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Abstract: 

Modulation techniques for light fidelity (Li-Fi) are reviewed in this paper. Li-Fi is the fully networked solution for multiple users 

that combines communication and illumination simultaneously. Light emitting diodes (LEDs) are used in Li-Fi as visible light 

transmitters, therefore, only intensity modulated direct detected modulation techniques can be achieved. Single carrier modulation 

techniques are straightforward to be used in Li-Fi, however, computationally complex equalization processes are required in 

frequency selective Li-Fi channels. On the other hand, multicarrier modulation techniques offer a viable solution for Li-Fi in terms of 

power, spectral and computational efficiency. In particular, orthogonal frequency division multiplexing (OFDM) based modulation 

techniques offer a practical solution for Li-Fi, especially when direct current (DC) wander, and adaptive bit and power loading 

techniques are considered. Li-Fi modulation techniques need to also satisfy illumination requirements. Flickering avoidance and 

dimming control are considered in the variant modulation techniques presented. This paper surveys the suitable modulation 

techniques for Li-Fi including those which explore time, frequency and colour domains.  

 
Keywords: light fidelity (Li-Fi); optical wireless communications (OWC); visible light communication (VLC); intensity modulation 

and direct detection (IM/DD); orthogonal frequency division multiplexing (OFDM) 

 

 

1 Introduction 

More than half a billion new communication devices were added to the network services in 2015. Globally, mobile data traffic is 

predicted to reach 30.6 exabytes per month by 2020 (the equivalent of 7641 million DVDs each month), up from 3.7 exabytes 

per month in 2015 [1]. The radio frequency bandwidth currently used is a very limited resource. The increasing dependency on 

cloud services for storage and processing means that new access technologies are necessary to allow this huge increase in 

network utilization. The visible light spectrum on the other hand offers a 10,000 times larger unlicensed frequency bandwidth 

that could accommodate this expansion of network capacity. Visible light communication (VLC) is the point-to-point high speed 

communication and illumination system. Light fidelity (Li-Fi) is the complete wireless, bi-directional, multi-user network 

solution for visible light communications that would operate seamlessly alongside other Long Term Evolution (LTE) and 

wireless fidelity (Wi-Fi) access technologies [2]. Li-Fi is a green communication method as it reuses the existing lightning 

infrastructure for communications. Information is transmitted by the rapid subtle changes of light intensity that is unnoticeable 

by the human eye. Recent studies have demonstrated data rates of 14 Gbps for Li-Fi using three off-the-shelf laser diodes (red, 

green and blue) [3]. It was also predict that a data rate of 100 Gbps is achievable for Li-Fi when the whole visible spectrum is 

utilized [3]. Li-Fi offers inherent security, and also it can be employed in areas where sensitive electronic devices are present, 

such as in hospitals. In addition, Li-Fi is a potential candidate for other applications such as underwater communications, 

intelligent transportation systems, indoor positioning, and the Internet of Things (IoT) [2]. 

Modulation techniques developed for intensity modulation and direct detection (IM/DD) optical wireless communication (OWC) 

systems are suitable for Li-Fi communications systems. However, these modulation techniques may not be suitable for all 

lightning regimes. Li-Fi transceivers are illumination devices enabled for data communications. Therefore adapting IM/DD 

modulation technique should first satisfy certain illumination requirements before being Li-Fi enabled. For example, modulation 

techniques should support dimmable illumination so that communication would be still available when the illumination is not 

required. Li-Fi uses off-the-shelf light emitting diodes (LEDs) and photodiodes (PDs) as channel front-end devices. This restricts 

signals propagating throughout the channel to strictly positive signals. Single carrier modulation (SCM) techniques are straight 

forward to implement in Li-Fi. Modulation techniques, such as on-off keying (OOK), pulse-position modulation (PPM), and M-

ary pulse-amplitude modulation (M-PAM), can be easily implemented. However, due to the dispersive nature of optical wireless 

channels, such schemes require complex equalizers at the receiver. Therefore, the performance of these schemes degrades as 

their spectral efficiency (SE) increases. On the other hand, multiple carrier modulation (MCM) techniques, such as the 

orthogonal frequency division multiplexing (OFDM), have been shown to be potential candidates for optical wireless channels 

since they only require single tap equalizer at the receiver. Adaptive bit and power loading can maximize the achievable data 
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rates of OFDM-based Li-Fi systems by adapting the system loading to the channel frequency response. Moreover, the DC 

wander and low frequency interference can be easily avoided in OFDM by optimizing the adaptive bit/power loading to avoid 

the low frequency subcarriers. Colour modulation techniques are unique to Li-Fi communication systems as the information is 

modulated on the instantaneous colour changes. The colour dimension adds a new degree of freedom to Li-Fi. The various 

modulation Li-Fi modulation techniques discussed in this paper are shown in Fig. 1. 

 

 

Li-Fi: light fidelity 

OFDM: orthogonal frequency modulation 

SCM: single carrier modulation 

OOK: on-off keying 

PWM: pulse width modulation 

M-PAM: M-ary pulse amplitude modulation 

M-PPM: M-ary pulse position modulation 

DFT-s-OFDM: discrete Fourier transformation spread OFDM 

CAP: carrier-less amplitude modulation 

DCO-OFDM: DC biased OFDM 

ACO-OFDM: asymmetrically clipped optical OFDM 

PAM-DMT: pulse amplitude modulation discrete multitone 

eU-OFDM: enhanced unipolar OFDM 

eACO-OFDM: enhanced ACO-OFDM 

ePAM-DMT: enhanced PAM-DMT 
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SEE-OFDM: spectrally and energy efficient OFDM 

LACO-OFDM: layered ACO-OFDM 

RPO-OFDM: reverse polarity optical OFDM 

P-OFDM: polar OFDM 

ASCO-OFDM: asymmetrically and symmetrically clipped optical OFDM 

SFO-OFDM: spectrally factorized optical OFDM 

PM-OFDM: position modulation OFDM 

ADO-OFDM: asymmetrically clipped DC biased optical OFDM 

HACO-OFDM: hybrid asymmetrically clipped optical OFDM   

MCM: multicarrier modulation 

HCM: Hadamard coded modulation. 

