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Abstract 

Background: Evidence for antioxidants, minerals, and vitamins in relation to the risk of 

Crohn’s disease (CD) and ulcerative colitis (UC) is limited and inconsistent. This mendelian 

randomization (MR) study aimed to examine the causal associations of circulating levels 

of antioxidants, minerals, and vitamins with CD and UC. 

Methods: Single-nucleotide polymorphisms associated with antioxidants (beta-carotene, 

lycopene, and uric acid), minerals (copper, calcium, iron, magnesium, phosphorus, zinc, 

and selenium), and vitamins (folate, vitamin A, B6, B12, C, D, E, and K1) were employed 

as instrumental variables. Genetic associations with CD and UC were extracted from the 

UK Biobank, the FinnGen study, and the International Inflammatory Bowel Disease 

Genetics Consortium. The inverse variance weighted method and sensitivity analyses 

were performed. 

Results: Genetically predicted higher lycopene (OR=0.94, 95% CI: 0.91-0.97), vitamin D 

(OR=0.65, 95% CI: 0.54-0.79), and vitamin K1 (OR=0.93, 95% CI: 0.90-0.97) levels were 

inversely associated with CD risk, whereas genetically predicted higher magnesium 

(OR=1.53, 95% CI: 1.23-1.90) levels were positively associated with CD risk. Higher levels 

of genetically predicted lycopene (OR=0.91, 95%CI: 0.88-0.95), phosphorus (OR=0.69, 

95%CI: 0.58-0.82), selenium (OR=0.91, 95%CI: 0.85-0.97), zinc (OR=0.91, 95%CI: 0.89-

0.94), folate (OR=0.71, 95% CI: 0.56-0.92) and vitamin E (OR=0.78, 95%CI: 0.69-0.88) 

were associated with reduced UC risk, whereas genetically predicted high levels of calcium 

(OR=1.46, 95% CI: 1.22-1.76) and magnesium (OR=1.24, 95% CI: 1.03-1.49) were 

associated with increased risk of UC.  
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Conclusions: Our study provided evidence that circulating levels of antioxidants, minerals, 

and vitamins might be causally linked to the development of IBD.  

Key Words: Crohn’s disease, Ulcerative colitis, Antioxidants, Minerals, Vitamins, 

Mendelian randomization analysis 
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Introduction 

Inflammatory bowel disease (IBD), including Crohn's Disease (CD) and ulcerative colitis 

(UC), is a chronic inflammatory disorder of the gastrointestinal tract with a rising incidence 

in populations.1 Although the precise etiology of IBD remains unclear, accumulating 

evidence from observational studies suggests that dietary nutrients especially antioxidants, 

minerals, and vitamins contribute to the pathogenesis of IBD.2, 3 Unfortunately, published 

research on the associations between dietary nutrients, especially antioxidants, minerals, 

and vitamins and IBD is scarce and inconclusive. An umbrella review of meta-analyses 

found that high vitamin D levels decreased the risk of CD and UC;4 however, a randomized 

controlled trial (RCT) examining the effect of supplemental vitamin D did not show a 

significant clinical benefit.5 Large prospective cohort studies have reported that dietary zinc 

intake was inversely associated with incident CD,6, 7 whereas in a small RCT, zinc 

supplementation seemed to play little part in restraining inflammation in patients with IBD.8 

Potential explanations for these inconsistent results may relate to the substantial biases 

(residual confounding and reverse causation) in observational studies as well as low 

adherence to treatment, low treatment doses, short trial duration, and low statistical power 

in RCTs. The causal role of antioxidants, minerals, and vitamins in the development of CD 

or UC remains unclear. 

Mendelian randomization (MR) utilizes genetic variants as instruments to make inferences 

in causal relationships between risk factors and disease outcomes.9 As germline genetic 

variants are randomly allocated at meiosis, MR design minimizes confounding and is not 
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influenced by environmental or self-adopted factors and therefore strengthens causal 

inference. Construction of a validated MR association relies on three key assumptions: 1) 

genetic variant is associated with the exposure; 2) the genetic variant is not related to 

confounding; 3) the genetic variant has no effect on outcome directly.10 A previous MR 

study including 25,042 IBD cases indicated no association of genetically predicted vitamin 

D levels with CD or UC risk.11 Still, the MR associations of antioxidants, minerals, and 

vitamins with CD or UC risk have not been systematically evaluated. Here, we conducted 

an MR investigation to comprehensively explore the causal associations of antioxidants, 

minerals, and vitamins with CD and UC. 

