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Abstract: Savannas have complex, discontinuous woody vegetation structures that vary greatly
in vertical and spatial arrangement and change due to climatic, ecological and
management impacts. While airborne laser scanning (ALS) data have provided
detailed information on vertical vegetation structure and is widely used in ecological
studies, it is lacking in availability and repeat frequency. Although the Global
Ecosystem Dynamics Investigation (GEDI) waveform Light Detection and Ranging
(LiDAR) sensor and algorithms were optimized for measuring dense forests, it was
anticipated that GEDI metrics could provide useful characterization of lower stature,
sparse savannas structures. This study provided the first baseline validation of Version
2 GEDI (L2A) relative height 98 (RH98) by comparing the on-orbit GEDI-RH98  orb  to
the simulated GEDI-RH98  sim  derived from ALS data across diverse savanna
vegetation. It furthermore determined the influence of various factors on error, e.g.
algorithm setting group (SGs), beam type, day vs. night, beam sensitivity, and
vegetation phenology. After applying quality flags, 22813 GEDI footprints were
analyzed across 11 sites. SGs 4-6 that are aimed at dense forests had much larger
errors than SGs 1-3. The phenological conditions at the time of GEDI data acquisition
had a very large influence on the error of RH98  orb  . During leaf-on conditions for
savanna vegetation with RH98  sim  < 15 m, RH98  orb  was very accurate with R  2  =
0.61, mean bias = -0.55 m, %bias = -11.1%, RMSE = 1.64 m and %RMSE = 29.8%. In
leaf-off conditions where RH98  sim  < 15 m, RH98  orb  was less accurate with R  2  =
0.43, mean bias = -1.47 m, %bias = -26.5%, RMSE = 2.03 m and %RMSE = 40.9%.
During leaf-off conditions, the GEDI LiDAR signal at the start of the waveform may be
weaker as it interacts with denuded branches and may be truncated as noise, leading
to a large negative height bias. Therefore, assessments of deciduous vegetation
structures should be conducted during leaf-on periods. In leaf-on conditions, GEDI’s
RH98  orb  was very accurate between canopy heights of 3 and 7 m, with a mean bias
of -0.79 m (-10%). The bias of RH98  orb  was not influenced by canopy cover. Due to
the GEDI LiDAR pulse width of 15.6 ns, the GEDI-RH98 data product cannot reliably
estimate canopy heights of shrubs below 2.34 m and will require more complex
deconvolution of the waveform. GEDI’s RH98 accurately estimates the canopy height
of trees between 3 and 15 m allowing assessment of canopy heights over vast
savanna areas.
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Dear Editor, 

 

Thank you for accepting our manuscript with major revisions. We believe it is now ready for 

publication in RSE and that it will appeal to readers who are interested in using GEDI data for 

characterizing vegetation structure in biomes other than dense tropical forests. Reviewer #3 

provided several comments which we addressed that improved the manuscript. The review was 

generally positive, but the reviewer ended up rejecting the manuscript due to a perceived lack of 

novelty. We now present clear evidence of novelty in the rebuttal and with additions to the text 

to ensure we communicate this to the reader. It is evident that reviewer #3 is eager to see results 

on the ecological application of GEDI, and while we share this sentiment and are actively 

engaged in such research, we argue that a paper on the validation of GEDI in sparse, short stature 

savannas is fully justified at this point in time. We furthermore present evidence and an 

explanation of the lower limits of canopy height estimation with GEDI (as it relates to LiDAR 

pulse width) which is very important to ecological studies involving shrubs and bush 

encroachment in savannas. We presented sufficient evidence to demonstrate novelty in line with 

the RSE’s stated scope and objectives as it relates to remote sensing. It is furthermore evident 

that the Reviewer#3 did not fully understand or appreciate the value of simulating the GEDI 

waveforms from ALS point clouds for validation, as demonstrated by several references to the 

canopy height model (CHM) comparisons, which were not used in this manuscript. This may 

have influenced the reviewer's general impression of the manuscript. 

 

Below is a summary of all the changes made to address comments by reviewer #3: 

1. Additional details on settings of gediSimulator and CHM generation were provided 

2. The relative influence of remaining 0-2 m random geolocation error was simulated. 

These simulations and sensitivity analysis took considerable time, and the details are 

explained in supplementary material and rebuttal. In summary, the results suggest that 

random geolocation errors of 0-2 m GEDI contribute 14% of absolute bias of RH98 < 8 

m and 20.7% of RMSE of the RH98. This is a valuable addition to the results, especially 

in savannas with very high spatial diversity in vegetation height that may vary over short 

distances. 

3. Figure 1 of the study area was completely revised and much improved. 

4. The suggested comparison of evergreen sites in dry and wet season was not possible as 

the evergreen sites do not have a distinct dry season as illustrated by their climate zones 

characteristics. We therefore are unable to tease out seasonal effects of moisture 

conditions on the validation which the reviewer seems to hint at. 

5. The explanation on the potential influence of phenological condition of ALS data was 

improved with additional text. 

6. Minor edits were addressed 

7. As suggested by the reviewer we produced a very useful visualization of ALS point cloud 

data inside multiple GEDI footprints and added it to supplementary material. 

8. Finally, as requested, we discussed the limitations of GEDI which essentially samples the 

landscape and does not produce high resolution continuous surfaces. We briefly explain 

the appropriate use of GEDI data to address specific regional ecological questions, which 

is the subject of our on-going research. 

 

Reviewer #4 was very positive and suggested only minor edits which were all implemented. 

Letter to the Editor



 

Overall, we believe that the additions improved the paper, that the novelty is now clearly stated 

and that it is ready for publication.   

 

 

 

 

Kind regards 

 

Konrad Wessels 

 



Rebuttal and itemized reply to Reviewer’s comments for RSE-D-22-00262 

[220802-022158] 
 

Reviewer #3 provided several comments that we addressed and that improved the manuscript. 

Reviewer #4 provided only minor edits, which were all addressed. 

 

Below is a summary of all the changes made to address comments by reviewer #3: 

1. Additional details on settings of gediSimulator and CHM generation were provided 

2. The relative influence of remaining 0-2 m random geolocation error was simulated. 

These simulations and sensitivity analysis took considerable time, and the details are 

explained in supplementary material and rebuttal. In summary, the results suggest that 

random geolocation errors of 0-2m GEDI contribute 14% of absolute bias of RH98 < 8 m 

and 20.7% of RMSE of the RH98. This is a valuable addition to the results, especially in 

savannas with very high spatial diversity in vegetation height that may vary over short 

distances. 

3. Figure 1 of the study area was completely revised and much improved. 

4. The suggested comparison of evergreen sites in dry and wet season was not possible as 

the evergreen sites do not have a distinct dry season as illustrated by their climate zone 

characteristics. We therefore are unable to tease out seasonal effects of moisture 

conditions on the validation which the reviewer seems to hint at. 

5. The explanation on the potential influence of phenological condition of ALS data was 

improved with additional text. 

6. Minor edits were addressed 

7. As suggested by reviewer we produced a very useful visualization of ALS point cloud 

data inside multiple GEDI footprints and added it to supplementary material. 

8. Finally, as requested, we discussed the limitations of GEDI which essentially samples the 

landscape and does not produce high resolution continuous surfaces. We briefly explain 

the appropriate use of GEDI data to address specific regional ecological questions, which 

is the subject of our on-going research. 

 

Reviewer #4 was very positive and suggested only minor edits that were all implemented. 

 

Overall, we believe that the additions constituted minor revisions which improved the paper, that 

the novelty is now more evident and that it is ready for publication.  

 

 

 

 

 

 

 

 

Response to reviews and summary of revisions



After each numbered comment by a reviewer, our reply is indicated by “>>>”. Newly inserted 

text is given in Bold along with the approximate page number (Page + page number) and line 

number (Line + line number) in the edited manuscript (including track changes).  

 

Reviewer #3:  

This paper compared the heights of savanna vegetation measured with the relatively new GEDI 

satellite, with heights derived from well-established ALS. Vegetation height is particularly 

relevant in savannas, because ecological processes affect tree size which is not necessarily 

detected with established woody cover products. The authors found good agreement between 

canopy top (RH98) measured with GEDI, and RH98 modelled with ALS derived CHM. 

Importantly, they found that the accuracy was seasonal - with much stronger agreements in leaf-

on conditions compared to leaf-off conditions.  

 

This paper contributes to an important need in savanna vegetation monitoring: scaling-up 

vegetation cover estimates to better manage these dynamic systems. This was a very well written 

paper with a clear scope and interesting results. The methods and results were clearly presented 

and were generally easy to follow.  

 

>>We thank the reviewer for these insights and comments on the quality of the paper. 

