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K	� Dimensionless Henry law constant (–)
MS	� Mass of solid (kg)
nA
i
	� Moles adsorbed of component i (mol)

nabs
i

	� Absolute adsorbed amount of component i (mol)
nex
i

	� Excess adsorbed amount of component i (mol)
nnet
i

	� Net adsorbed amount (mol)
n
S
	� Moles of solid (mol)

nTot	� Total moles in the system (mol)
P	� Pressure (kPa)
qA
i
	� Adsorbed phase concentration of component i (mol 

m–3)
qabs
i

	� Absolute adsorbed concentration of component i 
(mol m–3)

qnet
i

	� Net adsorbed concentration of component i (mol 
m–3)

qt	� Total adsorbed phase concentration (mol m–3)
R	� Ideal gas constant (J mol–1 K–1)
S	� Entropy (J K–1)
T 	� Temperature (K)
VNA	� Volume not accessible (m3)
VS	� Volume of solid, including micropores (m3)
x
i
	� Mole fraction in adsorbed phase (–)

y
i
	� Mole fraction in gas phase (–)

z	� Compressibility factor (–)

Greek letters
�i	� Fugacity coefficient of component i in gas mixture 

(–)
�
i
	� Gas phase chemical potential of component i (J 

mol–1)
�A
i
	� Chemical potential of adsorbate i (J mol–1)

�S	� Chemical potential of solid (volume basis) (J m–3)
�0

S
	� Chemical potential of solid without adsorbate (J m–3)

�CP	� Reduced density at close packing (–)

Abstract  The formulation of a thermodynamic frame-
work for mixtures based on absolute, excess or net adsorp-
tion is discussed and the qualitative dependence with pres-
sure and fugacity is used to highlight a practical issue that 
arises when extending the formulations to mixtures and to 
the Ideal Adsorbed Solution Theory (IAST). Two impor-
tant conclusions are derived: the correct fundamental ther-
modynamic variable is the absolute adsorbed amount; there 
is only one possible definition of the ideal adsorbed solu-
tion and whichever starting point is used the same final 
IAST equations are obtained, contrary to what has been 
reported in the literature.

Keywords  Adsorption equilibria · Net adsorption · 
Absolute adsorption · Ideal adsorbed solution theory

List of symbols
ci	� Gas phase concentration of component i (mol m–3)
c∞
i

	� Concentration of component i at infinite pressure 
(mol m–3)

fi	� Fugacity of component i in gas mixture (kPa)
f 0
i
	� Fugacity of pure component i at the reference state 

(kPa)
G	� Gibbs energy (J)
G

0	� Gibbs energy of the solid without the adsorbate (J)
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�A
CP

	� Reduced density of adsorbed phase at close packing 
(–)

�S	� Solid density including micropores (kg m–3)
Ψ	� Reduced grand potential (mol m–3)

1  Introduction

In general it is not possible to measure gas adsorption 
directly and this has led to the use of excess (see for exam-
ple Sircar 1999) and net adsorption (Gumma and Talu 
2010), which are valid options when reporting experimen-
tal data but not to develop a thermodynamic framework 
(Myers and Monson 2014) which has to be based on abso-
lute adsorption. Talu (2013) has recently developed the 
use of net adsorption within a thermodynamic framework 
and has derived a version of the Ideal Adsorbed Solution 
Theory (IAST) without the need to convert this to absolute 
adsorption.

We have recently discussed the definitions of adsorption 
for pure gases (Brandani et al. 2016) in microporous solids 
and in this contribution we extend this to the case of mixed 
gases. This further analysis highlights some important 
qualitative characteristics which can be used to show that 
the IAST formulation of Talu (2013) is inconsistent. The 
second part of this contribution will therefore try to resolve 
this inconsistency and show that there is only one possible 
definition of an ideal adsorbed phase.

2 � Definitions of net, excess and absolute 
adsorption for mixed gases

We consider here the system to be that of a rigid micropo-
rous crystal as assumed by Myers and Monson (2014) as 
adopted by Brandani et  al. (2016). We are interested in 
adsorbents for separation processes, where the micropore 
volume is well defined and the adsorption on the external 
surface is negligible by comparison.

