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1. ABSTRACT 

Accurate estimation and forecasts of net biome CO2 exchange (NBE) are vital for understanding 

the role of terrestrial ecosystems in a changing climate. Prior efforts to improve NBE predictions 

have predominantly focused on increasing models’ structural realism (and thus complexity), but 

parametric error and uncertainty are also key determinants of model skill. Here, we investigate 

how different parameterization assumptions propagate into NBE prediction errors across the globe, 

pitting the traditional plant functional type (PFT)-based approach against a novel top-down, 

machine learning-based “environmental filtering” (EF) approach. To do so, we simulate these 

contrasting methods for parameter assignment within a flexible model–data fusion framework of 

the terrestrial carbon cycle (CARDAMOM) at global scale. In the PFT-based approach, model 

parameters from a small number of select locations are applied uniformly within regions sharing 

similar land cover characteristics. In the EF-based approach, a pixel’s parameters are predicted 

based on underlying relationships with climate, soil, and canopy properties. To isolate the role of 

parametric from structural uncertainty in our analysis, we benchmark the resulting PFT-based and 

EF-based NBE predictions with estimates from CARDAMOM’s Bayesian optimization approach 

(whereby “true” parameters consistent with a suite of data constraints are retrieved on a pixel-by-

pixel basis). When considering the mean absolute error of NBE predictions across time, we find 

that the EF-based approach matches or outperforms the PFT-based approach at 55% of pixels—a 

narrow majority. However, NBE estimates from the EF-based approach are susceptible to 

compensation between errors in component flux predictions, and predicted parameters can align 

poorly with the assumed “true” values. Overall, though, the EF-based approach is comparable to 

conventional approaches and merits further investigation to better understand and resolve these 

limitations. This work provides insight into the relationship between TBM performance and 

parametric uncertainty, informing efforts to improve model parameterization via PFT-free and 

trait-based approaches.   
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2. INTRODUCTION 

The balance of carbon (C) fluxes entering and exiting the terrestrial biosphere—represented by net 

biome exchange, or NBE—directly influences the magnitude of future climate change by 

controlling how quickly carbon dioxide accumulates in the atmosphere (Tans et al., 1990; 

Heimann & Reichstein, 2008). Projections of terrestrial ecosystems’ behavior by process-based 

models can therefore play vital roles in setting future land management, conservation, and 

restoration priorities. However, such projections remain highly uncertain, as evidenced by the 

inability of most state-of-the-art terrestrial biosphere models (TBMs) to converge even on whether 

the land surface will act as a net sink or source of carbon by the end of the century (Friedlingstein 

et al., 2013; Arora et al., 2020). 

This spread in future TBM projections is the result of several factors, including uncertainty in 

the future trajectory of anthropogenic emissions and poor characterization of the climate system’s 

internal variability. However, both are overshadowed by the role of model uncertainty itself 

(Lovenduski & Bonan, 2017; Bonan & Doney, 2018). Indeed, how best to structure (e.g., 

mathematically represent the functional forms of different ecological or hydrological processes 

and feedbacks; Huntzinger et al., 2017) and parameterize (e.g., assign ecosystem “traits”, such as 

leaf lifespan or leaf mass per area) a given model such that both realism and computationa l 

tractability are adequately preserved is a persistent and much debated challenge. (For simplic ity, 

we will use the terms traits and parameters interchangeably throughout the remainder of this 

paper, although the former can be considered a subset of the latter, which encapsulates any time-

invariant model coefficient.) 

Most model development efforts have traditionally focused on increasing the realism of 

models' process representations (e.g., by increasing structural complexity; Luo et al., 2015; Fisher 
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& Koven, 2020), but over-generalized and/or poorly determined model parameters also contribute 

to model uncertainty (Prentice et al., 2015; Raczka et al., 2018). For example, in a model 

intercomparison across several biomes, Famiglietti et al. (2021) showed that making C cycle 

models more structurally realistic can actually decrease predictive accuracy if parameters are not 

accurately determined. Furthermore, using the ORCHIDEE TBM, Mahmud et al. (2021) found 

that optimizing parameters corrects the underestimation of modeled dryland net ecosystem CO2 

exchange. Parametric uncertainty has also been shown to dominate over structural uncertainty in 

model forecasts of both biomass and forest succession on regional scales (Shiklomanov et al., 

2020; Smallman et al., 2021). Thus, the need for improvements in model parameterization is 

becoming increasingly apparent. However, how best to do so remains opaque, in part because of 

the technical challenges and computational needs involved in optimizing parameters in complex 

land models (MacBean et al., 2016; Ma et al., 2022).  

Indeed, given the overwhelming inter- and intra-ecosystem diversity present across the land 

surface, parameterizing a global model requires making simplifying assumptions. Perhaps the most 

common parameterization assumption employed in nearly all current TBMs involves the use of 

plant functional types (PFTs), whereby parameters are assumed to be identical within regions 

sharing similar vegetation or land cover characteristics (DeFries et al., 1995; Wullschleger et al., 

2014; Poulter et al., 2015). This approach has clear and nontrivial benefits from a computationa l 

efficiency/tractability standpoint but is far from realistic. Research shows that actual plant traits 

can vary as much within a single PFT as between many different ones (van Bodegom et al., 2012). 

Accordingly, carbon residence times and plant allocation strategies are poorly characterized by 

PFTs (Bloom et al., 2016). While awareness of the uncertainties resulting from this 

overgeneralization is growing (e.g., van Bodegom et al., 2014; Hartley et al., 2017; Thomas et al., 
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2019; Anderegg et al., 2021; C. G. Jung & Hararuk, 2022), underlying PFT-based hypotheses still 

remain ubiquitous in today’s large-scale models. 