 

Methods 

Study design 

This MR study design is depicted in Figure 1. The present study was based on publicly 

available data from UK biobank,12 the FinnGen study,13 the International Inflammatory 

Bowel Disease Genetics Consortium (IIBDGC),14 and published genome-wide association 

studies (GWASs). All exposure-specific MR analyses were conducted separately in UK 

Biobank, FinnGen study, and IIBDGC, and individual results were subsequently meta-

analyzed to pool estimates for each exposure on CD or UC risk. Included studies had been 

approved by corresponding institutional review boards and ethical committees. 

Instrumental variable selection 
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We conducted a search of the latest published GWASs performed among European 

individuals on diet-related antioxidants, minerals, and vitamins at the circulating level in the 

NHGRI-EBI GWAS catalog and PubMed (from inception to 1st March 2022). After the 

searching, published GWASs for 20 exposures were initially identified: beta-carotene,15 

lycopene,16 uric acid,17 calcium,18 copper,19 magnesium,20 sodium,20 potassium,20 

copper,19 zinc,19 iron,21 selenium,22 phosphorus,23 folate,24 vitamins A,25 B6,26 B12,24 C,27 

D,28 E,29 and K1 30 (Table S1). For some circulating nutrients such as sulfur and vitamin 

B1, no available GWASs were found, so these were not considered in the current study. 

Even though more recent GWASs on calcium, phosphorus, and vitamin D were conducted 

in UK Biobank samples in which hundreds of SNPs were identified,31 we decided not to 

apply this option due to the overlap of the study population.  

To comprehensively evaluate the effects of circulating antioxidants, minerals, and vitamins 

on disease and obtain suitable instrumental variables (IVs), we selected eligible genetic 

instruments based on the following criteria: 1) SNPs should be associated with these 

circulating nutrients at a genome-wide significance level (P < 5 × 10−8); for those traits 

instrumented by less than 2 SNPs, suggestive significant genome-wide association 

significant (P < 1 × 10−5) or validated SNPs were included if available; 2) SNPs should be 

associated with exposure independently—that is, not in linkage disequilibrium (defined as 

r2<0.01) with other genetic instruments for the same exposure; 3) the selected genetic 

instruments should explain at least 0.1% of the variance of exposure to ensure the strength 

of genetic IVs to be sufficient to evaluate a causal effect.32 Potassium and sodium were 

excluded because the criteria were not met and therefore 18 circulating nutrients were 
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included in the analysis.  

Detailed information of genetic instruments used for each nutrient is shown in Table S2. 

Notably, SNPs associated with circulating lycopene passing the threshold of P < 1 × 10−6 

were identified from a small GWAS conducted in 441 individuals of European ancestry, 

explaining a substantial part (30.1%) of the total variance of circulating lycopene levels.16, 

33 SNPs for vitamin K1 in five loci passing the threshold of P < 1 × 10−6 were reported in a 

GWAS of 2,138 European individuals. Four SNPs with the strongest association with 

vitamin K1 levels in each locus were utilized explaining approximately 6.0% of genetic 

variance, and one SNP that was strongly associated with triglyceride and cholesterol was 

removed to minimize pleiotropy.30 The GWAS for lycopene, vitamin A, Vitamin E, Vitamin 

D levels were adjusted for body mass index. For each exposure, instrumental variables 

were harmonized to omit ambiguous SNPs with non-concordant alleles and palindromic 

SNPs with ambiguous MAF (above 0.42 and less than 0.58). When an exposure-

associated SNP was not available in the outcome GWAS, a proxy SNP identified in high 

linkage disequilibrium (r² > 0.8) was used instead (using the LDlink tool and the European 

1000 Genomes data 34). The variance explained by genetic instruments for each nutrient 

ranged from 0.2% to 30.1% (Table S3). 