WPDM: wavelet packet division multiplexing 

DHT: discrete Hartley transform 

CSK: colour shift keying 

CIM: colour intensity modulation 

MM: metameric modulation 

Figure 1. Li-Fi modulation techniques considered in this paper. 

This paper is organized as follows: The main challenges for Li-Fi modulation techniques are summarized in Section 2. SCM 

techniques for Li-Fi are detailed in Section 3. OFDM-based modulation techniques for Li-Fi are discussed in details in Section 4, 

including inherent unipolar OFDM techniques, hybrid OFDM modulation techniques and superposition OFDM modulation 

techniques. Other MCM techniques are revised in Section 5. The unique colour domain modulation techniques are discussed in 

Section 6. Finally the conclusion is presented in Section 7. The paper is limited to single input – single output (SISO) Li-Fi 

communication systems. The space dimension of Li-Fi is not considered in this paper.  

 

2 Li-Fi Modulation Techniques Challenges  

Li-Fi is an emerging high-speed, low-cost solution to the scarcity of the radio frequency (RF) spectrum, therefore it is expected 

to be realized using the widely deployed off-the-shelf optoelectronic LEDs. Due to the mass production of these inexpensive 

devices, they lack accurate characterizations. In Li-Fi, light is modulated on the subtle changes of the light intensity, therefore, 

the communication link would be affected by the non-linearity of the voltage-luminance characteristic. As a solution, pre-

distortion techniques were proposed to mitigate non-linear distortion [4]. However, as the LED temperature increases the 

voltage-luminance (V-L) characteristic experiences memory-effects. Therefore, the LED non-linearity mitigation is still an open 

research problem. The limited bandwidth of Li-Fi communication channel leads to inter-symbol interference (ISI) at high data 

rates. The LED frequency response is modeled as a low-pass filter, and it is the major contributor to the frequency selectivity of 

Li-Fi channels. The modulation bandwidth over which the frequency response of most commercially available LEDs can be 

considered flat is around 2–20 MHz [5], [6]. However, the usable bandwidth in Li-Fi could be extended beyond the 3 dB cut-

off frequency.  

Therefore, modulation techniques with higher spectral efficiencies are key elements in a Li-Fi system design. Satisfying the 

illumination requirements is a key element in Li-Fi. Most of the research on modulation techniques has been on the 

communication system performance of Li-Fi system. Factors such as dimming, illumination level control and flickering have 

been analyzed as secondary parameters of a Li-Fi system. The Li-Fi systems should be also considered as an illumination system 

with communications capability, not the reverse. 

 

3 Single Carrier Modulation Techniques 

Single carrier modulation techniques were first proposed for IM/DD optical wireless communications based on infrared 

communications [7]. Modulation techniques, such as OOK, pulse amplitude modulation (PAM), pulse width modulation 

(PWM), and PPM, are straightforward to implement for Li-Fi systems. In general, single carrier modulation techniques are 

suitable candidates for Li-Fi when low-to-moderate data rates applications are required. By switching the LED between “on” and 

“off” states, the incoming bits can be modulated into the light intensity. Illumination control can be supported by adjusting the 

light intensities of the “on” and “off” states, without affecting the system performance. Compensation symbols are proposed in 

the visible light communications standard, IEEE 802.15.7 [8], to facilitate the illumination control at the expense of reducing the 



SE. If the link budget offers high signal to noise ratios (SNR), M-PAM can be used to modulate the incoming bits on the 

amplitude of the optical pulse [9].The position of the optical pulse is modulated into shorter duration chips in PPM with a 

position index that varies depending on the incoming bits. The PPM is more power efficient than OOK, however, it requires 

more bandwidth than OOK to support equivalent data rates. Differential PPM (DPPM) was proposed to achieve power and/or SE 

gains [10], however the effect of unequal bit duration for the different incoming symbols could affect the illumination 

performance. A solution was proposed in [11] to ensure that the duty cycle is similar among the different symbols to prevent any 

possible flickering. Variable PPM (VPPM) was proposed in the VLC standard IEEE 802.15.7 to support dimming for the PPM 

technique and prevent any possible flickering. The pulse dimming in VPPM is controlled by the width of the pulse rather than 

the pulse amplitude. Therefore, VPPM can be considered as a combination of PPM and PWM techniques. Multiple PPM 

(MPPM) was proposed [12] as a solution to the dimming capability of PPM, where it was reported that it achieves higher 

spectral efficiencies than VPPM with less optical power dissipation. The advantages of PAM and PPM are combined in pulse 

amplitude and position modulation (PAPM) [13].  