Recently, novel approaches for generating spatially variable estimates of model parameters 

have been proposed to counter the limitations of static PFTs. In particular, the theory of 

“environmental filtering” (EF) posits that parameters are inherently predictable based on local 

climate, soil, and canopy properties—that is, the environment “filters” the vegetation traits that 

can exist in any particular place (e.g., Joswig et al., 2022). Indeed, macroclimatic and biophysica l 

factors like temperature, atmospheric aridity, water supply and nutrient availability strongly impact 

the strategies by which plants grow, allocate resources, and respond to stress (e.g., Woodward, 

1987). In practice, this concept—which broadly underlies certain large-scale predictive ecological 

frameworks like FLUXCOM (M. Jung et al., 2020)—is implemented by deriving mathematica l 

relationships between community mean traits and environmental covariates (e.g., Ordoñez et al., 

2009; Chaney et al., 2016; Butler et al., 2017; Moreno-Martínez et al., 2018; Peaucelle et al., 

2019; Boonman et al., 2020; Qian et al., 2021). However, while recent work focusing on a small 

subset of model parameters shows that these flexible, data-driven EF relationships can be feasibly 

implemented directly within large-scale TBMs (Verheijen et al., 2013, 2015; Walker et al., 2017), 

the degree to which such an approach may impact the quality of simulated carbon fluxes—

including NBE predictions—is not known. For example, although Walker et al. (2017) compared 

modeled photosynthesis rates resulting from an EF-based parameterization of the maximum 

photosynthetic carboxylation capacity (Vcmax) to three indirect proxies of gross primary 

productivity (GPP), those proxies are themselves highly uncertain, and only a single trait and a 

single carbon flux were considered. 
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While implementations of the EF hypothesis represent a promising avenue for introduc ing 

more realistic trait variation within TBMs, they face several key challenges (Anderegg et al., 

2021). First, the consistency of these relationships across taxonomic and ecological scales has been 

questioned (Anderegg et al., 2018), and their ability to capture true ecological niche differences 

may be limited (Kraft et al., 2015). A second issue involves the representativeness of the trait 

observations used to derive the EF relationships themselves. In situ parameter observations are 

useful but not a panacea. Measurements of plant traits are sparse relative to the heterogeneity and 

extent of terrestrial ecosystems (Sandel et al., 2015), and some measurements are not compatible 

or easily reconcilable with model structure (i.e., limited model representations of natural vertical 

heterogeneity, functional diversity, and more can make direct comparison nearly impossib le). 

Other parameters are physically unobservable (e.g., empirical coefficients such as the fraction of 

carbon lost to growth respiration; Shiklomanov et al., 2020; Smith et al., 2020).  Because of this, 

prior studies—which we classify as “bottom-up” (e.g., Verheijen et al., 2013, 2015)—were 

restricted by the availability and coverage of training data needed for model development. Most 

built EF relationships using in situ trait measurements from the TRY database (Kattge et al., 2020), 

which, while expansive and ever-growing, contains significant spatial and species-related biases 

(e.g., relatively few observations in the tropics and boreal regions; Sandel et al., 2015; Schimel et 

al., 2015). Thus, it is not immediately clear whether EF-based predictions can reliably outperform 

those resulting from more classical PFT-based assumptions. Addressing this question, however, is 

necessary to determine if and how EF approaches can support the development of the next 

generation of TBMs. 

To do so, we leverage the CARbon Data MOdel framework (CARDAMOM; Bloom & 

Williams, 2015; Bloom et al., 2016), a Bayesian model–data fusion system built around an 
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intermediate-complexity ecosystem model (DALEC; Williams et al., 1997, 2005) that is 

conceptually like most TBMs and produces similar carbon dynamics (Quetin et al., 2020). Here, 

CARDAMOM provides dual benefits. First, CARDAMOM’s flexible structure allows for 

straightforward implementation of either PFT-based or EF-based parameterization assumptions 

into DALEC. Second, it can retrieve the model’s “true”, or optimal, parameters at every pixel 

across the land surface—specifically, those consistent with a suite of remotely sensed and other 

global observational constraints (and their uncertainties) synthesized in a Bayesian inversion 

approach. CARDAMOM therefore provides a set of realistic “top-down”, observationa lly 

informed parameter estimates across the globe, avoiding the large spatial biases of bottom-up trait 

datasets. Taken together, these two features allow us to benchmark PFT-based and EF-based 

DALEC models using CARDAMOM’s wall-to-wall parameter retrievals and corresponding 

monthly, observationally constrained NBE predictions over the period 2000–2015. Hereafter, we 

refer to these CARDAMOM-derived benchmarks as “optimal”. Because DALEC’s model 

structure and forcing data remain fixed across all three simulations, NBE errors can be interpreted 

as wholly attributable to differences in parameterization. Overall, this study tests the dependence 

of C cycle prediction accuracy on parameterization assumption in a global context and 

demonstrates the potential of trait-based and PFT-free alternatives for reducing parametric 

uncertainty.   
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3. MATERIALS & METHODS 

3.1. Overview. Using a set of realistic, observationally informed parameter retrievals and 

corresponding optimal C cycle stock and flux estimates, we performed a global, mult i-

decadal simulation experiment (4°×5° spatial resolution over the record 2000–2015) that 

tested the predictive capacity of PFT- and EF-based DALEC models to estimate NBE.  

3.2. Modeling framework and parameter optimization. We used CARDAMOM (Bloom & 

Williams, 2015; Bloom et al., 2016) to conduct our parameterization experiments. 

CARDAMOM is a model–data fusion (MDF) system that uses a Bayesian inversion 

approach to constrain the parameters and initial conditions of an intermediate-complexity 

terrestrial ecosystem model with a suite of available satellite remote sensing observations 

(Table 1). CARDAMOM’s underlying ecosystem model is called Data Assimilation Linked 

Ecosystem Carbon (DALEC; Williams et al., 1997). Here, we use DALEC version C2 

(Bloom et al., 2020; Quetin et al., 2020; Famiglietti et al., 2021) as the basis for our analysis. 

The model includes a coupled water cycle and uses 33 parameters governing ecosystem 

processes and defining the initial conditions of four live biomass pools and two dead organic 

matter pools. Further details of the model’s structure are provided in Famiglietti et al. (2021). 

CARDAMOM’s MDF approach is summarized by Bayes’ theorem:  

𝑝𝑝(𝒚𝒚|𝑶𝑶)∝ 𝑝𝑝(𝒚𝒚) ∙ 𝑝𝑝(𝑶𝑶|𝒚𝒚), (1) 

where 𝑝𝑝(𝒚𝒚|𝑶𝑶) is the posterior probability distribution of model parameters y as informed by 

observations O, 𝑝𝑝(𝒚𝒚) is the prior probability distribution of parameters y, and 𝑝𝑝(𝑶𝑶|𝒚𝒚) is 

proportional to the likelihood of the observations O given y. The posterior distribut ion 

𝑝𝑝(𝒚𝒚|𝑶𝑶) is sampled using an adaptive proposal Metropolis-Hastings Markov Chain Monte 

Carlo (MCMC) approach. The prior distribution 𝑝𝑝(𝒚𝒚) encapsulates each model parameter’s 
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prior probability density function alongside a set of ecological and dynamical constraints 

(EDCs) that impose conditions on inter-relationships between parameters based on known 

ecological theory, as described in Bloom & Williams (2015) and Famiglietti et al. (2021). 