Outcome data sources 

Summary-level GWAS data for CD and UC were available in UK Biobank,12 the FinnGen 

study,13 and IIBDGC.14 The UK Biobank study is a large multicenter cohort study that 

recruited more than 500,000 European participants across the United Kingdom between 



 11 

2006 and 2010.12 In this study, summary statistics of genetic associations in UK Biobank 

were extracted from GWAS conducted by Lee lab.35 Crohn’s disease (1,743 cases and 

334,783 controls) was defined according to the International Classification of Diseases 9th 

Revision (ICD-9) (555) and ICD-10 (K50); Ulcerative Colitis (3,195 cases and 334,783 

controls) was defined according to ICD-9 (556.9) and ICD-10 (K51). The genetic-disease 

association estimates were obtained by logistic regression with adjustment for the genetic 

principal components, sex, and birth year. Summary-level estimates of genetic 

associations with CD and UC were also obtained in the last publicly available R6 data 

release of the FinnGen study. The FinnGen study is a large nationwide cohort study 

launched in 2017, which combined genetic data from Finnish biobanks and digital health 

record data from Finnish health registries.13 A CD diagnosis (2,532 cases and 249,705 

controls) was coded according to the ICD-8 (5630), ICD-9 (555), ICD-10 (K50); a UC 

diagnosis (5,349 cases and 249,705 controls) was coded according to the ICD-8 (5631, 

569), ICD-9 (556), ICD-10 (K51). Genome-wide association analyses for each trait were 

adjusted for sex, age, genetic components, and genotyping batch. IIBDGC brings together 

genome-wide genotyping data and whole-genome sequencing data for over 75,000 

patients with IBD.14 Diagnosis of IBD in IIBDGC was based on accepted radiologic, 

endoscopic, and histopathologic evaluations. The genetic associations were obtained from 

logistic regression adjusted for age, sex, and genetic principal components. We employed 

European ancestry summary-level statistics including data for CD (5,956 cases and 14,927 

controls) and UC (6,968 cases and 20,464 controls). 

Statistical analysis 
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The primary MR analyses were conducted by utilizing the inverse-variance weighted 

method. For exposures with more than 3 SNPs, the estimates for variants were then pooled 

using the random-multiplicative effects inverse-variance weighted method. For exposures 

instrumented by only 2 SNPs, the fixed-effects inverse-variance weighted method was 

employed. The inverse-variance weighted method provides the most precise estimates but 

assumes that all SNPs are valid instruments and any pleiotropy is balanced.36 

Heterogeneity among estimates based on individual SNPs was assessed with Cochran's 

Q value. Wald ratio method was performed if there was only 1 SNP for the exposure, in 

which the SNP‐outcome association estimate was divided by its SNP‐exposure association 

estimate to obtain the causal relationship. 

To examine if there was any violation of the assumptions of MR or any other potential 

biases for exposure with 3 or more genetic instruments, the weighted median,36 MR-egger 

regression,37 and Mendelian randomization pleiotropy residual sum and outlier (MR-

PRESSO) 38 methods were additionally performed as sensitivity analyses. The weighted 

median model can provide consistent estimates if at least 50% of the weight comes from 

valid instrumental variables.36 The intercept test of MR-Egger regression can be used as 

an indicator of horizontal pleiotropy albeit with low, precise estimates.37 MR-PRESSO 

methods can identify horizontal pleiotropic outliers of SNPs and provide results identical to 

those from IVW in the absence of outliers.38 

Fixed-effects meta-analysis was conducted to combine MR estimates from different data 

sources. The F-statistic was estimated to quantify instrument strength for each exposure 
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and an F-statistic > 10 suggests a sufficiently strong instrument. We conducted power 

analysis by using the online web tool mRnd (https://cnsgenomics.shinyapps.io/mRnd/) 

32(Table S3). The Benjamini-Hochberg correction that controls the false discovery rate 

(FDR) was applied to correct for the multiple testing separately for CD and UC, and 

associations with a Benjamini–Hochberg adjusted P-value <0.05 were regarded as 

significant. All analyses were two-sided and performed using the TwoSampleMR,39 and 

MRPRESSO R package 38 in R software 4.1.2. 

Results 

The causal role of antioxidants, minerals, and vitamins in CD 

Genetically predicted higher circulating lycopene levels were associated with reduced risk 

of CD in IIBDGC, and the associations were directionally consistent in the other two 

databases (Figure 2). In the meta-analysis, the odds ratio (OR) of CD was 0.94 (95% CI: 

0.91-0.97; P<0.001) for a 1μg/dl increase in genetically predicted lycopene (Table S4). 

