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OPEN

ORIGINAL ARTICLE

Genetic contributions to self-reported tiredness
V Deary1,7, SP Hagenaars2,3,4,7, SE Harris2,5, WD Hill2,3, G Davies2,3, DCM Liewald1,2, International Consortium for Blood Pressure GWAS,
CHARGE Consortium Aging and Longevity Group, CHARGE Consortium Inflammation Group, AM McIntosh4, CR Gale2,3,6,7 and
IJ Deary2,3,7

Self-reported tiredness and low energy, often called fatigue, are associated with poorer physical and mental health. Twin studies
have indicated that this has a heritability between 6 and 50%. In the UK Biobank sample (N= 108 976), we carried out a genome-
wide association study (GWAS) of responses to the question, ‘Over the last two weeks, how often have you felt tired or had little
energy?’ Univariate GCTA-GREML found that the proportion of variance explained by all common single-nucleotide polymorphisms
for this tiredness question was 8.4% (s.e. = 0.6%). GWAS identified one genome-wide significant hit (Affymetrix id 1:64178756_C_T;
P= 1.36 × 10− 11). Linkage disequilibrium score regression and polygenic profile score analyses were used to test for shared genetic
aetiology between tiredness and up to 29 physical and mental health traits from GWAS consortia. Significant genetic correlations
were identified between tiredness and body mass index (BMI), C-reactive protein, high-density lipoprotein (HDL) cholesterol, forced
expiratory volume, grip strength, HbA1c, longevity, obesity, self-rated health, smoking status, triglycerides, type 2 diabetes,
waist–hip ratio, attention deficit hyperactivity disorder, bipolar disorder, major depressive disorder, neuroticism, schizophrenia
and verbal-numerical reasoning (absolute rg effect sizes between 0.02 and 0.78). Significant associations were identified between
tiredness phenotypic scores and polygenic profile scores for BMI, HDL cholesterol, low-density lipoprotein cholesterol, coronary
artery disease, C-reactive protein, HbA1c, height, obesity, smoking status, triglycerides, type 2 diabetes, waist–hip ratio, childhood
cognitive ability, neuroticism, bipolar disorder, major depressive disorder and schizophrenia (standardised β’s had absolute
valueso0.03). These results suggest that tiredness is a partly heritable, heterogeneous and complex phenomenon that is
phenotypically and genetically associated with affective, cognitive, personality and physiological processes.

Molecular Psychiatry advance online publication, 14 February 2017; doi:10.1038/mp.2017.5

INTRODUCTION

‘Hech, sirs! But I’m wabbit, I’m back frae the toon; I ha’ena
dune pechin’—jist let me sit doon.’

From Glesca’ By William Dixon Cocker (1882–1970)

The present study examines genetic contributions to how the UK
Biobank’s participants answered the question, ‘Over the last two
weeks, how often have you felt tired or had little energy?’ Ideal
questionnaire items do not have conjunctions, but the ‘or’ is
understandable here, and it may even allow capture of both
peripheral and central fatigue. The first and last authors of the
present study grew up in South Lanarkshire in Scotland, where
fatigue was often self-reported in terms of feeling ‘wabbit’. The
Scots word wabbit encompasses both peripheral fatigue,
the muscle weakness after a long walk, and central fatigue, the
reduced ability to initiate and/or sustain mental and physical
activity, such as we might experience while having flu. Through-
out the paper, we refer mainly to the single English words ‘fatigue’
and/or ‘tiredness’ as the construct captured by the question, but
the Scottish vernacular word is a good reminder of the subjective
‘feel’ of fatigue.

Fatigue is a common complaint. In a Dutch adult, general
population survey with 9375 respondents, 4.9% reported short-
term fatigue (o6 months duration), 30.5% chronic fatigue
(46 months duration) and 1% fulfilled diagnostic criteria for
chronic fatigue syndrome (CFS).1 These findings are similar to a
London-based survey of general practice patients in England,
aged 18–45 years, with 15 283 respondents, where 36.7% reported
substantial fatigue, 18.3% substantial fatigue of 46 months
duration and 1% fulfilled the diagnostic criteria for CFS.2 Two
other large surveys of US workers and community-dwelling adults
aged 51 years and over report fatigue rates of 37.9% (2-week
period prevalence) and 31.2% (1-week period prevalence)
respectively.3,4 In an early review of fatigue epidemiology, Lewis
and Wessely5 argue that fatigue ‘is best viewed on a continuum’,
and the continuous distribution of fatigue in the general popula-
tion is supported by the Pawlikowska et al.2 study. Fatigue is also a
common presentation in primary care. In a survey of 1428 consul-
tations to 89 general practitioners in Ireland, fatigue prevalence
was 25% and the main reason for attendance in 6.5%.6

Demographically, higher levels of self-reported fatigue are
associated with female sex, lower socioeconomic status1 and
poorer self-rated health status.7 There are less clear associations
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between age and fatigue, with some studies reporting a small but
significant positive correlation between age and fatigue,2 whereas
others report no association6 or a negative association.1,7 There is
a clearer link with the Fried phenotype of frailty in older adults,8

which has significant associations with mortality. The frailty
phenotype comprises weakness (as measured by grip strength),
weight loss, reduced mobility, reduced walking speed and
fatigue.9

Fatigue is associated with a number of lifestyle-related factors
and conditions. Smoking is a risk factor for fatigue10 and fatigue
has strong cross-sectional associations with type 2 diabetes11 and
increased body mass index (BMI).12 Fatigue is consistently
associated with poorer physical and mental health status. It is
one of the most common symptom complaints of cancer patients.
For those undergoing treatment, prevalence estimates vary
between 25 and 99%, and 25 and 30% of survivors report long-
term fatigue.13 Fatigue is also a significant symptom of, to name
just a few conditions, primary biliary cirrhosis,14 multiple
sclerosis,15 rheumatoid arthritis,16 primary Sjogren’s syndrome17

and Parkinson’s disease.18 It is associated with chronic disease in
general, and there is a linear relationship between number of
chronic diseases and self-reported fatigue.19 Fatigue is also
associated with depression,20 with self-reported psychological
distress,2,21 and with the personality trait of neuroticism.22,23

Research into the biological mechanisms of fatigue has
focussed on a few key areas. Fatigue is associated with the
cytokine-mediated inflammatory response, particularly interl-
eukin-1beta and interleukin-6. These latter have been shown, for
instance, to be elevated in cancer patients,24 and administration of
interferon-alpha produces depression and/or fatigue in the
majority of patients receiving it as a treatment.25 Hypothalamic-
pituitary-adrenal axis dysregulation in the form of hypocortisolae-
mia, blunted diurnal variation and blunted stress reactivity have
been found in the cross-sectional studies of CFS patients (see
Tomas et al.26 for a recent review). Other popular candidate aetio-
pathological mechanisms for fatigue include serotonin pathways,
circadian dysregulation, autonomic dysfunction,17 5HT neuro-
transmitter dysregulation, alterations in ATP metabolism and vagal
afferent activation.24 Some authors have suggested that, rather
than being located with one biological system, fatigue represents
a systemic dysregulation of the interaction between these
systems.27

At the other end of the biopsychosocial spectrum, psychosocial
models of fatigue focus on the role that the individual’s response
to their symptom may serve in perpetuating it. For instance, in a
cross-sectional study of 149 patients with multiple sclerosis,
illness-related cognitions and behaviours were associated with a
higher level of fatigue independent of neurological impairment.28

More integrative models are predicated on the notion of allostatic
load, the psychophysiological work done to adjust to stress and its
impact upon the body’s self-regulatory systems. As such, these
models complement biological accounts of fatigue and provide
potential pathways for integrating psychosocial and biological
findings.29 Multifactorial accounts and models of fatigue exist in
multiple sclerosis,30 primary biliary cirrhosis,14 obesity,31 diabetes,32

frailty33 and cancer.13 These multifactorial models postulate that
fatigue is likely to be the product of physiological factors (generic,
such as inflammation and/or disease specific such as hypergly-
caemia in diabetes), psychosocial factors (for example, emotional
distress), lifestyle and behavioural factors (for example, reduced
activity), illness consequences (for example, sleep disturbance and
weakness) and the interaction of these contributors.
Research into the genetics and epigenetics of fatigue has

tended to focus on genes associated with the biological
mechanisms described above, and done so usually within
fatiguing illnesses such as those listed above. Candidate gene
studies have suggested several genes to be involved in CFS,
particularly genes involved in the immune system and