We are defining a fixed volume, VS, which comprises the 
porous solid and the micropore volume. We can define the 
total number of moles in the system as

where the suffix A indicates an adsorbate and S is the solid.
In absolute adsorption we simply remove the solid and 

define

In net adsorption we subtract from this the moles that 
would be in a fluid at the same pressure and temperature 

(1)nTot =
∑

i

nA
i
+ nS

(2)nabs
Tot

= n
Tot

− nS =
∑

i

nA
i

of the system with a concentration at equilibrium with the 
adsorbed phase that would occupy the volume of the system.

In the case of a mixture it is a bit more complicated to 
define the excess amount adsorbed, since different molecules 
may access different portions of the micropore volume. Nev-
ertheless, if one can define a reference non accessible volume 
for the excess adsorbed amount, then excess adsorption can 
be defined. This is obtained by subtracting the moles that 
would be in a fluid at the same pressure and temperature 
of the system with a concentration at equilibrium with the 
adsorbed phase that would occupy the accessible volume of 
the system.

In Eqs. 3 and 4 the total concentration can be written in 
terms of the compressibility factor, z, which is equal to one 
for an ideal gas.

We can now define the adsorbed phase concentrations by 
dividing the number of moles by the volume

and the equivalent net and excess concentrations

As discussed by Brandani et al. (2016) the correct limit at 
low pressure is given by Henry’s law and for mixed gases

while at infinite pressure

ie the saturation capacity of the micropores and

(3)nnet
Tot

= nabs
Tot

− VS

∑

i

ci =
∑

i

(

nA
i
− VSci

)

=
∑

i

nnet
i

(4)

nex
Tot

= nabs
Tot

−
(

VS − VNA

)
∑

i

ci =
∑

i

[

nA
i
−
(

VS − VNA

)

ci
]

=
∑

i

nex
i

(5)
∑

i

ci =
P

zRT

(6)qabs
Tot

=
nabs
Tot

VS

=
∑

i

nA
i

VS

=
∑

i

qA
i

(7)qnet
Tot

=
nabs
Tot

VS

−
∑

i

ci =
∑

i

qA
i
−
∑

i

ci

(8)qex
Tot

=
nabs
Tot

VS

− �m

∑

i

ci =
∑

i

qA
i
− �m

∑

i

ci

(9)qabs
Tot

=
∑

i

Kici

(10)qnet
Tot

=
∑

i

(

Ki − 1
)

ci

(11)qex
Tot

=
∑

i

(

Ki − �m
)

ci

(12)qabs
∞

=
�A
CP

�CP

VS − VNA

VS

∑

i

c∞
i
= qabs

Sat
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Therefore qualitatively the absolute adsorbed amount 
will increase monotonically to the saturation capacity. The 
net and excess adsorbed amounts will initially increase and 
then go through a maximum and the correct limit at infinite 
pressure will be negative and finite if an equation of state 
is used which has the correct limit of infinity for the com-
pressibility factor (Brandani and Brandani 2007) and hence 
a finite density.

For the excess adsorbed amount, one alternative 
approach to defining the accessible and non-accessible vol-
umes is the use of very high pressure adsorption data as 
discussed by Malbrunot et  al. (1997), who carried out 
experiments up to 500 MPa. These authors suggested that 
“the ideal method according to the Gibbs surface definition 
would be to measure the adsorbent density for each gas 
with the gas itself, but this may not be practical.” While 
they recognise that this approach is impractical (it would 
imply measuring isotherms up to 500 MPa or similar pres-
sures), it should be clear that this method would lead to 
accessible volumes that are dependent on the guest mole-
cule and therefore not valid for gas mixtures. Furthermore, 
even the accessible volume defined by this method will still 
yield a negative excess isotherm as shown by Eq.  (14), 
since the negative excess at infinite pressure is obtained 
regardless of the porosity, �m, that one defines from the 
accessible volume. At best the excess amount at infinite 
pressure can only be exactly 0 if one defined the accessible 
volume, not as the true accessible volume but as the larger 
volume that will give the same close packing density at 
infinite pressure, ie �

A
CP

�CP
= 1, but this would be a very arbi-

trary definition and it would again incur severe complica-
tions if mixtures of differently sized molecules are 
considered.