The performance comparison between single carrier and multicarrier modulation techniques was studied in [14]–[18] for 

different scenarios and considerations. The results may differ depending on the major considerations and assumptions of each 

study. However in general, the performance of single carrier modulation techniques deteriorate as the data rates increase, due to 

the increased ISI. Equalization techniques, such as optimum maximum likelihood sequence detection (MLSD), frequency 

domain equalizers (FDE), nonlinear decision feedback equalizers (DFE), and linear feed forward equalizer (FFE), are suitable 

candidates for equalization processes, with different degrees of performance and computational complexity [7], [19], [20]. The 

single carrier frequency domain equalizer (SC-FDE) was proposed for OWC as a solution to the high peak to average power 

ratio (PAPR) of OFDM in [12], [21]. PPM-SCFDE was considered in [22], and OOK-SCFDE was considered in [23]. The 

performance of OOK with minimum mean square error equalization (MMSE) was compared with the performance of 

asymmetrically clipped optical (ACO)-OFDM and the performance of complex modulation M-ary quadrature amplitude 

modulation (M-QAM) ACO-SCFDE in [18]. It was reported that the performance of ACO-SCFDE outperforms asymmetrically 

clipped optical OFDM (ACO-OFDM) and OOK-MMSE due to the high PAPR of ACO-OFDM when the nonlinear 

characteristics of the LED are considered. The performance of PAM-SCFDE is compared with OFDM in [12], without 

consideration of the LED nonlinearity. It was shown that PAM-SCFDE achieves higher performance gains when compared with 

OFDM at spectral efficiencies less than 3 bits/s/Hz. 

Discrete Fourier transformation spread (DFT-s) OFDM was also considered for Li-Fi as a SCM that has the benefits of an 

OFDM multicarrier system with lower PAPR [24]. An extra pair of DFT and inverse discrete Fourier transformation (IDFT) 

operations are required to achieve DFT-s OFDM. Multiple independent streams of DFT-s OFDM modulated waveforms are 

separately transmitted through multiple LEDs in a single array. The performance of DFT-s OFDM is reported to be better when 

compared with DC-biased optical OFDM (DCO-OFDM) in terms of both PAPR and bit error rate (BER) [24]. A novel carrier-

less amplitude and phase (CAP) modulation was proposed for Li-Fi in [25]. In order for CAP to suit the frequency response of 

LEDs, the spectrum of CAP was divided into m subcarriers by the aid of finite impulse response (FIR) filter. Although CAP is 

computationally complex, it could offer high spectral efficiencies in band-limited Li-Fi channel.  

 

4 Optical OFDM 

Single carrier modulation techniques require a complex equalization process when employed at high data rates. In addition, 

effects such as DC wandering and flickering interference of florescent lights may influence the system performance at the lower 

frequency regions of the used bandwidth. On the other hand, multicarrier modulation techniques such as OFDM can convert the 

frequency selective fading of the communication channel into a flat fading by employing the computationally efficient single tap 

equalizer. In addition, OFDM supports adaptive power and bit loading which can adapt the channel utilization to the frequency 

response of the channel. This can maximize the system performance. Supporting multiuser communication systems is an inherent 

advantage of OFDM, where each user could be allocated certain subcarriers. At the OFDM transmitter, the incoming bits are 

modulated into specific modulation formats such as M-QAM. The M-QAM symbols are loaded afterwards into orthogonal 

subcarriers with subcarrier spacing equal to multiple of the symbol duration. The parallel symbols can then be multiplexed into a 

serial time domain output, generally using inverse fast Fourier transformation (IFFT). The physical link of Li-Fi is achieved 

using off-the-shelf optoelectronic devices such as LED and photo-detectors (PD). Due to the fact that these light sources produce 

an incoherent light, the OFDM time-domain waveforms are used in Li-Fi to modulate the intensity of the LED source. Therefore, 

these waveforms are required to be both unipolar and real valued.  

Hermitian symmetry is generally imposed on the OFDM input frame to enforce the OFDM time domain signal output into the 

real domain. Different variants of optical OFDM were proposed to achieve a unipolar OFDM output. DC bias is used in the 

widely deployed DCO-OFDM [26] to realize a unipolar time-domain OFDM output. However, OFDM signals have a high 

PAPR, which makes it practically impossible to convert all of the signal samples into unipolar ones. The OFDM time-domain 

waveform can be approximated with a Normal distribution when the length of the input frame is greater than 64. The DC bias 

point would be dependent on the V-L characteristic of the LED. Zero level clipping of the remaining negative samples after the 

biasing would result in a clipping distortion that could deteriorate the system performance. High DC bias would also incur some 



distortion as a result of the upper clipping of the OFDM waveform due to the V-L characteristic of the ideal LED. The forward-

output current characteristic of an LED is shown in Fig. 2. Pre-distortion is used to linearize the dynamic range of the LED. The 

LED input and output probability distribution function (PDF) of the OFDM modulation signal are also shown. The dynamic 

range of the LED is between the turn-on bias and the maximum allowed current points of the LED. The input signal is biased and 

the output signal is clipped for values outside the dynamic range. The optimization of the DC biasing point was studied in [27]–

[29]. The additional dissipation of electrical power in DCO-OFDM compared with bipolar OFDM increases as the modulation 

order increases. This leads to electrical and optical power inefficiency when DCO-OFDM is used with high M-QAM modulation 

orders. Illumination is an essential part of VLC, therefore, the DCO-OFDM optical power inefficiency can be justified for some 

VLC applications. However, when energy efficiency is required, an alternative modulation approach is required.  

 

LED: light emitting diode 

PDF: probability distribution function 

Figure 2:The forward-output current characteristic of an LED. 