 

The major weakness of the paper is a lack of novelty - it appears to be applying existing tools 

(developed for forests) in a new environment. A potential, significant expansion of the paper 

would be to flesh out the ecological insights perceivable from this new dataset. Given that the 

major weakness of ALS is considered to be "very limited aerial coverage, precluding regional 

monitoring of vegetation structure" (Line 80), what interpretations can be made at broader 

scales that can't be seen at the smaller scales of ALS? Does ALS under- or over-estimate 

cover, lead to incorrect interpretation of processes due to a lack of spatial coverage? Are there 

any other insights that can be gleaned from the regional GEDI coverage? (touch in 

Discussion) 
 

>>The novelty of the research was not sufficiently explained in the paper, but we believe that the 

below rationale and added text exhibits sufficient novelty for publication in RSE at this point in 

time. GEDI was launched relatively recently and is the first space-based laser specifically 

designed for measuring vegetation structure. As with any other new sensor, it is common 

practice that the reliability of GEDI’s on-orbit measurements first be validated before it can be 

relied upon for environmental insights (e.g. regional ecological studies), which is a subject of our 

on-going research under a NASA-funded project. The reviewer rightly points out that ecological 

application of GEDI across savannas would be very interesting, but this was not the topic of this 

paper. We would argue that a study on the validation of GEDI canopy height measurements in 

short, sparse savannas is fully justified at this point in time and should precede regional 

ecological studies based on GEDI, especially since scientists do not yet know how reliable the 

GEDI measurements are in savannas. Our study’s novelty is based on (i) its overall timing given 

the fairly recent launch of GEDI (ii) the first validation study on date of submission (Feb 2022) 

to simulate GEDI waveforms from ALS for direct validation of GEDI’s on-orbit relative height 

measurements (only one other paper, Wang et al. 2022, has been published recently using this 

approach - May 2022), (iii) the study provides detailed insights into the causes of the lower limit 



of detectability of short stature shrubs that are essential to ecological studies in savannas, and (iv) 

the validation of GEDI canopy height measurements in savannas, despite the fact that GEDI 

sensor and algorithms were designed for dense, tall forests, as stated in the mission objectives.  

 

While a few recent papers compared GEDI RH98 to canopy height models derived from ALS 

canopy height models (CHM), such comparisons are not direct validation of GEDI height 

metrics, since they essentially compare different structural metrics that may confound 

interpretation. We, therefore, simulated RH98 from ALS point cloud data to provide a more 

comprehensive and reliable validation of the on-orbit GEDI RH98. Using the simulation 

approach for validation of GEDI is novel in itself as it enabled the relative importance of 

different measurement errors (i.e. signal start detection, geolocation) to be assessed. It is also, to 

our knowledge, only the second paper to do so (after Wang et al. May 2022), irrespective of the 

biome of application, and the first to be focused specifically on savanna woody vegetation. The 

claim by the reviewer that we are “applying existing tools (developed for forests) in a new 

environment” is therefore not completely justified. However, we acknowledge that we should 

have provided more text in the manuscript to highlight the novelty of the study, which is 

addressed below. The paper furthermore makes an important contribution by validating and 

explaining the potential limits of detectability of very low shrub vegetation (< 3 m) by GEDI due 

to its pulse width, which is especially relevant to ecological insights in savannas. 

 

The following text (in bold) was therefore added to highlight the novelty and importance of the 

paper. 

 

Line 93-100: The GEDI pulse length (FWHM 15.6 ns) is short enough to vertically discriminate 

canopy and ground returns in forested ecosystems, however the ability to characterize short 

stature, discontinuous vegetation has not been a design requirement for GEDI and therefore 

needs to be evaluated before applying it to regional ecological studies. While the GEDI 

instrument design, algorithm calibration and validation were focused on the measurement of tall, 

dense, and continuous vegetation typical of tropical and temperate forests, it is anticipated that it 

could also provide useful, accurate characterization of lower stature, discontinuous savanna 

vegetation. This was the first study to our knowledge to validate GEDI canopy height 

measurements in savanna vegetation. 
 

Line 111-114: The present study, therefore, followed the novel approach of first simulating 

GEDI waveforms from the ALS point cloud data before extracting of ground elevation and 

RH metrics (Hancock et al., 2019; Silva et al., 2018) to generate an ALS-based reference dataset 

before performing an error assessment (Wang et al. 2022). 

 

Line 117: This will provide the first baseline assessment of the performance of GEDI-RH98 

products in African savannas, which will enable the identification of research priorities to expand 

the applicability of GEDI canopy height products to non-forest vegetation. 

 

Line 545-547: This study provided crucial insight into the lower limits of canopy height 

detection that impacts the measurement of shrub cover which is essential to ecological 

studies and biomass estimation in savannas (Mograbi et al., 2015; O’Connor et al., 2014; 

Stevens et al., 2016; Venter et al., 2018) and may require different approaches to waveform 



interpretation and estimation of other GEDI metrics, e.g., canopy cover fraction, plant area 

index.  

 

Line 560: Conclusion: This study provided the first baseline validation of Version 2 GEDI RH98 

canopy height estimates in African savannas by simulating the GEDI waveform from ALS 

data. The results provide valuable insights into the accuracy and precision of GEDI-RH98 across 

highly heterogeneous, short stature vegetation. 

 

Existing text highlighting novelty: 

 

Line 19-22: Although the Global Ecosystem Dynamics Investigation (GEDI) waveform Light 

Detection and Ranging (LiDAR) sensor and algorithms were optimized for measuring dense 

forests, it was anticipated that GEDI metrics could provide useful characterization of lower 

stature, sparse savannas structures. This study provided the first baseline validation of Version 

2 GEDI (L2A) relative height 98 (RH98) by comparing the on-orbit GEDI-RH98orb to the 

simulated GEDI-RH98sim derived from ALS data across diverse savanna vegetation. 

 

Finally, on the topic of novelty, the Aims and Scope of the RSE journal states that “Original 

Research Articles describe important significant new results or methods that will advance the 

science or application of remote sensing. The main contribution should be the remote sensing 

component, rather than investigation of an environmental problem in which remote sensing 

data or techniques do not play a major role.” Given all the above evidence, we argue that our 

methods and results are sufficiently novel to justify publication in RSE at this point in time, 

especially considering that the GEDI sensor was actually designed for dense, tall forests. Our 

study does however raise an important caveat that low shrub vegetation below 3m cannot be 

accurately characterized with current GEDI Level 2 data products, which is very important in 

savannas. 

This validation lays the foundation for regional ecological application in savannas, which 

ourselves and other researchers can now pursue with confidence.  

 

Further comments below (Reviewer #3).  

1.  There is limited detail in some of the methods steps.  

i.e. "The gediSimulator software was used to simulate GEDI full-waveform from the ALS data, 

collocate these with GEDI waveforms…" While I am not fully familiar with the software, I 

assume there would be parameter tuning that may be of consequence and worth mentioning.  

 

>>> To emphasize the settings of the gediSimulator we added clear numbering, additional 

description and one additional setting (v). No additional fine-tuning was required beyond these 

settings. 

Additions to Section 2.3 Data Processing, Page 13, Line 243-254: The gediSimulator 

software (Hancock et al., 2019) is comprised of collocateWaves and gediMetric programs 

which were used to simulate a GEDI full-waveform from the ALS data, collocate these with 

recorded GEDI waveforms (Fig. S1), and create a series of simulated vegetation metrics 

(RH, canopy cover, etc.) (Hancock et al., 2019) (Fig. 2). The collocateWaves program was 

implemented to simulate GEDI waveforms from ALS data and collocate the simulated 



GEDI waveforms with recorded GEDI waveforms (Fig. S1). The parameter settings in the 

collocateWaves program were as follows, (i) the minimum GEDI beam sensitivity was set to 

0.9 (ii) the minimum ALS point density was set to 3 points per/m2, (iii) the on-orbit GEDI 

pulse shapes were derived from the GEDI Level 1B data for each beam and were used 

instead of the default Gaussian shape, (iv) the search window used to match ALS-derived 

and GEDI waveform was set to 20 m x 5 m to handle heterogeneous vegetated areas, (v) the 

simulated GEDI waveforms were generated without Gaussian noise. To resolve the 

systematic geolocation errors, the collocateWaves program was applied independently to 

all GEDI tracks. The simulated GEDI RH metrics generated in collocateWaves program were 

then extracted from the simulated GEDI waveforms by applying gediMetric program (Hancock 

et al., 2019). 

 

1b. Another potentially important example: "Digital terrain models (DTM), digital surface 

models (DSM), and canopy height models (CHM) were generated from the ALS data at 1 m 

resolution, using lidR package (Roussel et al., 2018) in R." The settings used to generate the 

CHM could have an impact on the comparison. For example, if the local maximum (highest 

point) is used, this will produce a CHM that is generally higher than if other approaches are used 

(i.e. 80th quantile, smoothing etc). It would be worth, at minimum, documenting the workflow 

used in lidR. Better still, investigating the impact of these settings on the final result would be 

interesting - if smoothing is used, CHM will probably be lower, and the negative bias persistent 

in the comparison may be reduced.  

 

>>> Firstly, note that the ALS CHMs were not used in any direct comparisons with the GEDI 

data during validation, including the bias calculation the reviewer pointed out. The CHMs were 

only used to generate the descriptive statistics on cover, slope and mean height of the ALS sites 

given in Table 1. To clarify this, the following was added Line 170-172: “Note that in contrast 

to other recent studies (Liu et al., 2021; Potapov et al., 2021), the CHMs were not used in 

any of the comparisons with RH98orb, but were only used to generate the vegetation 

structure metrics (cover and mean height) of sites in Table 1.” 
>>> We included the following detail on the settings used to generate the CHM as requested by 

reviewer:  

Line 167-169: The Grid_canopy (lidR package) function was used to generate CHMs at 1m 

resolution using Digital Surface Model Algorithm (p2r) without any smoothing or filtering.  
 

2.  Line 418-420. It would be interesting to test the impact of random errors on the 

relationship between ALS modelled and GEDI height based on random error. A sensitivity 

analysis in this regard would add to the paper - by determining how much the strength of the 

relationship relies on geometric accuracy.  

 

>>> The comment refers to the following text in the Discussion: “This study only accounted 

for systematic geolocation error of the GEDI tracks, while random geolocation errors for 

individual footprints remain in the data, contributing to the overall error in on-orbit and 

simulated GEDI comparisons.” 

