Approximating Graph Pattern Queries Using Views

Jia Li1 \quad Yang Cao2 \quad Xudong Liu1

1Beihang University \quad 2University of Edinburgh

\{lijia1108, liuxd\}@buaa.edu.cn, yang.cao@ed.ac.uk

\textbf{ABSTRACT}

This paper studies approximation of graph pattern queries using views. Given a pattern query \(Q \) and a set \(\mathcal{V} \) of views, we propose to find a pair of queries \(\mathcal{Q}_u \) and \(\mathcal{Q}_l \), referred to as the \textit{upper} and \textit{lower} approximations of \(Q \) \textit{w.r.t.} \(\mathcal{V} \), such that
\begin{enumerate}[(a)]
\item for any data graph \(G \), answers to (part of) \(Q \) in \(G \) are contained in \(\mathcal{Q}_u \) and contain \(\mathcal{Q}_l \); and
\item both \(\mathcal{Q}_u \) and \(\mathcal{Q}_l \) can be answered by using views in \(\mathcal{V} \).
\end{enumerate}

We consider pattern queries based on both graph simulation and subgraph isomorphism. We study fundamental problems about approximating using views. Given \(Q \) and \(\mathcal{V} \), \((1) \) we study whether there exist upper and lower approximations of \(Q \) \textit{w.r.t.} \(\mathcal{V} \). \((2) \) How to find approximations that are closest to \(Q \) \textit{w.r.t.} \(\mathcal{V} \) if exist? \((3) \) How to answer upper and lower approximations using views in \(\mathcal{V} \)? We give characterizations of the problems, study their complexity and approximation-hardness, and develop algorithms with provable bounds. Using real-life datasets, we verify the effectiveness and efficiency of approximating simulation and subgraph queries using views.

\section{1. INTRODUCTION}

Answering relational queries using views has been extensively studied for decades (see [9] for a survey). The idea has recently been extended to graph pattern queries such as graph simulation [8] and SPARQL [13], and has proven effective. A pattern query \(Q \) can be answered using a set \(\mathcal{V} \) of pattern views \(\mathcal{V}_1, \ldots, \mathcal{V}_n \) if, for any data graph \(G \), the matches \(Q(G) \) to \(Q \) in \(G \) can be computed using nodes and edges in the view answers \(\mathcal{V}_1(G), \ldots, \mathcal{V}_n(G) \). Here a view \(\mathcal{V}_i \) is simply a pattern query whose match result in \(G \) is materialized. However, although desirable, in many cases queries cannot be exactly answered as such, when there are only limited views.

Not all is lost. Even when \(Q \) cannot be exactly answered using \(\mathcal{V} \), \(Q \) may still be upper and lower “bounded” via approximations that can be answered using \(\mathcal{V} \). More specifically, there may exist two patterns \(\mathcal{Q}_u \) and \(\mathcal{Q}_l \) for \(Q \), such that
\begin{enumerate}[(1)]
\item both \(\mathcal{Q}_u \) and \(\mathcal{Q}_l \) can be answered using \(\mathcal{V} \);
\item \(Q \) is contained in \(\mathcal{Q}_u \) and contains \(\mathcal{Q}_l \), i.e., for all data graphs \(G \), \(Q(G) \subseteq \mathcal{Q}_u(G) \) and \(\mathcal{Q}_l(G) \subseteq \mathcal{Q}_u(G) \), where \(\subseteq \) denotes the inclusion of match results.
\end{enumerate}

That is, \(Q(G) \) can be upper and lower bounded by \(\mathcal{Q}_u(G) \) and \(\mathcal{Q}_l(G) \) for any \(G \). We call \(\mathcal{Q}_u \) and \(\mathcal{Q}_l \) upper and lower approximations of \(Q \) \textit{w.r.t.} \(\mathcal{V} \). That is, \(\mathcal{Q}_u \) and \(\mathcal{Q}_l \) together give us an approximation of \(Q \) using views in \(\mathcal{V} \).

\textbf{Example 1}: Consider a recommendation network \(G \) taken from [16] and shown in Fig. 1. A node denotes an entity labeled with expertise, e.g., project manager (PM), software developer (SD), software tester (ST), user interface designer (UD) and business analyst (BA); an edge e.g., (PM, SD) indicates that SD worked well under the supervision of PM in previous projects. A human resource manager wants to set up a team to develop a new software product. The required expertise is specified by a pattern query \(Q_1 \), also shown in Fig. 1 (in the dashed rectangular). It aims to find a group of PMs, SDs, UD and ST, that \((1) \) both SD and UD worked well under PM, and \((2) \) there exists a ST worked well under SD and UD. A graph pattern matching process is conducted for \(Q_1 \) on \(G \), based on graph simulation [10], to find matched nodes in \(G \) to \(Q_1 \).

Suppose that a set of views \(\mathcal{V} = \{ \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4 \} \) is defined and their answers in \(G \) are cached, as shown in Fig. 1. Observe the following. \((1) \) \(Q_1 \) cannot be answered using the views only, as there exist no views that can be combined to get the match result of \(Q_1 \). \((2) \) However, there exist two pattern graphs \(\mathcal{Q}_u \) and \(\mathcal{Q}_l \) that can be answered using view answers \(I_{C[\mathcal{V}_1]}, I_{C[\mathcal{V}_2]} \) and \(I_{C[\mathcal{V}_3]}, I_{C[\mathcal{V}_4]} \), respectively, yielding match result \(\mathcal{Q}_l(G) \subseteq Q_1(G) \subseteq \mathcal{Q}_u(G) \).

These indicate that, although \(Q \) cannot be exactly answered using views, it can be approximately answered with the views.

Consider another pattern query \(Q_2 \) also shown in Fig. 1. A business analyst (BA) is in demand for the project. This is reflected in \(Q_2 \) by a new node labeled with BA (colored in blue) with an edge from PM to BA. One can verify that \(Q_2 \) cannot be answered using the views. Worse still, there exist no pattern graphs that can upper and lower bound \(Q_2 \) as \(\mathcal{Q}_u \) and \(\mathcal{Q}_l \) for \(Q_1 \). However, the answers to subgraphs of \(Q_2 \), e.g., \(Q_1 \), can be approximated by \(\mathcal{Q}_u \) and \(\mathcal{Q}_l \) using views.

To make full use of this idea, several fundamental problems call for a full treatment. How to formalize upper and lower approximations \textit{w.r.t.} views so that we can cover both “complete” approximation (e.g., \(Q_1 \) above) and “subgraph” approximation (e.g., \(Q_2 \)) using views? Given a query \(Q \) and views \(\mathcal{V} \), does \(Q \) have an upper (resp. lower) approximation?
There has been recent work on finding accurate approximations for graph queries w.r.t. Q. How to find accurate approximations for Q w.r.t. V, i.e., Q_u, and Q_l when they are closest to Q?

Contributions. This paper tackles these questions.

1. We propose upper and lower approximation of graph pattern queries w.r.t. a set V of views (Section 2). We consider both simulation and subgraph patterns, based on graph simulation [8,10] and subgraph isomorphism [18], respectively.
2. We study fundamental problems for upper and lower approximations for simulation queries (Section 3). We develop characterizations and investigate their complexity.
3. We develop algorithms with provable guarantees to find upper and lower approximations to Q w.r.t. V (Sections 4 and 5).
4. We extend the study to subgraph queries (Section 6). We characterize upper and lower approximations of subgraph queries w.r.t. views. We also study subgraph query answering using views to build a query-driven approximation framework for both simulation and subgraph queries.
5. On real-life datasets, we experimentally verify the effectiveness and efficiency of the framework (Section 7).

Related work. We categorize previous work as follows.

Query answering using views. There has been recent work on answering graph queries using views over graph data, such as simulation queries [8] and SPARQL queries [12,13] over graph and RDF data, respectively. This work extends the prior work in the following. (1) We consider approximating graph queries using views i.e., find approximate answers using views instead of exact answers as in [8,12,13]. (2) We also investigate subgraph isomorphism query answering using views, which has not been studied before.

Query approximation. Closer to us is approximate query answering, which can be classified as (a) data-driven approximation which builds data synopses first on which the queries are then evaluated [6,11], (b) query-driven approximation [3,5,7], which uses “cheaper” queries Q' instead of the original queries Q and computes answers to Q' as approximate answers to Q, and (c) heuristic approximation which computes approximate answers via compromised search [15,17,20].