The likelihood is derived such that 

𝑝𝑝(𝑶𝑶|𝒚𝒚) = 𝑒𝑒−
1
2
∑ (𝑀𝑀𝑖𝑖−𝑂𝑂𝑖𝑖 )2/𝜎𝜎𝑖𝑖

2𝑛𝑛
𝑖𝑖=1 , (2) 

where Oi is the ith observation, Mi is the corresponding modeled quantity at timestep i, and 

𝜎𝜎𝑖𝑖2 is the ith error variance for each observation.  

The set of observational constraints used in this analysis (i.e., for the retrieval of 

DALEC’s optimal model parameters), along with corresponding uncertainties, is listed in 

Table 1. It consists of several independent datasets aimed to constrain different carbon fluxes 

and pools. These include net biome exchange (NBE) estimates from the CMS-Flux 

atmospheric inversion system (J. Liu et al., 2017, 2021), leaf area index (LAI) from MODIS 

(Myneni et al., 2002), solar induced fluorescence (SIF) from GOSAT (Frankenberg et al., 

2011), soil organic matter (SOM) from SoilGrids (Poggio et al., 2021), above- and below-

ground biomass (ABGB) from Saatchi et al. (2011), and fire C emissions from an invers ion 

approach (Bowman et al., 2017; Worden et al., 2017). Our analysis is performed at 4°×5° 

spatial resolution (928 total land pixels), which is the scale of the CMS-Flux NBE dataset. 

We chose to include the CMS-Flux dataset at the expense of higher spatial resolution because 

NBE integrates all aspects of the carbon cycle and, due to its connection to several model 

processes, is expected to exert a primary control over CARDAMOM’s parameter retrieva ls 

and corresponding carbon fluxes (Famiglietti et al., 2021).  

To characterize the observational uncertainty of the NBE data, we took a novel approach 

compared to previous CARDAMOM studies (e.g., Bloom et al., 2020; Quetin et al., 2020). 
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Rather than assigning a single, global average value to represent the observationa l 

uncertainty of NBE, here we introduced an additional model “parameter” to retrieve pixel-

by-pixel uncertainty values (bringing the total number of parameters to 34). Further details 

of the uncertainty retrieval approach are provided in the supporting information (Text S1).  

CARDAMOM typically runs in a two-stage process. First, in the “parameter assignment” 

stage, CARDAMOM retrieves location-specific optimal parameters (with uncertainty) for 

the DALEC model according to a suite of data constraints, as described above. Second, in 

the “forward run” stage, it produces monthly time series of carbon fluxes and pools by 

running DALEC forward in time with those parameter ensembles (i.e., 1000 parameter 

samples from 𝑝𝑝(𝒚𝒚|𝑶𝑶)). The forward runs are forced by a set of meteorological drivers from 

the combined data sets from Climate Research Unit (CRU) and reanalysis data from National 

Centers for Environmental Prediction (NCEP), or CRUNCEP (Kalnay et al., 1996).  

As described, CARDAMOM’s inversion approach allows for the robust retrieval of a 

range of C cycle outcomes integrating the information content, quantity, and quality of its 

available data constraints. Due to this dependence, however, there is potential for its 

estimates to be poorly constrained when observations are temporally sparse and/or uncertain. 

For this reason, we introduced a filter requiring that the 25th-75th percentile range of a given 

pixel’s optimal NBE ensemble not exceed the local NBE variability (i.e., standard deviation 

across time). Pixels not satisfying this filter were omitted from the analysis (n = 138). 

We used the resulting, strongly constrained optimal NBE predictions as benchmarks for 

estimates from alternatively parameterized (i.e., EF-based and PFT-based) DALEC models. 

To derive and implement the EF-based and PFT-based parameterization assumptions, we 
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amended CARDAMOM’s first stage (parameter assignment) as described in the following 

sections, and then conducted additional forward runs with those alternative parameter sets.   

 

3.3. EF-based parameterization approach. The environmental filtering approach relies on the 

expectation that climate, soil, and canopy properties determine the distribution of ecological 

traits—and therefore model parameters—across space, so that they can be used as predictors 

in a statistical model. Here, we implemented such assumptions across the globe using climate 

data from CRUNCEP, soil information from the SoilGrids project, and remotely sensed 

canopy and other data (Table 2). These predictors, or input features, are chosen to describe 

as many aspects of ecosystem structure and function as possible, and largely align with those 

used in previous environmental filtering applications (e.g., Verheijen et al., 2013, 2015).  

We aimed to produce highly skilled EF predictions that could result from complex, 

potentially nonlinear inter-relationships between features and targets. Accordingly, we 

trained a set of random forest regression models to learn the relationships between these 

environmental covariates and model parameters. Here, each of DALEC’s model parameters 

was predicted independently (e.g., one random forest model per parameter). Although these 

relationships may not be sufficiently parsimonious for straightforward inclusion in TBMs, 

they represent a meaningful upper bound on the potential complexity of EF-based 

assumptions and predictive schemes. Furthermore, this approach also reduces the need to 

rigorously determine the optimal balance between an EF-based model’s tractability and 

predictive skill, which is beyond the scope of this study. 

For each parameter (regression model), our model selection approach consisted of a 

feature selection analysis, a grid search-based hyperparameter tuning step, and a 10-fold 
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cross-validation procedure. The feature selection analysis allowed us to assess train/test error 

as a function of the number of features available to the EF model (Fig. S1). Specifically, we 

determined the optimal number of features for each regression model. For example, the 

minimum test error for the SOM turnover rate parameter is observed when 18 features are 

included in the model. To derive an EF-based parameter set for a given pixel, we extracted 

the corresponding parameter prediction from each optimal regression model. Note that init ia l 

conditions for each carbon or water pool, as well as dates of leaf onset and leaf fall, are 

treated differently than other parameters, as described in Sec. 3.5.  

 

3.4. PFT-based parameterization approach. Plant functional types (PFTs) are broad groupings 

of vegetation into classes with similar characteristics (e.g., needle-leaf evergreen, broad-leaf 

deciduous, tundra, and so on; DeFries et al., 1995). Here we emulated a common approach 

for PFT-based parameterization in large-scale models, whereby ecosystem parameters 

observed at a select number of ground locations are assumed to be sufficiently representative 

of the entire PFT (e.g., Bonan et al., 2012). Specifically, we employed what we refer to as a 

“representative pixel” approach, using the European Space Agency’s GlobCover land cover 

map (V2.3) as the basis for our PFTs.  