We consulted with members of the GEDI Science Team on this topic. The random jitter on the 

GEDI instruments is believed to be 10% of the beam divergence which translates to an estimated 



0-2 m geolocation error, but this has not been sufficiently quantified or published. In general, this 

random geolocation error is believed to be very small in comparison with other sources of error, 

but we suspect that the impact on our results might be non-trivial, especially in diverse savannas. 

We devised methods to simulate the impact of the random geolocation error and calculated its 

relative contribution to the overall error estimates. The methods and the results (including 3 

figures) require significant text and space. Given that this is already a long manuscript with a 

large number of figures, we decided to present this work in the Supplementary Material (SM) 

and only summarize the findings in the Discussion (Line 452-460), especially since this is not a 

core result. The methods and detailed results are nevertheless interesting and thus included in the 

SM. In summary, the results suggest that random geolocation errors of 0-2 m GEDI contribute 

14% of absolute bias of RH98 < 8 m and 20.6% of RMSE of the RH98. Therefore 14-20% of the 

error can be attributed to random, 0-2 m mismatches in location of the simulated and on-orbit 

RH98, rather than error in vertical canopy height estimates.  

Please allow us to first recap how geolocation error is addressed. Version 2 GEDI data products 

have a geolocation uncertainty of ~11 m (1 sigma). The collocateWaves program in gediSimulator 

was used to correct the systematic error component of this geolocation uncertainty for each GEDI 

track. The collocation process moves the search window of 20 m x 20 m and matches the on-orbit 

to the simulated GEDI waveforms with the highest Pearson’s correlation coefficient. The corrected 

coordinate offsets can therefore be determined and applied to each on-orbit GEDI tracks based on 

the corrected footprint locations. Even though the gediSimulator can solve this systematic 

geolocation error of each GEDI track, random geolocation errors (estimated to be 0-2 m) of 

individual GEDI footprints remain, contributing to overall uncertainty in the comparison between 

on-orbit and simulated GEDI metrics. The reviewer was asking if we could quantify the 

contribution of this remaining random geolocation error to the overall error and we used the 

gediSimulator to add random geolocation error and determine its contribution to the overall 

estimated error. 

>>> All of the following text and figures were added to the Supplementary Material. 

Simulating the contribution of random geolocation error to RH98orb error 

The gediSimulator can only estimate the systematic geolocation error of each GEDI track, while 

random geolocation errors (0-2 m) of individual GEDI footprints remain, contributing to overall 

uncertainty in the comparison between on-orbit and simulated GEDI RH98. The relative 

contribution of the random geolocation error to the overall error of RH98orb was estimated as 

described below. 

First, an ensemble of RH98 estimates were simulated within the extend of the random geolocation 

error. This was computed by: (i) 100 leaf-on GEDI footprints were selected from all savanna sites; 

(ii) for each footprint, 100 offset values ranging from -2 to 2 m were randomly and uniformly 

generated in x and y direction and added to the corrected GEDI footprint coordinates to generate 

100 relocated coordinates for each GEDI footprint; (iii) the gediSimulator (gediRat program) was 

used to simulate GEDI waveforms from the ALS data for both the corrected and relocated GEDI 

footprint coordinates; and (iv) these simulated waveforms were then used as inputs in 



gediSimulator programs (gediMetric) to produce relocated simulated GEDI RH98 

(𝐺𝐸𝐷𝐼 𝑅𝐻98𝑆𝑖𝑚_𝑅).  

To quantify the difference between the corrected ( 𝐺𝐸𝐷𝐼 𝑅𝐻98𝑆𝑖𝑚_𝐶 ) and relocated 

(𝐺𝐸𝐷𝐼 𝑅𝐻98𝑆𝑖𝑚_𝑅) simulated GEDI RH98 at each footprint, the mean absolute difference (MAD) 

between these two RH98’s was calculated using equation (1): 

   𝑀𝐴𝐷 =
∑ |𝐺𝐸𝐷𝐼 𝑅𝐻98𝑆𝑖𝑚_𝑅−𝐺𝐸𝐷𝐼 𝑅𝐻98𝑆𝑖𝑚_𝐶|𝑛=100

𝑖=0

𝑛
                  (1) 

The distribution of the MAD values of 100 random relocations at each simulated RH98 for 100 

GEDI footprints is given in Fig. S5: 

 

Fig. S5. Mean absolute difference (MAD) between relocated and corrected simulated GEDI RH98 for 100 random 

relocations of each of 100 GEDI footprints selected at random from all study sites (leaf-on only data). 

Overall, 58% of the total MAD values are below 0.1 m, and the mean MAD values was 0.14 m 

(STD = 0.17). The majority of MAD data points (2 sigma, > 95%) fell within the range between 0 

to 0.31 m. The percentage contribution of the MAD of random geolocation error to the bias of 

GEDI RH98 of individual footprints was estimated using the equation (2):  

              𝑀𝐴𝐷𝑃 =
𝑀𝐴𝐷

|𝐺𝐸𝐷𝐼 𝑅𝐻98𝑂𝑏𝑠−𝐺𝐸𝐷𝐼 𝑅𝐻98𝑆𝑖𝑚_𝐶|
× 100                       (2) 

Where the 𝑀𝐴𝐷𝑃 refers to the percentage contribution of random geolocation error (MAD) to the 

absolute bias of GEDI RH98 per GEDI footprint. 𝐺𝐸𝐷𝐼 𝑅𝐻98𝑂𝑏𝑠  denotes the on-orbit GEDI 

RH98. The 𝑀𝐴𝐷𝑃 values were plotted for various RH98 height bins in Fig. S6: 

 



 

Fig. S6. 𝑀𝐴𝐷𝑃 values across various RH98 height bins for 100 relocated GEDI footprints. 

The average 𝑀𝐴𝐷𝑃 value below 8m was approximately 14% up to 8 m, which included 92.9% of 

all data. Over the entire range of heights, the mean RLIP was 23.6% (STD = 22.5%). Three GEDI 

footprints had high RLIP values of > 40%, which could be caused by individual tall savanna trees 

(RH98 was > 7 m) along the edge of the GEDI footprint that may have a larger or smaller influence 

on the RH98 depending on the direction random relocation. 

The RMSEs of the relocated simulated vs. corrected simulated GEDI RH98 were also tested. Fig. 

S7 plots RMSEs vs the absolute Euclidean distance of the x and y offsets. As expected, there was 

an increase in RMSE with increased relocation distance from 0 to 2 m. The %RMSE of relocated 

and corrected simulated GEDI RH98 relative to corrected simulated and on-orbit GEDI RH98 

(%𝑅𝑀𝑆𝐸𝑃) was also calculated using the equation (3) and plotted in Figure S7 below.  

%𝑅𝑀𝑆𝐸𝑃 =
𝑅𝑀𝑆𝐸(𝑆𝑖𝑚_𝑅,𝑆𝑖𝑚_𝐶)

𝑅𝑀𝑆𝐸(𝑆𝑖𝑚_𝐶,𝑂𝑏𝑠)
× 100            (3) 

Where 𝑅𝑀𝑆𝐸(𝑆𝑖𝑚_𝑅,𝑆𝑖𝑚_𝐶) represents the RMSE between relocated and corrected simulated GEDI 

RH98, and 𝑅𝑀𝑆𝐸(𝑆𝑖𝑚_𝐶,𝑂𝑏𝑠) represents the RMSE between on-orbit and corrected simulated GEDI 

RH98. The mean %RRMSE was 20.7% (STD = 6.8%). 



 
Fig. S7. RMSE and %RRMSE of the relocated simulated vs. corrected simulated GEDI RH98 against the absolute 

Euclidean distance of relocation. 

In summary, the results suggest that random geolocation errors of 0-2 m GEDI contribute 14% of 

absolute bias of RH98 < 8 m and 20.7% of RMSE of the RH98 in this study.  

 

>>> The following text was added to the Discussion (Line 452-460)  

The present study only accounted for systematic geolocation error of the GEDI tracks, however 

random geolocation errors remain for individual footprints, conservatively estimated to be within 

2 m, contributing to the overall error in on-orbit and simulated GEDI comparisons. These 

random geolocation errors have not been formally quantified by the GEDI Science Team, 

so were conservatively estimated to be within 2 m (~10% of the footprint diameter). To 

quantify the contribution of this random geolocation error, 100 random offsets were 

generated by sampling from a random uniform distribution between 0 and 2 m and added 

to the 100 leaf-on GEDI footprint coordinates across all sites, before simulating the 

waveforms. The difference between the relocated and corrected RH98, along with various 

error metrics were calculated (for details see Supplementary Material). For RH98, the 

results suggest that these random geolocation errors contribute 14% of absolute bias below 

8 m and 20.7% of the overall RMSE. Therefore, a minor but non-trivial component of the 

reported uncertainty can be attributed to random geolocation errors, rather than error in 

vertical canopy height estimates. 
 

3. Figure 1. It is unclear what CRS is being used, and the colors of the pop-out make the figure 

cluttered and difficult to follow. Would suggest removing red arrows. Also not entirely clear 

which map the scale belongs to, although would assume it's the centre one.  

 

>>> Figure 1 (Page 8) was completely changed as suggested. We added the relevant FAO Global 

Ecological zones and captions updated accordingly.  

  



 
New Figure 1 of study area included in manuscript. 

 

4. A clear comparison between the evergreen sites and the deciduous sites for wet and dry 

seasons would help to confirm that it was in-fact phenology (as opposed to some seasonal 

impact) that drove the differences. The information is there in table 5, but not easy to determine 

whether the evergreen site maintains relative accuracy in the dry season, when the other sites are 

in leaf-off conditions.  