This simple analysis shows that while there is always 
only one value of the absolute adsorbed amount cor-
responding to a pressure or fugacity, both net and excess 
adsorbed amounts may have two corresponding pressure or 
fugacity values. Figure 1 shows this qualitative behaviour, 
with excess adsorption omitted as it will be qualitatively 
similar to net adsorption, but will lie somewhere between 
the two curves shown. For completeness the parameters 
used to generate Figs. 1, 2, 3 and 4 are given in the Supple-
mentary Information to this paper.

The fact that there is always one fugacity which corre-
sponds to a given adsorbed amount already points to the 

(13)qnet
∞

=

(

𝜂A
CP

𝜂CP

VS − VNA

VS

− 1

)

∑

i

c∞
i
< 0

(14)qex
∞
=

(

𝜂A
CP

𝜂CP
− 1

)

𝜀m

∑

i

c∞
i
< 0

fact that the natural thermodynamic variable to choose 
is the absolute adsorbed amount, also in view of the fact 
that numerical algorithms for the solution of multicom-
ponent adsorption equilibrium are robust for the mono-
tonically increasing absolute adsorption (Mangano et  al. 
2014).

3 � The ideal adsorbed solution theory (IAST) 
equations

The basic equations for the IAST were derived originally 
by Myers and Prausnitz (1965). The set of equations to be 
solved in terms of fugacities, which can be obtained from 
the expressions in Santori et al. (2015) assuming an ideal 
adsorbed solution, can be summarised as follows:

These are the equilibrium relationships for each 
adsorbed component, where f 0

i
 is the fugacity at which 

(15)
�iyiP = f 0

i
(Ψ)xi i = 1, 2…Nc
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Fig. 1   Comparison of absolute and net adsorption versus a concen-
tration and b fugacity
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each pure component is at the same reduced grand poten-
tial, Ψ, and temperature of the mixture. The reduced 
grand potential is defined by the Gibbs adsorption 
isotherm

(16)Ψ = Ψi =
fi∫
0

q0
i
(f )dlnf i = 1, 2…Nc

To close the problem, the total number of adsorbed 
moles can be found assuming zero mass or volume change 
upon adsorption

Myers and Monson (2014) arrive at the commonly 
adopted formulation where q0

i
= qabs

i
, while Talu (2013) 

arrives at the same equations but q0
i
= qnet

i
.

Recently Furmaniak et  al. (2015) pointed out the fact 
that Talu’s approach leads to a reduced grand potential 
that has a maximum above a certain pressure. This can be 
understood considering the fact that once the net adsorbed 
amount becomes negative the integral equation, Eq.  16, 
will reach a maximum. The fact that there is not a one-to-
one mapping of fugacity and reduced grand potential led 
them to abandon further testing of the IAST based on net 
adsorption (Talu 2013), since it would not be clear which 
root of Eq. 16  one should use. Figure 2 shows the qualita-
tive shape of the reduced grand potential calculated using 
absolute and net adsorbed amounts. This shows that the 
limits at infinite pressure are opposite, the absolute adsorp-
tion value is +∞, while the net adsorption value is −∞. 
Again qualitatively a formulation based on the excess 
adsorbed amounts in Eqs.  15, 16, 17 would yield results 
similar to those of net adsorption.

The issues associated with the solution of Eq.  16 are 
made clearer if we consider Figs.  3 and 4 which show 
the reduced grand potentials calculated using a Langmuir 
adsorption isotherm for two components with a selectiv-
ity of five having the same saturation capacity for ther-
modynamic consistency (Ruthven 1984). In the absolute 
adsorption framework, Fig. 3, one can always find a solu-
tion, which is represented by a horizontal line parallel 
to the fugacity axis, i.e. the line for which the reduced 

(17)
1

qt
=

Nc
∑

i=1

xi

q0
i

(

f 0
i

)
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Fig. 2   Comparison of reduced grand potentials defined in terms of 
absolute and net adsorption versus a concentration and b fugacity
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grand potentials are equal, because for both components 
the reduced grand potentials will go to infinity at infinite 
pressure.