Hypothalamic-pituitary-adrenal axis. Reviewing this literature,
Landmark-Høyvik et al.34 suggest that findings are inconclusive,
and are hampered by phenotypic heterogeneity, lack of power
and poor study design. For example, the candidate gene studies
included in the Landmark-Høyvik paper had sample sizes between
2 and 248 individuals, and the results have not been replicated.
Twin studies have shown the heritability of fatigue to be between
6 and 50% with a higher concordance in monozygotic twins than
dizygotic twins.35,36 One of these studies36 did not show any sex-
specific patterns of genetic influences in a Swedish sample,
whereas the other one35 showed differences in the amount of
variance explained by the genetic effect for males and females.
Around half the variance in males was explained by the genetic
effects compared to only a fifth of the variance in females. In a
study of fatigue, insomnia and depression in 3758 twins (893
monozygotic pairs and 884 dizygotic pairs), the best model was a
common pathway model, suggesting that the high association
between the symptoms (correlations of 0.35–0.44) was mediated
by an underlying common factor whose variation was 49%
genetic and 51% unique environmental.37 This study showed that
unique specific variance in fatigue was 38% genetic and 62%
unique environmental, which supports a previous study, suggest-
ing that fatigue is largely attributable to additive genetic factors.38

Genome-wide association studies (GWAS) have shown an
association between single-nucleotide polymorphisms (SNPs) in
genes associated with impaired cognitive abilities (GRIK2,
P= 1.26 × 10− 11)39,40 and the circadian clock (NPAS2, not
genome-wide significant)40 and CFS, but this was in a sample of
just 42 cases of CFS and 38 controls, lacking statistical power to
detect genome-wide findings.
To sum up in the words of Landmark-Høyvik et al.:41 ‘fatigue can

be conceptualised as a final common end point for psychological
and biological processes. Fatigue is therefore both heterogeneous
(occurring across different conditions) and multifactorial’. Given
that, it could be argued that it is futile to search for a shared
genetic contribution to tiredness, as it may not exist. However, in
line with other fatigue research programmes42 and the research
cited above, we judge that the best way to approach this
complexity is to conduct large, well-designed studies focussing on
specific areas of the biopsychosocial spectrum, and that to date no
large study has done this at the genetic level.
Tiredness can be the result of external factors—such as poor

sleep—or inherent factors—such as personality traits or poor
health. It is therefore important that we clarify the scope of the
present study in terms of what questions we can ask, and how
definitively we can answer them. By averaging tiredness across a
large sample and performing a GWAS, the present study will
primarily pick upon the genetic links between tiredness and
inherent factors. These are likely to be various, so we will seek to
bring some clarity to what we consider to be the likely genetic
heterogeneity of tiredness by posing the following questions:

1. Is there a direct genetic contribution to self-reported tiredness
per se, not accounted for the factors in questions 2–4 below?

2. Is tiredness genetically linked to proneness to health-related
traits?

3. Is tiredness genetically linked to a systemic proneness to poor
health?

4. Is there a genetic relationship between the personality trait of
neuroticism and tiredness?

With regard to questions 2 and 3, it is important to remember
that a positive answer may constitute more than the obvious
conclusion that the presence of an illness phenotype is inevitably
accompanied by tiredness. Our analyses of UK Biobank data capture
genetic predisposition to illness rather than its actual presence; we
will address this in our polygenic prediction sensitivity analysis.

GWAS of self-reported tiredness
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The aim of the present study, then, is to understand further the
genetic contribution to self-reported tiredness and/or low energy.
We conducted a genome-wide association analysis, in the UK
Biobank sample, of a response to a single item question: ‘Over the
past two weeks, how often have you felt tired or had little energy?’
On the basis of the foregoing literature overview, we also
investigated pleiotropy with physical- and mental health-related
traits, and we specifically investigated pleiotropy with factors
associated with allostatic load as a first step towards answering
question three above. The current study design, using 4100 000
UK Biobank participants, directly addresses the main limitation
from the previous studies by substantially increasing the sample
size. In addition, we complement this with SNP-based heritability
estimates of tiredness, sex- and age-stratified analysis, and an
examination of the genetic overlap of tiredness with many health-
related traits.

MATERIALS AND METHODS
Study design and participants
UK Biobank is a large resource for identifying determinants of human
diseases in middle-aged and older individuals (http://www.ukbiobank.ac.
uk).43 A total of 502 655 community-dwelling individuals aged between 37
and 73 years were recruited in the United Kingdom between 2006 and
2010. Baseline assessment included cognitive testing, personality self-
report, and physical and mental health measures. For the present study,
genome-wide genotyping data were available for 112 151 participants
(58 914 females and 53 237 males) after quality control (see below). They
were aged from 40 to 73 years (mean= 56.9 years, s.d. = 7.9). UK Biobank
received ethical approval from the Research Ethics Committee (REC
reference for UK Biobank is 11/NW/0382). This study has been completed
under UK Biobank application 10279. Figure 1 shows the study flow for the
present report.

Procedures
Tiredness. Participants were asked the question, ‘Over the past two
weeks, how often have you felt tired or had little energy?’ Possible answers
were: ‘Not at all/Several days/More than half the days/Nearly every day/Do
not know/Prefer not to answer’. This question was asked as part of the
Mental Health Questionnaire, which consists of items from the Patient
Health Questionnaire.44 Participants answering with ‘Do not know’ or
‘Prefer not to answer’ were excluded, resulting in a four-category variable
for tiredness ranging from ‘Not at all’ to ‘Nearly every day’. We will refer to

this question in the rest of the paper as ‘tiredness’, but we ask the reader to
bear in mind the question as it was asked, that is, its referring to tiredness
and/or low energy.

Genotyping and quality control. The interim release of UK Biobank
included genotype data for 152 729 individuals, of whom 49 979 were
genotyped using the UK BiLEVE array and 102 750 using the UK Biobank
axiom array. These arrays have over 95% content in common. Details of the
array design, genotyping procedures and quality control details have been
published elsewhere.45,46

Imputation. An imputed data set was made available as part of the UK
Biobank interim data release. The 1000 Genomes phase 3 and UK10K
haplotype reference panels were merged and the genotype data imputed
to this merged reference panel. Further details can be found at the
following URL: http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id = 157020.
Autosomal variants with a minor allele frequency ⩽ 0.1% and an
imputation quality score of o0.1 were excluded from further analysis
(N~ 17.3M SNPs).

Curation of summary results from GWAS consortia on health-related
variables. Published summary results from international GWAS consortia
were gathered to derive genetic correlations using the linkage disequili-
brium (LD) score regression method and perform polygenic profile score
analysis between the UK Biobank tiredness variable and the genetic
predisposition to multiple health-related traits. Details of the health-related
variables, the consortia’s websites, key references for each consortium and
number of subjects included in each consortium’s GWAS are given in
Supplementary Table 1.

Statistical analysis
Phenotypic correlations. Spearman’s rank correlation coefficients were
calculated between responses to the tiredness question, grip strength,
forced expiratory volume in 1 s, height, BMI, self-rated health, verbal-
numerical reasoning and neuroticism, all of which were measured
phenotypes in UK Biobank. Details on measurements of these phenotypes
can be found in the Supplementary Material.

Genetic association analysis. A total of 111 749 individuals answered the
tiredness question and had genotypic information. After visual inspection
of the distribution of the UK Biobank tiredness variable no exclusions were
made. Prior to analysis, tiredness was adjusted for age, sex, assessment
centre, genotyping batch and array, and 10 principal components for
population stratification. Genotype–phenotype association analyses were
conducted using SNPTEST v2.5.1 (ref. 47) and can be found at the foll-
owing URL: https://mathgen.stats.ox.ac.uk/genetics_software/snptest/
snptest.html#introduction. An additive model was specified using the
‘frequentist 1’ option. Genotype uncertainty was accounted for by
analysing genotype dosages.
Genetic association analyses were also performed on the following UK

Biobank phenotypes to perform further analyses: self-rated health,48 grip
strength, forced expiratory volume in 1 s, neuroticism,49 verbal-numerical
reasoning.50 We specifically examined whether any variants associated
with tiredness were also associated with grip strength, self-rated health
and neuroticism because we judged these to provide some coverage of
physical and mental resilience in UK Biobank.

Estimation of SNP-based heritability. To estimate the proportion of
variance explained by all common SNPs in tiredness, univariate GCTA-
GREML analysis was performed.51 This analysis included only unrelated
individuals, using a relatedness cutoff of 0.025 in the generation of the
genetic relationship matrix.

Gene-based association analysis. Gene-based associations were derived
using MAGMA,52 using the summary GWAS statistics for tiredness. SNPs
were assigned to 18 062 genes using the National Center for Biotechnol-
ogy Information build 37.3. The gene boundary was defined as the start
and stop site of each gene. To account for LD between the SNPs used, the
European panel of the 1000 Genomes data (phase 1, release 3) was used. A
Bonferroni correction was used to control for 18 062 tests (α= 0.05/18 062;
Po2.768× 10− 6).

All recruited participants 
(N = 502 655) 

Interim data release 
(N = 152 729) 

Quality control (QC) 
(N = 112 151) 

Answered tiredness 
question + QC 
(N = 108 976) 

Exclusions based on:
- non-British ancestry  
- high missingness 
- relatedness 
- QC failure in UK 

BiLEVE 

Figure 1. Flow diagram of participant selection.
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Partitioned heritability. The summary statistics from the GWAS on
tiredness was partitioned into functional categories using the same data
processing pipeline as Finucane et al.;53 more details on this method can
be found in the Supplementary Materials.