The GlobCover product, available at 300m spatial resolution, provides a discrete 

classification of each land surface pixel into one of 23 land cover classes, or PFTs (Arino et 

al., 2012). To more closely align with the level of detail in many current TBMs (Bastrikov 

et al., 2018; Harper et al., 2018; Reick et al., 2021), we reduced these 23 classes to 9 broad 

groupings (Table S2). We first determined each 4°×5° pixel’s fractional PFT composition by 

summing the (aggregated) GlobCover classifications contained within it. That is, we 

 13652486, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16574 by E

dinburgh U
niversity, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



  

computed PFT fractions for each coarse-scale analysis pixel based on the fine-resolut ion 

GlobCover data. We then identified the pixels with the largest fractional cover of each PFT. 

For example, for the evergreen needleleaf forest class, we found the CARDAMOM pixels 

with the greatest percentage of area covered by evergreen needleleaf vegetation. We refer to 

these relatively homogeneous locations as “representative pixels”. In the main results of this 

study, we used a maximum of 5 representative pixels for each PFT. The representative pixels’ 

relevant PFT fractions generally ranged between 60-100%—a strong majority (Fig. S2). The 

sole exception is the mixed forest class, whose representative pixels contained only 30-45%; 

we only used those pixels containing a plurality of mixed forest. The mixed forest class is 

relatively rare, comprising less than 10% of any given pixel (not shown).  

Finally, following the assumption that parameter estimates can be retrieved locally and 

applied broadly among similar sites, we aggregated CARDAMOM’s observationa lly 

constrained ensembles by randomly sampling 1000 members (with the exception of init ia l 

conditions and phenological dates; see Sec. 3.5) across each group of representative pixels 

to yield parameter sets for each PFT. Note that our approach can be viewed as relative ly 

generous given that it relies on pixel homogeneity (rather than on ground data availability, 

as in a typical TBM, which may not ensure representativeness) for the assignment of PFT-

based parameter sets. 

 

3.5. Calculation of initial conditions (ICs) and phenological dates for EF and PFT approaches. 

Most land surface and terrestrial biosphere models set the initial states of their carbon pools 

based on a “spin-up” to steady state, which can be unrealistic and introduce uncertainty 

(Schwalm et al., 2019; Bonan et al., 2021). To isolate only the effects of alternative 
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parameterization approaches on NBE predictions, here we leveraged CARDAMOM’s ability 

to statistically derive realistic ICs for any set of model parameters. Specifically, after 

developing the EF- and PFT-based parameter sets as described in Secs. 3.3 and 3.4, we 

performed additional CARDAMOM optimization runs while holding all non-IC parameters 

constant at their EF- or PFT-predicted values (i.e., so that only ICs are estimated; 7 of 

DALEC’s 34 parameters). For the EF case, this amounted to one optimization run at each 

pixel, but for the PFT case, this necessitated one optimization run per PFT at each pixel. 

We also took the same approach to re-optimize each pixel’s leaf onset and leaf fall date 

parameters, which influence DALEC’s simulation of phenology, in both the PFT- and EF-

based models. To understand why this is necessary, consider the case in which two 

representative pixels for a given PFT exist in different hemispheres. Simply aggregating leaf 

onset or leaf fall dates (numeric values between 0 and 365) across these two pixels would be 

problematic due to the reversal of growing seasons between hemispheres. 

Overall, then, the remaining 25 of DALEC’s 34 parameters (74%) are the result of a 

random forest prediction (in the EF-based model) or an aggregation across representative 

pixels (in the PFT-based model).  

 

3.6. Analysis. Monthly NBE time series used in our analysis were created by running DALEC 

forward with the retrieved ICs and corresponding optimal, EF-based, or PFT-based 

parameter set for all vegetated pixels satisfying the ensemble range filter (Sec. 3.2) across 

the land surface over the period 2000–2015. We defined vegetated pixels as those containing 

less than 50% barren or sparse land cover. In the PFT case, we took weighted averages of 

the resulting flux predictions based on each pixel’s PFT fractions to yield the final time series 
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for analysis. Schematic diagrams summarizing the EF-based (Sec. 3.3) and PFT-based (Sec. 

3.4) modeling approaches are presented in Fig. 1, and an example of a pixel’s simulated NBE 

time series resulting from the optimal, EF-based, and PFT-based approaches is shown in Fig. 

2.  

To parse the relative strengths and weaknesses of the alternatively parameterized models, 

we first evaluated the mean absolute error and Pearson correlation of a pixel’s NBE time 

series (relative to the optimal predictions rather than to observations, so that errors are 

attributable only to parametric and not structural uncertainties). We also performed time 

series decomposition analyses using moving averages (implemented using Python’s 

StatsModels package) to compare the ability of each model to capture features like the 

interannual variability, trend, and seasonal cycle of NBE. We then investigated several 

potential controls on the models’ NBE error distributions across space using measures of 

variance explained (i.e., coefficient of determination in a regression framework). These 

controls included parameter prediction accuracy (for the EF-based model), as well as the 

uncertainty of CARDAMOM’s retrievals. For this analysis, we decomposed NBE into its 

component fluxes to understand the frequency and mode of interacting errors (i.e., whether 

errors in component flux predictions tend to compound or compensate in yielding the net 

flux, NBE). Note that NBE in DALEC and other ecosystem models is determined by 

calculating the difference between Reco (carbon release through both autotrophic and 

heterotrophic respiration) and GPP (carbon uptake by plants), along with the potential flux 

of carbon to the atmosphere resulting from fires.  
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4. RESULTS 

4.1. Skill of EF-based parameter prediction 

We observed significant variability in the ability of EF to predict CARDAMOM’s optimal 

model parameters. Across all parameters, the average percent RMSE for EF predictions 

(relative to the optimal parameter retrievals) is 44% with a standard deviation of 33% 

(average R2 = 0.41 ± 0.18). This relatively high average error is largely driven by parameters 

describing fire and combustion, which, at ~84%, are nearly twice as poorly predicted as any 

other parameter (Fig. 3a). These error-prone parameters include combustion fractions for 

DALEC’s different carbon pools, which the model couples with observations of burned area 

to predict total fire carbon emissions (Quetin et al., 2020). By contrast, parameters related to 

phenology (e.g., leaf lifespan), canopy structure (e.g., leaf carbon mass per area) and canopy 

function (e.g., canopy efficiency, a proxy for nitrogen use efficiency) are the most 

predictable, with errors on the order of 20%. Parameters describing soil respiration, carbon 

allocation, water cycling, and turnover are predicted with intermediate skill (i.e., in the range 

of 30-50%). These patterns across parameters and parameter groups reflect the different ia l 

descriptiveness of available environmental covariates used as predictors in the random forest 

framework (Sec. 3.3). Still, only a minority of parameters are predicted with R2 ≥ 0.5 (Fig. 