In the net adsorption framework, Fig.  4, there are 
regions where one can find a solution, which is not unique 
as pointed out by Furmaniak et al. (2015). The net adsorp-
tion framework will yield one feasible solution in a mixture 
for positive reduced grand potentials up to the maximum 
corresponding to the more weakly adsorbed component. 
Above this point, given that at a fixed fugacity the mixture 
grand potential will be an interpolation between the pure 
component grand potentials (Mangano et al. 2014), there is 
also a region between the two maxima where there is no 
solution. For negative values of the reduced grand potential 
there is only one solution, but this is physically impossible 
as the corresponding fugacity of the more weakly adsorbed 
component is smaller than that of the more strongly 
adsorbed species. Clearly also the solutions at a fugac-
ity higher than the one corresponding to the maximum for 
the more strongly adsorbed component will be physically 
impossible since the solution will give a lower reference 
fugacity for the less strongly adsorbed components.

The region of no solution is not a purely hypothetical 
case. As a simple practical example one could consider the 
breakthrough curve for oxygen on 5A zeolite using helium 
as the carrier gas. While one can argue that in this case a 
good approximation is obtained assuming that helium is 
not adsorbed, as demonstrated by Brandani et  al. (2016) 
the error of making this assumption is approximately 3% 
and not negligible because oxygen is not strongly adsorbed. 
In addition to this, a general and rigorous thermodynamic 
model should be applicable to any binary mixture. In this 
case at low pressures the net adsorption of oxygen is posi-
tive given that Ruthven and Xu (1993) report a dimension-
less Henry law constant of 14.6 at 303  K, while helium 
adsorption is not zero, but the net adsorbed amount is nega-
tive given that at room temperature helium pycnometry is 
used to measure the skeletal density of microporous materi-
als, i.e. the dimensionless Henry law constant is close to 
the porosity and clearly less than one. This is a system for 
which at low pressures one would expect the IAST to pro-
vide accurate predictions, but the formulation based on the 
net adsorption framework is not applicable because at all 
conditions the reduced grand potential of helium is nega-
tive and there are no solutions in the region 0–100 bar as 
can be seen in Fig. 5.

If one is still not convinced by these simple arguments, 
there is further clear evidence that the IAST formulated in 
the net adsorption framework is not correct. From a sim-
ple inspection of Eq. 17, one can see that the total amount 
adsorbed cannot be defined if the net amount adsorbed of 
one of the components in the mixture at the reference state is 
zero. The first occurrence would correspond to the maximum 

of the reduced grand potential for the weakest component in 
the mixture.

While these simple arguments are sufficient to under-
stand that net adsorption cannot be used in a thermodynamic 
framework to arrive at an alternative formulation of the 
IAST, we still need to understand what caused the difference 
and demonstrate that even starting from the viewpoint of net 
adsorption one should arrive at the same equations as Myers 
and Monson (2014).

4 � Derivation of the Gibbs adsorption isotherm 
and the IAST

The key thermodynamic quantity in adsorption equilibria 
is the reduced grand potential and the corresponding Gibbs 
adsorption isotherm (Talu 2013; Myers and Monson 2014). 
Myers and Monson (2014) use the absolute adsorption and 
arrive at the classical result (see for example Ruthven 1984)

where �0

S
 is the chemical potential of the solid on a volume 

basis in the absence of adsorbate.
Talu (2013) constructs a thermodynamic framework based 

on net adsorption and arrives at what is apparently a different 
definition

where �S(P = 0) is the chemical potential of the solid at 
zero pressure. Clearly

(18)Ψ= −
�S − �0

S

RT
=

P

∫
0

∑

i

qA
i
dlnfi

(19)Ψnet = −
�S − �S(P = 0)

RT
=

P

∫
0

∑

i

qnet
i
dlnfi

(20)�S(P = 0) = �0

S
(P = 0)
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Fig. 5   Net adsorption reduced grand potentials for oxygen and 
helium on 5A zeolite at 296  K. Parameters used to calculate the 
curves are given in Table 1
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Both Talu (2013) and Myers and Monson (2014) start 
their respective definitions from the definition of the inter-
nal energy, but then Myers and Monson (2014) opt to use 
the Helmholtz energy as the potential in the solid phase 
and the Gibbs energy for the fluid phase, correctly indi-
cating that what is being neglected is not important at low 
pressures. Given that the equilibrium between two phases 
is established when the chemical potential is the same for 
each component in both phases, it should be natural to for-
mulate the equilibrium problem using the Gibbs energy 
for both phases. Talu (2013) invokes a series of thermody-
namic relationships and derives the Gibbs–Duhem equation 
and from this the Gibbs adsorption isotherm.