  

>>> In our study area the deciduous woodlands have a very predictable phenology based on 

season. The phenological conditions were inferred from the date of the GEDI acquisitions (as 

explained in Section 2.4). Therefore, we cannot separate the influence of phenology from 

seasonality in the savanna sites. The reviewer therefore suggests that we use the evergreen sites 

to investigate if leaf on/off or dry vs. wet seasonal conditions drive any differences in the results 

(Table 5). While this is an interesting question, we found it hard to implement for several 

reasons. Firstly, the evergreen (non-savanna) sites do not have a distinct dry season as indicated 

by their climate zone names Dukuduku in the “Humid Subtropical without dry season” and Addo 

in the “Temperate Oceanic without Dry season” (see figure of Climate types below). The data 

can therefore not confidently be split into dry or wet seasons based on the date of GEDI 

acquisitions. Furthermore, the Dukuduku evergreen forest site we only have 3 cloud-free GEDI 

orbits of useful data that do not allow to do a potential clear dry vs. wet comparison, especially 

since the spatial coverage and beam-types also differ. The Addo study site has a bimodal rainfall 

pattern, and it is very hard to split the data into dry and wet. Therefore, it was unfortunately not 

possible to implement the investigation into the potential impact of seasonal wetness on the 

results. Furthermore, if the factors such as surface moisture potential had an influence on the 

results, it would be very difficult to know which orbits had higher surface moisture than others in 

the absence of a clear dry season.  

 



 
 

Climate zones of South Africa. Note that the evergreen ALS sites fall within zones “without a 

dry season” 

 

5.  I find the claim that there was no impact on the phenological conditions during ALS 

acquisition to be questionable. "the bias of ALS Leaf-on vs. GEDI Leaf-off and ALS leaf-off vs. 

GEDI leaf-off was -1.48 and -1.46m, respectively (Table S1).  

The bias does seem similar for GEDI whether the ALS is collected with leaf on or off, but the R2 

and RMSE are considerably different. Eg, using the same comparison as above, the R2 is 0.68 vs 

0.45.  

  

>>> See Table S1 included below. 

We provide additional interpretations of the potential impact of the phenological conditions of 

the ALS data. Firstly, the comparison of R2 of ALS Leaf-on vs. GEDI Leaf-off and ALS leaf-off 

vs. GEDI leaf-off is actually 0.45 vs. 0.41 respectively, and not 0.68 vs. 0.45 as suggested by the 

reviewer (Table S1 below). To best investigate the influence of ALS data phenology one needs 

to compare the ALS leaf-on and GEDI leaf-on vs ALS leaf-off and GEDI leaf-on, however these 

data were not available to this study.  



We added the following text (Page 15, Line 285-291): The ALS leaf-on and GEDI leaf-on 

combination had a higher R2 of 0.68 and lower RMSE of 1.15m compared to ALS leaf-off 

and GEDI leaf-on combination with R2 of 0.56 and RMSE of 1.65 m. This indicates that 

there is a slightly weaker relationship between RH98sim and RH98orb when the RH98sim 

was based on leaf-off ALS data. However, the bias did not show much difference between 

ALS leaf-on or off. This indicated that since waveforms were simulated without noise, the 

discrete return ALS LiDAR and therefore simulated signal start was able to detect canopy 

tops irrespective of any reduction of canopy cover resulting from leaf-off conditions in 

these four sites.  

 

 
Table S1. Statistical summary of comparison between GEDI-RH98orb vs. GEDI-RH98sim for combined analysis 

grouped by ALS and GEDI phenological status.  

Scenario  
ALS (Leaf-on) +  

GEDI (Leaf-on)  

ALS (Leaf-on) +  

GEDI (Leaf-off)  

ALS (Leaf-off) +  

GEDI (Leaf-on)  

ALS (Leaf-off) +  

GEDI (Leaf-off)  

R2  0.68  0.45  0.56  0.41  

Bias (m) -0.49  -1.48  -0.58  -1.46  

%bias (%) -21.56  -16.72  -17.64  -17.1  

RMSE (m) 1.15  2.33  1.65  2.2  

%RMSE (%) 26.38  41.51  30.98  40.48  

 

 

6.  Line 265, should read "in comparison to" (not of) 

>> Done in Line 283. 

 

7.  Line 320, Hancock should be outside brackets to fit in sentence 

>> Done in Line 345. 

 

8.  Line 344, remove "almost" 

>> Done in Line 371. 

 

9.  Figure 10, remove square brackets, be clear that these are bin ranges. For example, 0-2.35 

rather than (0,2.35),  

>>> Done in Page 24. 

 



10.  Equation 1, define variables.  

>>> The below text was added Line 212-213.  

 

                                                                     𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑒𝑎𝑛 + 𝑥 ∗ 𝜎   (1) 

where “mean” represents the mean noise level, sigma is the standard deviation of the noise 

of the smoothed waveform, and x is a predetermined multiplier named “Preprocessing 

threshold” which was set to 4 sigma.  

 

11.  Maps showing examples of a CHM, modelled GEDI footprints and actual GEDI 

footprints would add to the clarity of the paper.  

  

>> This was a great idea by the reviewer and the figure will help to visualize the data 

comparison approach, as well as GEDI footprint across the landscape. We produced the image 

below and included it in supplementary material (Fig. S4). Note that our image shows the ALS 

point clouds within each GEDI footprint, not CHM as suggested, because we did not use CHMs 

in any comparisons.  

 



 
Fig. S4. ALS point clouds inside 25 m GEDI footprints used for simulating the individual GEDI waveforms. The 

GEDI footprints are spaced 60 m apart along one track and the track are 600 m apart. Backdrop: High resolution 

optical imagery of study area. (Google, © 2020 Maxar Technologies)  

 

12.  Don't discuss some of the limitations of using satellite LiDAR - including large footprint 

size, non-contiguous spatial coverage.  

 

>>> We added the following text to the end of the Discussion to point out limitations of GEDI 

and its potential appropriate future use (Page 31, Line 550-558).  

GEDI is a sampling mission with footprints separated 60 m along track and 600 m across 

track (Dubayah et al., 2020; Fig. S4), and therefore does not provide continuous 

measurements akin to a conventional high resolution ALS CHM used in small area 

ecological studies. These GEDI footprint samples (L2 data), as well as the L3 and L4B 

gridded products (1 km x 1 km) can, however, provide unique broad-area metrics of woody 

vegetation structure and aboveground biomass estimates (Duncanson et al. 2022; Dubayah 

et al., 2022) for regional ecological studies investigating, e.g. the drivers of structure 

changes (Sankaran 2008), impact of fire regimes (Smit et al, 2010, 2016) and carbon 

storage of savannas (Ross 2021). The research community is actively engaged in using 

GEDI, ICESat2 and the combination of the two space-based LiDAR sensors to address 

these pressing ecological questions.  



 

>>>Furthermore, the study provided crucial insights into the lower limit of detectability of short 

stature shrubs that are essential to ecological studies in Savannas.  

 

The following text was added (in bold) to Line 545-547: 

Moreover, the measurement of shrub vegetation may be approaching GEDI’s limits of 

detectability, which is determined not only by the pulse duration, but by multiple factors 

including cover, target reflectivity, topographic relief, and noise (Adam et al., 2020; Liu et al., 

2021). This study provided crucial insight into the lower limits of canopy height detection 

that impacts the measurement of shrub cover which is essential to ecological studies and 

biomass estimation in savannas (Mograbi et al., 2015; O’Connor et al., 2014; Stevens et al., 

2016; Venter et al., 2018) and may require different approaches to waveform interpretation and 

estimation of other GEDI metrics, e.g., canopy cover fraction, plant area index.  

 

Reviewer #4:  
Savanna is a special ecosystem in the Africa which provides shelter to various animals. 

Accurately obtaining the structure information of savanna ecosystem is very important for 

understanding its ecosystem process and making management policy. This study mainly focusses 

on accuracy of canopy height provided by the GEDI (L2A). With the large coverage of airborne 

lidar data, this study explores the accuracy of GEDI' height with different factors, such as GEDI 

algorithm setting, beam types, phenology. Compared to other research, this study is conducted in 

a low tree canopy cover area which would be important complement for understanding the 

performance of GEDI under different ecosystems. The experiment is well designed, and 

manuscript is well written. I think this paper would be accepted by revised following minor 

comments. 

 

Comments:  

1) Line 134: The effects of ALS canopy cover were not reported in this section. 

>> Study Area: Canopy cover derived from ALS CHMs was reported in the table 1, but its effect 

was only discussed later in the manuscript - section 3.3, 3.5 and figure 11 e. We thus did not 

make any changes. 

 

2) It would be better to make a significant difference test to comparison in Figure 6 and Figure 9. 

>> We performed the Welch’s Two Sample t-test in R (package: stats) on paired samples in both 

Figure 6 and 9. The following text was inserted in the manuscript: 

 

Line 346-350: 

“A Welch’s Two Sample t-test in R (package: stats) (Team, 2013) was conducted on 100 

randomly sampled data to investigate if the sensitivity values of the beam types differed 

significantly. The result indicated that the coverage beams and power beams had 

significantly different sensitivity values, while the coverage day and coverage night or 

power day and power night did not. There was no difference in bias for power vs. coverage 

beam or day vs. night acquisitions with a mean bias between 0 m and 0.5 m (data not 

shown).” 

Line 373-376: 



“A Welch’s Two Sample t-test (Team, 2013) was implemented on 100 random samples of 

data each group and demonstrated a significant difference (p < 0.05) between the canopy 

top estimates across all scenarios. However, the mean values of ground estimates were not 

significantly different.”  