3b), which is consistent with prior EF studies. Verheijen et al. (2013) achieved an average 

adjusted R2 of 0.40 for bottom-up predictions of specific leaf area (SLA), Vcmax, and the 

maximum electron transport rate (Jmax) across 8 vegetation types, while Butler et al. (2017) 

found an average pseudo-R2 of 0.34 when predicting SLA, leaf nitrogen concentration, and 

leaf phosphorus concentration with 9 increasingly complex predictive models. Taken 
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together, these results demonstrate that EF-based parameter errors can remain stubbornly 

large despite comprehensive training information and a nonlinear predictive scheme.  

 
4.2. Effects of EF-based and PFT-based parameterization assumptions on NBE performance 

On average, the EF-based assumptions yield comparable modeled NBE performance to the 

PFT-based assumptions, based on mean absolute error (MAE) relative to a given pixel’s 

optimal predictions across the entire time series (Fig. 4). The global average NBE MAE is 

0.42 ± 0.34 gC m-2 day-1 for the EF-based model and 0.39 ± 0.28 gC m-2 day-1 for the PFT-

based model. The two approaches produce some similar error hotspots, such as in Northeast 

China and parts of the eastern United States (Fig. 4a-b). Indeed, NBE errors tend to scale 

with gradients of climate and vegetation (Fig. S3). Specifically, higher errors are observed 

in warmer, wetter places, and errors increase as the variability in month-to-month 

temperature and radiation declines. Ecosystems with denser vegetation (e.g., greater average 

LAI and ABGB) are also more error prone. These patterns align with the error hotspots 

observed across tropical Africa, for instance (Fig. 4a-b). Overall, using the MAE metric, the 

EF-based model can match or outperform the PFT-based model at 55% of pixels, while it 

produces strictly less accurate NBE predictions at 45% of pixels (Fig. 4c-d). This behavior 

is mirrored when considering the Pearson correlation between a given EF-based or PFT-

based monthly NBE time series and the optimal estimate; in that case, the EF-based model 

produces comparable or superior predictions at 63% of pixels and poorer estimates at 37% 

of pixels (Fig. S4). That is, for any given vegetated pixel and across multiple metrics, NBE 

simulated using an EF-based approach is likely to capture the optimally parameterized NBE 

fluxes just as well as—if not better than—that simulated using a PFT-based approach.  
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 To better understand the nature of each model’s performance, we decomposed the NBE 

time series at each pixel, isolating its overall mean, interannual variability, and de-trended 

seasonal cycle. First, by comparing the “position” (i.e., nearest percentile) of an EF-based or 

PFT-based mean NBE estimate within that pixel’s optimal mean NBE ensemble, we found 

that both the EF-based model and PFT-based model are likely to accurately capture the mean 

across the time series. While any given EF-based or PFT-based mean NBE estimate often 

aligns with the center of the optimal ensemble, indicating high accuracy, the EF-based 

approach is more likely to underestimate mean NBE (Fig. 5a, greater density below x = 50). 

The PFT-based model also approximates the interannual variability of NBE—calculated as 

the standard deviation of the annually averaged fluxes—more closely than the EF-based 

model, which is slightly too variable from year to year (Fig. 5b).  

 Both the EF-based and PFT-based models capture annual average NBE moderately well 

(Fig. 5c), and the seasonal cycle almost perfectly (Fig. 5d). To see this, we computed the 

Pearson correlation between a given pixel’s annually averaged optimal NBE or de-trended 

seasonal cycle and its EF-based or PFT-based counterpart. We find that there are pixels for 

which both EF-based and PFT-based NBE annual averages negatively correlate with those 

from the optimal model (bottom left quadrant in Fig. 5c); many such pixels align spatially 

with the models’ MAE hotspots (Fig. S5). However, the opposite is far more likely. 

Generally, both the EF-based and PFT-based estimates of annually averaged NBE correlate 

positively with the optimal one (greater density of points in top right quadrant than in all 

other quadrants in Fig. 5c). Additionally, both model variants nearly always capture the 

optimal model’s seasonal cycle correctly (very high point density in top right quadrant of 

Fig. 5d; shown across space in Fig. S6). 
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4.3 Controls on EF-based and PFT-based model errors 

Although the EF-based model shows comparable or better performance than the PFT-based 

model across several dimensions, the relative skill of the two models shows significant 

spatial variability, the driving factors of which are not clear. That is, Fig. 4d begs the 

question: what factors determine variations in the EF-based and PFT-based models’ relative 

performance, particularly across space? Understanding where—and why—the EF-based 

model falters in predicting NBE can help to inform future iterations of the approach.  

 To do so, we tested two (potentially overlapping) hypotheses as possible controls on the 

models’ variable performance across different pixels. These hypotheses involve (a) how 

precisely the EF-based model’s parameter predictions match the “truth” (i.e., the optimal 

parameters) at a given location, and (b) how uncertain CARDAMOM’s optimal retrievals 

themselves are. For this analysis, we expanded our lens to also consider the predictability of 

NBE’s component fluxes, which critically influence the dynamics of the net flux. We focused 

on GPP and Reco fluxes, given that errors in predicting fluxes from fires are far smaller in 

magnitude (Fig. S7). 

 First, it seems feasible that the more a given EF-based parameter set differs from the 

“true” values, the less accurate any of its resulting model predictions will be. Contrary to this 

hypothesis, though, we find no direct relationship between the EF model’s GPP, Reco, or NBE 

performance and the average precision of a given EF-based parameter set (relative to the 

corresponding optimal parameter set), suggesting that individual parameter accuracy is a 

necessary but insufficient control on its performance. Indeed, a multiple linear regression 

with access only to information on the quality of the EF-based prediction for each parameter 
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across pixels explains at most 7% of the variance in the EF-based model’s GPP, Reco, and 

NBE errors (coefficient of determination, R2) (Fig. 6). Here, quality is measured through the 

“position”, or closest percentile, of an EF-based parameter prediction within the 

corresponding optimal posterior distribution, where proximity to the median indicates high 

accuracy—a measure chosen to normalize parameter error across different pixels even as the 

true parameter value varies. 