An unambiguous derivation of the Gibbs adsorption 
isotherm for both net adsorption and absolute adsorption 
frameworks is needed in order to resolve this fundamental 
issue and understand the origin of the apparent discrepancy.

We start with the classical solution thermodynamics 
approach (Ruthven 1984) and simply write the total Gibbs 
energy of the system and use for the solid variables on a 
volume basis. The equivalent relationships on a mass basis 
are obtained using MS when multiplying the chemical 
potential of the solid and result simply in a change in the 
units of the variables and are interchangeable if the solid 
density which includes the micropores, �S, is known (Bran-
dani et al. 2016).

where nA
i
= qA

i
VS.

If we are considering that the adsorbed phase is at equi-
librium with a fluid phase we can also write

The differential of the Gibbs energy is given by

From the total differential of the Gibbs energy we obtain 
the Gibbs–Duhem equation

(21)G =
∑

i

nA
i
�A
i
+ VS�S

(22)�A
i
= �i

(23)dG = −SdT + VdP +
∑

i

�A
i
dnA

i
+ �SdVS

(24)0 = −SdT + VdP −
∑

i

nA
i
d�A

i
− VSd�S

To define absolute adsorption we need to define the state 
of the solid without adsorbate

and

and the corresponding Gibbs–Duhem equation

If we assume constant temperature and subtract the two 
Gibbs–Duhem relationships we obtain

We now introduce the additional assumption that in the 
system the quantity of solid does not change and hence we 
are considering a system of constant volume, ie V = V0 = VS.

If we now recall that for a fluid at constant temperature

we finally can arrive at

which is the result obtained by Myers and Monson (2014) 
with a slightly different derivation.

We now proceed in the net adsorption framework. For 
this now we have to replace the solid with an identical vol-
ume filled with fluid which would be at equilibrium with the 
adsorbed phase. In this case we have

and the corresponding Gibbs–Duhem equation

At constant temperature, if we subtract the two 
Gibbs–Duhem relationships we now obtain

(25)G0 = VS�
0

S

(26)dG0 = −S0dT + V0dP + �0

S
dVS

(27)0 = −S0dT + V0dP − VSd�
0

S

(28)VSd
(

�S − �0

S

)

=
(

V − V0
)

dP −
∑

i

nA
i
d�A

i

(29)d�i = RTdlnfi

(30)−
�S − �0

S

RT
=

P

∫
0

∑

i

nA
i

VS

dlnfi

(31)GFluid =
∑

i

nG
i
�i

(32)dGFluid = −SFluiddT + VSdP +
∑

i

�idn
G
i

(33)0 = −SFluiddT + VSdP −
∑

i

nG
i
d�i

Table 1   Parameters used to calculate curves in Fig. 5

Parameter qi = qS
bif

1+bif
Source

qS 4.03 (mol kg−1) Mathias et al. (1996). Assumed single site Langmuir as heat of adsorption of O2 is independent of loading
bOxy 0.048 (bar−1) Fit of data at 296 K from Talu et al. (1996)
bHe 0.0013 (bar−1) Assumed dimensionless Henry law constant of 0.42 (approximate porosity) and a value of 15 for O2 from 

Ruthven and Xu (1993). The ideal selectivity is 36:1 for O2/He. For helium the fugacity coefficient is 
always approximately 1, i.e. f = P

�S 1420 (kg m−3) Estimated from crystal density as reported by First et al. (2011)
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and by integration

This is the result obtained by Talu (2013), but it is not 
for the same thermodynamic function.

This issue is easily resolved if we define the reduced 
grand potential consistently as the difference between the 
chemical potential of the solid and the chemical potential 
of the solid without adsorbate, but at the same tempera-
ture and pressure of the system, since from Eq. 33 at con-
stant temperature

then

which is the classical result and shows that absolute adsorp-
tion is the fundamental thermodynamic variable in adsorp-
tion thermodynamics. Since equilibrium requires that the 
two phases should be at the same pressure if surface effects 
are neglected (Prausnitz et al. 1999), ie the classical solu-
tion thermodynamics approach which is at the basis of the 
IAST, the grand potential should not be defined relative to 
zero pressure.