 

4.1 Inherent Unipolar Optical OFDM Techniques 

Unipolar OFDM modulation schemes were mainly introduced to provide energy efficient optical OFDM alternatives to DCO-

OFDM. These schemes include ACO-OFDM [30], pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) [31], 

flipped OFDM (Flip-OFDM) [32], and unipolar orthogonal frequency division multiplexing (U-OFDM) [33]. They exploit the 

OFDM input/output frame structure to produce a unipolar time domain waveform output. However, all of these schemes have a 

reduced SE compared with DCO-OFDM due to the restrictions imposed on their frame structures. In this section, ACO-OFDM, 

PAM-DMT and U-OFDM/Flip-OFDM modulation schemes are discussed. 

 

4.1.1  ACO-OFDM 

A real unipolar OFDM waveform can be achieved by exploiting the Fourier transformation properties on the frequency domain 

input OFDM frames. The principle of ACO-OFDM [30] is to skip the even subcarriers of an OFDM frame, by only loading the 

odd subcarriers with useful information (Fig. 3). This creates a symmetry in the time domain OFDM signal, which allows the 

distortion-less clipping of the negative samples without the need of any DC biasing (Fig. 4). Clipping of the negative values is 

distortion-less since all of the distortion will only affect the even-indexed subcarriers. However, skipping half of the subcarriers 

reduces the SE of ACO-OFDM to half of that in DCO-OFDM. A penalty of 3 dB should applied to the signal-to-noise ratio (SNR) 

of ACO-OFDM when compared with bipolar OFDM, since half of the signal power is lost due to clipping. Hermitian symmetry 

is also used to guarantee a real valued ACO-OFDM output. At the receiver, after a fast Fourier transformation (FFT) is applied on 

the incoming frame, only odd subcarriers are considered. 



 

ACO-OFDM: asymmetrically clipped optical OFDM 

DC: direct current 

DCO-OFDM: DC-biased optical OFDM 

PAM-DMT: pulse-amplitude-modulated discrete multi-tone modulation 

Figure 3. Subcarriers mapping of the input frames for DCO-OFDM, ACO-OFDM and PAM-DMT. Xi represents the M-QAM symbol at the ith 

subcarrier and Pi represents the M-PAM symbol at the ith subcarrier. 

 

Figure 4. The time-domain ACO-OFDM waveform. 

 

4.1.2  PAM-DMT 

A real unipolar optical OFDM is realized in PAM-DMT by exploiting the Fourier properties of imaginary signals. The real 

component of the subcarriers is not used in PAM-DMT, which restricts the modulation scheme used to M-PAM (Fig. 3). By only 

loading M-PAM modulated symbols on the imaginary components of the subcarriers, an antisymmetry in the time-domain 

waveform of PAM-DMT would be achieved (Fig. 5). This would facilitate the distortion-less zero level clipping of PAM-DMT 

waveform, as all of the distortion would only affect the real component of the subcarriers. Hermitian symmetry is also used to 

guarantee a real valued PAM-DMT output. PAM-DMT is more attractive than ACO-OFDM when bit loading techniques are 

considered, as the PAM-DMT performance can be optimally adapted to the frequency response of the channel since all of the 

subcarriers are used. The SE of PAM-DMT is similar to that of DCO-OFDM. PAM-DMT has a 3 dB fixed penalty when compared 

with bipolar OFDM at an appropriate constellation size, as half of the power is also lost due to clipping. At the receiver, the 

imaginary part of the subcarriers is only considered, while the real part is ignored. 

 

Figure 5. The time-domain PAM-DMT waveform. 

 

4.1.3  U-OFDM/Flip-OFDM 

The concept and performance of U-OFDM and Flip-OFDM is identical. In this paper, the term U-OFDM is used, however, all 

discussion and analysis is applicable to both schemes. Hermitian symmetry is applied on the incoming frame of M-QAM 

symbols. The bipolar OFDM time-domain frame obtained afterwards is expanded into two time-domain frames in U-OFDM 

with similar sizes to the original OFDM frame (Fig. 6). The first frame is identical to the original frame, while the second is a 

flipped replica of the original frame. A unipolar OFDM waveform can be achieved by zero-level clipping without the need of 



any DC biasing. At the receiver, each second frame would be subtracted from the first frame of the same pair, in order to 

reconstruct the original bipolar OFDM frame. This would double the noise at the receiver, which leads to a 3 dB penalty when 

compared with bipolar OFDM at equivalent constellation sizes. The SE of U-OFDM is half of the SE of DCO-OFDM since two 

U-OFDM frames are required to convey the same information conveyed in a single DCO-OFDM frame. The single tap equalizer 

can be used for U-OFDM, providing that the ISI effects on the first frame are identical to the ISI effects on the second frame. 

 

 

Figure 6. (a) Bipolar OFDM waveform; (b) U-OFDM waveform. 

 

4.1.4  Performance of Inherent Unipolar OFDM Techniques 

The inherent unipolar OFDM schemes (ACO-OFDM, U-OFDM, and Flip-OFDM) were introduced as power efficient alternatives 

to DCO-OFDM. However because two time-domain U-OFDM/Flip-OFDM frames are required to convey the information 

contained in a single DCO-OFDM frame, and because half of the subcarriers are skipped in ACO-OFDM, the performance of M-

QAM DCO-OFDM should be compared with the performance of M2-QAM (ACO-OFDM, U-OFDM, and Flip-OFDM). 

Additionally, PAM-DMT uses M-PAM on the imaginary part of the subcarriers instead of M-QAM. Since the performance of M-

PAM is equivalent to the performance of M2-QAM, the BER of PAM-DMT is similar to that of the inherent unipolar schemes. 

When compared with DCO-OFDM at the same SE, the performance of all of the inherent unipolar OFDM techniques degrades as 

the constellation size of M-QAM or M-PAM increases. For example, the performance of 1024-QAM ACO-OFDM/U-OFDM/Flip-

OFDM and 32-PAM PAM-DMT would be required to be compared with the performance of 32-QAM DCO-OFDM.  