 Second, how strongly are model errors dictated by uncertainty in CARDAMOM’s 

optimal retrievals? That is, because CARDAMOM has its own limitations in determining the 

“true” NBE (e.g., the availability and accuracy of data constraints used in the optimiza t ion 

can vary across space, and flows of carbon may be inherently less predictable at some pixels 

than others), our assessment of the alternatively parameterized models’ predictions may 

reflect this uncertainty.  

 For GPP and Reco fluxes, both the EF-based and PFT-based models perform more poorly 

when CARDAMOM’s optimal retrievals are less strongly constrained and more uncertain 

(i.e., when the ensemble of optimal flux predictions is wider). The mean interquartile range 

(IQR; 25th-75th percentile) of CARDAMOM’s optimal GPP ensembles across pixels explains 

45% of the variance in the EF-based model’s GPP errors and 64% of that in the PFT-based 

model’s GPP errors (Fig. 7a). Similarly, CARDAMOM’s Reco IQR explains 41% of the 

variance in the EF-based model’s Reco errors and 60% of that in the PFT-based model’s Reco 

errors (Fig. 7b). Importantly, neither model appears significantly more sensitive than the 

other to CARDAMOM’s IQR; for each flux, the slopes of the two regression lines are 

statistically indistinguishable (Fisher’s z-test; p < 0.01). This indicates that our interpretat ion 

of model errors is not biased by the relationship between model performance and 
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CARDAMOM uncertainty. In effect, some pixels with large errors for GPP (or Reco) may 

simply be those where the optimal GPP (Reco) is so uncertain that mismatches between the 

EF-based or PFT-based GPP (Reco) prediction and the GPP (Reco) considered optimal are as 

much due to uncertainty in the latter as due to imperfect parameterization in the former.    

 When considering NBE, however, this relationship weakens markedly, with 

CARDAMOM’s NBE IQR explaining only 21% and 34% of the EF-based model’s and PFT-

based model’s NBE MAE variance, respectively (Fig. 7c). The discrepancy between the 

predictability of component versus net fluxes in the two models suggests the occurrence of 

significant compensating errors (Fig. 8). GPP and Reco errors are generally larger in 

magnitude than NBE errors for both models (Fig. 8a), suggesting a greater absolute mismatch 

between component flux predictions than net flux predictions across approaches (Fig. 8b). 

On one hand, this is not unexpected given the relative sizes of the fluxes themselves. 

However, the skill of the EF-based model relative to the PFT-based model also declines when 

considering component fluxes (Fig. 8c). That is, while the EF-based model matches or 

outperforms the PFT-based model when predicting NBE at 55% of vegetated pixels, it does 

so at only 49% when predicting either GPP or Reco—no longer a majority of pixels. 

 Taken together, these findings indicate a persistent error compensation effect, whereby 

larger errors in component flux predictions tend to “cancel out” to yield comparative ly 

smaller errors in NBE (Fig. 8d). This effect is far more prevalent than the converse, whereby 

smaller errors in GPP and Reco can compound to yield larger NBE errors. This suggests that 

the spatial pattern of NBE errors is strongly influenced by the frequency and degree of 

compensation between component fluxes. Critically, though, this behavior appears to impact 

the relative skill of EF-based and PFT-based predictions slightly differently. Indeed, the 
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fraction of pixels showing equivalent or superior performance shrinks for the former model 

when considering net versus component fluxes, and grows for the latter model (Fig. 8c).  

 
5. DISCUSSION 

5.1. Implications for TBMs 

The top-down EF-based hypotheses implemented here yielded NBE errors that matched or 

outperformed those from traditional PFTs at a sizable fraction of pixels (55%; Fig. 4d), 

suggesting that the introduction of more realistic trait variability in large-scale TBMs can 

help to improve predictions of its future behavior, as previously hypothesized (Scheiter et 

al., 2013; van Bodegom et al., 2014; Matheny et al., 2017; Xu & Trugman, 2021). Overall, 

our findings support the growing paradigm shift away from the representation of static PFTs 

and towards the incorporation of realistic trait variability into large-scale TBMs (van 

Bodegom et al., 2014; Bloom et al., 2016; Berzaghi et al., 2020; C. G. Jung & Hararuk, 

2022; Y. Liu et al., 2022). EF-based hypotheses represent one promising and flexib le 

approach for doing so, although they are not a panacea—PFT-based assumptions are still 

superior at nearly half of vegetated pixels in our analysis (45%; Fig. 4d). Although the 

drawbacks of PFTs are well-known, they are relatively easy to implement and have been 

used with reasonable success in TBMs for decades.  

 The close performance we observed between models nevertheless suggests that EF-based 

assumptions merit further investigation, particularly because implementing an EF-based 

parameterization in a TBM would require solving several open questions. These include 

whether and to what degree trait covariations (e.g., Peaucelle et al., 2019) should be 

explicitly preserved; whether different traits should be predicted based on fully independent 

filters; how complex or parsimonious EF regression models themselves should be; which 
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environmental covariates are most relevant for predicting which traits; whether EF 

relationships should be included even if they contain little theoretical support; whether all 

traits benefit from EF-based assumptions or if a hybrid, super-predictive EF- and PFT-based 

approach can improve simulations; and so on. An additional consideration involves the 

mathematical interpretability and/or generality of EF relationships (Kyker‐Snowman et al., 

2022), which depends on the specific predictive framework selected for analysis (i.e., a 

machine learning-based approach is less interpretable than a simple linear regression). It is 

also not clear whether EF relationships developed offline can be used directly in different 

TBMs with unique structures and dependencies, or whether the parameters of the EF 

relationships themselves would need local tuning for each specific TBM to avoid 

compensating errors (Koster et al., 2009; J-F Exbrayat et al., 2013).   

 

5.2. Model performance  

Unlike previous (bottom-up) implementations of EF, which focused on only a select few 

measurable traits and still maintained a generalized PFT paradigm (Verheijen et al., 2013, 

2015; Butler et al., 2017), our satellite-based machine learning approach predicts every one 

of DALEC’s dozens of parameters independently and simultaneously. This is an extreme 

case in the context of large-scale TBMs, for which a step-by-step implementation may be 

more realistic. Indeed, it is possible that our efforts—which served as a “stress test” to 

understand the integrated feasibility of the EF approach—may overestimate the appropriate 

levels of complexity and nonlinearity required for optimal EF predictions. For example, 

while any potential errors stemming from inaccuracies in the EF-based parameter predictions 

(Fig. 3) were not substantial enough to consistently limit the skill of the EF-based model 
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below that of the PFT-based one when predicting NBE, these inaccuracies indicate 

significant room for improvement regarding the characterization and predictability of 

environmental controls on parameter variability. Indeed, model parsimony (Famiglietti et 

al., 2021) should remain an important consideration in EF contexts, given that compensating 

errors can occur not only between component fluxes (Fig. 8) but also between parameters 

themselves (Wu et al., 2019) and/or between different modeled environmental feedbacks 

(Huntzinger et al., 2017).  