 

In addition, we added mean and std numbers to figure 9 which is shown below: 

 

 
 

3) Table 4: GEDI footprints should be the number of GEDI footprints 

>> Done - changed to “Samples size” in Table 4 and Table 5. 

 

4) Figure 7 and Figure 8: please change to "R2"  

>> Done – changed to “R2” in Fig. 7 and Fig. 8. 

 



 
Updated Fig 7. 

 

 
Updated Fig. 8. 

 

4b) and the description of "R2" should be provided in the section 2.5. 

>> We believe that R2 is sufficiently understood by the readers and does not require a 

description. 

 



Other updates: 

 

>>> Reference was made to the recently published Wang 2022 in the Discussion Line 506-507: 

Wang et al., (2022) compared the on-orbit GEDI RH100 with the simulated GEDI RH100 

from ALS datasets across the US, with an R2 of 0.83, bias of -0.6 m and RMSE of 3.09 m. 

 

 

 

 

 

 

 

 



1 

 

 

First Validation of GEDI Canopy Heights in African 1 

Savannas  2 

 

Xiaoxuan Li a, Konrad Wessels a,*, John Armston b, Steven Hancock c, Renaud Mathieu d, Russell Main e, 3 

Laven Naidoo e, Barend Erasmus f, and Robert Scholes g 4 

 

a   Department of Geography and Geoinformation Science, George Mason University, Fairfax, VA, United States 5 

b   Department of Geographical Sciences, University of Maryland College Park, College Park, MD, United States 6 

c   School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, United Kingdom 7 

d   IRRI South Asia Research Center, International Rice Research Institute, Varanasi, India 8 

e   Precision Agriculture Group, Advanced Agriculture and Food Cluster, Council for Scientific and Industrial Research, 9 
Pretoria, South Africa 10 

f   Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa 11 

g  Global Change Institute, University of Witwatersrand, Johannesburg, South Africa 12 

*  Corresponding Author: kwessel4@gmu.edu 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Revised Manuscript with Changes Highlighted Click here to access/download;Revised Manuscript with
Changes Highlighted;GEDI_RSE_manuscript_main_body

https://www.editorialmanager.com/rse/download.aspx?id=1257909&guid=c68c74d3-bb64-4d42-8179-a2cb3e5a3f8d&scheme=1
https://www.editorialmanager.com/rse/download.aspx?id=1257909&guid=c68c74d3-bb64-4d42-8179-a2cb3e5a3f8d&scheme=1


2 

 

Abstract:  14 

Savannas have complex, discontinuous woody vegetation structures that vary greatly in vertical and spatial 15 

arrangement and change due to climatic, ecological and management impacts. While airborne laser scanning (ALS) 16 

data have provided detailed information on vertical vegetation structure and is widely used in ecological studies, it is 17 

lacking in availability and repeat frequency. Although the Global Ecosystem Dynamics Investigation (GEDI) 18 

waveform Light Detection and Ranging (LiDAR) sensor and algorithms were optimized for measuring dense forests, 19 

it was anticipated that GEDI metrics could provide useful characterization of lower stature, sparse savannas structures. 20 

This study provided the first baseline validation of Version 2 GEDI (L2A) relative height 98 (RH98) by comparing 21 

the on-orbit GEDI-RH98orb to the simulated GEDI-RH98sim derived from ALS data across diverse savanna vegetation. 22 

It furthermore determined the influence of various factors on error, e.g. algorithm setting group (SGs), beam type, day 23 

vs. night, beam sensitivity, and vegetation phenology. After applying quality flags, 22813 GEDI footprints were 24 

analyzed across 11 sites. SGs 4-6 that are aimed at dense forests had much larger errors than SGs 1-3. The phenological 25 

conditions at the time of GEDI data acquisition had a very large influence on the error of RH98orb. During leaf-on 26 

conditions for savanna vegetation with RH98sim < 15 m, RH98orb was very accurate with R2 = 0.61, mean bias = -0.55 27 

m, %bias = -11.1%, RMSE = 1.64 m and %RMSE = 29.8%. In leaf-off conditions where RH98sim < 15 m, RH98orb 28 

was less accurate with R2 = 0.43, mean bias = -1.47 m, %bias = -26.5%, RMSE = 2.03 m and %RMSE = 40.9%. 29 

During leaf-off conditions, the GEDI LiDAR signal at the start of the waveform may be weaker as it interacts with 30 

denuded branches and may be truncated as noise, leading to a large negative height bias. Therefore, assessments of 31 

deciduous vegetation structures should be conducted during leaf-on periods. In leaf-on conditions, GEDI’s RH98orb 32 

was very accurate between canopy heights of 3 and 7 m, with a mean bias of -0.79 m (-10%). The bias of RH98orb was 33 

not influenced by canopy cover. Due to the GEDI LiDAR pulse width of 15.6 ns, the GEDI-RH98 data product cannot 34 

reliably estimate canopy heights of shrubs below 2.34 m and will require more complex deconvolution of the waveform. 35 

GEDI’s RH98 accurately estimates the canopy height of trees between 3 and 15 m allowing assessment of canopy 36 

heights over vast savanna areas. 37 

Keywords 38 

LiDAR, GEDI, vegetation structure, Savannas, canopy height, validation, Africa. 39 
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1. Introduction 40 

Savannas are defined as “communities or landscapes with a continuous grass layer and a discontinuous tree layer” 41 

(Scholes and Archer, 1997). Savannas cover more than 20% of the Earth’s surface and account for the third-largest 42 

above ground carbon stock, after Tropical Wet and Tropical Moist climate regions (Scharlemann et al., 2014). 43 

Although the carbon density of savannas and woodlands is lower than that of dense forests, in Africa 52% of the total 44 

above-ground carbon is stored in savannas and woodlands (Bouvet et al., 2018). Savannas furthermore contain a very 45 

large proportion of the world’s human population and the majority of its livestock and wildlife (Hill and Hanan, 46 

2010). An estimated 150 million people in the developing world are directly dependent on local savanna ecosystem 47 

services (McNicol et al., 2018), e.g. livestock grazing, fuelwood as primary source of household energy, especially in 48 

India and Africa (Behera and Gupta, 2015; Wessels et al., 2013), timber and non-timber products (Shackleton and 49 

Shackleton, 2004; Twine et al., 2003).  50 

Tree-grass dynamics in African savannas are complex, under the influence of highly variable precipitation, and 51 

major disturbances such as fire and domestic or wild herbivores (Sankaran et al., 2008, 2005). Human activities 52 

directly alter the woody components through deforestation and degradation. For instance, deforestation rates in 53 

African savanna woodlands are reported to be higher than in tropical rain forests (Ciais et al., 2011) and carbon 54 

losses are 3-6 times higher than previously estimated (McNicol et al., 2018). On the other hand, African savannas are 55 

also experiencing rapid woody encroachment (Stevens et al., 2016; Venter et al., 2018) in lower height classes, 56 

possibly due to increases in CO2 globally (Bond and Midgley, 2012; Ratnam et al., 2016), and locally due to fire 57 

suppression, livestock overgrazing, historical loss of browsing wildlife, as well as long-term interactions between fire 58 

and rainfall episodes (Joubert et al., 2013, 2008; O’Connor et al., 2014). Furthermore, simultaneous and spatially 59 

coincident gains of shrub cover (< 3 m) and losses of large trees (> 5 m) due to high elephant density, humans and 60 

fire, have been reported in South Africa, with large impacts on wildlife biodiversity and livestock grazing in rural 61 

rangelands (Asner et al., 2016; Davies et al., 2018; Dean et al., 1999; Levick et al., 2015, 2009; Mograbi et al., 2017, 62 

2015; Smit et al., 2016, 2010; Smit and Prins, 2015; Wessels et al., 2011). Spatial data on woody vegetation 63 

structure, specifically canopy height, are therefore essential to understand and manage savannas for a wide variety of 64 

land uses.  65 
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Three-dimensional vegetation structure is defined as the vertical configuration of above-ground vegetation and its 66 

horizontal, leaf to landscape-scale variations (Brokaw and Lent, 1999) including tree and canopy height, canopy 67 

cover, leaf area density profile and stem diameter. Savannas are complex and structurally diverse ecosystems, in 68 

terms of the varying proportions and spatial distributions of trees, shrubs and grass, as well as the architectures of 69 

trees, and shrubs at varying stages of growth (Scholes, 1997). Most woody species in southern African savannas are 70 

deciduous and display strong phenological cycles with woody vegetation losing their leaves during the dry winter 71 

period (Archibald and Scholes, 2007). The woody vegetation structure of savannas has been predominantly 72 

measured with discrete return ALS data, which provides detailed data on the proportions of woody canopies at 73 

various heights (Fisher et al., 2015, 2014; Levick et al., 2009), the understory structure (Fisher et al., 2015; Mograbi 74 

et al., 2015) and their changes through time (Mograbi et al., 2017). The typical ALS products used to assess structure 75 

include (i) point clouds with density of 1-15 points / m2 (ii) canopy height models with of 1-2m resolution and (iii) 76 

voxel data of 1 m3 (Fisher et al., 2015). While the ALS data provide detailed information that are suited to 77 

characterize the structure at a local, landscape scales (Camarretta et al., 2019; Lefsky et al., 2002; Wulder et al., 78 