Shared genetic aetiology: LD score regression and polygenic profiling.
Genetic associations between tiredness and health-related variables from
GWAS consortia were computed using two methods, LD score regression
and polygenic profile score analysis. Each provides a different metric to
infer the existence of loci contributing to pairs of traits. LD score regression
was used to derive genetic correlations between two traits; this tests the
degree to which the polygenic architecture of one trait overlaps with that
of other traits. Polygenic profile score analysis was used to test the extent
to which individual differences in the tiredness phenotype in UK Biobank
could be predicted by polygenic profile scores predictive of the health-
related traits from other GWAS consortia. Both of these methods are
dependent each on trait being polygenic in nature, that is, where a large
number of variants of small effect contribute towards phenotypic
variation.54,55 Bivariate LD score regression was performed between
tiredness and 29 health-related traits. Polygenic profile score analysis
was performed on 26 of the 29 health-related traits, as this method
requires independent samples to provide the summary GWAS information
from which the polygenic profile score is computed.
Bivariate LD score regression: This was used to quantify the extent of
genetic overlap between tiredness in UK Biobank and 29 health-related
traits.55,56 This technique examines the correlational structure of the SNPs
found across the genome. In the present study, LD score regression was
used to derive genetic correlations between tiredness and health-related
traits using the GWAS results of 25 large GWAS consortia and four UK
Biobank phenotypes. The data processing pipeline devised by Bulik-
Sullivan et al.55 was followed. To ensure that the genetic correlation for the
Alzheimer’s disease phenotype was not driven by a single locus or biased
the fit of the regression model, a 500-kb region centred on the APOE locus
was removed and this phenotype was re-run. This additional model is
referred to in the tables and figures as ‘Alzheimer’s disease (500 kb)’.
Polygenic profile scores: The UK Biobank genotyping data were
recoded from numeric (1,2) allele coding to standard ACGT coding using a
bespoke programme developed by one of the present authors (DCML).46

Polygenic profile scores were created for 25 health-related traits in all
genotyped participants using PRSice.57 Prior to creating the scores, SNPs
with a minor allele frequency o0.01 were removed and clumping was
used to obtain SNPs in linkage equilibrium with an r2o0.25 within a
200 bp window. Five polygenic profile scores were created for each trait
including SNPs according to their significance of association with the
relevant trait at P-value thresholds of Po0.01, Po0.05, Po0.1, Po0.5,
and all SNPs.
Regression models were used to examine the association between the

polygenic profile scores and tiredness in UK Biobank, adjusting for age at
measurement, sex, genotyping batch and array, assessment centre, and
the first 10 principal components for population stratification. All
associations were corrected for multiple testing using the false discovery
rate (FDR) method.58 Sensitivity analyses were performed to test whether
the results were confounded by individual’s neuroticism levels, their self-
rated health scores or a diagnosis of major depressive disorder. This was
done by adjusting the models for the neuroticism and self-rated health
scores. Individuals with a probable diagnosis of major depressive disorder
were excluded from the sensitivity analysis, based on the diagnostic
method formulated by Smith et al.59 Further details can be found in the
Supplementary Material. To examine whether any association between
polygenic profile score for type 2 diabetes and tiredness was confounded
by having had a diagnosis of type 2 diabetes, all individuals with a self-
reported doctor’s diagnosis of type 2 diabetes were excluded from that
specific sensitivity analysis (Supplementary Material). Multivariate regres-
sion was performed using all FDR significant polygenic profile scores and
earlier described covariates.

Comparison of gene-based analysis results within UK Biobank. Gene-based
associations for tiredness were compared with gene-based results for other
UK Biobank health-related traits that, in the present report’s results,
showed a statistically significant genetic correlation with tiredness, using
previously described methods.52

Age- and sex-stratified analysis. On the basis of the age and sex distribu-
tion for tiredness (Supplementary Figure 1), further analyses examining

potential age and sex effects were performed. The sample was split by sex,
as well as the following three age groups for each sex: 40 to o50 years, 50
to o60 years and 60 to o70 years, one male aged 470 years was
excluded from these analyses. The analysis included heritability estimates
for the eight different groups, genome-wide association analysis, and
genetic correlations with BMI and waist–hip ratio, as these summary data
were available separately for males and females. All models were adjusted
for age (sex-stratified analyses), sex (age-stratified analysis) and the
previously mentioned covariates (assessment centre, genotyping batch
and array, and 10 principal components for population stratification).

Code availability. The code used to run the analysis is available from the
authors upon request.

RESULTS
Phenotypic correlations
A total of 108 976 individuals from UK Biobank with genotypic
data answered the question ‘Over the past two weeks, how often
have you felt tired or had little energy?’, referred to hereinafter as
‘tiredness’. There were 51 416 individuals who answered ‘not at
all’, 44 208 individuals responded ‘several days’, 6404 individuals
answered ‘more than half the days’ and 6948 individuals
responded ‘nearly every day’. Correlations indicated that indivi-
duals who reported feeling more tired tended to have lower grip
strength, lower lung function, poorer self-rated health, lower
scores for verbal-numerical reasoning and shorter stature
(Table 1). Correlations indicated that individuals who reported
feeling more tired tended to have a higher BMI and higher
neuroticism scores (Table 1). Absolute effect sizes ranged from
very small to moderate (Supplementary Figures 2a–f). The mean
scores and distribution for each of these variables at each level of
tiredness are shown in Supplementary Figure 2 and
Supplementary Table 2.

Genome-wide association study
There was one genome-wide significant SNP (Affymetrix id
1:64178756_C_T; P= 1.36 × 10− 11) on chromosome 1 (Figure 2).
This SNP is not in a gene and does not have an rs id. It has both a
low minor allele frequency (0.001) and a low imputation quality
score (0.43). It is not in a peak with other SNPs. Therefore, this
result should be treated with caution. Two suggestive peaks were
identified on chromosomes 1 and 17, with the lowest P-values of
5.88 × 10− 8 (rs142592148; an intronic SNP in SLC44A5) and
6.86 × 10− 8 (rs7219015; an intronic SNP in PAFAH1B1) for each
peak, respectively. The peak on chromosome 1 contains three
genes (CRYZ, TYW3 and SLC44A5). The peak on chromosome 17
contains one gene (PAFAH1B1). The CRY/TYW3 locus has previously
been associated with circulating resistin levels, a hormone
associated with insulin resistance, inflammation, and risk of type
2 diabetes and cardiovascular disease.60 SLC44A5 encodes a solute
carrier protein and is important for metabolism of lipids and

Table 1. Spearman phenotypic correlations between tiredness
(responses to the question, ‘Over the past two weeks, how often have
you felt tired or had little energy?’) and physical and mental health

Tiredness

Self-rated health (N= 108 648) − 0.35
Grip strength (N= 108 573) − 0.12
Forced expiratory function in 1 s (N= 101 823) − 0.08
Height (N= 108 796) − 0.09
BMI (N= 108 681) 0.10
Verbal-numerical reasoning (N= 35 101) − 0.04
Neuroticism (N= 105 456) 0.39

Abbreviation: BMI, body mass index. All correlations had Po0.001.
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lipoproteins, and has been associated with birth weight in cattle.61

PAFAH1B1 encodes a subunit of an enzyme that has important
roles in brain development and spermatogenesis. Mutations in
this gene cause the neurological disorder lissencephaly.62

SNP-based heritability estimate
Using GCTA-GREML common SNPs were found to explain 8.4%
(s.e. 0.6%) of the phenotypic variation of tiredness as measured
in UK Biobank.

Gene-based association analysis
Gene-based association analysis identified five genes, DRD2,
PRRC2C, C3orf84, ANO10 and ASXL3, that attained genome-wide

Figure 2. (a) Manhattan and (b) Q–Q plot of P-values of the SNP-based association analysis of tiredness (responses to the question, ‘Over
the past two weeks, how often have you felt tired or had little energy?’). The red line on the Manhattan plot indicates the threshold for
genome-wide significance (Po5 × 10− 8); the grey line on the Manhattan plot indicates the threshold for suggestive significance (Po1 10− 5).
SNP, single-nucleotide polymorphism.