Improved receivers for all of the inherent unipolar OFDM techniques were proposed in [33]–[41]. Most of these improved 

receivers would either require a flat channel to operate or incur additional computational complexities. Two main methods are 

considered in the design of these improved receivers. In the first method, the time-domain symmetry can be exploited at the receiver 

to achieve performance gains. An amplitude comparison between the symmetric received signal samples can improve the receiver 

detection in flat fading channels at the expense of increased computational complexity. The second method is based on the 

frequency diversity. The even subcarriers in ACO-OFDM and the real part of the subcarriers in PAM-DMT were exploited, 

respectively, to achieve improved performance at the receiver [33]–[41]. The frequency diversity method can be used in the 

frequency selective channel, however it has a higher computational complexity. In addition, it cannot be used for U-OFDM/Flip-

OFDM because both schemes are based on the time-domain processing of the OFDM frames. Based on their statistical distribution, 

the inherent unipolar optical OFDM waveforms utilize the lower part of the V-L characteristic. Therefore, these schemes are 

suitable candidates for Li-Fi dimmable applications since they can operate with lower optical power dissipation. Adaptive bit 

loading techniques were studied for MCM techniques, DCO-OFDM and ACO-OFDM, and compared with SC-FDE in [42]. It 

was found that the performance of SC-FDE is worse than ACO-OFDM but better than DCO-OFDM. In addition, SC-FDE is less 

complex than DCO-OFDM and ACO-OFDM.  

 

4.2 Hybrid OFDM Techniques 

OFDM was modified in many studies to tailor several specific aspects of the Li-Fi system parameters. The natural spatial signal 

summing in the optical domain was proposed in [43]. An array of multiple LEDs is used to transmit the OFDM signal so that the 

subcarriers are allocated to different LEDs. As the number of the LEDs in the array increases, the PAPR of the electrical OFDM 

signals reduces. When the number of subcarriers is equal to the number of the LEDs in the array, the PAPR would reach its 

minimum value of 3 dB as the electrical signal would be an ideal sine wave. The spatial optical OFDM (SO-OFDM) is reported 

to have BER performance gains over DCO-OFDM at high SNR due to the reduced PAPR and the robustness against LED 

nonlinearities [43]. Reverse polarity optical OFDM (RPO-OFDM) was proposed to allow a higher degree of illumination control 

in the OFDM-based Li-Fi systems [44]. RPO-OFDM combines a real-valued optical OFDM broadband technique with slow 

PWM to allow dimming. The dynamic range of the LED is fully used in RPO-OFDM to minimize any nonlinear distortion. The 

RPO-OFDM is reported to achieve higher performance gains compared with DCO-OFDM at a large fraction of dimming ranges 

without limiting the data rate of the system. RPO-OFDM offers a practical solution for the illumination and dimming control for 

Li-Fi communication systems, however the OFDM signal in RPO-OFDM is based on unipolar OFDM. This means that the SE of 

RPO-OFDM is half of that of DCO-OFDM. As a result, the power efficiency advantage over DCO-OFDM starts to diminish as 

the SE increases. In addition, the PWM duty cycle is assumed to be known at the receiver, which means that side-information 



should be sent before any transmission and this requires perfect synchronization between the transmitting and receiving ends. A 

novel technique that combines ACO-OFDM on the odd subcarriers with DCO-OFDM on the even subcarriers was proposed in 

asymmetrically DC-biased optical OFDM (ADO-OFDM) [45]. The clipping noise of the ACO-OFDM falls only into the even 

subcarriers, and can be estimated and canceled with a 3 dB penalty at the receiver. The power allocation for different 

constellation sizes between ACO-OFDM and DCO-OFDM streams in ADO-OFDM was investigated in [15]. The optical power 

efficiency of the optimal settings for ADO-OFDM was better than ACO-OFDM and DCO-OFDM for different configurations. 

Hybrid asymmetrical clipped OFDM (HACO-OFDM) uses ACO-OFDM on the odd subcarriers and PAM-DMT on the even 

subcarriers to improve the SE of unipolar OFDM modulation techniques [46]. The asymmetrical clipping of the ACO-OFDM on 

the odd symbols would only distort the even subcarriers. At the receiver, ACO-OFDM symbols are demodulated first by only 

considering the odd subcarriers and then remodulated to estimate the ACO-OFDM distortion on the even subcarriers. This allows 

the PAM-DMT symbols on the even subcarrier to be demodulated without any distortion. The SE achieved in HACO-OFDM is 

identical to that of DCO-OFDM, however PAM-DMT uses M-PAM modulation on half of the subcarriers. Equal power was 

allocated to ACO-OFDM and PAM-DMT. As the performance of M2-QAM is equivalent to the performance of M-PAM, the 

power requirements for both ACO-OFDM and PAM-DMT to achieve the same performance is different. The problem also 

appears when different modulation orders are used for both schemes. Unequal power allocation for both schemes was 

investigated in [47] to guarantee that the performance of both schemes in HACO-OFDM is equal. An improved, but 

computationally complex, receiver was also proposed in [47] based on the time domain symmetry of both ACO-OFDM and 

PAM-DMT.  