2012), it is expensive, infrequently repeated to provide change information and often has very limited aerial 79 

coverage, precluding regional monitoring of vegetation structure. Space-based LiDAR sensors, such as GEDI may be 80 

able to address this observation gap by providing near-global coverage and frequent observations of vertical 81 

structures of global savannas, in particular woody vegetation height. The overall goal of the GEDI mission is to 82 

characterize ecosystem structure and its change due to climate and land use (Dubayah et al., 2020). The GEDI 83 

instrument is a geodetic-class laser altimeter and waveform LiDAR with a 25m footprint that is optimized for 84 

measurements of vertical structure. Mounted on the International Space Station, GEDI measurements have a near-85 

global coverage (within 51.6° N & S), which has sampled 4% of Earth’s land surface during the initial two-year 86 

mission. GEDI provides critical datasets of woody structural metrics including canopy height, canopy cover, plant 87 

area index and vertical foliage profiles, topography, as well as footprint-level and gridded above-ground biomass. 88 

The GEDI instrument was designed to measure vertical canopy profiles in conditions of up to 95% and 98% canopy 89 

cover for the coverage and power beams, respectively (Dubayah et al., 2020). Its design was optimized for the 90 

measurement of dense forests, following more than two decades of research using airborne large footprint waveform 91 

LiDAR, such as that from the Land, Vegetation and Ice Sensor (LVIS) (Drake et al., 2002a; Drake et al., 2002b; 92 

Dubayah et al., 2010; Hyde et al., 2005). The GEDI pulse length (FWHM 15.6 ns) is short enough to vertically 93 
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discriminate canopy and ground returns in forested ecosystems, however the ability to characterize short stature, 94 

discontinuous vegetation has not been a design requirement for GEDI and therefore needs to be evaluated before 95 

applying it to regional ecological studies. While the GEDI instrument design, algorithm calibration and validation 96 

were focused on the measurement of tall, dense, and continuous vegetation typical of tropical and temperate forests, 97 

it is anticipated that it could also provide useful, accurate characterization of lower stature, discontinuous savanna 98 

vegetation. This was the first study to our knowledge to validate GEDI canopy height measurements in savanna 99 

vegetation. 100 

Relative Height (RH) metrics derived from full-waveform LiDAR systems, such as GEDI, are considered “LiDAR 101 

perceived metrics” which estimate the height at which a particular quantile returned energy is reached relative to the 102 

elevation of the lowest waveform mode. i.e. ground level (Hofton and Blair, 2019). This paper focused on RH98, 103 

which represents the 98th quantile of the returned energy distribution. RH98 is representative of the top of the 104 

canopy, or the near-highest vegetation in the footprint, but contains fewer outliers and is less sensitive to noise than 105 

RH100 (Blair and Hofton, 1999). A few recent studies have directly compared GEDI RH metrics to ALS canopy 106 

height models (CHM) by calculating percentiles of CHM values within GEDI footprints (Liu et al., 2021; Potapov et 107 

al., 2021). While these studies provided essential early insights into the global and continental-scale reliability of 108 

GEDI metrics with very promising results, such comparisons to ALS CHM-derived height metrics alone are not the 109 

most appropriate validation approaches, as they essentially compare different structural metrics which may confound 110 

interpretation. The present study, therefore, followed the novel approach of first simulating, simulated GEDI 111 

waveforms from the ALS point cloud data before , followed by the extractingon of ground elevation and RH metrics 112 

(Hancock et al., 2019; Silva et al., 2018) to generate an ALS-based reference dataset before performing an error 113 

assessment (Wang et al., 2022) (Roy et al., 2021). 114 

The aim of this study was to provide an independent validation of GEDI canopy height metrics in diverse savannas 115 

by comparing the relative height (RH) metrics of Release 2 on-orbit GEDI data to simulated GEDI-RH98 derived 116 

from reference ALS datasets. This will provide the first a baseline assessment of the performance of GEDI-RH98 117 

products in African savannas, which will enable the identification of research priorities to expand the applicability of 118 

GEDI canopy height products to non-forest vegetation. The specific objectives of the study were to: (i) assess the 119 

accuracy of on-orbit GEDI relative height metric (RH98) by comparison to the reference estimates simulated from 120 
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ALS, and (ii) determine the influence of various factors on this error, e.g. algorithm setting group (SGs), beam type, 121 

day vs. night, sensitivity, and vegetation phenology.  122 

 

2. Materials and Methods 123 

2.1. Study area 124 

Nine study sites were distributed across South Africa representing various savanna vegetation types that fall within 125 

the Tropical Dry Forest (FAO, 2012) (Table 1) (Fig. 1). The sites target specific vegetation types (Dayaram et al., 126 

2019), but often include some adjacent transformed cover types such as subsistence agriculture (Table 1). Ireagh, 127 

Justicia, Agincourt and Welverdiendt sites are located in the Lowveld of Mpumalanga Province, next to Kruger 128 

National Park and include Granite Lowveld and Legogote Sour Bushveld vegetation, as well as some subsistence 129 

cultivation (Dayaram et al., 2019). The D’Nyala site is situated within the D’Nyala Nature Reserve in the far western 130 

extent of the Limpopo Province. The reserve contains several Bushveld vegetation types (Table 1), with scattered 131 

large Nyala (Xanthocercis zambesiaca) and Baobab (Adansonia digitata) trees up to 20 m in height. The Venetia site 132 

is located at the northern tip of South Africa, in the Musina Mopane Bushveld that is dominated by mopane trees 133 

(Colophospermum mopane). The three Limpopo sites are also situated within the Limpopo Province, just west of the 134 

Kruger National Park. These sites are primarily dominated by Mopane trees of the Tsende Mopaneveld and Granite 135 

Lowveld vegetation types with sporadic pockets of Gravelotte Bushveld and Tzaneen Sour Bushveld (Dayaram et 136 

al., 2019). All nine sites mentioned above have deciduous vegetation that lose their leaves during the dry winters 137 

(Archibald and Scholes, 2007).  138 

Two additional evergreen, non-savanna sites classified as Subtropical humid forests (FAO, 2012), were included to 139 

provide a wider range of canopy height and cover for the site-specific assessments. Their data was not included in 140 

the combined savanna-specific analyses. The Addo site transects part of the Addo Elephant National Park in the 141 

Eastern Cape Province. The site’s thicket vegetation is dominated by very dense, evergreen, stout (maximum height 142 

3.6m), succulent shrubs and geophytes, such as Spekboom trees (Portulacaria afra) which is a major source of food 143 

for the large elephant population (>600). The Dukuduku site is mainly covered by evergreen, tall lowland coastal 144 

forest located along the northern coast of the Kwa-Zulu Natal Province. The area is a flat coastal plain with dense 145 
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forest growth supported by the high, year-round rainfall. It is the last remaining lowland indigenous forest in South 146 

Africa and is dominated by numerous endemic forest tree species (e.g. Syzygium cordatum, Cussonia zuluensis and 147 

Ficus natalensis). The site includes surrounding grasslands, exotic tree plantations, and subsistence cultivation, 148 

providing very diverse vegetation structures. The thicket vegetation of Addo and the coastal forest vegetation of 149 

Dukuduku are juxtaposed to savanna vegetation both in location and along a continuum of vegetation structure. The 150 

topography of all the sites is flat or gently undulating and slope data derived from ALS DEM did not vary much 151 

within study sites (standard deviation (STD) < 4 degrees) (Table 1) and therefore it was assumed that slope did not 152 

influence the results.  153 

Table 1. Properties of study sites and airborne LiDAR (ALS) data acquired. 154 

Site#  Site  

name 

Vegetation  

type (Dayaram et al. 

2019)/  

transformed  

cover 

Deciduous 

Savannas  

/Evergreen 

Mean  

annual  

rainfall  

(mm) 

Mean  

annual  

temp 

(°C)  

Mean (STD) 

ALS  

vegetation 

 height (m) 

ALS 

canopy 

cover  

(%) 

Date  

of  

ALS 

Area 

(km2) 

Mean 

(STD) 

Slope 

(degree) 

 

1 D’Nyala Roodeberg, Waterberg 

Mountain & Limpopo 

Sweet Bushveld 

Deciduous 

Savannas  

375 21 3.9  

(2.3) 

74.3 March 

2018 

53.26 2.36 

(3.69) 

2.3.4 Limpopo Tsende Mopaneveld, 

Granite Lowveld, 

Gravelotte Bushveld & 

Tzaneen Sour Bushveld 

Deciduous 

Savannas 

613 27 3.3 

(2.1) 

51.5 March/ 

April 

2018 

163.32 1.7 

(1.28) 

5 Venetia Musina Mopane Bushveld 

& Limpopo Ridge 

Bushveld 

Deciduous 

Savannas 

368  22.8 2.5  

(1.1) 

41.6 March 

2018 

56.31 1.97 

(1.75) 

6 Welverdiendt  

 

 

Granite lowveld &  

Legogote Sour Bushveld / 

subsistence cultivation 

Deciduous 

Savannas 

353  25 3.7 

 (2.0) 

44.2 June 

2018 

126.75 1.74 

(1.68) 

7 Agincourt Deciduous 

Savannas 

353  25 4.2  

(2.4) 

41.9 May 

2018 

35.88 5.14 

(4.84) 

8 Ireagh Deciduous 

Savannas 

687  21.3  3.2 

(2.3) 

32.3 June 

2018 

 

65.08 

 

2.43 

(2.09) 

 

9 Justicia Deciduous 

Savannas 

550 25 3.4 

(2.5) 

28.9 June  

2018 

81.25 2.55 

(1.48) 

10 Dukuduku Maputaland Coastal belt & 

Northern Coastal Forest 

mix, Subtropical Alluvial / 

exotic tree plantations, 

subsistence cultivation 

Evergreen 967 21.7 9.3  

(5.6) 