Table 2. The genome-wide significant genes from the UK Biobank
tiredness phenotype and the significance values for the same genes
using the neuroticism, SRH and grip phenotypes, also in the UK
Biobank sample

CHR Gene Tiredness P SRH P Grip P Neuroticism P

11 DRD2 2.94 × 10− 7 0.012 0.156 9.69 × 10− 9

1 PRRC2C 1.43 × 10− 6 0.002 0.314 0.020
3 C3orf84 1.45 × 10− 6 7.38 × 10− 5 0.001 0.016
3 ANO10 1.52 × 10− 6 0.058 0.728 0.001
18 ASXL3 2.67 × 10− 6 1.03− 6 0.052 1.36 × 10− 5

Abbreviations: grip, grip strength; SRH, self-rated health. Unmodified
P-values are shown for all phenotypes.
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significance for tiredness (Table 2 and Supplementary Table 3)
following correction for multiple comparisons. DRD2 encodes a
dopamine receptor and has previously been associated with
psychiatric illnesses.63 Alternative splicing of PRRC2C has been
associated with lung cancer.64 Mutations in ANO10 cause
cerebellar ataxias.65 ASXL3 encodes a polycomb protein and
mutations in this gene are associated with intellectual disability,
feeding problems and distinctive facial features.66

In addition, each of these genes was also nominally significant
in a GWAS of neuroticism, with DRD2 being genome-wide
significant in both phenotypes.49 A comparison with a UK Biobank
GWAS of self-rated health22 showed that four of the five genes
(DRD2, PRRC2C, C3orf84 and ASXL3) were significant across
phenotypes. Grip strength showed less overlap, with only
C3orf84 being nominally associated with grip strength. Of the
five genes examined here, C3orf84 was associated with each of
these four phenotypes. Whereas the genetic correlations between
these traits (see below) are likely to encompass multiple genic and
non-genic regions, as well as unique points of overlap between
pairs of phenotypes, the variants found in the C3orf84 represent a
point of the genome where the genetic architecture of these four
traits converges.

Partitioned heritability
From the full baseline model using 52 annotations, only
evolutionarily conserved regions were found to be enriched for
tiredness (Supplementary Figure 3). This annotation contained
only 2.6% of the SNPs from the summary statistics, but they
collectively explained 40% of the heritability of tiredness
(s.e. = 11%, enrichment metric = 15.34, s.e. = 4.05, P= 0.0004). By
clustering the histone marks into tissue-specific categories, we
found significant enrichment for variants found in the central
nervous system (Supplementary Figure 4). This category contained
15% of the SNPs and explained 45% of the heritability (s.e. = 8%,
enrichment metric = 3.02, s.e. = 0.54, P= 0.0002).

Genetic correlations between tiredness and physical and mental
health traits
LD score regression was used to test whether genetic variants
associated with health-related traits also contribute towards
tiredness in UK Biobank. Table 3 and Figure 3 show these genetic
correlations. Positive significant (FDR corrected) genetic correla-
tions were found between tiredness and BMI (rg = 0.20), C-reactive
protein (rg = 0.17 = 0.02), HbA1c (rg = 0.25), obesity (rg = 0.21),
smoking status (rg = 0.20), triglycerides (rg = 0.13), type 2 diabetes
(rg = 0.18), waist–hip ratio (rg = 0.28), attention deficit hyperactivity
disorder (rg = 0.27), bipolar disorder (rg = 0.14), major depressive
disorder (rg = 0.59), neuroticism (rg = 0.62) and schizophrenia
(rg = 0.25). Negative significant (FDR corrected) genetic correla-
tions were found between high-density lipoprotein (HDL)
cholesterol (rg =− 0.11), forced expiratory volume in 1 s (rg =
− 0.12), grip strength (rg =− 0.16), longevity (rg =− 0.39), self-rated
health (rg =− 0.78) and verbal-numerical reasoning (rg =− 0.14).
These genetic correlations suggest that there are common genetic
associations between tiredness and multiple physical- and mental
health-related traits. Supplementary Table 8 shows the genetic
correlations between traits associated with the concept of
allostatic load (blood pressure, BMI, cholesterol, C-reactive protein,
HbA1c, obesity, triglycerides and waist–hip ratio), indicating
genetic overlap between these traits.

Polygenic prediction
The full results including all five thresholds can be found in
Supplementary Table 4, as well as the number of SNPs included for
the five thresholds in each trait. Table 4 shows the results for the
polygenic profile scores analyses, using the most predictive

threshold for each trait. Higher polygenic profile scores for 10
physical health traits predicted increased tiredness (significant
standardised β’s between 0.008 and 0.026) in UK Biobank: BMI,
low-density lipoprotein (LDL) cholesterol, coronary artery disease,
C-reactive protein, HbA1c, obesity, smoking status, triglycerides,
type 2 diabetes and waist–hip ratio. Higher polygenic profile scores
for HDL cholesterol and height predicted lower tiredness (significant
standardised β’s between β=− 0.016 and β=− 0.008, respectively).
Of the mental health traits, higher polygenic profile scores for

bipolar disorder, neuroticism, major depressive disorder and
schizophrenia were associated with increased tiredness (standar-
dised β’s between 0.008 and 0.028). Polygenic profile scores for
childhood cognitive ability showed a negative association with
tiredness (β=− 0.011).
Sensitivity analysis showed that, when controlling for neuroti-

cism, the associations between tiredness and polygenic profile
scores for BMI, obesity, type 2 diabetes, cholesterol (HDL and LDL),
C-reactive protein, HbA1c, triglycerides, waist–hip ratio, childhood

Table 3. Genetic correlations between tiredness documented in the
UK Biobank data set and the health-related variables collected from
GWAS consortia

Trait
category

Traits from GWAS
consortia

rg s.e. P

Physical
health

Blood pressure:
diastolic

0.0332 0.0502 0.5083

Blood pressure:
systolic

− 0.0698 0.0478 0.1444

BMI 0.2024 0.0322 3.18× 10−10

Cholesterol: HDL − 0.1087 0.0373 0.0036
Cholesterol: LDL 0.0829 0.0413 0.0449
Coronary artery
disease

0.1338 0.067 0.0459

C-reactive protein 0.0165 0.054 0.0021
Grip strengtha − 0.1596 0.0482 0.0009
HbA1c 0.2536 0.0857 0.0031
Height − 0.0201 0.0297 0.4980
Longevity − 0.3943 0.1096 0.0003
Forced expiratory
volume 1sa

− 0.1181 0.0538 0.0281

Obesity 0.2063 0.0381 6.31× 10−8

Rheumatoid arthritis − 0.0181 0.0674 0.7885
Self-rated healtha − 0.7780 0.0349 7.30×10−110

Smoking status 0.2009 0.0603 0.0009
Triglycerides 0.1324 0.0332 6.62× 10−5

Type 2 diabetes 0.1784 0.0689 0.0097
Waist–hip ratio 0.2834 0.0417 1.09× 10−11

Mental
health

ADHD 0.2694 0.1116 0.0158

Alzheimer’s disease 0.0762 0.1079 0.4801
Alzheimer’s disease
(500 kb)

0.0613 0.0872 0.4816

Anorexia nervosa 0.0192 0.0492 0.6967
Autism 0.0129 0.0695 0.8522
Bipolar disorder 0.1382 0.0605 0.0223
Childhood cognitive
ability

− 0.1528 0.0891 0.0864

Major depressive
disorder

0.5902 0.1015 6.03× 10−9

Neuroticism 0.6150 0.038 7.34× 10−59

Schizophrenia 0.2490 0.0386 1.14× 10−10

Verbal-numerical
reasoninga

− 0.1379 0.0596 0.0206

Abbreviations: ADHD, attention deficit hyperactivity disorder; BMI, body
mass index; FDR, false discovery rate; GWAS, genome-wide association study;
HDL, high-density lipoprotein; LDL, low-density lipoprotein. Statistically
significant P-values (after false discovery rate correction; threshold:
P= 0.0281) are shown in bold. aGWAS based on UK Biobank data.
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cognitive ability and schizophrenia remained significant (after FDR
correction), indicating that these associations are not wholly
confounded by scores for neuroticism. Similar analyses controlling
for self-rated health indicated that the following associations with
tiredness are not wholly confounded by self-rated health: bipolar
disorder, neuroticism, major depressive disorder and schizophre-
nia. Supplementary Table 5 shows the adjusted results and the
percentage of attenuation in standardised β’s for the models.
When excluding individuals with a probable diagnosis of major

depressive disorder (N= 7364) from all individuals with sufficient
information about their mental health to make a probable
depression diagnosis (full model, N= 31 523), the associations
between tiredness and eight polygenic profile scores remained
significant (after FDR correction), compared to nine in the full
model, the association between type 2 diabetes and tiredness
became non-significant after excluding individuals with probable
diagnosis of major depressive disorder (Supplementary Table 6).
When excluding individuals with a type 2 diabetes diagnosis
(N= 725), the association between tiredness and the polygenic risk
score for diabetes remained significant, indicating that this
association is independent of self-reported morbidity for that
disorder.
A multivariate regression model including 17 significant

polygenic profile scores (BMI, HDL cholesterol, LDL cholesterol,
coronary artery disease, C-reactive protein, HbA1c, height, obesity,
smoking status, triglycerides, type 2 diabetes, waist–hip ratio,
bipolar disorder, childhood cognitive ability, major depressive
disorder, neuroticism and schizophrenia) showed that polygenic
profile scores for the following traits contributed independently to

the association with tiredness: BMI, HDL cholesterol, triglycerides,
waist–hip ratio, childhood cognitive ability, major depressive
disorder, neuroticism and schizophrenia. The scores together
accounted for 0.25% of the variance in tiredness (Supplementary
Table 7).