Polar OFDM (P-OFDM) is a new method to achieve the IM/DD for OFDM [48]. The main principle of P-OFDM is to convert 

the complex valued output of the IFFT from the Cartesian coordinates into the polar coordinates. Therefore, the radial and 

angular coordinate can be sent in the first and second halves of the OFDM frame, successively. It avoids the use of Hermitian 

symmetry, however, it allocates the M-QAM symbols into the even indexed subcarriers. As a result, P-OFDM has half-wave 

even symmetry which states that the first half of the complex valued time-domain frame is identical to the other half. Therefore, 

it is sufficient to transmit the first half of the IFFT output. As a result, the SE is reduced to be identical to that of DCO-OFDM 

since only half of the subcarriers are used. The performance of P-OFDM was compared to that of ACO-OFDM in [49]. It was 

reported that P-OFDM achieves better BER performance gains than ACO-OFDM under narrow dynamic ranges when optimal 

values for the power allocation of the radial and angular information are used. Note that any ISI between the radial and angular 

samples may deteriorate the system performance, therefore the system performance in frequency selective channels should be 

investigated. Asymmetrical and symmetrical clipping optical OFDM (ASCO-OFDM) was proposed in [50] for IM/DD Li-Fi 

systems. The ACO-OFDM is combined with symmetrical clipping optical OFDM (SCO-OFDM) that uses the even subcarriers. 

The clipping distortion of both ACO-OFDM and SCO-OFDM affects the even subcarriers. However, the clipping distortion of 

ACO-OFDM can be estimated and canceled at the receiver. The SCO-OFDM clipping noise can be removed at the receiver 

using U-OFDM/Flip-OFDM time domain processing techniques. The SE of ASCO-OFDM is 75% of the SE of DCO-OFDM. 

ASCO-OFDM was reported to have better symbol error rate (SER) compared with ADO-OFDM since the ADO-OFDM uses the 

DC bias for the even subcarriers. FIR filtering technique termed spectral factorization was used to create a unipolar optical 

OFDM signal [51]. The amplitude of the subcarriers in spectral factorized optical OFDM (SFO-OFDM) were chosen to form an 

autocorrelation sequence that was shown to be sufficient to guarantee a unipolar OFDM output. The SFO-OFDM was reported to 

achieve 0.5 dB gain over ACO-OFDM with 30% PAPR reduction [51]. The position modulation OFDM (PM-OFDM) avoids the 

Hermitian symmetry and splits the real and imaginary components of the OFDM output into two branches where a polarity 

separator is used to obtain the positive and negative samples of each branch [52]. The four frames composed of a real positive 

frame, a real negative one, an imaginary positive one and an imaginary negative one are transmitted as unipolar OFDM frames. 

The SE is exactly similar to other inherent unipolar OFDM techniques discussed in section 4.1. The performance of PM-OFDM 

was reported to be identical to U-OFDM in flat channels. However, it was reported to have better BER performance when 

compared to ACO-OFDM for frequency selective channels [52]. 
 

4.3 Superposition OFDM Techniques 

Superposition OFDM based modulation techniques rely on the fact that the SE of U-OFDM/Flip-OFDM, ACO-OFDM, and 

PAM-DMT can be doubled by proper superimposing of multiple layers of OFDM waveforms. Superposition modulation was 

first introduced for OFDM-based OWC and has led to enhanced U-OFDM (eU-OFDM) [53]. The eU-OFDM compensates for 

the spectral efficiency loss of U-OFDM by superimposing multiple U-OFDM streams so that the inter-stream-interference is 

null. The generation method of the first depth in eU-OFDM is exactly similar to that in U-OFDM. Subsequent depths can be 

generated by U-OFDM modulators before each unipolar OFDM frame is repeated 2d-1times and scaled by 1/2d-1, where d is the 

depth number. At the receiver, the information conveyed in the first depth is demodulated and then remodulated to be subtracted 

from the overall received signal. Then repeated frames which are equivalent at higher depths are recombined and the 

demodulation procedure continues the same as for the stream at the first depth. Afterwards, the information conveyed in latter 

depths is demodulated in a similar way. The SE gap between U-OFDM and DCO-OFDM can never be completely closed with 

eU-OFDM, as this would require a large number of information streams to be superimposed in the modulation signal. 

Implementation issues, such as latency, computational complexity, power penalty, and memory requirements put a practical limit 

on the maximum number of available depths. The eU-OFDM was generalized in the Generalized Enhanced Unipolar OFDM 

(GREENER-OFDM) for configurations where arbitrary constellation sizes and arbitrary power allocations are used [54]. As a 



result, the SE gap between U-OFDM and DCO-OFDM can be closed completely with an appropriate selection of the 

constellation sizes in different information streams. The symmetry in U-OFDM lies in frames, whilst in ACO-OFDM and PAM-

DMT, it lies in subframes.  

The superposition concept has also been extended to other unipolar OFDM techniques such as PAM-DMT [55] and ACO-

OFDM [56]–[60]. The enhanced asymmetrically clipped optical OFDM (eACO-OFDM) [56] uses the symmetry of ACO-

OFDM subframes to allow multiple ACO-OFDM streams to be superimposed. A similar concept was also proposed by Elgala et 

al. and Wang et al. under the names of spectrally and energy efficient OFDM (SEE-OFDM) [57] and layered asymmetrically 

clipped optical OFDM (Layered ACO-OFDM) [58], respectively. The receiver proposed in SEE-OFDM [57] results in SNR 

penalty that could have been avoided by using the symmetry properties of ACOOFDM streams. The symmetry arrangement in 

Layered ACO-OFDM [58] is described in the frequency domain, however, it is shown in [58, Fig.2] that it takes place in the 

time-domain. Recently, an alternative method to achieve superposition modulation based on ACO-OFDM was proposed by 

Kozu et al. [59] for two ACO-OFDM streams, and Lawery [60] for Layered ACO-OFDM. This is similar in principle to the 

solutions in [56]–[58], however the superposition is performed in the frequency domain which results in simpler system design. 