This work differs from theirs in the following. (1) We study graph pattern matching queries based on graph simulation and subgraph isomorphism, instead of relational queries [5–7,11] or graph primitives [15]. (2) Unlike data-driven and heuristic approximation [6,11,15,17,20], we consider query-driven approximation, which approximates queries in the absence of data graphs. (3) We focus on approximate queries that can be answered using views, which is not considered in previous work on query-approximation [5,7].

2. QUERY-DRIVEN APPROXIMATION

In this section, we review basic notions and formulate upper and lower approximations w.r.t. views.

Graphs. A data graph G is a triple (V, E, l), where (1) V is a finite set of nodes; (2) $E \subseteq V \times V$ is a set of edges, in which (v, v') denotes the edge from v to v'; (3) $l()$ is a function such that for each node v in V, $l(v)$ is a label in a label set Σ. We write G as (V, E) when it is clear from the context. The size of G, denoted by $|G|$, is defined to be the total number of nodes and edges in G, i.e., $|G| = |V| + |E|$. For a graph G, we denote by V_G and E_G the nodes and edges of G, respectively.

Subgraphs. A graph $H(V_h, E_h, l_h)$ is a subgraph of a data graph $G(V, E, l)$, denoted as $G[V_h, E_h]$, if (1) each node $u \in V_h$, $u \in V$ and $l_H(u) = l(u)$, and (2) for each edge $(u, u') \in E_h$, $(u, u') \in E$. That is, subgraph $G[V_h, E_h]$ only contains a subset of nodes and edges of graph G.

A subgraph H of G is an induced subgraph if for any nodes v and v' in H, (v, v') is an edge in H if it is an edge in G.

Pattern queries. A pattern query Q is a directed connected graph (V_Q, E_Q, l_Q), where V_Q, E_Q and l_Q are analogous to their counterparts in data graphs. We simply write Q as (V_Q, E_Q) when it is clear from the context.

We consider two semantics of graph pattern matching.

Simulation queries. Graph G matches pattern Q via graph simulation [10], denoted by $Q \prec G$, if there exists a binary match relation $R \subseteq V_Q \times V$ such that (a) for each $(u, v) \in R$, $l_Q(u) = l_Q(v)$; (b) for each node u in V_Q, there exists a node v in V such that (i) $(u, v) \in R$; and (ii) for any edge (u, u') in Q, there exists an edge (v, v') in G such that $(u', v') \in R$.

For any Q that matches G, there exists a unique maximum match relation via graph simulation [10], denoted by R_M.

Subgraph queries. Graph G matches pattern Q via subgraph isomorphism [18], denoted by $Q \cong G$, if there exists a subgraph G_\ast of G that is isomorphic to Q, i.e., there exists a bijection h from V_Q to V_G such that (a) $(u, u') \in E_Q$ if and only if $(h(u), h(u')) \in E_G$; and (b) for each $u \in V_Q$, $l_Q(u) = l_Q(h(u))$.

Match results and images. For simulation queries, the match result $Q(G)$ to Q in G is a subset of nodes of G, such that a node $v \in Q(G)$ if and only if v is in R_M. The image of Q in G, denoted by $I_Q[G]$, is the subgraph $G[V_G, E_G]$ of G, where (1) $V_G = Q(G)$, and (2) an edge $(v, v') \in E_G$ if and only if there exists an edge $(u, u') \in Q$ with $(u, v) \in R_M$. Intuitively, the image $I_Q[G]$ is a subgraph of G with nodes from $Q(G)$ and associated matched edges in G.

Similarly, for subgraph queries, the match result $Q(G)$ to Q in G is a subset of nodes in G that are in some subgraph G_\ast of G isomorphic to Q. The image $I_Q[G]$ of Q in G is a subgraph of G consisting of all those nodes and edges in G that are in some subgraph G_\ast of G isomorphic to Q.

A pattern query Q_1 is equivalent to pattern query Q_2 if for any data graph G, $Q_1(G) = Q_2(G)$.

Views. A view query (or simply view), denoted by V, is a pattern query whose images in data graphs are cached. We also consider both simulation views and subgraph views. For a set V of views, we denote by $|V|$ and $|V|$ the cardinality of V and the total size of views in V, respectively.

Note that, for both simulation and subgraph queries Q, their images are subgraphs of the data graph G, even though there may exist exponentially many isomorphisms from Q to G. This ensures that the cached view images are of total size bounded by $|V||G|$ instead of an exponent in $|G|$ or $|V|$.

Query answering using views [8]. Consider a set V of views V_1, \ldots, V_n. Following [8], a query Q is answerable using views in V if there exists another query A such that for all data graphs G, (1) A only refers views in V and their images $I_Q[V] = \{I_Q[V_1], \ldots, I_Q[V_n]\}$ in G, and (2) A is equivalent to Q, i.e., the match result to A in G is the same to $Q(G)$.

Intuitively, when a pattern query Q is answerable using views in V, for any data graph G, $Q(G)$ can be identified by accessing the images $I_Q[V]$ of views in G only.

Example 2: Consider pattern query Q_2 and view set V in
The first problem, denoted by edges and the isolated nodes. Observe that \(Q_u \) and \(Q_l \) are answerable using \(V \). Indeed, \(Q_u(G) \) can be answered by combing view images \(I_C[V_i] \) and \(I_C[V_2] \), and \(Q_l(G) \) can be answered via \(I_C[V_1] \) and \(I_C[V_3] \).

Partial and complete query containment. Pattern \(Q \) is partially upper contained in pattern \(Q_u \), denoted by \(Q \subseteq_u Q_u \), if there exists an induced subgraph \(Q_u \) of \(Q \) such that for any graph \(G, Q_u(G) \subseteq Q_u(G) \). Similarly, \(Q \) partially lower contains pattern \(Q_u \), denoted by \(Q \subseteq_l Q_u \), if there exists an induced subgraph \(Q_u \) of \(Q \) such that for any graph \(G, Q_u(G) \subseteq Q_u(G) \). In particular, when \(Q_u \) is \(Q \) above, \(Q \) is called completely upper contained in \(Q_u \), denoted by \(Q \subseteq_u Q_u \), and completely lower contains \(Q_u \), denoted by \(Q \subseteq_l Q_u \).

Example 3: Consider pattern queries \(Q_1, Q_2, Q_u, Q_l \), and view set \(V \) in Fig. 1 of Example 1. One can verify that \(Q_1 \subseteq_u Q_u, Q_2 \subseteq_l Q_u, Q_1 \subseteq_u Q_1 \), and \(Q_l \subseteq_l Q_2 \).

In particular, consider data graph \(G \) of Fig. 1 and \(Q_1 \) as an induced subgraph of \(Q_2 \). Observe the following. \(Q_1(G) = \{PM, UD_2, SD_3, ST_3\}(i, k \in [1, 2], h \in [1, 3]) \). The match results of \(Q_u \) and \(Q_l \) are \(Q_u(G) = \{PM, UD_1, SD_4, ST_4\}(i, j, k \in [1, 2], h \in [1, 3]) \) and \(Q_l(G) = \{PM_2, UD_2, SD_3, ST_3\}(h \in [1, 3]) \). Therefore, \(Q_l(G) \subseteq U Q_u(G) \subseteq Q_u(G) \).

We are ready to define upper and lower approximations.

Upper and lower approximations. A pattern query \(Q_u \) is an upper approximation of \(Q \) w.r.t. \(V \), if (1) \(Q \subseteq_u Q_u \) and (2) \(Q_u \) is answerable using \(V \). Similarly, a graph pattern \(Q_l \) is a lower approximation of \(Q \) w.r.t. \(V \), if (1) \(Q \subseteq_l Q_u \) and (2) \(Q \) is answerable using \(V \). We consider non-empty approximations, i.e., patterns with at least one edge.

In particular, if \(Q \subseteq_u Q_u \) (resp. \(Q_l \subseteq_u Q_u \)) in condition (1), i.e., \(Q \) (resp. \(Q_l \)) is completely upper (resp. lower) contained in \(Q_u \) (resp. \(Q \)), then we call \(Q_u \) (resp. \(Q_l \)) a complete upper (resp. lower) approximation of \(Q \) w.r.t. \(V \).

Example 4: Continue Example 3. We know that \(Q_2 \subseteq_u Q_u \) and \(Q_l \subseteq_l Q_2 \). Furthermore, from Example 2 we also know that \(Q_u \) and \(Q_l \) are answerable using \(V \). Thus, \(Q_u \) (resp. \(Q_l \)) is an upper (resp. lower) approximation of \(Q \) w.r.t. \(V \).