Genetically predicted circulating magnesium levels were associated with CD risk in UK 

Biobank, and the associations were directionally consistent in the other two databases 

(Figure 2). For one SD increase in genetically predicted circulating magnesium levels, the 

combined OR of CD was 1.53 (95% CI: 1.23-1.90; P <0.001). Genetically predicted vitamin 

D (OR=0.65, 95% CI: 0.54-0.79; P<0.001, per SD increase) and Vitamin K1 (OR=0.93, 95% 

CI: 0.90-0.97; P=0.001, per 1-unit increase in natural logarithm‐transformed) levels were 

inversely associated with the disease in the meta-analyses (Figure 2).  

Associations across these sensitivity analyses were generally directionally consistent. 
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Heterogeneity was detected in the analysis of magnesium, vitamin B12, and Vitamin D 

(Table S5). The MR-Egger regression intercept suggested evidence of horizontal pleiotropy 

in the analysis of magnesium in IIBDGC. A few outliers were detected in the MR‐PRESSO 

analysis of magnesium and vitamin B12, and the removal of these outliers did not change 

the direction of the associations.  

The causal role of antioxidants, minerals, and vitamins in UC 

Genetically predicted higher lycopene levels were associated with reduced risk of UC in 

IIBDGC, and the associations were directionally consistent in UK Biobank (Figure 3). For 

a 1μg/dl increase in the genetically predicted lycopene levels, the combined OR of UC was 

0.91 (95% CI: 0.88-0.95; P<0.001). Higher genetically predicted phosphorus, zinc, and 

selenium levels were statistically associated with a decreased risk of UC, whereas 

genetically predicted calcium and magnesium levels were positively associated with the 

disease (Figure 3). The combined ORs per 1‐SD increase in genetically predicted 

circulating levels of these minerals were 0.69 (95% CI: 0.58–0.82; P<0.004) for phosphorus, 

0.91 (95% CI: 0.85–0.97; P=0.006) for selenium, 1.46 (95% CI: 1.22–1.76; P=0.022) for 

calcium and 1.24 (95% CI: 1.03–1.49; P=0.022) for magnesium. Genetically predicted 

folate (OR=0.71, 95% CI: 0.56–0.92; P=0.009, per SD increase), and vitamin E (OR=0.64, 

95% CI: 0.46-0.89; P <0.001) levels were inversely associated with risk of UC in the meta-

analyses (Figure 3); (Table S4). 

Results from the sensitivity analyses were generally consistent with the primary analysis, 

though they did not always reach a significant level. Associations between SNPs on 
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magnesium and risk of UC showed evidence of heterogeneity in IIBDGC, and the direction 

of the association did not alter after removing one outlier in MR-PRESSO analysis (Table 

S6). 

Discussion 

In this MR analysis, we provided evidence that genetically predicted higher circulating 

lycopene, vitamin D, and vitamin K1 levels were associated with reduced risk of CD, 

whereas the genetically predicted high magnesium levels were associated with elevated 

CD risk. Our study also found that genetically predicted circulating levels of lycopene, 

phosphorus, selenium, zinc, folate, and vitamin E were inversely associated with UC risk, 

and genetically predicted higher calcium and magnesium levels were associated with 

increased risk of UC.  

The protective role of antioxidants on IBD risk has been explored in previous observational 

studies.40 41, 42An inverse association of lycopene levels with CD and UC was detected in 

our MR analysis, which was in line with previous studies.40, 41 Results from a cross-

sectional study with 37 nonsmoking CD patients showed that plasma lycopene was 

significantly lower in CD patients than in controls;40 another cross-sectional study of 56 UC 

patients in remission showed that higher lycopene intakes were associated with lower fecal 

blood, mucus, and pus among participants.42 Evidence from laboratory studies indicated 

several underlying mechanisms. Lycopene is one of the free radical scavengers, which 

neutralizes free radicals by donating electrons 43 and thus delays the process of oxidative 

stress in IBD. A recent experimental animal study demonstrated that lycopene plays a 
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preventive role in dextran sulfate sodium-induced colitis mice by regulating the 

TLR4/TRIF/NF-κB signaling pathway.44 Published studies also examined the associations 

between circulating levels of β-carotene, retinol, and ascorbate and the risk of CD and UC, 

but reported inconsistent findings.40, 42, 45 In this MR investigation, we observed limited 

evidence in support of causal associations for genetically predicted beta-carotene, retinol 

(Vitamin A), and ascorbate (Vitamin C) in relation to IBD risk. The discrepancy between the 

observational studies and our MR study might be attributed to the residual confounding 

and reverse causation bias, or insufficient statistical power. In the case of lycopene, limited 

studies made the supplementation recommendations vague and dispensable. Taken 

together, our study supports that lycopene is one of the promising antioxidants with the 

potential for reducing both CD and UC risk. 