Age- and sex-stratified analysis
GCTA-GREML analysis was used to test for possible differences in
the heritability estimates for tiredness in different age/sex groups.
The proportion of variance in tiredness explained by all common
genetic variants using GCTA-GREML was 9.4% (s.e. = 1%,
N= 57 165) in females and 8.2% (s.e. = 1%, N= 51 811) in males.
Figure 4 shows heritability estimates for the three age groups in
men and women (40 to o50, 50 to o60 years, and 60 to o70
years). The greatest differences can be seen between males aged
40 and 50 years (h2 = 19.8%, s.e. = 6%, N= 10 798) and males aged
60–70 years (h2 = 3.8%, s.e. = 2%, N= 24 467). Genome-wide
association analysis indicated no significant sex differences
between males and females, but did show some significant age
differences in males (Supplementary Figures 5). Genetic correla-
tions between BMI and tiredness were not significantly different
for males (rg = 0.15, s.e. = 0.06, 95% confidence interval (CI) = 0.04–
0.26, P= 0.0074) and females (rg = 0.26, s.e. = 0.05, 95% CI = 0.16–
0.36, P= 4.25 × 10− 7), as the confidence intervals were over-
lapping. Also, no significant differences in the genetic correlations
were found between waist–hip ratio and tiredness for males
(rg = 0.30, s.e. = 0.08, 95% CI = 0.14–0.45, P= 0.0003) and females
(rg = 0.271, s.e. = 0.06, 95% CI = 0.15–0.40, P= 2.2 × 10− 5), with
overlapping confidence intervals.

Figure 3. Barplot of genetic correlations (s.e.) calculated using LD regression between tiredness in UK Biobank and mental and physical health
measures from GWAS consortia. *Po0.0281. ADHD, attention deficit hyperactivity disorder; BMI, body mass index; GWAS, genome-wide
association study; HDL, high-density lipoprotein; LD, linkage disequilibrium; LDL, low-density lipoprotein.
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DISCUSSION
In the present study, shared genetic aetiology was identified
between tiredness and longevity, grip strength, multiple meta-
bolic indicators, smoking status, neuroticism, childhood cognitive
ability, depression and schizophrenia. These analyses, combining
data from the UK Biobank and many GWAS consortia, provide
the first estimate of the overlap in the genetic variants
contributing to the heritability of tiredness and these physical
and mental health-related traits and disorders. Tiredness demon-
strated a significant SNP-based heritability of 8.4%.

In answer to our first research question—is there a direct
genetic contribution to self-reported tiredness per se?—we found
that, whereas there was no large influence on tiredness from
common genetic variants, five genes attained genome-wide
significance for tiredness: DRD2, PRRC2C, ANO10, ASXL3 and
C3orf84. The latter is an uncharacterised protein representing a
point of genetic convergence between tiredness, neuroticism, grip
strength and self-rated health. DRD2, PRRC2C, ANO10 and ASXL3
have previously been associated with psychiatric illnesses,18 lung
cancer,19 cerebellar ataxias20 and intellectual disability,21 respec-
tively. The three genes within the suggestive peak on chromo-
some 1 (CRYZ, TYW3 and SLC44A5) have previously been
associated with insulin resistance, inflammation, risk of type 2
diabetes, metabolism of lipids and lipoproteins, and cardiovas-
cular disease.15,16 These genes are consistent with the identifica-
tion of regions associated with both tiredness and metabolic
irregularities, and perhaps more broadly with ‘metabolic syn-
drome’ and ‘allostatic load’. PAFAH1B, within a suggestive peak on
chromosome 17 has important roles in brain development.17 This
is consistent with the identification of regions associated with
both tiredness and cognitive traits, and the finding of significant
enrichment for variants found in the central nervous system.
Evolutionarily conserved regions were found to be enriched for

association with tiredness, consistent with findings for other
quantitative traits including disease status,53 suggesting that these
are important loci where common additive SNPs cluster to
produce phenotypic variation in many traits, as explored in more
detail in the paper by Hill et al.67 The range of factors—affective,
cognitive, behavioural and physical—that are genetically asso-
ciated with tiredness is in itself remarkable, and confirms the
observation of Landmark-Høyvik et al.,34 quoted in the introduc-
tion, that the related construct of fatigue is aetiologically

Table 4. Associations between polygenic profile scores of health-related traits created from GWAS consortia summary data, and the UK Biobank
tiredness phenotype controlling for age, sex, assessment centre, genotyping batch, and array and 10 principal components for population structure

Trait category Trait Threshold β P

Physical health Blood pressure: diastolic 0.1 − 0.0028 0.3619
Blood pressure: systolic 0.1 − 0.0025 0.4077
BMI 1 0.0280 4.90× 10−20a

Cholesterol: HDL 0.5 − 0.0163 8.49× 10−8a

Cholesterol: LDL 0.5 0.0081 0.0077a

Coronary artery disease 0.5 0.0084 0.0061
C-reactive protein 1 0.0130 2.10× 10−5a

Forced expiratory volume 1 s 0.01 − 0.0059 0.0529
Longevity 0.05 − 0.0067 0.0297
HbA1c 1 0.0090 0.0033a

Height 1 − 0.0077 0.0154
Obesity 1 0.0236 1.20× 10−14a

Rheumatoid arthritis 0.1 − 0.0016 0.5926
Smoking status 0.5 0.0086 0.0071
Triglycerides 0.5 0.0209 1.06× 10−11a

Type 2 diabetes 1 0.0120 0.0002a,b

Waist–hip ratio 1 0.0258 7.85× 10−17a

Mental health ADHD 1 0.0042 0.1647
Alzheimer’s disease 0.05 − 0.0052 0.0889
Anorexia nervosa 0.5 0.0048 0.1169
Autism 1 − 0.0018 0.5593
Bipolar disorder 0.01 0.0081 0.0076c

Childhood cognitive ability 0.1 − 0.0112 0.0002a

Major depressive disorder 1 0.0185 2.25×10−9c

Neuroticism 0.1 0.0183 2.00×10−9c

Schizophrenia 1 0.0283 2.31× 10−19a,c

Abbreviations: ADHD, attention deficit hyperactivity disorder; BMI, body mass index; FDR, false discovery rate; GWAS, genome-wide association study; HDL,
high-density lipoprotein; LDL, low-density lipoprotein. FDR-corrected statistically significant values (P= 0.0255) are shown in bold. The associations between
the polygenic profile scores with the largest effect size (threshold) and tiredness are presented. Threshold is the P-value threshold with the largest effect size.
aResults remain significant after controlling for neuroticism scores. bResults remain significant after excluding individuals with type 2 diabetes (β= 0.0105,
P= 0.00076). cResults remain significant after controlling for self-rated health.

Figure 4. Age- and sex-stratified heritability estimates with s.e.’s for
tiredness. SNP, single-nucleotide polymorphism.
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heterogeneous and multifactorial. No overlap has been found with
genes (GRIK2, NPAS2) identified in previous GWAS of fatigue;39,40

however, the sample size of these studies was too small to have
enough power to detect statistically significant differences. The
present study did not show significant associations for candidate
genes previously identified.34

The results of the present study add to the body of evidence
that tiredness has a genetic underpinning.35,36,38 This study
estimated the SNP-based heritability of self-reported tiredness at
8.4%, and also examined age- and sex-specific heritability. No
differences were found between males and females, but the
results suggested a higher heritability in males aged between 40
and 50 years, compared to males between 60 and 70 years.
Previous twin studies have shown inconsistent results regarding
the sex-specific heritability. One study reported a higher
heritability for prolonged fatigue (fatigue for more than one
month) in males,36 whereas another reported a higher heritability
for ‘interfering’ fatigue (fatigue for 45 days) in females.35 One
study reported no sex differences in the heritability of chronic
fatigue.36 In summary, the answer to our first question is that,
whereas tiredness is, as expected, largely causally heterogeneous,
there may be a small but significant, direct genetic contribution to
tiredness proneness.
In answer to question two—is tiredness genetically linked to

proneness to health-related traits?—we can answer in the
affirmative. The range of factors—affective, cognitive, behavioural
and physical—that are genetically associated with tiredness is in
itself remarkable, and confirms the observation of Landmark-
Høyvik et al,34 quoted in the introduction, that the related
construct of fatigue is aetiologically heterogeneous and multi-
factorial. This may seem a relatively trivial finding whether we
assume that it simply reflects the sum of genetic factors that are
primarily associated with other more specific phenotypes, which
cause tiredness in one way or another. However, it is important to
recall that the biobank data capture illness propensity rather than
actual morbidity. In our sensitivity analysis, we controlled for the
presence of type 2 diabetes and found that the genetic link
between type 2 diabetes and tiredness remained significant. This
would indicate that, for this health marker at least, tiredness and
illness proneness are genetically related irrespective of the
presence of morbidity. Similarly, the genetic association between
tiredness and longevity would argue for a non-trivial link between
self-reported tiredness and a more general tendency to poor
health.
This takes us into the territory of question three—is tiredness