In particular, \(Q_u \) (resp. \(Q_l \)) is a complete upper (resp. lower) approximation of \(Q \) w.r.t. \(V \). Indeed, \(Q_u \subseteq_u Q_u \) and \(Q_l \subseteq_l Q_1 \), and both \(Q_u \) and \(Q_l \) are answerable using \(V \).

3. FUNDAMENTAL ANALYSES

In this section, we first study some properties of simulation query containment (Section 3.1). We then study fundamental problems for upper and lower approximations and investigate their complexity and approximability (Section 3.2). We will extend the study to subgraph queries in Section 6.

3.1 Characterizations

To study approximation, it is essential to characterize simulation query containment and answering using views.

Query containment. We first characterize containment of simulation queries below.

Theorem 1: Consider simulation queries \(Q, Q_u \) and \(Q_l \),

1. \(Q \subseteq_u Q_u \) if and only if \((\forall i) Q_u \subseteq Q \);
2. \(Q \subseteq_l Q_u \) if \(Q_u \subseteq Q \) and \(V_Q = V_{I_C[V_i]} \);
3. \(Q_l \subseteq_l Q \) if \(\exists \) an induced subgraph \(Q_u \) of \(Q_u \) such that \(Q_u \subseteq Q \) and \(V_{Q_u} = V_{I_C[V_i]} \); and
4. \(Q_l \subseteq_l Q \) iff \((4). \) \(Q_l \subseteq_l Q \) if \(Q_u \subseteq Q \) and \(V_{Q_u} = V_{I_C[V_i]} \);

Here \(I_C^\prime(Q^\prime) \) is the image of \(Q^\prime \) in \(Q^\prime \).

Intuitively, the characterization boils down the containment testing of simulation queries to simulation testing between the queries. We will use this later in the paper.

Query answering using views. A characterization for simulation query answering using views is given in [8]. To make the paper self-contained, we cite it as follows (rephrased). We will extend it to subgraph queries in Section 6.

Lemma 2 [8]: For a view set \(V \) and a simulation query \(Q \), \(Q \) can be answered using \(V \) iff \(E_Q = \bigcup_{V \subseteq V} E_{I_C[V]} \).

Example 5: Consider pattern query \(Q \) and view set \(V \) in Fig. 1. One can verify that \(Q \) can be answered using \(V \), as \(\bigcup_{V \subseteq V \subseteq V} E_{I_C[V]} = \{(PM, SD), (PM, UD) \cup \{(PM, SD), (SD, ST) \} \cup \{(SD, UD), (SD, ST), (UD, ST) \} \cup \emptyset = E_Q \).

Based on the characterization, an algorithm for answering simulation queries using views is also given in [8].

3.2 Fundamental Problems and Complexity

We next study fundamental problems related to upper and lower approximations. For each of them, we also study special cases where approximations are required to be complete.

Existence of approximation. Upper and lower approximations do not always exist, as shown in Example 1. We first investigate the existence of (complete) approximation.

Existence of upper approximation. The first problem, denoted by \(UA \) (resp. \(UA^\prime \)), is to ask, for any pattern \(Q \) and set \(V \) of views, whether there exists an upper approximation \(Q_u \) (resp. complete upper approximation \(Q_{u}^\prime \)) for \(Q \) using \(V \).

Theorem 3: For a simulation query \(Q \) and set \(V \) of views,

(a) there exists an upper approximation for \(Q \) using \(V \) iff there exists \(V \) such that the match result \(V(Q) \neq \emptyset \);
(b) there exists a complete upper approximation for \(Q \) using \(V \) iff \(V_Q = \bigcup_{V \subseteq V} V_{I_C[V]} \);
(c) \(UA \) and \(UA^\prime \) are quadratic in \(|Q| \) and \(|V| \).

We will constructively prove Theorem 3(c) in Section 4, by giving quadratic time algorithms for \(UA \) and \(UA^\prime \). The proof of Theorem 3(a,b) is deferred to the full version.

Example 6: Consider pattern query \(Q \) and view set \(V \) in Fig. 1. By Theorem 3(a), there exists an upper approximation for \(Q \) w.r.t. \(V \) when \(V_i(Q_i) \neq \emptyset \) for view \(V_i \) in \(V \). Furthermore, by Theorem 3(b), one can verify that there exists a complete upper approximation for \(Q \) w.r.t. \(V \), since \(\bigcup_{V \subseteq V \subseteq V} V_i(Q_i) = \{(PM, SD, UD, ST)\} = V_i \).

Existence of lower approximation. Similarly, we study the existence of lower (resp. complete lower) approximation for simulation query \(Q \) using \(V \), denoted by \(\text{ELA} \) (resp. \(\text{ELA}^\prime \)).

Theorem 4: For any simulation query \(Q \) and set \(V \) of views,

(a) there exists a complete lower approximation \(Q_l^\prime \) of \(Q \) using \(V \) iff \(E_Q^\prime \subseteq \bigcup_{V \subseteq V} E_{I_C[V]} \);
(b) \(\text{ELA}^\prime \) is in \(O(|V|\cdot|Q|^2) \) time; and in contrast,
(c) \(\text{ELA} \) is \(\text{NP} \)-complete.

Here \(\hat{Q} \) is the complete graph of \(Q \).

3
Unlike upper approximation, the existence of generic lower approximation is much harder than complete approximation.

We will give a constructive proof of Theorem 4(b) in Section 5, by giving a PTIME algorithm for ELA\(^c\). The proofs for Theorem 4(c,d) is deferred to the full version.

Example 7: Consider pattern query \(Q_1\) and view set \(V\) in Fig. 1. By Theorem 4(a), there exists a complete lower approximation for \(Q_1\) w.r.t. \(V\). Indeed, by computing simulation for views \(V_i \in V \ (i \in [1, 4])\) on the complete graph \(Q_1\) of \(Q_1, \bigcup_{i \in V(i \in [1,4])} E_{Q_1}[i] = \{(\text{PM, SD}), (\text{PM, UD}), (\text{SD, UD}), (\text{SD, ST}), (\text{ST, UD})\} \supseteq E_{Q_1} \). □

Closest approximation. There may exist multiple approximations for a simulation pattern query \(Q\) w.r.t. \(V\). We naturally want to compute the one that is closest to \(Q\), i.e., the closest approximation. Below we first define the notion of closeness to measure the quality of approximations. We then study closest upper and lower approximations.

Closeness. Consider two patterns \(Q_1\) and \(Q_2\), we define the closeness of \(Q_1\) and \(Q_2\), denoted by \(\text{clo}(Q_1, Q_2)\), as the number of edges in \(Q_1\) and \(Q_2\) that are not in the edge-induced maximum common subgraph of \(Q_1\) and \(Q_2\). Intuitively, the smaller \(\text{clo}(Q_1, Q_2)\) is, the closer \(Q_1\) and \(Q_2\) are.

Closest upper approximation. The closest (resp. complete closest) upper approximation problem, denoted by CUA (resp. CUA\(^c\)), is to find, given a simulation query \(Q\) and views \(V\), the upper (resp. complete upper) approximation \(Q_u\) of \(Q\) that is closest to \(Q\), i.e., for any other (resp. complete) upper approximation \(Q_u'\) (resp. \(Q_u^{c'}\)) of \(Q\) that is closest to \(Q\), \(\text{clo}(Q_u, Q) \leq \text{clo}(Q_u', Q)\) (resp. \(\text{clo}(Q_u^{c'}, Q) \leq \text{clo}(Q_u^{c}, Q)\)). We refer to \(Q_u\) (resp. \(Q_u^{c'}\)) as the closest (resp. complete) approximation to \(Q\) w.r.t. \(V\).

Although the closeness measure \(\text{clo}\) is NP-hard due to the hardness of computing maximum common subgraphs, the analysis of closest upper approximation is efficient.

Theorem 5: Both problems CUA and CUA\(^c\) are quadratic time in \(|Q|\) and \(|V|\). □

We will give a constructive proof of Theorem 5 in Section 4, by giving quadratic time algorithms for CUA and CUA\(^c\).