70.0 June 

2018 

141.38 1.84 

(2.41) 

11 Addo Sundays mesic & Valley 

thicket,  

Grassridge Bontveld & 

Albany Alluvial 

Evergreen 388 18.4 2.3 

(0.88) 

66.3 March 

2018 

109.84 2.63 

(3.05) 
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Fig. 1. (A) Study area in South Africa with relevant FAO Global Ecological Zones. (B) Zoom-in of northern South Africa with 155 
detailed location of individual sites covered by airborne LiDAR data (ALS): (1) D’Nyala, (2, 3, 4) Limpopo, (5) Venetia, (6) 156 
Welverdiendt, (7) Agincourt, (8) Ireagh, (9) Justicia, (10) Dukuduku, (11) Addo (B). (2-column fitting image) 157 

2.2. Data 158 

2.2.1 ALS data 159 

Approximately 800 km2 of discrete ALS data were recorded between March and June of 2018 (Table 1) over the 11 160 

study sites (Fig. 1). For four of the sites the ALS data was collected during May and June, the leaf-off period, while 161 

other sites were collected during leaf-on conditions (March) (Table 1). The airborne LiDAR datasets were collected 162 

from a fixed wing aircraft (700 m above ground) using Optech ALTM M300 (13SEN327) and Optech Gemini 163 

(09SEN258) sensors at a pulse repetition rate of 150 kHz. Acquisitions were planned to have 25 % overlap between 164 

flight lines and resulted in an average laser spot spacing of 0.4 m and an average point density of 8.6 points / m2. 165 

Digital terrain models (DTM), digital surface models (DSM), and canopy height models (CHM) were generated from 166 

the ALS data at 1 m resolution, using lidR package (Roussel et al., 2018) in R. The Grid_canopy (lidR package) 167 

function was used to generate CHMs at 1m resolution using DSM Algorithm (p2r) without any smoothing or 168 

filtering. Within each study site, the canopy cover variable was determined by calculating the percentage of pixels 169 

with CHM greater than 1.5 m (Table 1). Note that in contrast to other recent studies (Liu et al., 2021; Potapov et al., 170 

2021), the CHMs were not used in any of the comparisons with RH98orb , but were only used to generate the 171 

vegetation structure metrics (cover and mean height) of sites in Table 1.  172 
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2.2.2 GEDI data 173 

GEDI was launched in December 2018 and attached to the International Space Station’s Japanese Experiment 174 

Module-Exposed Facility. As a waveform LiDAR, GEDI is specifically designed to measure vegetation structural 175 

metrics and estimate biomass under different environmental conditions (Dubayah et al., 2020). There are three lasers 176 

mounted on the GEDI platform, two of which operate at full power and another one was split up into two coverage 177 

beams. These four beams are optically dithered to four power ground tracks (BEAM0101, BEAM0110, BEAM1000, 178 

and BEAM1011) and four coverage ground tracks (BEAM0000, BEAM0001, BEAM0010, and BEAM0011). This 179 

design produces simultaneously eight parallel tracks of GEDI footprints, with a nominal diameter of 25 m and 180 

spacing of 60 m along track and 600 m across track.  181 

The study used Version 2 GEDI data that became available in April 2021. Compared to Version 1 GEDI data, key 182 

improvements in Version 2 data include (i) improved geolocation of orbital segments, and (ii) algorithm setting 183 

group (SG) selection per laser shot (Beck et al., 2021). This study quantified the systematic geolocation error in 184 

Version 2 and compared the error of different SGs in savannas. 185 

The input data and processing workflow is given in Fig. 2. The GEDI datasets used in this study are subsets of 186 

attributes stored in GEDI L1B, L2A, and L2B data products, which were downloaded from the NASA Land 187 

Processes Distributed Active Archive Center (DAAC) using the LP DAAC download tool 188 

(https://git.earthdata.nasa.gov/projects/LPDUR/repos/daac_data_download_r/browse). Version 2 GEDI data have a 189 

known geolocation error of approximately 10 m (1-sigma) (Beck et al., 2021). This error is dominated by a 190 

systematic component that may be removed by maximizing the correlation between on-orbit and simulated GEDI 191 

waveforms to determine the horizontal and vertical offset between the GEDI and ALS datasets (Hancock et al., 2019; 192 

Hofton et al., 2000). This geolocation error was corrected using the collocateWaves program (see section 2.3). 193 

In this study, 40 GEDI orbits intersected 9 deciduous savannas study sites, providing a total of 22813 useful GEDI 194 

footprints (samples) in 58 test cases (each orbit intersecting one site is one test case) during the seventeen months of 195 

the GEDI mission, between April 2019 and September 2020, which was all the data released at time of writing. Most 196 

of these test cases had more than 100 footprints of one orbit within a site. The most relevant variables used are GEDI 197 

L2B quality flags, GEDI L1B waveforms, GEDI L2A vegetation height metrics calculated by six algorithm SGs, and 198 
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geolocation attributes such as latitudes, longitudes, and orbits. Quality flags were used to remove erroneous and low-199 

quality returns. Only GEDI footprints with quality flag = 1, were considered as “good quality” data when specific 200 

requirements were met in terms of energy, sensitivity, amplitude, and real-time surface tracking quality (Hofton and 201 

Blair, 2019).  202 

 

Fig. 2. Workflow of GEDI and ALS data processing and analysis. (1.5-column fitting image) 203 

2.2.3 GEDI waveform processing and algorithm setting groups 204 

In order to interpret the results of the six SGs (Table 2), it is useful to review waveform processing and algorithm 205 

parameters as described in the GEDI Algorithm Theoretical Basis Documents (ATBD) (Hofton and Blair, 2019). 206 

Equation (1) is used to determine the highest detectable return (canopy top, named “toploc”) or the lowest detectable 207 

return (ground, named “botloc”) within the GEDI waveform extent (between the start “searchstart” and end 208 

positions “searchend”), where x representing either the ‘Front threshold’, or the ‘Back threshold’. The “toploc” or 209 
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“botloc” are detected where two adjacent waveform intensities are above the ‘Front threshold’, or the ‘Back 210 

threshold’ (Fig. 3). 211 

                                                                     𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑒𝑎𝑛 + 𝑥 ∗ 𝜎   (1) 

where “mean” represents the mean noise level, sigma is the standard deviation of the noise of the smoothed 212 

waveform, and x is a predetermined multiplier named “Preprocessing threshold” which was set to 4 sigma. Next, a 213 

Gaussian filter with different smoothing widths in ns (Smooth width zcross) is applied to identify distinctive canopy 214 

and ground modes within the signal-only section of the GEDI waveform (Table 2). Finally, the waveform digitizer 215 

counts within the section of the smoothed waveform between “toploc” and “botloc” are summed to create the 216 

cumulative energy metrics from 0 to 1 at 1% interval, where metrics such as the RH98 can be calculated relative to 217 

the lowest waveform (ground) mode.  218 

Six waveform SGs are implemented with different smoothing width (Smooth width zcross) and threshold (‘Front 219 

threshold’, ‘Back threshold’) settings to allow for the detection of the ground and vegetation structures under 220 

different conditions (Hofton and Blair, 2019) (Table 2). Version 2 GEDI data automatically selects the most 221 

appropriate algorithm setting group (SG S) for individual laser shots depending on plant functional type, geographic 222 

region and laser return energy (Beck et al., 2021). For instance, SG 1 (which was selected in the majority of cases) 223 

(Beck et al., 2021), uses conservative settings that may result in the ground mode not being distinguished from noise 224 

in dense canopies, or potentially a canopy mode not being detected in very sparse canopies. 225 



12 

 

 

Fig. 3. Example of one GEDI L1B waveform (GEDI orbit: 7433, waveform ID: 54731) and parameters used by different 226 
algorithm setting groups (SGs) (Table 2) to identify canopy mode (yellow line) and ground mode (green line). (2-column fitting 227 
image) 228 

Table 2. Parameters of different GEDI algorithm setting groups (SGs). 229 

SG Smooth width zcross (ns) 
Front 

threshold 

Back 

threshold 

1 6.5 3 6 

2 3.5 3 3 

3 3.5 3 6 

4 6.5 6 6 

5 3.5 3 2 

6 3.5 3 4 

 

The effects of instrument acquisition factors, e.g. time of acquisition (day vs. night), and beam type (coverage vs. full 230 

power) on RH98 errors, were investigated. These factors all influence beam sensitivity, a waveform metric that 231 

indicates the maximum canopy cover through which a GEDI waveform can detect the ground (Hancock et al., 2019). 232 

The sensitivity is important because it is determined by laser pulse energy, background solar illumination, surface 233 
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reflectance, and atmospheric transmission, and can potentially influence the variability or errors of RH metrics 234 

(Dubayah et al., 2020; Hancock et al., 2019). Solar elevation defines when GEDI data products were acquired, with 235 

daytime defined by positive solar elevation values, and nighttime by negative values (Beck et al., 2021). Under 236 

average conditions, the GEDI power beams are expected to have beam sensitivities of 99% during the nighttime, and 237 