A rigorous definition of the reference state would 
appear to require the use of a Poynting correction (Praus-
nitz et al. 1999) in Eq. 15 in order to take into account the 
difference between the pressure of the reference state for 
the pure adsorbate and the pressure of the mixture. This 
is in fact negligible because for a single adsorbate the 
change in chemical potential due to a change in pressure 
at constant temperature and constant amount adsorbed 
combining Eqs. 24 and 27 is

If one assumes that the change in chemical potential 
of the solid due to a change in the external pressure is not 
affected by the presence of the adsorbate, which is reasona-
ble for a rigid crystal, then the RHS of Eq. 38 is zero. Even 
if this is not exactly true, one can see that the resulting 
Poynting correction factor would be very small given that it 
is calculated from the difference of ΔP and Δ�S and not ΔP 
alone as for a normal liquid phase (Prausnitz et al. 1999).

(34)VSd�S =
(

V − VS

)

dP −
∑
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nA
i
d�A

i
+
∑

i

nG
i
d�i

(35)
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P

∫
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i
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P

∫
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i

nnet
i
dlnfi

(36)
∑
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i
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(37)
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RT
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P

∫
0

∑

i

(
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i
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i
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dlnfi −

P

∫
0

VS

RT
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P
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(38)Δ�A =
VS

nA

(

ΔP − Δ�S

)

= −
VS

nA
Δ
(

�S − �0

S

)

≈ 0

This is the reason why one can use the Helmholtz energy 
for the adsorbed phase in the derivation of the IAST (Myers 
and Monson 2014) and the resulting formulation, Eqs. 14 
and 15, is not limited to low pressures if fugacities are used 
to correct for the gas phase non-ideality.

The final step for the closure of the equations of the 
IAST is the derivation of the total amount adsorbed in an 
ideal adsorbed mixture. The differential of the grand poten-
tial at constant temperature for the mixture is given by

which can also be written for the pure component

Since the reference state is chosen as that of the pure 
component at the same temperature and grand potential of 
the mixture and given that the adsorbed phase is ideal

and substituting into Eq. 39 we have

or (Myers and Monson 2014)

Talu (2013) using the incorrect reduced grand potential 
arrives at a similar expression in terms of net adsorption

but this final expression is clearly incorrect since it is 
undefined at higher pressures which correspond to the net 
adsorption of the pure components being zero.

5 � Conclusions

In the formulation of a thermodynamic framework for 
mixed gas adsorption we have shown that only the abso-
lute adsorbed amount has a one to one correspondence 
between fugacity and adsorbed amounts. Both net and 
excess adsorption will initially increase linearly and then 
go through a maximum and finally become negative if 
pressure (or fugacity) is sufficiently high. This leads to the 
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i
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=
∑
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important conclusion that it is not possible to develop a rig-
orous version of the IAST based on either the net or the 
excess adsorbed amounts.

Clearly if net and excess adsorbed amounts are used 
to approximate absolute adsorption, then values obtained 
using excess adsorption will be closer to the true solution, 
but the correct approach to follow is to define the solid vol-
umes as discussed in Brandani et al. (2016) and carry out 
the predictions directly using absolute adsorbed amounts.

Having established on qualitatitive grounds that the defi-
nition of the IAST equations obtained by Talu (2013) are 
inconsistent, we have proceeded to prove that the key issue 
in Talu’s derivation is the fact that the equilibrium between 
the phases is not defined at the same pressure, which is the 
starting point of classical fluid phase equilibria formula-
tions. This small inconsistency leads to a set of equations 
which is incorrect, does not have unique solutions and is 
undefined when the lighter components reach the condi-
tions where net adsorption is zero. When the correct refer-
ence state is used, the original IAST formulation is recov-
ered whether one starts from absolute or net adsorbed 
amounts, arriving at the conclusion that there is only one 
definition of ideal adsorbed solution.

The analysis presented is a further indication that abso-
lute adsorption is the thermodynamic variable to use in 
describing adsorption. While net and excess adsorption can 
be used to report experimental results, it is still necessary 
to determine the density of the microporous solid, which 
includes the micropores (Brandani et al. 2016), in order to 
be able to use the data in adsorption process simulations 
and consistent thermodynamic frameworks for mixed gas 
adsorption.
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