 Still, the retention of skill at the flux level by the EF-based model (Figs. 4-5) despite its 

parameter errors is especially notable given that the simulation of PFTs implemented here is 

relatively generous. For example, our PFT-based parameterization relies on pixel 

homogeneity rather than ground data availability for the fundamental representativeness 

assumption (Sec. 3.4). It also includes arguably more degrees of freedom than what may be 

observed in a typical TBM; that is, the total number of “representative pixels” used in the 

aggregation includes a relatively broad sample of locations within each PFT, although the 

total number of PFTs considered here (n = 9) aligns reasonably well with current approaches 

(Bastrikov et al., 2018; Harper et al., 2018; Reick et al., 2021). 

  
5.3. Spatial error distributions & component flux compensation 

We found a strong relationship between CARDAMOM’s ensemble range (i.e., uncertainty) 

and the predictive skill of both alternatively parameterized models (Fig. 7). On one hand, 

this demonstrates consistency between modeling approaches; places where even an 

optimally parameterized model is under-constrained are also those where the EF-based and 

PFT-based models perform poorly. This helps to explain why both alternative ly 

parameterized models share error hotspots (Fig. 4a-b). Notably, though, it also indicates the 
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sensitivity of the EF-based approach to training data quality and that of the PFT-based 

approach to assumed representative parameters.  

 In our study, both such factors are a direct function of the uncertainty of observationa l 

constraints used in the optimization, many of which are necessarily broad and uniform across 

space (Table 1). Additional attention and improvements to direct constraints on modeled 

GPP and Reco performance, for instance, may be needed to ensure that changes to a given 

model’s underlying parameterization indeed map to improvements in NBE. However, 

directly constraining Reco requires information on its own component parts (autotrophic and 

heterotrophic respiration fluxes, Ra and Rh). Such data are particularly challenging to 

assemble across large scales due to their sparsity (Bond‐Lamberty, 2018). Accordingly, 

neither Ra nor Rh was directly constrained in the optimization approach used here. More 

broadly, for bottom-up studies (or traditional PFTs), this relationship relies on the accuracy, 

representativeness, and coverage of in situ trait measurements (e.g., Sandel et al., 2015; 

Kattge et al., 2020). Overall, alternative model parameterization approaches would benefit 

significantly from targeted increases in observational data that can be used for training. 

 Still, the frequency of error compensation between GPP and Reco fluxes in our models—

as also observed more broadly by Caen et al. (2021) in the JULES and INLAND land surface 

models—indicates that improvements in parameter realism also have the potential to yield 

unintended consequences, such that increases in the predictability of net fluxes are not 

guaranteed. Indeed, the role of error interactions appeared as strong or stronger than other 

potential controls on NBE performance, including parameter precision (Figs. 6-7). In 

particular, the performances of both the EF-based and PFT-based model were influenced by 

error compensation in our study (Fig. 8) despite the greater realism of the former’s 
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parameterization. Thus, neither model’s NBE performance can be interpreted independently 

from compensation (Fig. 4d). Accordingly, a focus on validating gross rather than net fluxes 

and on simultaneous testing with multiple independent observational datasets of different 

fluxes and pools (with well-defined uncertainties) is recommended when implementing 

novel EF-based assumptions in TBMs to reduce the effects of possible error compensation.  

 

5.4. Remaining uncertainties & limitations  

Fire- and combustion-related parameters and processes were particularly poorly 

characterized in our study (Fig. 3), despite the inclusion of data describing burned area 

(average and variability) within the feature space. Given the critical importance of fire in 

explaining the evolution and trajectory of the land carbon sink (Jean-François Exbrayat et 

al., 2018; Yin et al., 2020), we expect the accuracy of long-term EF-based NBE forecasts to 

increase with an improved representation of fire-related processes. This need dovetails with 

recent efforts to generate fine-resolution maps of variables describing fire risk and 

vulnerability (e.g., Forzieri et al., 2021), for example, which could be sourced as additiona l 

environmental covariates in future implementations of EF-based assumptions. 

 An additional uncertainty relates to the fact that several of DALEC’s parameters are 

biophysically inter-related (e.g., leaf lifespan and leaf mass per area; Wright et al., 2004) and 

thus co-vary, potentially indicating limitations of our EF-based approach to predict each 

parameter independently. Here, we derived a unique trait–environment relationship for each 

model parameter using a random forest regression (Sec. 3.3). This means that a true 

biophysical inter-relationship between parameters could theoretically be violated when EF 

schemes are fitted independently, leaving one parameter estimate incongruent with another. 
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Accordingly, future studies should consider a multi-dimensional predictive framework, 

wherein dependencies between parameters are inherently preserved, or an alternative 

approach to maintaining covariation between parameters (Peaucelle et al., 2019).  

 Finally, despite our efforts to robustly assign initial conditions consistent with each EF-

based or PFT-based parameter set, our implementation still has limitations. Given that small 

disparities in initial states (that is, carbon pool sizes) can produce significantly different 

trajectories (Hawkins & Sutton, 2009; Bonan & Doney, 2018), it is possible that remaining 

initial condition uncertainty—perhaps along with the influence of other poorly determined 

parameters—may partially explain the sometimes divergent relationships we observed 

between the alternative models’ and optimal model’s annual average NBE (Figs. 5c and S5a-

b). Such uncertainties, however, are also far from resolved in large-scale TBMs (Hurtt et al., 

2010; Thurner et al., 2014), where initial conditions are generally calculated based on 

spinning up the model to steady state, even though this assumption is likely unrealis t ic 

(Sierra et al., 2017).  