The concept of eACO-OFDM was generalized to close the SE gap between ACO-OFDM and DCO-OFDM. The generation of 

eACO-OFDM signal starts at the first depth with an ACO-OFDM modulator. Additional depths are generated in a similar way to 

the first depth, but with an OFDM frame length equal to half of the previous depth frames. Similar to eU-OFDM, all of the 

generated frames are repeated 2d−1 times and appropriately scaled. The demodulation process at the receiver is applied in a 

similar way as the eU-OFDM. The information at Depth-1 can be recovered directly as in conventional ACO-OFDM because all 

of the inter-stream-interference falls into the even-indexed subcarriers. After the first stream is decoded, the information can be 

remodulated again and subtracted from the overall received signal. Then, the frames that are equivalent can be recombined and 

the demodulation procedure continues as for the stream at first depth.  

The enhanced pulse-amplitude-modulated discrete multi-tone (ePAM-DMT) [55] demonstrates that superposition modulation 

can also be utilized when the antisymmetry of PAM-DMT waveforms is used. Analogous to eU-OFDM and eACO-OFDM, 

unique time-domain structures are also present in PAM-DMT. If the interference over a single PAM-DMT frame possesses a 

Hermitian symmetry in the time-domain, its frequency profile falls on the real component of the subcarriers. Hence, the 

interference is completely orthogonal to the useful information which is encoded in imaginary symbols of the PAM-DMT 

frames. The concept of superposition modulation was extended to ePAM-DMT for an arbitrary modulation order and an arbitrary 

power allocation at each depth [55]. The theoretical BER analysis of eACO-OFDM is similar to the analysis of GREENER-

OFDM, therefore the optimal modulation sizes and scaling factors are identical. This is an expected result because the 

performance of their unipolar OFDM forms, ACO-OFDM and U-OFDM, is also similar. The ePAM-DMT is less energy 

efficient than GREENER-OFDM and eACO-OFDM, because ePAM-DMT has 3 dB loss in each depth demodulation process 

and the optimal configurations of ePAM-DMT are suboptimal as the non-squared M-QAM BER performance can never be 

achieved using the M -PAM modulation scheme. The ePAM-DMT is more energy efficient than DCO-OFDM in terms of the 

electrical SNR at SE values above 1 bit/s/Hz. In terms of the optical SNR, the ePAM-DMT is less energy efficient than DCO-

OFDM for all of the presented values. Higher optical energy dissipation is a desirable property for illumination based Li-Fi 

applications, but it is considered as a disadvantage for dimmable-based Li-Fi applications. However, GREENER-OFDM and 

eACO-OFDM are suitable candidates for dimmable-based Li-Fi applications due to their optical SNR performance. 

 

5 Other Multi-Carrier Modulation Techniques 

OFDM has been mainly studied in the context of Li-Fi channels based on FFT. Other transformations such as discrete Hartley 

transformation (DHT) [61], wavelet packet division multiplexing (WPDM) [62] and Hadamard coded modulation (HCM) [63] 

have also been considered for Li-Fi channels. A multicarrier IM/DD system based on DHT was proposed in [61]. It was shown 

that DHT output can be real when an input frame of real modulated symbols such as binary phase shift keying (BPSK) and M-

PAM is used. Similar to DCO-OFDM and ACO-OFDM, DC-biasing and asymmetrical clipping can also be used to achieve 

unipolar output in DHT-based multicarrier modulation technique. As a major advantage over FFT-based conventional OFDM, 

the DHT-based multicarrier modulation does not require any Hermitian symmetry. However, this fails to improve the SE as real 

modulated symbols such as M-PAM are used in DHT-based multicarrier modulation. WPDM uses orthogonal wavelet packet 

functions for symbol modulation where the basis functions are wavelet packet functions with finite length. It was reported that 

the performance of WPDM is better than that of OFDM in terms of the spectral and power efficiencies when LED nonlinear 

distortion and channel dispersion are taken into account [62]. The high illumination level of OFDM Li-Fi systems require higher 

optical power, which may result in clipping due to the peak power constraint of the V-L transfer function of the LED (Fig. 2). 

HCM was proposed for multicarrier modulation Li-Fi as a solution to the limitation of OFDM modulation at higher illumination 

levels. The technique is based on fast Walsh-Hadamard transformation (FWHT) as an alternative to the FFT. HCM is reported to 

achieve higher performance gains when compared with ACO-OFDM and DCO-OFDM at higher illumination levels [63]. 

However, the performance improvement over RPO-OFDM is modest. An alternative variant of HCM, termed DC reduced HCM 

(DCR-HCM), was also proposed to reduce the power consumption of HCM to support dimmable Li-Fi applications, and 

interleaving with MMSE equalization is used for HCM in dispersive Li-Fi channels. 



 

Figure 7. The symbol mapping of 4-CSK on the CIE 1931 colour model based on IEEE 802.15.7. 

 

6 Li-Fi Unique Modulation Technique 

The modulation frequency in Li-Fi systems does not correspond to the carrier frequency of the LED. All the aforementioned 

modulation techniques are baseband modulation techniques. It is practically difficult to modulate the carrier frequency of the 

LEDs, however, it is practically straightforward to change its colour. This feature adds a new degree of freedom to Li-Fi systems. 