Closest lower approximation. Similarly, the closest (resp. complete closest) lower approximation problem, denoted by CLA (resp. CLA\(^c\)), is to compute, given a simulation query \(Q\) and views \(V\), the lower (resp. complete lower) approximation \(Q_l\) (resp. \(Q_l^{c'}\)) of \(Q\) that is closest to \(Q\), i.e., for any other (resp. complete) lower approximation \(Q_l'\) (resp. \(Q_l^{c'}\)) of \(Q\) that is closest to \(Q\), \(\text{clo}(Q_l, Q) \leq \text{clo}(Q_l', Q)\) (resp. \(\text{clo}(Q_l^{c'}, Q) \leq \text{clo}(Q_l^{c}, Q)\)). Unlike upper approximation, the analysis of closest lower approximation is much harder. Denote by DCLA (resp. DCLA\(^c\)) the decision problem of CLA (resp. CLA\(^c\)), which is to decide, given \(Q\), \(V\) and a natural number \(k\), whether there exists a lower (resp. complete lower) approximation \(Q_l'\) (resp. \(Q_l^{c'}\)) such that \(\text{clo}(Q_l, Q) \leq k\) (resp. \(\text{clo}(Q_l^{c'}, Q) \leq k\)). Denote by OCLA (resp. OCLA\(^c\)) the optimization problem of CLA (resp. CLA\(^c\)), which is to compute the minimum closeness \(\text{clo}(Q_l, Q)\) (resp. \(\text{clo}(Q_l^{c'}, Q)\)) for all lower (resp. complete lower) approximations \(Q_l\) (resp. \(Q_l^{c'}\)) of \(Q\) using \(V\).

Then we have the following.

Theorem 6: (1) Both DCLA and DCLA\(^c\) are NP-complete. (2) Both OCLA and OCLA\(^c\) are not in APX. □

Despite the hardness, we will develop approximation algorithms with guarantees for CLA and CLA\(^c\) in Section 5.

4. UPPER APPROXIMATION

In this section, we develop algorithms for computing closest upper approximations, as a constructive proof of Theorem 5.

The algorithms are based on a small model property of upper approximation. Consider a simulation query \(Q\) and a set \(V\) of simulation views. We have the following property.

Lemma 7: For any upper (resp. complete upper) approximation \(Q_u\) (resp. \(Q_u^{c}\)) of \(Q\) w.r.t. \(V\), there exists a subgraph \(Q_u\) (resp. \(Q_u^{c}\)) of \(Q\) equivalent to \(Q_u\), such that
- \(Q_u\) (resp. \(Q_u^{c}\)) is also an upper (resp. complete upper) approximation of \(Q\) w.r.t. \(V\);
- \(Q_u\) (resp. \(Q_u^{c}\)) is closer to \(Q_u\) (resp. \(Q_u^{c}\)); i.e., \(\text{clo}(Q_u, Q) \leq \text{clo}(Q_u^{c}, Q)\) (resp. \(\text{clo}(Q_u^{c}, Q) \leq \text{clo}(Q_u^{c'}, Q)\)). □

This ensures that, for any upper approximation \(Q_u\) of \(Q\) w.r.t. \(V\), if \(Q_u\) is not a subgraph of \(Q\), then there must exist another upper approximation \(Q_u'\) of \(Q\) w.r.t. \(V\) that is a subgraph of \(Q\) such that \(Q_u\) and \(Q_u'\) are equivalent, i.e., \(Q_u'\) is at least as close to \(Q\) as \(Q_u\) is w.r.t. the closeness. Thus, we only need to focus on subgraphs of \(Q\) when computing upper approximations of \(Q\) instead of the infinitely many upper approximations.

Based on Lemma 7, we develop exact algorithms for CUA and CUA\(^c\), as a proof of Theorem 5. We start with CUA\(^c\).

4.1 On Complete Upper Approximation

The algorithm for CUA\(^c\), denoted by CUASim\(^c\), is shown in Fig. 2. It takes as input a simulation query \(Q\) and a set \(V\) of simulation views, and returns the closest complete upper approximation of \(Q\) using \(V\) if it exists.

More specifically, algorithm CUASim\(^c\) first computes the images \(I_Q[V]\) of all views \(V\) of \(Q\) (line 1), and then constructs a subgraph \(Q_u\) of \(Q\) with nodes and edges from the images (line 2). It returns \(Q_u\) if it covers all nodes in \(Q\) (line 3); and “No” otherwise (line 4), i.e., there exists no complete upper approximation for \(Q\) w.r.t. \(V\).

Example 8: Consider pattern query \(Q_1\) and view set \(V\) in Fig. 1. CUASim\(^c\) first computes the images \(I_Q[V_i]\) (i \(\in\) \([1, 4]\)) of all views \(V_i\) of \(Q\) (line 1), and then constructs a subgraph \(Q_u\) of \(Q\) with nodes and edges from the images (line 2). It finally checks that \(V_u = V_Q\). Thus CUASim\(^c\) returns \(Q_u\) as the closest complete upper approximation, as shown in Fig. 1 (line 3).

Correctness & Complexity. The algorithm is in \(O((|V_Q| + |E_Q|)|V| + |V_Q|^2)\) time, where \(|V| = \sum_{V_i \in V}(|V_i| + |E_i|)\). Indeed, observe that line 1 of CUASim\(^c\) takes \(O((|V_Q| + |E_Q|)|V|)\) time and the checking in line 3 takes at most \(O(|V_Q|^2)\) time.

To see algorithm CUASim\(^c\) is correct, observe the following. (1) By Lemma 7, the closest upper approximation of \(Q\) w.r.t. \(V\), if exists, must be a subgraph of \(Q\). (2) Any subgraph \(Q_u\),...
Algorithm CLAsimc

Input: Simulation query Q, set V of views.
Output: A complete lower approximation of Q w.r.t. V if exists.
1. for each V in V^* do
2. compute image $I_Q[V]$ of V in \hat{Q};
3. neg(V) := $E_{\hat{T}_Q[V]} \setminus E_Q$; pos($V$) := $E_{\hat{T}_Q[V]} \cap E_Q$
4. $U := \emptyset$;
5. while $E_Q \subseteq \bigcup_{V \in U} E_{\hat{T}_Q[V]}$ and $\bigcup_{V \in V} \text{pos}(V) \subseteq \bigcup_{V \in \neg(e)} E_{\hat{T}_Q[V]}$ do
6. find V in $V \setminus U$ minimizing $\rho(V) = \frac{|\text{neg}(V)|}{|\text{pos}(V)|}$ for $V \in \bigcup_{V \in \neg(e)} E_{\hat{T}_Q[V]}$;
7. $U := U \cup \{V\}$;
8. $\hat{V} := \bigcup_{V \in U} V_{\hat{T}_Q[V]}$; $E_{\hat{V}} := \bigcup_{V \in \neg(e)} E_{\hat{T}_Q[V]}$; Let $Q_{\hat{V}}$ be $(\hat{V}, E_{\hat{V}})$
9. if $E_{\hat{V}} \subseteq E_Q$ then return $Q_{\hat{V}}$;
10. return "no"; /* no complete lower approximation for Q*/

Figure 3: Algorithm CLAsimc

of Q that can be answered using V contains only nodes and edges from Q_a computed by CUAsim^m (line 2). (3) Therefore, Q_a is the closest upper approximation of Q w.r.t. V. (4) Algorithm CUAsim^m returns Q_a if and only if Q_a is a complete upper approximation of Q w.r.t. V.

4.2 Extending to Generic Approximation

We next present algorithm CUAsim that extends CUAsim^m for problem CUA as follows. First, CUAsim computes Q_a in the same way as CUAsim^m does. Instead of checking whether all nodes in Q are covered by Q_a, it directly returns Q_a if Q_a is not empty; and returns "no" otherwise.

Example 9: Recall pattern query Q_2 and view set V in Fig. 1. Algorithm CUAsim constructs Q_a as shown in Fig. 1 in the same way as in Example 8, and directly returns it as the closest upper approximation of Q_2.

Correctness & Complexity. Following the analysis of algorithm CUAsim^m, one can verify that algorithm CUAsim determines whether there exists, and if so finds the closest upper approximation of Q in $O(|\Sigma| + |E_Q|(|V|))$ time.

These together complete the proof of Theorems 3 and 5.

5. LOWER APPROXIMATION

In this section, we develop approximation algorithms with guarantees for CLA and CLA^c, to handle the hardness of computing closest lower approximations as shown in Theorem 6. The algorithms are based on a small model property as follows. Consider simulation query Q and set V of simulation views. Let \hat{Q} be the complete graph of Q.

Lemma 8: For any lower (resp. complete lower) approximation Q_l (resp. Q_{cl}) of Q w.r.t. V, there exists a subgraph Q_a (resp. Q_{cl} with $V_{Q_a} = V_{Q}$) of \hat{Q} equivalent to Q_l, such that

- Q_a (resp. Q_{cl}) is also a lower (resp. complete lower) approximation of Q w.r.t. V; and
- Q_a (resp. Q_{cl}) is closer to Q_l than Q_l, i.e., $\text{clo}(Q_a, Q) \leq \text{clo}(Q_l, Q)$ (resp. $\text{clo}(Q_{cl}, Q) \leq \text{clo}(Q_l, Q)$).