 

6. CONCLUSIONS 

Overall, the top-down EF relationships and corresponding parameter predictions shown here 

represent a significant step forward in the characterization of trait–environment associations 

independent of in situ measurement availability. The results of this study highlight the 

potential for EF approaches to reduce NBE prediction errors and may inform efforts to 

incorporate increasingly diverse parameter representations into next-generation TBMs and 

future iterations of widely used multi-model ensembles. Expansions in the quantity and 

quality of Earth observation data from satellite remote sensing (Schimel et al., 2019), 
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advancements in the development of explainable/interpretable physics-based machine 

learning techniques for Earth system science (Reichstein et al., 2019), and increases in 

computational resource efficiency (Gupta et al., 2021) may work in tandem to foster this 

transition.   
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Table 1: Observation-based datasets assimilated into CARDAMOM. Adapted from Quetin et al. (in 
revision). 

Observation Source Years Uncertainty Reference 

Net biome exchange 
(NBE) CMS-Flux 2010–2015 

Optimized (prior 
range = 0.001-2 
gC m-2 day-1)  

J. Liu et al., 2017, 
2021 

Leaf area index (LAI) MODIS 2010–2015 ±log(1.2) Myneni et al., 2002 

Solar-induced 
fluorescence (SIF) GOSAT 2010–2015 ±log(2) 

Frankenberg et al., 
2011 

Above- and below-ground 
biomass (ABGB) Multiple 2000 ≥±log(1.5) Saatchi et al., 2011 

Soil organic matter (SOM) SoilGrids 2000 ±log(1.5) Poggio et al., 2021 

Fire C emissions MOPITT 2010–2015 ±20% 
Bowman et al., 
2017; 
Worden et al., 2017 
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Table 2: Environmental covariates used as features in the predictive EF model framework. For 
relevant time-varying covariates, the mean and standard deviation are computed over the analysis 
period (2000–2015). 

 Environmental covariate Source 
Climate Minimum temperature (mean, std. dev.) CRUNCEP 

 Maximum temperature (mean, std. dev.) CRUNCEP 
 Shortwave radiation (mean, std. dev.) CRUNCEP 
 Vapor pressure deficit (VPD) (mean, std. dev.) CRUNCEP 
 Precipitation (mean, std. dev.) CRUNCEP 
 Burned area (mean, std. dev.) CRUNCEP 
 Aridity index Trabucco & Zomer, 2019 

Vegetation & soil LAI (mean, std. dev.) MODIS 
 ABGB (mean) Saatchi et al., 2011 
 SOM (mean) SoilGrids 
 Soil water holding capacity SoilGrids 
 Soil pH SoilGrids 
 Soil clay fraction SoilGrids 
 Soil bulk density SoilGrids 
 Depth to bedrock SoilGrids 
 Canopy height IceSat (Simard et al., 2011) 
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FIGURE CAPTIONS 

Figure 1: Schematic diagrams of the (a) EF-based and (b) PFT-based parameterization approaches 
within CARDAMOM. 

Figure 2: Example NBE time series (2000–2015) for one pixel (latitude = 54, longitude = -10), 
including the optimally parameterized model estimate with 25th-75th percentile range (green), the PFT-
based model estimate (orange), and the EF-based model estimate (blue). Here, the mean absolute error 
(MAE) for the PFT-based model is 0.69 gC m-2 day-1, while that for the EF-based model is 0.36 gC m-

2 day-1.  

Figure 3: (a) Errors (calculated as normalized RMSE) and (b) R2 values for EF parameter predictions 
relative to optimal parameters. Individual DALEC parameters (gray circles) are organized into broad 
functional groups (x-axis bins), with each group’s mean shown as a black diamond (error bar indicating 
standard deviation).  

Figure 4: Maps comparing NBE performance of the PFT-based and EF-based models. (a) Mean 
absolute error (MAE) for NBE predictions from the PFT-based model; (b) MAE for NBE predictions 
from the EF-based model; (c) difference between (a) and (b); (d) best-performing model at each pixel, 
based on lowest MAE. Dark gray pixels in (d) represent cases in which NBEPFT MAE and NBEEF MAE 
are within 5% of each other. Light gray pixels are excluded from analysis either due to the ensemble 
range filter (Sec. 3.2), land cover filter (Sec. 3.6) or unavailability of NBE data. 

Figure 5: Results from time series decomposition analysis. (a) Distributions of the location of each 
pixel’s PFT-based and EF-based mean NBE within the corresponding optimal NBE ensemble. A value 
of 50 indicates that the PFT-based or EF-based mean NBE estimate aligns with the median of the 
optimal ensemble and is considered the most accurate outcome. (b) Distributions of NBE IAV for the 
PFT-based, EF-based, and optimally parameterized model. (c) Heatmap comparing Pearson 
correlations between annually averaged NBE from the optimally parameterized model and annually 
averaged NBE from the PFT-based model (x-axis) with correlations between annually averaged NBE 
from the optimally parameterized model and annually averaged NBE from the EF-based model (y-
axis). Points lying in the upper right-hand corner (first quadrant) have PFT-based and EF-based NBE 
annual averages that are both strongly correlated with those from the optimal model. (d) Heatmap 
comparing correlations between the de-trended NBE seasonal cycle from the optimally parameterized 
model and that from the PFT-based model (x-axis) with correlations between the de-trended NBE 
seasonal cycle from the optimally parameterized model and that from the EF-based model (y-axis). For 
subplots (c) and (d), coloration of grid cells corresponds to relative point density. 

Figure 6: Role of parameter precision in controlling MAE. (a) Observed GPP MAE (resulting from EF 
versus optimal comparison) versus predicted MAE (resulting from multiple linear regression with 
information on EF parameter precision). (b) Same, but for Reco. (c) Same, but for NBE. R2 is the 
coefficient of determination. The thin black line denotes a 1:1 relationship. 

Figure 7: Role of CARDAMOM’s uncertainty in controlling MAE. (a) CARDAMOM’s GPP ensemble 
interquartile range (IQR) versus predicted GPP MAE for both the EF-based (blue) and PFT-based 
(orange) models. (b) Same, but for Reco. (c) Same, but for NBE. In each subplot, regression lines are 
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plotted in blue and orange (m represents the slope of each line; R2 is the coefficient of determination). 
The thin black line denotes a 1:1 relationship.  

Figure 8: Component flux prediction skill and error compensation. (a) Boxplots comparing the EF-
based and PFT-based models’ MAE across fluxes. (b) Distributions of the difference in MAE between 
PFT-based and EF-based predictions for GPP, Reco, and NBE. (c) Bar charts showing the percentage of 
vegetated pixels for which each model’s predictions were more accurate (lower MAE). (d) Bar chart 
showing the percentage of vegetated pixels for which errors between component fluxes either 
compound or compensate to yield NBE errors.  
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