Colour tunable LEDs such as the red green blue LED (RGB-LED) can illuminate with different colours based on the intensity 

applied on each LED element. The IEEE 802.15.7 standard proposes colour shift keying (CSK) as a modulation technique for 

VLC [8]. The incoming bits are mapped into a constellation of colours from the chromatic CIE 1931 colour space [64], as 

shown in Fig. 7. The CIE 1931 is the widely used illumination model for human eye colour perception. Any colour in the model 

can be represented by the chromaticity dimension [x, y]. In CSK, the overall intensity of the output colour is constant, however, 

the relative intensities between the multiple used colours are changed. Therefore the instantaneous colour of the multicolour LED 

is modulated. Seven wavelengths are defined in IEEE 802.15.7 specify the vertices of a triangle where the constellation point lies 

in. The intensity of each RGB-LED element is changed to match the constellation point while maintaining a constant optical 

power and a constant illumination colour. This is desirable in Li-Fi systems, since the constant illumination colour naturally 

mitigates any flickering. An amplitude dimming is used for brightness control in CSK while the center colour of the colour 

constellation constant is kept. However, colour shift is possible due to the presence of any improper driving current used for 

dimming control. Constellation sizes up to 16-CSK were proposed in the IEEE 802.15.7 standard based on tri-colour LEDs. 

Constellation points design based on CIE 1931 was also investigated by Drost and Sadler using billiard algorithms [65], by 

Monterio and Hranilovic using interior point method [66], by Singh et al. using quad LED (QLED) [67], and by Jiang et al. using 

extrinsic transfer (EXIT) charts for an iterative CSK transceiver design [68].  

A generalized CSK (GCSK) that operates under varying target colours independent from the number of used LEDs was proposed 

in [69]. Colour intensity modulation (CIM) was proposed to improve the communication capacity without any loss to the 

illumination properties (dimming and target colour matching) [70]. The instantaneous intensity of the RGB LED was 

modulated in CIM while only maintaining a constant perceived colour. Therefore, CIM can be considered as a relaxed version of 

CSK since a constant perceived power is additionally required in CSK. Metameric modulation (MM) constrains the CSK to have 

a constant instantaneous perceived ambient light with the aid of an external green LED [70]. An improved control of the RGB 

output colour was achieved in MM by improving the colour rendering and reducing the colour flickering [71]. A four colour 

system was used in [67] with the aid of additional IM/DD signaling as a fourth dimension signal. Higher order modulation 

techniques of 212-CSK for QLED were achieved in [67].The CSK was combined with constant rate differential PPM in [72] to 

simplify the synchronization while maintaining the illumination control and avoiding flickering. A similar approach of 

combining CSK with complementary PPM was proposed by [73]. A digital CSK (DCSK) was proposed in [74]. Multiple 

multicolour LEDs were used in DCSK where only one colour is activated in each multicolour LED at a single time. Therefore 

the information is encoded in the combinations of activated colours. The main advantage of DCSK over conventional CSK is 

avoiding the need of any digital-to-analog converters, while the main disadvantage is rendering the activated colours which may 

result in slight changes of the colour perception over time. 

The receiver architecture has not been fully addressed in most of the published research on colour domain modulation. CSK is 

considered to be an expensive and complex modulation technique when compared with OFDM. The colour dimension in Li-Fi 

can also be used to derive a multicolour LED with different streams of data. The optical summation may turn this coloured 

parallel stream into a single colour stream output that can be filtered at the receiver into the original transmitted coloured stream. 



Table 1. Comparison of multicarrier modulation schemes for Li-Fi  

Mod. Tech. 

SE as a 

function of 

DCO-OFDM 

Illumination 
Computational 

Complexity 
Remarks Ref. 

Control Level 

ADO-OFDM 100% No 
Dimmed-

Medium 
High 

Requires DC 

bias 
[15] 

DCO-OFDM 100% No Medium Low 
Requires DC 

bias 
[26] 

Inherent 

unipolar 
50% No Dimmed Low 

Power 

efficient at 

low SE 

[30]-[33] 

Spatial OFDM 100% Limited Medium High Low PAPR [43] 

RPO-OFDM 50% Yes 
Dimmed-

High 
Medium 

Requires 

Sync. 
[44] 

HACO-

OFDM 
100% No Dimmed High 

Power 

efficient at 

low-medium 

SE 

[46] 

P-OFDM 50% No Medium High - [48] 

ASCO-OFDM 75% No Dimmed High - [50] 

SFO-OFDM Variable No Medium High Low PAPR [51] 

PM-OFDM 50% No Medium High - [52] 

Superposition 100% No Dimmed High 

Power 

efficient at 

low-high SE 

[53]-[60] 

DHT 50%-100% No 
Dimmed-

Medium 
Low - [61] 

WPDM 100% No Medium High - [62] 

HCM 100% Yes High Low 
Power 

inefficient 
[63] 

 

 

7 Conclusion  

The modulation techniques suitable for Li-Fi are presented in this paper. These techniques should satisfy illumination and 

communication requirements. Single carrier modulation techniques offer a simple solution for frequency-flat Li-Fi channels. 

Low-to-medium data rates can be achieved using single carrier modulation techniques. Multicarrier modulation techniques offer 

high data rates solution that can adapt the system performance to the channel frequency response. Many variants of optical 

OFDM modulation techniques have been proposed in published research to satisfy certain illumination and/or communication 

requirements. A summary of Li-Fi multicarrier modulation techniques is presented in Table. 1. The colour dimension offers 

unique modulation formats for Li-Fi and adds to the degrees of freedom of Li-Fi systems. Time, frequency, space, colour 

dimensions, and the combinations of them can be used for Li-Fi modulation. Li-Fi modulation techniques should offer a high 

speed communication and be suitable for most illumination regimes. 
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