Data on the associations of minerals with IBD are scarce. Inconsistent with our results, 

most cross-sectional studies observed that circulating calcium levels were lower in IBD 

patients.46, 47 A most likely explanation for this discrepancy is that gastrointestinal damage 

as a result of ongoing inflammation leads to the malabsorption of calcium after the onset 

of IBD. Interestingly, we observed that genetic predisposition to higher circulating calcium 

and genetic predisposition to lower circulating phosphorus was associated with elevated 

UC risk with validated genetic instruments, which indicated that the disorders of calcium 

and phosphorus metabolism may be involved in the pathological process of UC onset. 

Considering the low variance explained by the genetic instrument for calcium (0.8%) and 

phosphorus (0.2%), we cannot rule out that weak associations between these two minerals 

and CD were overlooked. Although the mechanistic explanations for the association 



 17 

between calcium and UC remain unclear, it has been reported that serum calcium might 

contribute to the inflammation by activating the inflammasome through the calcium-sensing 

receptor.48 Besides, animal models have provided evidence that calcium/calmodulin-

dependent protein kinase IV activation contributes to the pathogenesis of experimental 

colitis via inhibition of intestinal epithelial cell proliferation.49 

We also observed that genetic predisposition to higher zinc and selenium levels were 

associated with a decreased risk of UC. Evidence from two large prospective cohorts of 

women based on semi-quantitative food frequency questionnaires showed that intake of 

zinc was inversely associated with risk of CD but not UC.6 Another prospective cohort 

based on 24-hour dietary records reported that dietary zinc intake was inversely associated 

with incident CD.7 We found a statistically significant positive association of circulating 

magnesium with CD and UC, which are novel and therefore require confirmation in further 

studies. Several biological mechanisms have been suggested for explaining the protective 

roles of several minerals, such as the anti-inflammatory effect mediated by selenium 50 and 

the regulation of immune function by zinc.51 As for magnesium, a previous MR study 

uncovered that genetically predicted magnesium is associated with an 8.74-fold increased 

risk of rheumatoid arthritis;52  however, definitive proof for mechanisms of magnesium in 

the regulation of immune diseases is still lacking.  

The role of vitamin D in CD risk has been noted previously. A prospective cohort study with 

122 incident cases of CD and 123 cases of UC in the Nurses' Health Study found that 

higher predicted plasma levels of 25(OH)D were associated with a 46% lower risk of 
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incident CD.53 A previous MR study on vitamin D including approximately 2,000 IBD cases 

found no causal association with either CD or UC risk.54 Another MR study including 25,042 

IBD cases of mixed ancestry, provided limited evidence for the association of vitamin D 

with CD.11 On the contrary, our MR study identified significant MR associations between 

vitamin D levels and the risk of CD and UC. These conflicting findings might be caused by 

the enhanced power of the current MR study, in which we used 3 databases to estimate 

the association with greater precision. In addition, the reliability of the results was 

significantly improved due to an increasing number of genetic instruments. We also 

observed the inverse association between vitamin K1 and CD. It has been reported that 

circulating vitamin K was insufficient in patients with CD, which was suggested to be 

associated with inflammatory processes.55 Lacking prospective evidence, more studies are 

warranted to confirm this observed association. We also observed inverse associations of 

circulating folate and vitamin E with UC risk. In line with our results, a meta-analysis 

including 12 studies indicated that the average serum folate concentration in patients with 

UC was significantly lower than that in controls.56 The inverse association between vitamin 

E and UC has been uncovered in some previous observational studies 57, 58 but not all.59 

Detailed pathophysiological mechanisms behind the association between vitamins and 

