in 3 replicates and the average was used in quantitative 

analysis. 

4.9. Temperature elevation by MFG-LPM NPs 

Three milliliters of different concentrations of MFG-LPM NPs were placed in quartz 

cuvettes and then exposed to NIR laser irradiation (808 nm, 1 W/cm2, 10 min; standard 

laser irradiation condition unless other stated). The temperature change of each sample 

was determined at every 30 s by a digital thermometer equipped with a thermocouple 

probe. 

4.10. Cell Culture 

Human nasopharyngeal epidermal carcinoma cell line (KB cell), normal human 

embryonic lung fibroblasts (MRC-5 cell) and murine breast cancer cell line (4T1 cell) 

were obtained from American Type Culture Collection (ATCC). KB cells, 4T1 cells 

and MRC-5 cells were cultured in RPMI-1640 medium supplemented with 10% FBS 

and 1% penicillin/streptomycin at 37 °C in a humidified atmosphere containing 5% of 

CO2. The cells were routinely passaged using trypsin (0.05%)/EDTA. For Calcine 
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AM/PI test, KB cells which grown in FA (-) RPMI-1640 culture medium were cultured 

in a 35 mm dish for overnight.  

4.11. Cytotoxicity Measurement 

The in vitro cytotoxicity of different materials was determined by the MTT assay. 

KB, MRC-5 and 4T1 cells were individually seeded into 96-well plates (100 µL per 

well) followed by incubation for 24 h. Different groups of cells were then treated with 

different concentrations of MTX NPs, hollow Au nanoshells and MFG-LPM NPs for 

24, 48 and 72 h. Some groups of the cells were exposed to NIR laser illumination while 

other groups were not irradiated by laser. Then the cells were incubated for different 

periods of time followed by treatment with MTT solution (20 µL, 5 mg/mL in PBS) 

and incubation for further 4 h. Finally, the medium was vacated and the cells were lysed 

by adding 150 µL of DMSO for MTT assay to measure the cell viabilities of different 

groups. The reported data represent the mean values of triplicate measurements.  

4.12. Blood Circulation and Biodistribution 

Ten microliters of blood were drawn from the tail vein of BALB/c mice at different 

time points after injection of MFG-LPM NPs. Then the blood samples were solubilized 

in one milliliter of lysis buffer containing 1% of SDS, 1% of Triton X-100, and 40 mM 

Tris Acetate. The amount of gold in the samples was measured by ICP-OES. The blood 

samples from mice without MFG-LPM NPs injection were also analyzed to subtract 

the background measurement of gold. The concentrations of MFG-LPM NPs in blood 

circulation at different times are shown as the percentage of injected dose per gram of 

tissue (% ID/g). 
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For NP’s biodistribution analysis, MFG-LPM NPs were injected to 4T1 tumor-

bearing mice (tumor size ~ 100 mm3) and the mice were terminated at 2, 6, 12 and 24 

h after injection. The major organs and tumors of the mice were weighed and 

solubilized in solutions of HNO3: HCl: HClO4 with a volume ratio of 3:1:2 followed 

by heating to 200 °C for 2 h. Then all samples were cooled to room temperature, water 

was added to each to a final volume of 5 mL. Subsequently, the amount of Au3+ in each 

sample was measured with ICP-OES. Every group has 3 mice. The quantity of MFG-

LPM NPs in each organ is expressed with the unit of the percentage of injected dose 

per gram tissue (% ID g-1). 

4.13. In Vivo MRI 

A tumor-bearing mouse was intravenously injected with 200 μL of 0.5 mg/mL of 

MFG-LPM NPs. After injection, the right side tumor was placed under an external 

magnetic field for 30 min while the left one was not. T2-weighted MRI was recorded 

on a 3T clinical MRI scanner (Bruker Biospin Corporation, Billerica, MA, USA) 

equipped with small animal imaging coil. 

4.14. In Vivo Chemo-Photothermal Therapy 

The in vivo function of MFG-LPM NPs was studied in BALB/c mice bearing 4T1 

tumor model. The experiments included 8 groups (n=6 in each group): PBS (Group Ⅰ

), PEGylated MTX NPs (Group Ⅱ), PEGylated MTX NPs with laser treatment (Group 

Ⅲ), hollow Au nanoshells with laser treatment (Group Ⅳ), PBS with laser treatment 

(Group Ⅴ), MFG-LPM NPs (Group Ⅵ), MFG-LPM NPs with laser treatment but 

without magnetic field (Group Ⅶ), MFG-LPM NPs with laser treatment and magnetic 
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field (Group Ⅷ). The dose of MTX was maintained as 5 mg/Kg in the relevant groups. 

The mice received two injections on day 0 and 7, except that the mice in Group Ⅷ had 

only one injection on day 0. At 24 h after each injection, an NIR laser was employed to 

irradiate tumors in Group Ⅲ, Ⅳ, Ⅴ, Ⅶ and Ⅷ. In the experimental period, the 

tumor dimensions and mouse weight were measured on daily basis. The tumor volume 

was calculated using the formula a × b2/2, where a is the largest and b the smallest 

diameter. The tumor volume and mouse body weight were normalized in comparison 

with their initial values. The organ coefficient was calculated with formula of organ 

weight / (body weight – tumor weight). 

4.15. In Vivo Systematic Toxicity 

After 35 days treatment, five mice from Group Ⅷ  were sacrificed and blood 

samples and major organs and tissues including liver, spleen, kidney, heart, lung, 

intestine, stomach, skin, and muscle were collected. Five age-matched mice were used 

as a control group. Then the major organs and tissues were fixed in 10% neutral 

buffered formalin, processed routinely into paraffin, and sectioned to samples with 8 

μm in thickness for hematoxylin and eosin (H&E) staining. The stained samples were 

examined under digital microscopy (Leica QWin). 
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