Lemma 8 tells us that we only need to consider subgraphs of the complete graph \hat{Q} of Q when computing closest lower approximations of Q w.r.t. V. Based on this, below we develop approximation algorithms for CLA and CLA^c. We start with complete lower approximations for CLA^c.

5.1 On Complete Lower Approximation

The algorithm for CLA^c, denoted by CLAsim^c and shown in Fig. 3, computes a complete lower approximation of Q w.r.t. V if exists, and returns "no" otherwise. It works in three steps. (a) It first computes the images of views in V in the complete graph \hat{Q} of Q. (b) It then derives a subgraph Q_l of Q from the images. (c) Finally it checks whether Q_l covers all edges of Q and returns Q_l if so.

More specifically, for each view V in V, it computes the image $I_{\hat{T}}[V]$ of V in the complete graph \hat{Q} of Q, with two additional sets $\text{neg}(V)$ and $\text{pos}(V)$ (lines 1-3). Here $\text{neg}(V)$ contains edges in the image $I_{\hat{T}}[V]$ that are not edges of Q, and $\text{pos}(V)$ contains edges that are both in $I_{\hat{T}}[V]$ and Q.

It then iteratively identifies relevant views in V (lines 4-7). In each iteration, it selects V in V with minimum $\rho(V) = \frac{|\text{neg}(V)|}{|\text{pos}(V)| + \bigcup_{V \in \neg(e)} E_{\hat{T}_Q[V]}|$ among all views in V that are not selected yet (lines 6-7). The iteration terminates when either either all edges in Q are covered by images of selected views in \hat{Q} or no more new edges in Q can be covered by selecting the remaining views (line 5). Intuitively, $\rho(V)$ denotes the "average number" of edges in $S(V)$ per edges in Q that are newly covered by V, where $S(V)$ is the set of edges in \hat{Q} that are covered by V but are not in Q. Algorithm CLAsim^c chooses V with minimum $\rho(V)$ to get more edges in Q covered while covering as few edges that are not in Q as possible. With Lemma 8, we will show later that this leads to a lower approximation close to Q.

Finally, CLAsim^c builds a graph $Q_{\hat{V}}$ that consists of nodes and edges in the images of the selected views in \hat{Q} (line 8). It returns $Q_{\hat{V}}$ as the closest complete lower approximation if $Q_{\hat{V}}$ covers all edges in Q, and returns "no" otherwise (lines 9-10).

Example 10: Recall pattern query Q_1 and view set V in Fig. 1. For each view $V_i (i \in [1, 4])$ in V, algorithm CLAsim^m computes the image of V_i in the complete graph \hat{Q}_i of Q_1 (lines 1-3). It then enters the iteration process. In first iteration, CLAsim^c selects V_1 with minimum $\rho(V_1) = 0$ and adds it into U, while $\rho(V_2) = 0$, $\rho(V_3) = \frac{1}{2}$ and $\rho(V_4) = +\infty$. In the second iteration, it selects V_2 with minimum $\rho(V_2) = 0$ while $\rho(V_3) = \frac{1}{2}$ and $\rho(V_4) = +\infty$. In the third iteration, it selects V_3 with minimum $\rho(V_3) = 1$ while $\rho(V_4) = +\infty$, and stops the process as the termination condition $E_{Q_{\hat{V}}} \subseteq \bigcup_{i \in [1, 3]} E_{\hat{T}_Q[V_i]}$ holds (lines 4-7). Finally, CLAsim^c builds a graph $Q_{\hat{V}}$, as shown in Fig. 1, and returns $Q_{\hat{V}}$ as the closest complete lower approximation as $Q_{\hat{V}}$ covers all edges in Q_1 (lines 8-10).

Although problem CLA^c does not admit any approximation algorithm with constant approximation ratios as shown in Theorem 6(2), we show that algorithm CLAsim^c has the following provable performance guarantee. For each edge e in $E_{\hat{Q}} \setminus E_Q$, let $\text{occ}(e) = |\{V \in \hat{Q} : e \in E_{\hat{T}_Q[V]} : V \in V\}|$, i.e., the number of views in V whose images in \hat{Q} contain e.

Theorem 9: Algorithm CLAsim^c is a $\text{max}_{e \in E_{\hat{Q}} \setminus E_Q} \text{occ}(e) \cdot \ln(|\text{max}_{V \in V} |E_{\hat{T}_Q[V]} \cap E_Q|) - \text{approximation algorithm that always returns a complete lower approximation of } Q \text{ w.r.t. } V \text{ in } O(|V||Q|^2)\text{-time whenever there exists one}.$

By Theorem 1 and Lemma 2, one can verify that CLAsim^c returns a lower approximation of Q w.r.t. V in $O(|V||Q|^2)$-
Thus, views in \(V \) of \(Q \) move images of views from \(Q \) to \(Q \) with preserving reduction from computing \(U = \sum \). Below we focus on the approximation ratio of \(V \) w.r.t. \(V \) if \(Q \) is not empty (lines 9-10). More specifically, algorithm \(CLAsim \) reduces \(Q \) as follows. In each iteration, it checks whether \(Q \) is already an induced subgraph of \(Q \), by checking whether there exists an edge \((u, u') \) in \(Q \) such that \(u, u' \in V_j \) but \((u, u') \) is not in \(Q \) (line 3). If such an edge \((u, u') \) exists, it identifies all views \(I \) in \(V \) whose images in \(Q \) contain \(u \) and \(u' \), and removes \(I \) from \(Q \) if so (lines 4-5). After that, it checks whether both \(u \) and \(u' \) remain in \(Q \) (line 6), and identifies the one that has smaller value of function \(f(v) = |N(v)| + |H(v)| \), where

\[
N(v) = \{(u, u') \mid u, u' \in Q_{Q,v}, (u, u') \in E_Q \setminus E_{Q_{Q,v}} \},
\]

\[
H(v) = \{(u, u') \mid (u, u') \in E_Q \setminus (E_{Q_{Q,v}}), \forall V \in \mathcal{V} \}.
\]

Intuitively, \(N(v) \) contains the new “bad edges” in \(Q \) after removing all view images in \(Q \) associated to \(v \), and \(H(v) \) contains the “good edges” in \(Q \) that are removed due to the removal of images related to \(v \). The smaller \(f(v) \) is, the less impact on \(clo(Q_{Q,v}) \). The correctness of \(clo(Q_{Q,v}) \) follows from \(f(v) \) with smaller \(f(v) \) value from \(Q \), by dropping all relevant view images (line 8).

Example 11: Consider pattern query \(Q_6 \) and view set \(V \) in Fig. 1. For each view \(V_i \) (in \(\{1, 4\} \)) in \(V \), \(CLAsim \) computes the image of \(V_i \) in the complete graph \(Q_6 \) of \(Q_6 \) and combines them into \(Q_6 \), using the images of all the four views (lines 1-2). \(CLAsim \) then checks and finds that \(Q_6 \) is not an induced subgraph of \(Q_6 \), as there exists an edge \((PM, BA) \) belonging to \(Q_6 \) but not in \(Q_6 \), while nodes \(PM \) and \(BA \) in \(Q_6 \) (line 3). In order to make \(Q_6 \) an induced subgraph of \(Q_6 \), \(CLAsim \) enters the iteration process to remove “bad” images from \(Q_6 \). In the process, \(CLAsim \) first removes images that contain \(PM \) and \(BA \), and turns out no view needs to be removed at this point (lines 4-5). It then removes images contain either \(PM \) or \(BA \). It finds that \(f(BA) = 0 \), less than \(f(PM) = 2 \). \(Q_6 \) is a connected pattern graph \(\{V \} \) composed of one edge \((PM, BA) \) (lines 6-8). The remaining \(Q_6 \) is an induced subgraph of \(Q_6 \) with non-empty edge set, as shown in Fig. 1. \(CLAsim \) returns \(Q_6 \) as the closest lower approximation of \(Q_6 \) (line 9).

Correctness & Complexity. The correctness of \(CLAsim \) is guaranteed by Theorem 1 and Lemma 2. It can be implemented in \(O(|V| |Q|^2) \) time with an inverted index from nodes in \(Q \) to images of views in \(V \).