genetically linked to a systemic proneness to poor health? To
begin to answer this, we examined the genetic associations
between tiredness and putative markers of allostatic load.
Tiredness showed significant shared heritability with a range of
factors associated with the metabolic syndrome68 including
cholesterol, triglycerides, HbA1c, waist–hip ratio, BMI, obesity
and type 2 diabetes. Several of these factors are biomarkers of
allostatic load.61,62 The concept of allostatic load has been used in
the context of both physical and mental ill health, including the
symptom of fatigue. Conceptually, allostatic load represents the
cumulative, physiological ‘wear and tear’ of a prolonged response
to a stressor. Allostatic load has been shown to be a reliably-
measurable multi-variate construct,69,70 with first-order factors
comprising cardiovascular, immune, metabolic, anthropometric
and neuroendocrine markers.29 It is hypothesised that, in response
to threats to homeostasis, the body’s self-regulatory mechanisms,
such as the sympathetic–adrenal medullary axis and the
hypothalamic pituitary adrenal axis, have the potential to ‘over-
compensate and eventually collapse upon themselves’,29 with
consequences for morbidity and mortality.
In our current analysis, we included metabolic (cholesterol,

HbA1c and triglycerides), anthropometric (waist–hip ratio, BMI and
obesity) and cardiovascular/respiratory (diastolic and systolic

blood pressure, and forced expiratory volume) markers of
allostatic load. The results showed significant shared genetic
aetiology, as measured by both LD score regression and polygenic
profile score analysis, between tiredness and most of the
metabolic and anthropometric markers, though not the cardio-
vascular/respiratory markers. This raises the possibility that the
genetic overlap between tiredness and these physiological factors
may be due to a biological propensity to an over-compensatory
physiological stress response. This suggestion will require further
investigation, because a more parsimonious explanation of these
links would be that there is a genetic link between tiredness and
multiple, separate genetic determinants of poor physical health.
However, the substantial genetic correlations between these traits,
and between these traits and tiredness provide some evidence
that the allostatic load concept does have coherence at the
genetic level.
Fourth, to answer the question on the genetic associations

between tiredness and the personality trait of neuroticism, which
is the tendency to experience negative affective states, these were
indeed strongly correlated, both phenotypically and genetically.
This may represent a separate route to fatigue, a predominately
affective one, and/or it may overlap with the physiological factors
described above. A recent paper by Gale et al.,49 also using this UK
Biobank sample, supports that the physiological and affective
dimensions of poor health overlap in neuroticism. That paper
showed that polygenic profile scores for several physical and
mental health traits—BMI, coronary artery disease, smoking status,
bipolar disorder, borderline personality, major depressive disorder,
negative affect and schizophrenia—significantly predicted neuro-
ticism. In the present study, when tiredness polygenic profile score
analyses were adjusted for neuroticism, the associations between
tiredness and mental health disorders (bar schizophrenia) were
largely attenuated, whereas most of the metabolic and anthro-
pometric associations remained significant. This suggests that it is
the propensity to neuroticism, rather than the specific propensity
to these disorders, that accounts or mediates the tiredness
associated with mood disorders. Watson and Pennebaker,71

discussing competing models of how negative affectivity is
related to self-reported physical and emotional well-being, found
that it is associated as much with the former as with the latter, and
that negative affectivity might better be conceptualised as a
general tendency to experience both somatic and emotional
distress. This concept of a general tendency to what they termed
somatopsychic distress could explain the pleiotropy observed in
the present study between neuroticism and tiredness.
That neuroticism may also be a distinct route to fatigue is

supported by the fact that when the polygenic profile score
analysis is adjusted for self-rated health, all associations between
polygenic profile scores for physical health and tiredness are
attenuated to the point of non-significance, whereas the relation-
ship between tiredness, and polygenic profiles for neuroticism,
major depressive disorder and bipolar disorder remain significant.
This is consistent with the study of Gale et al.,49 investigating
shared genetic aetiology between neuroticism and physical and
mental health, where there were more and stronger genetic
associations between neuroticism and mental health than
between neuroticism and physical health. If we take self-rated
health to be a marker, to some extent, of actual physical health
(and the study by Harris et al.48 would indicate that it is), then this
would suggest that when physical health is adjusted for, polygenic
profile scores for neuroticism and its associated negative affective
states, continue to make a unique contribution to tiredness.
These proposed affective and physiological routes to fatigue

may not be mutually exclusive. The allostatic load model, and the
multifactorial models of fatigue described in the introduction,
postulate that individual differences in personality, cognition and
behavioural responses to stress, and socio-cultural factors, affect
the physiological stress response. An increased propensity to
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experience distress, as captured in the concept of neuroticism,
would imply that there is increasing propensity to over-respond to
stressors and thus to physiological dysregulation. In the study by
Gale et al.,49 the only significant result between neuroticism and
physical disease state was a significant association with the
polygenic risk score for coronary artery disease, which is
suggestive of an overlap of affective and cardiovascular stress
responses. This multifactorial understanding of fatigue would also
allow us to incorporate childhood cognitive ability (reduced ability
to problem solve), smoking status (at least one study has found
smoking and allostatic load interaction effects29) and grip strength
(reduced overall system integrity/vigour) into a more general
model that is suggestive of shared genetic variance between
stress proneness (neuroticism, reduced cognitive ability and
reduced vigour), the physiological response to stress (biomarkers),
behavioural responses (smoking), self-reported tiredness, disease
and mortality.72 However, as with our discussion of allostatic load,
these links are suggestive not conclusive, and will require further
empirical and theoretical investigation.
The large sample size of the present study is a strength of this

study, providing powerful and robust tests of shared genetic
aetiology between tiredness, and physical and mental health. A
second strength is that all genetic samples were processed on the
same platform at the same location. The use of summary data
from many international GWAS consortia provided foundations for
a comprehensive examination of shared genetic aetiology
between tiredness and a wide range of health-related phenotypes.
The study has some limitations. The amount of variance

explained by the polygenic profile score analysis was small, which
would be expected as not all SNPs are genotyped. The SNPs that
were genotyped do not necessarily accurately tag the causal
genetic variants. All analyses were restricted to individuals of
white British ancestry, because the sample does not have enough
power to generalise results for individuals with different back-
grounds. Also, the sample consisted of middle- and older-aged
adults, thus limiting its generalisability to the adult population as a
whole. However, as mentioned in the introduction, there are no
clear age-related differences in levels of self-reported fatigue. This
could be taken as an indication that the phenomenon is fairly
stable across the adult life course, at least at the level of
phenotype. Whether the genetic determinants are different in
younger adults is a topic for future research.
A further limitation of the present study is the fact that tiredness

was measured by self-report; that is, that we were looking for
objective correlates of a subjective construct. However, as
Wessely73 observed, an objective measure of fatigue is ‘an
unattainable holy grail’. Almost all the studies cited in the
introduction have used subjective self-reports. The self-report
measures used vary widely, with there being several validated
fatigue measures, and many of the reported studies use either
double- or single-item questionnaires and/or single item visual
analogue scales. This in itself may account for some of the
inconsistency in fatigue research, though the demographic studies
cited at the beginning of this article, using a wide variety of
measures from single questions7 to a well-validated fatigue
questionnaire,2 produced similar findings. However, our findings
of genetic associations of fatigue will need replication with better
validated multi-item measures.
Perhaps a more serious concern is the one signalled in the

introduction: that fatigue is too causally heterogeneous a trait to
meaningfully study at the genetic level. To address this, it is worth
situating this research in the context of other recent and ongoing
fatigue research, such as the recently announced National Institute
of Health Mechanisms of Fatigue programme. The latter, while
acknowledging that fatigue ‘is a common co-morbid condition in
a multitude of disease conditions’, is attempting to define whether
‘molecular, cellular or imaging signatures of fatigue can be
defined’.42 Like the psychosocial and biological fatigue research

cited in our introduction, this work is predicated on the notion
that, whereas fatigue shows up as a response to many physical
and psychosocial stressors, its determinants may be shared across
conditions. As such, we should distinguish between the effective
cause of fatigue (the illness/stressors that set it going), and the
material and formal causes (the bodily and psychosocial processes
that produce and maintain the phenomenon).74 Whereas the
effective causes might be various, the material and formal causes
are likely to be more limited and shared across individuals and
precipitating conditions. Even if this is not the case, we judge that
the present study has gone some way to specifying the nature of
the heterogeneity of tiredness at the genetic level, and that there
are several non-trivial insights that will require further investiga-
tion, specifically: the links between tiredness and illness proneness
as distinct from actual morbidity; the genetic coherence of the
allostatic load concept and its contribution to tiredness; and the
nature of the shared genetic and phenotypic links between
tiredness and the personality trait of neuroticism. In terms of the
genetic contributions to this complex phenomenon, the current
study is probably best seen as the first attempt to use a large and
relatively well-powered GWAS to identify these areas for future
research.