IBD remained elusive but several hypotheses are supporting such relationships. It is 

recognized that vitamin D is an essential anti-inflammatory nutrient in regulating gut 

mucosal immunity.60 Studies suggested that vitamin D may affect intestinal epithelium 

integrity and innate immune barrier function in the involvement of IBD.60 Emerging studies 

support that Vitamin K1 is involved in immune response and anti-inflammation 61 and is 
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associated with the protective and promoting role in the intestine.62 It has been proved that 

folate plays a role in regulating reactive oxygen species production and reducing oxidative 

stress by acting directly as an antioxidant.63 Vitamin E reduces lipid peroxidation and thus 

has a significant role in membrane stabilization 64 which may mitigate the oxidative stress 

in UC. The different vitamins in relation to CD and UC highlight distinctive pathological 

pathways in UC and CD. The majority of the literature on vitamin deficiencies in IBD centers 

around deficiencies in folate, vitamin D and B12 and the vitamin E and K were relatively 

overlooked. Deficiencies on vitamin E and K were usually underappreciated in the IBD 

patients with steatorrhea and the pre-morbid state was easily neglected.65 Findings on 

protective role of vitamin E and K1 provided new insight into the pathogenesis of UC and 

CD. 

Current European Society for Clinical Nutrition and Metabolism (ESPEN) 

recommendations suggest that micronutrient levels need to be assessed annually in IBD 

patients, with the correction of any deficit with supplementation.66 Similarly, literature on 

supplementation of other micronutrients as therapy is limited to a few, small scale studies 

that only target specific subgroups of patients. Limited evidence makes specific 

recommendations on nutrient supplementation difficult. Findings from this study will 

complement the current evidence from observational studies supporting that circulating 

micronutrients of antioxidants, minerals, and vitamins are causally linked to the 

development of IBD, which would contribute to the research field of nutrient prevention for 

IBD. 
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The main strength of this study is the MR design that incorporated data from large consortia 

to provide solid genetic evidence for the reported associations. The MR study with data 

from populations of European ancestry reduces the risk of confounding and reverse 

causality and also minimizes bias caused by population stratification. In addition, three 

large databases with independent populations comprising 10,231 CD and 15,383 UC 

cases for gene-outcome associations were meta-analyzed in the present study. The results 

from these three data sources were generally consistent, making it less likely that the 

observed associations were caused by chance. 

Limitations of this MR investigation also merit consideration. Genetic instruments used in 

this study collectively explained only a small proportion of the variance in blood levels of 

calcium, phosphorus, and folate, which may result in insufficient power to detect small or 

moderate associations. However, the large sample sizes in our outcomes datasets also 

alleviate the relatively inadequate statistical power. In addition, the small sample size of 

GWAS in lycopene, zinc, and vitamin B6 may contribute to imprecision in the selection of 

SNPs. Therefore, there is a need for larger GWAS to identify more genetic variants for 

nutrients. Another limitation in MR analysis is horizontal pleiotropy, but there was no 

indication of pleiotropic effects in MR-Egger analyses. A further limitation is that the 

relationship among nutrients is complex, and it may be misleading to examine nutrients 

individually without considering others. Although some endogenous nutrients are related 

to exogenous dietary intake in dose-dependently manners, changes in circulating levels of 

nutrients do not necessarily and completely reflect the variations in dietary intake of 

nutrients. Besides, genetic associations with lycopene, vitamin A, D and E were estimated 
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while adjusted for body mass index according to the original GWAS, which might increase 

the risk for collider bias in the current MR investigation. Unfortunately, the GWASs for these 

nutrients without adjustment for BMI were not available, thus these observed associations 

should be cautiously interpreted.  

Conclusion 

In conclusion, this MR study observed that genetically predicted lycopene, vitamin D, and 

vitamin K1 levels were inversely associated with CD risk, whereas the genetically predicted 

magnesium levels were positively associated with CD risk. We also found evidence that 

genetically predicted lycopene, phosphorus, selenium, zinc, folate, and vitamin E levels 

have an inverse effect on the risk of UC, and genetic prediction of high calcium and 

magnesium levels were associated with increased risk of UC.  
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Figure legends 

Figure 1. A flowchart of study design. CD, Crohn’s disease; UC, ulcerative colitis; IIBDGC, 

The International Inflammatory Bowel Disease Genetics Consortium; IVW, inverse-variance 

weighted; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier. 

Figure 2. Associations of antioxidants, minerals, and vitamins with risk of Crohn’s disease. CI, 

confidence interval; OR, odds ratio. 

Figure 3. Associations of antioxidants, minerals, and vitamins with risk of ulcerative colitis. CI, 

confidence interval; OR, odds ratio.

 