5.2 On Generic Lower Approximation

We next develop an algorithm for problem \(CLAsim \), to find generic lower approximations. From Theorem 4(c), we know that it is even NP-hard to decide whether there exists a lower approximation of a given query \(Q \) and set \(V \) of views, not to mention the closest one. In light of this and Theorem 6, we develop an efficient heuristic algorithm for \(CLAsim \).

The algorithm, denoted by \(CLAsim \), is shown in Fig. 4. It first computes the images of views in the complete graph \(Q \) of \(Q \) and combines them into \(Q \) (lines 1-2). It then checks whether \(Q \) is an induced subgraph of \(Q \) and iteratively removes images of views from \(Q \), to make it an induced subgraph if not (lines 3-8). It finally returns \(Q \) as the lower approximation of \(Q \) w.r.t. \(V \) if \(Q \) is not empty (lines 9-10).

More specifically, algorithm \(CLAsim \) reduces \(Q \) as follows. In each iteration, it checks whether \(Q \) is already an induced subgraph of \(Q \), by checking whether there exists an edge \((u, u') \) in \(Q \) such that \(u, u' \in V_j \) but \((u, u') \) is not in \(Q \) (line 3). If such an edge \((u, u') \) exists, it identifies all views \(I \) in \(V \) whose images in \(Q \) contain \(u \) and \(u' \), and removes \(I \) from \(Q \) if so (lines 4-5). After that, it checks whether both \(u \) and \(u' \) remain in \(Q \) (line 6), and identifies the one that has smaller value of function \(f(v) = |N(v)| + |H(v)| \), where

\[
N(v) = \{(u, u') \mid u, u' \in Q_{Q,v}, (u, u') \in E_Q \setminus E_{Q_{Q,v}} \},
\]

\[
H(v) = \{(u, u') \mid (u, u') \in E_Q \setminus (E_{Q_{Q,v}}), \forall V \in \mathcal{V} \}.
\]

Intuitively, \(N(v) \) contains the new “bad edges” in \(Q \) after removing all view images in \(Q \) associated to \(v \), and \(H(v) \) contains the “good edges” in \(Q \) that are removed due to the removal of images related to \(v \). The smaller \(f(v) \) is, the less impact on \(clo(Q_{Q,v}) \). The correctness of \(clo(Q_{Q,v}) \) follows from \(f(v) \) with smaller \(f(v) \) value from \(Q \), by dropping all relevant view images (line 8).

Example 11: Consider pattern query \(Q_6 \) and view set \(V \) in Fig. 1. For each view \(V_i \) (in \(\{1, 4\} \)) in \(V \), \(CLAsim \) computes the image of \(V_i \) in the complete graph \(Q_6 \) of \(Q_6 \) and combines them into \(Q_6 \), using the images of all the four views (lines 1-2). \(CLAsim \) then checks and finds that \(Q \) is not an induced subgraph of \(Q \), as there exists an edge \((PM, BA) \) belonging to \(Q \) but not in \(Q \), while nodes \(PM \) and \(BA \) in \(Q \) (line 3). In order to make \(Q \) an induced subgraph of \(Q \), \(CLAsim \) enters the iteration process to remove “bad” images from \(Q \). In the process, \(CLAsim \) first removes images that contain \(PM \) and \(BA \), and turns out no view needs to be removed at this point (lines 4-5). It then removes images contain either \(PM \) or \(BA \). It finds that \(f(BA) = 0 \), less than \(f(PM) = 2 \). \(Q \) is a connected pattern graph \(\{V \} \) composed of one edge \((PM, BA) \) (lines 6-8). The remaining \(Q \) is an induced subgraph of \(Q \) with non-empty edge set, as shown in Fig. 1. \(CLAsim \) returns \(Q \) as the closest lower approximation of \(Q \) (line 9).

Correctness & Complexity. The correctness of \(CLAsim \) is guaranteed by Theorem 1 and Lemma 2. It can be implemented in \(O(|V| |Q|^2) \) time with an inverted index from nodes in \(Q \) to images of views in \(V \).

6. EXTENDING TO SUBGRAPH QUERIES

In this section, we extend the study of upper and lower approximations to subgraph queries. We first characterize and revisit fundamental problems for approximating subgraph queries (Sections 6.1 and 6.2). We then develop algorithms for approximating and answering subgraph queries using views (Section 6.3). We finally present a query-driven approximation framework based on the algorithms (Section 6.4).

6.1 Characterizations

We develop characterizations for subgraph query containment w.r.t. views and subgraph query answering views.
Note that graph query answering using views has only been studied for simulation queries [10] and subgraph queries have not been investigated before.

Query containment. Subgraph query containment can be characterized along the same lines as simulation queries.

Theorem 10: Consider subgraph queries \(Q, Q_s \) and \(Q_t \),

1. \(Q \subseteq Q_s \) iff \(Q_s \prec Q \);
2. \(Q \subseteq Q_t \) iff \(Q_t \prec Q \) and \(V_Q = V_{tQ}(Q_{tQ}) \);
3. \(Q_t \subseteq Q \) iff there exists an induced subgraph \(Q_s \) of \(Q \) such that \(Q_s \prec Q_t \) and \(V_{Q_t} = V_{Q_t(Q_{tQ})} \); and
4. \(Q_t \subseteq Q \) iff \(Q_s \prec Q_t \) and \(V_{Q_t} = V_{Q_t(Q_{tQ})} \). \(\square \)

Subgraph query answering using views. Similarly, we characterize subgraph query answering using views based on the notion of images as follows.

Theorem 11: Consider subgraph query \(Q \) and views \(V \),

1. \(Q \) can be answered using \(V \) iff \(\cup_{V \in V} E_{Q} = \cup_{V \in V} E_{tQ}(V) \); and
2. it is NP-complete to decide whether \(Q \) can be answered using \(V \). \(\square \)

6.2 Fundamental Problems and Complexity

Below we investigate the existence and closeness of upper and lower approximations for subgraph queries.

Existence of approximation. We first revisit problems EUA, EUA*, ELA and ELA* for subgraph queries.

Theorem 12: For a subgraph query \(Q \) and set \(V \) of views,

1. there exists an upper approximation for \(Q \) using \(V \) iff \(\exists V \in \cup_{V \in V} E_{Q}(V) \);
2. there exists a complete upper approximation for \(Q \) using \(V \) iff \(\cup_{V \in V} E_{Q} \subseteq \cup_{V \in V} E_{Q}(V) \); and
3. there exists a complete lower approximation of \(Q \) using \(V \) iff \(\exists V \in \cup_{V \in V} E_{Q}(V) \); and
4. problems EUA, EUA*, ELA and ELA* (decision version) are all NP-complete. \(\square \)

In contrast to simulation queries, it is already NP-hard to decide whether a subgraph query \(Q \) has a lower or upper approximation w.r.t. \(V \). This is because it is NP-hard to decide whether there exists an isomorphism from a view \(V \) to \(Q \), which is essential in deciding the existence of approximations.

Note that the complexity of ELA does not go up beyond NP, though ELA is already NP-hard for simulation queries and it involves isomorphism checking, which is NP-hard, when comes to subgraph queries. Therefore, unlike simulation queries, the existence of complete and generic lower approximations have the same complexity for subgraph queries.

Closest approximation. Using the same closeness measure \(clo \) as for simulation queries in Section 3, we revisit problems CU, CU*, CLA and CLA* for computing closest approximations of subgraph queries w.r.t. subgraph views \(V \).

Theorem 13: For a subgraph query \(Q \) and set \(V \) of views,

1. pattern graph \(Q_{\cup}(\cup_{V \in V} E_{Q}(V), \cup_{V \in V} E_{Q}(V)) \) is the closest upper approximation of \(Q \) using \(V \);
2. \(\cup_{V \in V} E_{Q}(V) = V_{Q}, Q_{\cup}(\cup_{V \in V} E_{Q}(V), \cup_{V \in V} E_{Q}(V)) \) is the closest complete upper approximation of \(Q \); and
3. problems CU, CU*, CLA and CLA* (decision version) are all NP-complete. \(\square \)

Algorithm QAV iso

Input: Subgraph query \(Q \), set \(V \) of subgraph views.

Output: A query plan \(P \) if \(Q \) can be answered using \(V \).