Summary
Being genetically predisposed to a range of mental and physical
health complaints also predisposes individuals to report that they
are more tired or lacking in energy. This study confirms that self-
reported tiredness is a partly heritable, heterogeneous and
complex phenomenon that is phenotypically and genetically
associated with affective, cognitive, personality, health and
physiological processes. This study also served as a first step in
testing some genetic hypotheses from the allostatic load model,
finding suggestive links between tiredness and three genes on
chromosome one associated with allostatic processes and
considerable genetic overlap between tiredness and allostatic
markers. We can foresee more tests of these links as more
genome-wide genotyping data become available.

CONFLICT OF INTEREST
IJD is a participant in UK Biobank. The remaining authors declare no conflict of
interest.

ACKNOWLEDGMENTS
This research has been conducted using the UK Biobank Resource. The work was
undertaken in The University of Edinburgh Centre for Cognitive Ageing and Cognitive
Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative
(MR/K026992/1). Funding from the BBSRC, Age UK (Disconnected Mind Project) and
Medical Research Council (MRC) is gratefully acknowledged.

REFERENCES
1 van’t Leven M, Zielhuis GA, van der Meer JW, Verbeek AL, Bleijenberg G. Fatigue

and chronic fatigue syndrome-like complaints in the general population.
Eur J Public Health 2010; 20: 251–257.

2 Pawlikowska T, Chalder T, Hirsch S, Wallace P, Wright D, Wessely S. Population
based study of fatigue and psychological distress. BMJ 1994; 308: 763–766.

3 Ricci JA, Chee E, Lorandeau AL, Berger J. Fatigue in the US workforce: prevalence
and implications for lost productive work time. J Occup Environ Med 2007; 49:
1–10.

4 Meng H, Hale L, Friedberg F. Prevalence and predictors of fatigue among
middle-aged and older adults: evidence from the Health and Retirement study.
J Am Geriatr Soc 2010; 58: 2033.

5 Lewis G, Wessely S. The epidemiology of fatigue: more questions than answers.
J Epidemiol Community Health 1992; 46: 92.

6 Cullen W, Kearney Y, Bury G. Prevalence of fatigue in general practice. Irish J Med
Sci 2002; 171: 10–12.

GWAS of self-reported tiredness
V Deary et al

10

Molecular Psychiatry (2017), 1 – 12



7 Dolan P, Kudrna L. More years, less yawns: fresh evidence on tiredness by age and
other factors. J Gerontol B Psychol Sci Soc Sci 2013; 70: 576–580.

8 Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J et al. Frailty in
older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56:
M146–M156.

9 Bandeen-Roche K, Xue Q-L, Ferrucci L, Walston J, Guralnik JM, Chaves P et al.
Phenotype of frailty: characterization in the women's health and aging studies.
J Gerontol A Biol Sci Med Sci 2006; 61: 262–266.

10 Theorell-Haglöw J, Lindberg E, Janson C. What are the im-portant risk factors for
daytime sleepiness and fatigue in women. Sleep 2006; 29: 751–757.

11 Fritschi C, Quinn L. Fatigue in patients with diabetes: a review. J Psychosom Res
2010; 69: 33–41.

12 Jarosz PA, Davis JE, Yarandi HN, Farkas R, Feingold E, Shippings SH et al. Obesity in
urban women: associations with sleep and sleepiness, fatigue and activity.
Womens Health Issues 2014; 24: e447–e454.

13 Bower JE. Cancer-related fatigue [mdash] mechanisms, risk factors, and treat-
ments. Nat Rev Clin Oncol 2014; 11: 597–609.

14 Griffiths L, Jones DE. Pathogenesis of primary biliary cirrhosis and its fatigue.
Digestive Dis 2014; 32: 615–625.

15 Krupp LB, Alvarez LA, LaRocca NG, Scheinberg LC. Fatigue in multiple sclerosis.
Arch Neurol 1988; 45: 435–437.

16 Hewlett S, Cockshott Z, Byron M, Kitchen K, Tipler S, Pope D et al. Patients'
perceptions of fatigue in rheumatoid arthritis: overwhelming, uncontrollable,
ignored. Arthritis Rheum 2005; 53: 697–702.

17 Ng W-F, Bowman SJ. Primary Sjögren’s syndrome: too dry and too tired. Rheu-
matology 2010; 49: 844–853.

18 Alves G, Wentzel-Larsen T, Larsen J. Is fatigue an independent and persistent
symptom in patients with Parkinson disease? Neurology 2004; 63: 1908–1911.

19 Franssen PM, Bültmann U, Kant I, van Amelsvoort LG. The association between
chronic diseases and fatigue in the working population. J Psychosom Res 2003; 54:
339–344.

20 Demyttenaere K, De Fruyt J, Stahl SM. The many faces of fatigue in major
depressive disorder. Int J Neuropsychopharmacol 2005; 8: 93–105.

21 Bültmann U, Kant I, Schröer C, Kasl S. The relationship between psychosocial work
characteristics and fatigue and psychological distress. Int Arch Occup Environ
Health 2002; 75: 259–266.

22 Fernández-Muñoz JJ, Morón-Verdasco A, Cigarán-Méndez M, Muñoz-Hellín E,
Pérez-de-Heredia-Torres M, Fernández-de-las-Peñas C. Disability, quality of life,
personality, cognitive and psychological variables associated with fatigue in
patients with multiple sclerosis. Acta Neurol Scand 2015; 132: 118–124.

23 Kitamura H, Shindo M, Tachibana A, Honma H, Someya T. Personality and resi-
lience associated with perceived fatigue of local government employees
responding to disasters. J Occup Health 2013; 55: 1–5.

24 Barsevick A, Frost M, Zwinderman A, Hall P, Halyard M, Consortium G. I’m so tired:
biological and genetic mechanisms of cancer-related fatigue. Qual Life Res 2010;
19: 1419–1427.

25 Felger JC, Cole SW, Pace TW, Hu F, Woolwine BJ, Doho GH et al. Molecular
signatures of peripheral blood mononuclear cells during chronic interferon-α
treatment: relationship with depression and fatigue. Psychol Med 2012; 42:
1591–1603.

26 Tomas C, Newton J, Watson S. A review of hypothalamic-pituitary-adrenal axis
function in chronic fatigue syndrome. ISRN Neurosci 2013; 2013: 784520.

27 Klimas NG, Broderick G, Fletcher MA. Biomarkers for chronic fatigue. Brain Behav
Immun 2012; 26: 1202–1210.

28 Skerrett TN, Moss-Morris R. Fatigue and social impairment in multiple sclerosis:
the role of patients' cognitive and behavioral responses to their symptoms.
J Psychosom Res 2006; 61: 587–593.

29 Juster R-P, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and
impact on health and cognition. Neurosci Biobehav Rev 2010; 35: 2–16.

30 Van Kessel K, Moss-Morris R. Understanding multiple sclerosis fatigue:
a synthesis of biological and psychological factors. J Psychosom Res 2006; 61:
583–585.

31 Dixon JB. The effect of obesity on health outcomes. Mol Cell Endocrinol 2010; 316:
104–108.

32 Lasselin J, Layé S, Dexpert S, Aubert A, Gonzalez C, Gin H et al. Fatigue symptoms
relate to systemic inflammation in patients with type 2 diabetes. Brain Behav
Immun 2012; 26: 1211–1219.

33 Brown PJ, Roose SP, Fieo R, Liu X, Rantanen T, Sneed JR et al. Frailty and
depression in older adults: a high-risk clinical population. Am J Geriatr Psychiatry
2014; 22: 1083–1095.

34 Landmark-Høyvik H, Reinertsen KV, Loge JH, Kristensen VN, Dumeaux V, Fosså SD
et al. The genetics and epigenetics of fatigue. PM R 2010; 2: 456–465.

35 Schur E, Afari N, Goldberg J, Buchwald D, Sullivan PF. Twin analyses of fatigue.
Twin Res Hum Genet 2007; 10: 729–733.

36 Sullivan PF, Evengard B, Jacks A, Pedersen NL. Twin analyses of chronic fatigue in
a Swedish national sample. Psychol Med 2005; 35: 1327–1336.

37 Hur Y-M, Burri A, Spector TD. The genetic and environmental structure of the
covariation among the symptoms of insomnia, fatigue, and depression in adult
females. Twin Res Hum Genet 2012; 15: 720–726.

38 Hickie I, Kirk K, Martin N. Unique genetic and environmental determinants of
prolonged fatigue: a twin study. Psychol Med 29: 259–268.

39 Schlauch K, Khaiboullina S, De Meirleir K, Rawat S, Petereit J, Rizvanov A et al.
Genome-wide association analysis identifies genetic variations in subjects with
myalgic encephalomyelitis/chronic fatigue syndrome. Transl Psychiatry 2016;
6: e730.