1. \(P := [], S := \emptyset \);
2. for each \(V \) in \(V \) do if \(V(Q) \neq \emptyset \) then \(S := S \cup \{V\} \);
3. if \(\cup_{V \in V} E_{Q}(V) \neq V_{Q} \) then return "no";
4. initialize \(P \) to \(\{T_{i} = I_{V}(Q_{i})\} \); \(V := \emptyset \);
5. for \(i \in [1, m - 1] \) do
6. append \(T_{i+1} = T_{i} \cup I_{G}(V_{i+1}) \) to \(P \);
7. add common nodes in \(T_{i} \) and \(I_{G}(V_{i+1}) \) to \(V \);
8. append \(T_{m+1} = \sigma(T_{m}, V, d_{Q}) \) to \(P \);
9. append \(T_{m+2} = \text{mat}(Q, T_{m+1}) \) to \(P \); return \(P \);

Figure 5: Algorithm QAV iso

Similar to ELA, CLA and CLA* for subgraph queries have the same complexity as for simulation queries, though subgraph isomorphism is used, which is already NP-hard.

6.3 Algorithms

We next study algorithms for approximating subgraph queries with subgraph views.

Computing closest upper and lower approximations. We develop algorithms for computing the closest upper and lower approximations of subgraph queries w.r.t. subgraph views, complete or generic, denoted by \(\text{CU iso}^{*}, \text{CU iso}, \text{CLA iso}^{*} \) and \(\text{CLA iso} \), respectively, by minorly revising their counterparts for simulation queries in Sections 4 and 5. The only change is that we simply use subgraph isomorphism instead of graph simulation when computing view images. The correctness of these algorithms are guaranteed by the characterizations in Sections 6.1 and 6.2, and small model properties analogous to Lemma 7 and Lemma 8 for simulation queries.

Answering subgraph queries using views. Based on Theorem 11, we also develop an algorithm for subgraph query answering using views, denoted by QAV iso, to support the use of upper and lower approximations of subgraph queries. Algorithm QAV iso takes as input a subgraph query \(Q \) and a set \(V \) of views and returns a query plan \(P \) for \(Q \) using \(V \) if \(Q \) can be answered using \(V \). For any data graph \(G \), \(P(G) \) finds \(Q(G) \) in \(G \) by accessing images \(E_{Q}(V) \) for views \(V \) in \(V \).

The plan \(P \) is a sequence of operations \(T_{1} = \delta_{1}, \ldots, T_{m} = \delta_{m} \), such that for any \(G, T_{m}(G) = Q(G) \), and moreover, each \(\delta \) is one of the following that only accesses the view images.

1. Join \(G_{1} \bowtie G_{2} \), where \(G_{1} \) and \(G_{2} \) are two graphs. \(G_{1} \bowtie G_{2} \) returns all connected components of the graph \((V_{G_{1}} \cup V_{G_{2}}, E_{G_{1}} \cup E_{G_{2}}) \) that contain nodes from both \(G_{1} \) and \(G_{2} \).
2. Filter \(Q(G, V, r) \), where \(Q \) is a graph, \(V \) is a subset of nodes in \(G \) and \(r \) is an integer. It returns the subgraph \(G_{V,r} \) of \(G \) that is induced by nodes of \(G \) within distance no larger than \(r \) to some node in \(V \).
3. Match \(\text{mat}(Q, G) \), where \(Q \) is a pattern graph and \(G \) is a data graph. It computes the match result \(Q(G) \) to \(Q \) in \(G \).

Algorithm QAV iso generates a plan \(P \) for \(Q \) and \(V \) as follows. It first checks whether \(Q \) can be answered by using views in \(V \) and identifies relevant views if so, based on Theorem 11 (lines 2-3). It then generates a plan \(P \) of three parts. (i) The first part joins all images of relevant views together (lines 4-7). (ii) The second part filters a subgraph of the joined graph in (i) consisting of nodes that are within distance \(dQ \) to those nodes involved in the join, where \(dQ \) is the
6.4 Putting things together

Algorithms developed above and in Sections 4 and 5, together with the one for answering simulation queries with simulation views in [8], give us a framework of query-driven approximation using views.

(a) Given a pattern query Q and views V, we first check whether Q can be answered using V, via QAViso and [8].
(b) If so, we then generate query plans that exactly answer Q using cached answers to views in V only, by algorithm QAViso (resp. [8]) if Q is a subgraph (resp. simulation) query.
(c) Otherwise, we check whether there exist upper and lower approximations of Q w.r.t. V and find the closest approximations Q_u and Q_l, via algorithms CUAiso, CUALsim, CLAsim−, CLAsim, CUALiso, CUAiso, CLAiso and CLAiso.
(d) We generate query plans that answer Q_u and Q_l by using V only, which are guaranteed to exist, via QAViso and [8].

7. EXPERIMENTAL STUDY

Using real-life data, we conducted two sets of experiments to evaluate the effectiveness and the efficiency of our framework of query-driven approximation using views.

Experimental setting. We first give the settings we used.

Real-life graphs. We used two real-life data graphs.

(1) Knowledge graph (DBpedia) was taken from DBpedia 201504 [1] with 4.43M nodes, 8.43M edges and 735 labels.

(2) YouTube graph (YouTube) is a video network taken from YouTube with 2.03M video nodes, 12.22M video-video directed edges and 398 labels [2]. An edge from videos x to y indicates that if one watch x, then he is very likely to watch y.

Queries. We implemented a generator for graph patterns. It controls three parameters: the number # of nodes, the number # of edges, and label f_x from an alphabet Σ of labels in the corresponding real-life graphs. We use ([|Q_x|, |E_Q|]) to denote the size of a pattern query Q_x, E_Q). We generated 100 patterns in total by varying #n from 3 to 11 and #e from 5 to 13.

Views. We generated a set of 60 views for each data graph following [8,11,14]. The views were designed of sizes (2,1), (3,2), (4,3) and (4,4), and we varied the structure for views of the same size. (a) For DBpedia, each view image has 72K nodes and edges in average, and view images in total take 32.58% of the physical memory of the entire DBpedia dataset. (b) For YouTube, each image takes 80K nodes and edges in average, and all images take 34.29% of the memory of YouTube.

Algorithms. We implemented the following algorithms, all in C++: (1) our algorithms CUAiso, CUALsim, CLAsim and CUALiso, CUAiso, CLAiso, CUALiso, CUAiso, CUALiso, and CLAiso for finding closest complete and generic upper and lower approximations of simulation queries and subgraph queries; (2) our algorithm QAViso for answering subgraph approximations using views; (3) QAVisim for answering simulation approximations using views, taken from [8]; (4) conventional algorithms gSim [10]

<table>
<thead>
<tr>
<th>% of views used</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBpedia-%ap, sim(sub)</td>
<td>63(37)</td>
<td>54(34)</td>
<td>45(25)</td>
<td>36(16)</td>
</tr>
<tr>
<td>DBpedia-%ap, sim</td>
<td>72(51)</td>
<td>69(50)</td>
<td>66(49)</td>
<td>63(40)</td>
</tr>
<tr>
<td>DBpedia-%ap, sim(sub)</td>
<td>53(41)</td>
<td>46(37)</td>
<td>40(30)</td>
<td>36(25)</td>
</tr>
<tr>
<td>DBpedia-%ap</td>
<td>78(54)</td>
<td>70(59)</td>
<td>63(51)</td>
<td>58(45)</td>
</tr>
<tr>
<td>DBpedia-%ap, sim(sub)</td>
<td>80(55)</td>
<td>76(63)</td>
<td>70(59)</td>
<td>65(52)</td>
</tr>
<tr>
<td>DBpedia-%ap</td>
<td>79(54)</td>
<td>74(60)</td>
<td>69(56)</td>
<td>64(52)</td>
</tr>
<tr>
<td>DBpedia-%ap, sim(sub)</td>
<td>80(55)</td>
<td>75(62)</td>
<td>70(59)</td>
<td>65(52)</td>
</tr>
<tr>
<td>DBpedia-%ap</td>
<td>80(55)</td>
<td>75(62)</td>
<td>70(59)</td>
<td>65(52)</td>
</tr>
</tbody>
</table>

Table 1: Percentages of queries approximable using V and VF2 (using C++ Boost Graph Library) for answering simulation and subgraph queries directly, respectively.

All the experiments were run on a machine with Intel Core(TM) Duo 3.00GHz CPU and 16GB of memory. Each test was repeated 10 times, and the average is reported here.

Experimental results. We next report our findings.

Exp1-1: Effectiveness. We evaluated the effectiveness of upper and lower approximation of pattern queries using views. By default we use all queries and views.

(1) Percentage of queries approximable using views. Varying the percentage of the total views used, we tested the percentage of queries that (a) have upper or lower (resp. complete upper or lower) approximations, denoted by %-ap (resp. %-ap′) and (b) can be answered using views, denoted by %-answerable. The results are reported in Table 1.

Observe the following. (1) The majority of queries have approximations with available views, among which a large portion are complete. Indeed, 85% of simulation queries on DBpedia and 81% of subgraph queries on YouTube have approximations when only 75% of the views are used, respectively. The percentages are 75% and 77% when complete approximations are considered. (2) Simulation queries are more likely to have (complete) approximations than subgraph queries. (3) Very few patterns can be answered using views. Indeed, even using all the views, only 12% and 17% of simulation queries on DBpedia and YouTube can be answered using the views, respectively. The percentages are even lower for subgraph queries. This further verifies the need for studying approximations using views.

(2) Accuracy of approximation using views. We evaluated the average accuracy of the closest upper and lower approximations by the accuracy of their answers in the data graphs. We use three measures: F-measure $F(Q, Q', G)$ for measuring the accuracy of an upper or lower approximation Q' w.r.t. Q in G; and strong F-measure $F_u(Q, Q_u, G)$ and weak F-measure $F_l(Q, Q_l, G)$ for measuring the accuracy of a pair (Q_u, Q_l) of upper and lower approximations w.r.t. Q in G. More specifically, for any two sets S and S', let $prec(S', S) = \frac{|S' \cap S|}{|S'|}$ and recall$(S', S) = \frac{|S' \cap S|}{|S'|}$. Then we define

- $F(Q, Q', G) = \frac{2 \cdot prec(Q', G), Q(G) \cdot recall(Q', G), Q(G)}{prec(Q', G), Q(G) + recall(Q', G), Q(G)}$,
- $F_u(Q, Q_u, G) = \frac{2 \cdot prec(Q_u, G), Q(G) \cdot recall(Q_u, G), Q(G)}{prec(Q_u, G), Q(G) + recall(Q_u, G), Q(G)}$,
- $F_l(Q, Q_l, G) = \frac{2 \cdot prec(Q_l, G), Q(G) \cdot recall(Q_l, G), Q(G)}{prec(Q_l, G), Q(G) + recall(Q_l, G), Q(G)}$.

Intuitively, $F(Q, Q', G)$ is the conventional F-measure. The strong F-measure $F_u(Q, Q_u, G)$ is a variant of F-measure by using $Q_u(G)$ for $prec$ and $Q_l(G)$ for recall, while $F_l(Q, Q_u, G)$ uses $Q_l(G)$ for $prec$ and $Q_u(G)$ for recall. Q_u is likely to have higher $prec$ and Q_l tends to have higher recall. Therefore, the weak F-measure measures the accuracy
of approximating Q with the “best” of Q_u and Q_l combined. In contrast, the strong F-measure assesses the “worst” of Q_u and Q_l together. In particular, when Q_u and Q_l are complete upper and lower approximations of Q, $\text{prec}(Q_l(G), Q(G)) = \text{recall}(Q_u(G), Q(G)) = F_w(Q, Q_u, Q_l, G) = 1$.

(a) Impact of Q. Varying the size $|Q|$ of Q from (3, 5) to (11, 13), we evaluated the impact of pattern queries Q on the accuracy of upper and lower approximations Q_u and Q_l, measured by $F(Q, Q_u, G)$, $F(Q, Q_l, G)$, $F_w(Q, Q_u, Q_l, G)$ and $F_s(Q, Q_u, Q_l, G)$ on DBpedia and YouTube. The results are shown in Figures 6(a), 6(b), 6(c) and 6(d) for DBpedia and Figures 6(f), 6(g), 6(h) and 6(i) for YouTube.

Observe the following. (1) The closest upper and lower approximations Q_u and Q_l computed by our algorithms are capable to approximate Q well. The F-measure of both Q_u and Q_l is consistently above 0.7 and 0.6 on DBpedia for simulation and subgraph queries, respectively. (2) Complete upper and lower approximations are much more accurate than generic approximations. For example, for subgraph queries, when only complete upper and lower approximations are considered, the F-measure of upper approximations is 0.89 when $|Q|$ is (11,13) while it is 0.82 for generic approximations. (3) Combining the best of Q_u and Q_l together can give us much higher accuracy for approximating Q. Indeed, the weak F-measure of Q_u and Q_l is consistently higher than the F-measure of both Q_u and Q_l taken alone, on both DBpedia and YouTube for both simulation and subgraph queries. For example, for simulation queries, the weak F-measure is 0.93 when $|Q|$ is (11,13) on DBpedia, while the F-measure of both Q_u and Q_l is lower than 0.9. (4) Even when the worst of Q_u and Q_l are taken together, i.e., the prec of Q_u and the recall of Q_l, they are still capable of approximating Q well with views. For example, the strong F-measure is above 0.7 when $|Q|$ is (3, 5) on DBpedia for simulation queries. (5) The accuracy of upper and lower approximations is not sensitive to the size of Q for both simulation and subgraph queries.

(b) Impact of V. Varying the percentage of views used from 20% to 100% and fixed the size $|Q|$ of Q to be (7,9), we evaluated the impact of views V on the accuracy of upper and lower approximations Q_u and Q_l, measured by $F(Q, Q_u, G)$, $F(Q, Q_l, G)$, $F_w(Q, Q_u, Q_l, G)$ and $F_s(Q, Q_u, Q_l, G)$ on DBpedia and YouTube. The results are...
shown in Figures 6(k), 6(l), 6(m) and 6(n) for DBpedia and Figures 6(p), 6(q), 6(r) and 6(s) for YouTube. The results tell us the following. (1) More views lead to higher accuracy of upper and lower approximations Q_u and Q_l in all cases. For example, for simulation queries on YouTube, the F-Measure of Q_l is above 0.52 when 20% of the views are used, and it increases to 0.88 when 100% of the views are used. Indeed, Q_u and Q_l are more close to Q with more views, which lead to higher accuracy in terms of their answers in the data graph. (2) The weak F-Measure of Q_u and Q_l combined is higher than both the F-Measure of Q_u and of Q_l, while the strong F-Measure is the lowest. This is consistent with the case of varying $|Q|$ above.

(3) Speedup of approximation using views. We further evaluated the benefit of using upper and lower approximations in terms of the speedups. We compared the time for evaluating upper and lower approximations Q_u and Q_l for Q together (using QAViso and QAVsim) against the time for evaluating Q directly (using $gSim$ and VF2). To eliminate the noises from small approximations, we calculated the average evaluation time over approximations that have accuracy (by F-Measure) above 0.6. The results are given in Figures 6(e), 6(j), 6(o) and 6(t), and tell us the following. (1) Upper and lower approximations are much more efficient to answer than directly evaluate Q on data graphs. Indeed, when all the views are used, for subgraph (simulation) queries, the total evaluation time of both Q_u and Q_l is longer than that of Q by $gSim$ on YouTube. Similar for subgraph queries. (2) More views lead to better query plans for answering upper and lower approximation using views, as QAViso contains an optimization procedure to select views of larger size to answer queries.

Exp-2: Efficiency. We also evaluated the efficiency of our algorithms. We found that they all took at most 2.7s for all queries on both data graphs with all the views.

Summary. From the experiments we find the following. (1) The closest upper and lower approximations are practical and effective in approximating graph pattern queries using views. About 65% (resp. 53%) simulation (resp. subgraph) queries have upper and lower approximations using a small number of views. (2) The approach is effective for both simulation and subgraph queries. Upper and lower approximations achieve accuracy (F_u) above 0.79 and 0.86 and scale with million graphs within 0.24s and 2.7s, for simulation and subgraph queries, respectively, while it takes 42s and 5382s to evaluate the queries directly. (3) Our algorithms are efficient: they take no more than 2.7s in all cases.

8. CONCLUSION

We have studied approximating simulation and subgraph queries using views. We have proposed a notion of upper and lower approximation of pattern queries w.r.t. a set of views. We have studied their properties and characterizations. We have also identified eight fundamental problems for approximation using views, and investigated the complexity and approximation-hardness. Based on the characterizations, we have developed efficient exact and approximation algorithms with provable bounds for computing the closest upper and lower approximations, complete or not. We have also developed characterizations and algorithms for subgraph query answering using views, an open question in [8]. These together give us a practical framework of query-driven approximation using views. Our experimental results have verified the effective and efficiency of our techniques and the framework. These results extend the use of views from exact query answering to query approximation.

The study of query approximation using views is still in its infancy. One issue is to study optimal upper and lower approximations when views are associated with costs. Another issue is to study optimal pair of upper and lower approximations covering the same part of the queries. The third topic is to extend the idea to, e.g., relational queries. The fourth direction is to study approximations for dynamic data graphs.

9. REFERENCES