40 Smith AK, Fang H, Whistler T, Unger ER, Rajeevan MS. Convergent genomic
studies identify association of GRIK2 and NPAS2 with chronic fatigue syndrome.
Neuropsychobiology 2011; 64: 183–194.

41 Landmark-Høyvik H, Reinertsen K, Loge J, Fosså S, Børresen-Dale A, Dumeaux V.
Alterations of gene expression in blood cells associated with chronic fatigue in
breast cancer survivors. Pharmacogenomics J 2009; 9: 333–340.

42 The National Institute of Mental Health. Request for Information (RFI): Input on a
Planned NIH Common Fund Mechanisms of Fatigue Program 2016.

43 Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J et al. UK Biobank: an
open access resource for identifying the causes of a wide range of complex
diseases of middle and old age. PLoS Med 2015; 12: e1001779.

44 Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version of
PRIME-MD: the PHQ primary care study. Primary care evaluation of mental dis-
orders. Patient health questionnaire. JAMA 1999; 282: 1737–1744.

45 Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Artigas MS et al. Novel insights
into the genetics of smoking behaviour, lung function, and chronic obstructive
pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet
Respir Med 2015; 3: 769–781.

46 Hagenaars SP, Harris SE, Davies G, Hill WD, Liewald DC, Ritchie SJ et al. Shared
genetic aetiology between cognitive functions and physical and mental health in
UK Biobank (N = 112 151) and 24 GWAS consortia. Mol Psychiatry 2016; 21:
1624–1632.

47 Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for
genome-wide association studies by imputation of genotypes. Nat Genet 2007;
39: 906–913.

48 Harris SE, Hagenaars SP, Davies G, Hill WD, Liewald DC, Ritchie SJ et al. Molecular
genetic contributions to self-rated health. Int J Epidemiol 2016.

49 Gale C, Hagenaars SP, Davies G, Hill WD, Liewald DC, Cullen B et al. Pleiotropy
between neuroticism and physical and mental health: findings from 108 038 men
and women in UK Biobank. Transl Psychiatry 2016; 6: e791.

50 Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE et al. Genome-
wide association study of cognitive functions and educational attainment in UK
Biobank (N = 112 151). Mol Psychiatry 2016; 21: 758–767.

51 Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al. Common
SNPs explain a large proportion of the heritability for human height. Nat Genet
2010; 42: 565–569.

52 de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set
analysis of GWAS data. PLoS Comput Biol 2015; 11: e1004219.

53 Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR et al. Parti-
tioning heritability by functional annotation using genome-wide association
summary statistics. Nat Genet 2015; 47: 1228–1235.

54 Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al.
Common polygenic variation contributes to risk of schizophrenia and bipolar
disorder. Nature 2009; 460: 748–752.

55 Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N et al. LD Score
regression distinguishes confounding from polygenicity in genome-wide
association studies. Nat Genet 2015; 47: 291–295.

56 Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR et al. An atlas of
genetic correlations across human diseases and traits. Nat Genet 2015; 47:
1236–1241.

57 Euesden J, Lewis CM, O'Reilly PF. PRSice: polygenic risk score software. Bioinfor-
matics 2015; 31: 1466–1468.

58 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R. Stat Soc B 1995; 57: 289–300.

59 Smith DJ, Nicholl BI, Cullen B, Martin D, Ul-Haq Z, Evans J et al. Prevalence and
characteristics of probable major depression and bipolar disorder within UK
Biobank: cross-sectional study of 172,751 participants. PLoS ONE 2013; 8: e75362.

60 Qi Q, Menzaghi C, Smith S, Liang L, de Rekeneire N, Garcia ME et al. Genome-wide
association analysis identifies TYW3/CRYZ and NDST4 loci associated with circu-
lating resistin levels. Hum Mol Genet 2012; 21: 4774–4780.

61 Sugimoto M, Watanabe T, Sugimoto Y. The molecular effects of a polymorphism
in the 5′UTR of solute carrier family 44, member 5 that is associated with birth
weight in holsteins. PLoS ONE 2012; 7: e41267.

GWAS of self-reported tiredness
V Deary et al

11

Molecular Psychiatry (2017), 1 – 12



62 Clark GD. Platelet-activating factor acetylhydrolase and brain development.
Enzymes 2015; 38: 37–42.

63 Hoenicka J, aragüés M, Ponce G, Rodríguez-Jiménez R, Jiménez-Arriero MA,
Palomo T. From dopaminergic genes to psychiatric disorders. Neurotox Res 2007;
11: 61–71.

64 de Miguel FJ, Sharma RD, Pajares MJ, Montuenga LM, Rubio A, Pio R. Identification
of alternative splicing events regulated by the oncogenic factor SRSF1 in
lung cancer. Cancer Res 2014; 74: 1105–1115.

65 Sailer A, Houlden H. Recent advances in the genetics of cerebellar ataxias.
Curr Neurol Neurosci Rep 2012; 12: 227–236.

66 Russell B, Graham JM. Expanding our knowledge of conditions associated with
the ASXL gene family. Genome Med 2013; 5: 1–3.

67 Hill WD, Davies G, Harris SE, Hagenaars SP, Liewald D, Penke L et al. Molecular
genetic aetiology of general cognitive function is enriched in evolutionarily
conserved regions. Transl Psychiatry 2016; 6: e980.

68 Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group.
The metabolic syndrome--a new worldwide definition. Lancet 2005; 366:
1059–1062.

69 Booth T, Starr JM, Deary I. Modeling multisystem biological risk in later life:
allostatic load in the Lothian birth cohort study 1936. Am J Hum Biol 2013; 25:
538–543.

70 Seeman T, Gruenewald T, Karlamangla A, Sidney S, Liu K, McEwen B et al.
Modeling multisystem biological risk in young adults: the Coronary Artery Risk
Development in Young Adults Study. Am J Hum Biol 2010; 22: 463–472.

71 Watson D, Pennebaker JW. Health complaints, stress, and distress: exploring the
central role of negative affectivity. Psychol Rev 1989; 96: 234–254.

72 Deary IJ. Looking for ‘system tegrity’ in cognitive epidemiology. Gerontology 2012;
58: 545–553.

73 Wessely S. Chronic fatigue: symptom and syndrome. Ann Int Med 2001; 134:
838–843.

74 Aristotle. Physics. Oxford University Press: USA, 1999.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/

© The Author(s) 2017

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

GWAS of self-reported tiredness
V Deary et al

12

Molecular Psychiatry (2017), 1 – 12

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Genetic contributions to self-reported tiredness
	Introduction
	Materials and methods
	Study design and participants
	Procedures
	Tiredness
	Genotyping and quality control
	Imputation
	Curation of summary results from GWAS consortia on health-related variables

	Statistical analysis
	Phenotypic correlations
	Genetic association analysis
	Estimation of SNP-based heritability
	Gene-based association analysis


	Figure 1 Flow diagram of participant selection.
	Outline placeholder
	Partitioned heritability
	Shared genetic aetiology: LD score regression and polygenic profiling
	Bivariate LD score regression
	Polygenic profile scores
	Comparison of gene-based analysis results within UK Biobank
	Age- and sex-stratified analysis
	Code availability


	Results
	Phenotypic correlations
	Genome-wide association study

	Table 1 Spearman phenotypic correlations between tiredness (responses to the question, &#x02018;Over the past two weeks, how often have you felt tired or had little energy?&#x02019;) and physical and mental health
	SNP-based heritability estimate
	Gene-based association analysis

	Figure 2 (a) Manhattan and (b) Q&#x02013;Q plot of P-values of the SNP-based association analysis of tiredness (responses to the question, &#x02018;Over the past two weeks, how often have you felt tired or had little energy?&#x02019;).
	Table 2 The genome-wide significant genes from the UK Biobank tiredness phenotype and the significance values for the same genes using the neuroticism, SRH and grip phenotypes, also in the UK Biobank sample
	Partitioned heritability
	Genetic correlations between tiredness and physical and mental health traits
	Polygenic prediction

	Table 3 Genetic correlations between tiredness documented in the UK Biobank data set and the health-related variables collected from GWAS consortia
	Age- and sex-stratified analysis

	Figure 3 Barplot of genetic correlations (s.e.) calculated using LD regression between tiredness in UK Biobank and mental and physical health measures from GWAS consortia.
	Discussion
	Table 4 Associations between polygenic profile scores of health-related traits created from GWAS consortia summary data, and the UK Biobank tiredness phenotype controlling for age, sex, assessment centre, genotyping batch, and array and 10 principal compo
	Figure 4 Age- and sex-stratified heritability estimates with s.e.&#x02019;s for tiredness.
	Summary

	This research has been conducted using the UK Biobank Resource. The work was undertaken in The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992�/
	This research has been conducted using the UK Biobank Resource. The work was undertaken in The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992�/
	ACKNOWLEDGEMENTS
	REFERENCES