94% during the day. The GEDI coverage beams are expected to have beam sensitivities of 96% during the nighttime 238 

and 92% during the day (Hancock et al., 2019). 239 

2.3 Data processing 240 

To help remove erroneous or cloud-contaminated land surface waveforms, GEDI L2A and L2B quality flags were 241 

first extracted from GEDI L2B datasets and used to filter out low-quality GEDI L1B data (Fig. 2). The subset of 242 

high-quality GEDI L1B waveforms was then intersected with the ALS datasets in Table 1. The gediSimulator 243 

software (Hancock et al., 2019) is comprised of collocateWaves and gediMetric programs which wereas used to 244 

simulate a GEDI full-waveform from the ALS data, collocate these with recorded GEDI waveforms (Fig. S1), and 245 

create a series of simulated vegetation metrics (RH, canopy cover, etc.) (Hancock et al., 2019) (Fig. 2).  The 246 

collocateWaves program was used to simulate GEDI waveforms from ALS data and collocate the simulated GEDI 247 

waveforms with recorded GEDI waveforms (Fig. S1). The parameter settings in the collocateWaves program were as 248 

follows, (i) the minimum GEDI beam sensitivity was set to 0.9 (ii) the minimum ALS point density was set to 3 249 

points per/m2, (iii) the on-orbit GEDI pulse shapes were derived from the GEDI Level 1B data for each beam and 250 

were used instead of the default Gaussian shape, (iv) the search window used to match ALS-derived and GEDI 251 

waveform was set to 20 m x 5 m to handle heterogeneous vegetated areas, (v) the simulated GEDI waveforms were 252 

generated without Gaussian noise. To resolve the systematic geolocation errors, the collocateWaves program was 253 

applied independently to all GEDI tracks. The collocation procedure was applied to each GEDI track independently 254 

and only used GEDI waveforms with beam sensitivity > 0.9 and simulated waveforms with an ALS point density >= 255 

3 points / m2. To define the transmitted pulse shape for simulations, average pulse shapes were calculated from the 256 

GEDI Level 1B data for each beam. The simulated GEDI RH metrics generated in collocateWaves program were 257 

then extracted from the simulated GEDI waveforms by applying gediMetric program (Hancock et al., 2019).  258 

Given the pulse width of 15.6 ns (FWHM) of the GEDI laser, GEDI’s on-orbit and simulated RH98 both have a 259 

theoretical minimum height of retrieval equal to half the pulse width, i.e. 2.34 m, which may be above the maximum 260 
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height of short woody vegetation in savannas (e.g. shrubs < 2.34 m). Since RH98 is the 98th quantile of the returned 261 

energy, its value will therefore be ~ 2.34 m even over flat, bare ground containing no woody vegetation. Variations 262 

in topographic relief within the GEDI footprint would broaden the returned waveform and increase the RH98 263 

independently of vegetation structure (Harding and Carabajal, 2005). Therefore, variations in woody vegetation 264 

below 2.34 m have a very minor influence on the received waveform shape and the derived RH98. Hence, 265 

comparisons of on-orbit and simulated RH98 below 2.34 m (RH98sim < 2.34 m) are typically not sensitive to 266 

variation in vegetation structure, and these data points were excluded from the analyses a priori. 267 

2.4 Vegetation phenology  268 

The influence of vegetation phenology on the RH98 error estimates was investigated by considering, (i) a relative 269 

greenness index and (ii) a phenology status classification based on the date of the GEDI acquisition. The normalized 270 

difference vegetation index (NDVI) of the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) 271 

Vegetation Indices (MOD13A3, 1 km) time series (Didan, 2015) was used to calculate the relative greenness of each 272 

test case (all pixels within the site) on the acquisition date of the GEDIorb data, according to the following equation 273 

(Peters et al., 2002):  274 

𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = (𝑁𝐷𝑉𝐼𝐺𝐸𝐷𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛) ÷ 𝑁𝐷𝑉𝐼𝑠𝑡𝑑 (2) 

where 𝑁𝐷𝑉𝐼𝐺𝐸𝐷𝐼  is the average NDVI of the pixels on the date of a specific test case, and 𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛  and 275 

𝑁𝐷𝑉𝐼𝑠𝑡𝑑  are the mean and standard deviation of 20-year MODIS NDVI (2000 to 2020) of all the same pixels in the 276 

site, respectively. The relative greenness values ranged between -6 and +6. The phenological status of the woody 277 

vegetation on the date of GEDI acquisition was classified as, (1) leaf-on; (2) leaf-off; and (3) transition from leaf-on 278 

to leaf-off or from leaf-off to leaf-on. Each test case was classified as follows: Leaf-on (Nov. to Apr.), Transition 279 

(May and Oct.), and Leaf-off (Jun. to Sep.) 280 

The potential influence of the phenological conditions during the ALS acquisition was tested but found to have little 281 

impact on the results. There were only minor differences between the metrics of GEDI RH98 accuracy in 282 

comparison of to ALS leaf-on and leaf-off data with GEDI data acquired in either leaf-on or leaf-off conditions 283 

(Table S1). For example, the bias of ALS Leaf-on vs. GEDI Leaf-off and ALS leaf-off vs. GEDI leaf-off was -1.48 284 
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and -1.46m, respectively (Table S1). The ALS leaf-on and GEDI leaf-on combination had a higher R2 of 0.68 and 285 

lower RMSE of 1.15 m compared to ALS leaf-off and GEDI leaf-on combination with R2 of 0.56 and RMSE of 1.65 286 

m. This indicates that there is a slightly weaker relationship between RH98sim and RH98orb when the RH98sim was 287 

based on leaf-off ALS data. However, the bias did not show much difference between ALS leaf-on or off. This 288 

indicated that since waveforms were simulated without noise, the discrete return ALS LiDAR and therefore 289 

simulated signal start was able to detect canopy tops irrespective of any reduction of canopy cover resulting from 290 

leaf-off conditions in these four sites. This was not unexpected since comparisons were undertaken using waveforms 291 

simulated without noise, so the discrete return ALS LiDAR and therefore simulated signal start was able to 292 

accurately detect canopy tops irrespective of leaf-off conditions in four sites. All the ALS data were therefore treated 293 

as equivalent in terms of phenology for the rest of the analysis.  294 

2.5 Statistical comparison of on-orbit and simulated GEDI RH98 295 

To investigate the impact of other potential factors, e.g., SGs, vegetation phenology, sensitivity, beam type and 296 

acquisition time, the datasets were split accordingly during statistical analysis. The SGs were compared in terms of 297 

the R2 between the recorded, on-orbit GEDI RH98 (named GEDI-RH98orb hereafter) and the simulated GEDI RH98 298 

(name GEDI-RH98sim hereafter), as well as the bias within 1m bins of RH98sim. The error of GEDI-RH98orb was 299 

determined by comparing it to the GEDI-RH98sim. ΔRH98 was the difference between the GEDI-RH98orb and GEDI-300 

RH98sim (equation 3) (Neuenschwander et al., 2020): 301 

∆𝑅𝐻98 = 𝐺𝐸𝐷𝐼𝑅𝐻98𝑜𝑟𝑏
− 𝐺𝐸𝐷𝐼𝑅𝐻98𝑠𝑖𝑚

 (3) 

Other error measures, included mean bias, root mean squared error (RMSE), relative RMSE (%RMSE), and relative 302 

bias (%bias) (equation 4-7): 303 

𝑀𝑒𝑎𝑛𝑏𝑖𝑎𝑠 =
∑(∆𝑅𝐻98)

𝑛
=

∑ 𝐵𝑖𝑎𝑠𝑖
𝑛
𝑖=1

𝑛
 (4) 

𝑅𝑀𝑆𝐸 = √
(∑ 𝐵𝑖𝑎𝑠𝑖

𝑛
𝑖=1 )2

𝑛
 (5) 



16 

 

%𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑚𝑒𝑎𝑛(𝐺𝐸𝐷𝐼𝑅𝐻98𝑠𝑖𝑚
)

× 100 (6) 

%𝑏𝑖𝑎𝑠 =
𝑀𝑒𝑎𝑛𝑏𝑖𝑎𝑠

𝑚𝑒𝑎𝑛(𝐺𝐸𝐷𝐼𝑅𝐻98𝑠𝑖𝑚
)

× 100 (7) 

3. Results 304 

3.1. GEDI geolocation accuracy 305 

After co-locating the GEDI and ALS data using the collocateWaves program in gediSimulator, the coordinate offsets 306 

of all GEDI footprints provided estimates of systematic geolocation errors in Euclidian distance. The geolocation of 307 

GEDI tracks was accurately correlated with the ALS-derived GEDI waveforms. The mean geolocation error of the 308 

Version 2 GEDI data was 12 m. These results correspond with the expected geolocation (horizontal) accuracy of 309 

10.3 m for Version 2 (Beck et al., 2021).  310 

3.2. GEDI algorithm setting groups 311 

The R2 of the relationship between GEDI-RH98orb and GEDI-RH98sim (Table 3) for each SG indicates that SG 4-6 312 

performed much poorer than SG 1-3, with relatively low R2 values below 0.4. SG 5 had the lowest R2 of 0.129, while 313 

SG S had the highest R2 of 0.48. SG S is based on the prediction of the best SG from SGs 1-6 for individual laser 314 

shots depending on plant functional type, geographic region, and laser return energy.  315 

The %bias of GEDI-RH98orb was calculated for 1 m intervals of GEDI-RH98sim (Fig. 4). Compared to the other SGs, 316 

SG 4 had the most pronounced negative bias of -20% to -45%, where RH98orb was consistently underestimating 317 

RH98sim above 3 m (Fig. 4d). This may be attributed to the high front threshold of SG 4 (6 sigma) that leads to higher 318 

fraction of the low amplitude canopy top signal being excluded, resulting in an underestimation of the canopy top 319 

(Fig. 5e). SG 5 significantly overestimated RH98 in low height bins below 8 m (Fig. 4e) due mainly to the small 320 

back threshold value (2 sigma) compared to SG 3 (6 sigma), SG 6 (4 sigma), and SG 2 (3 sigma) (Table 2) (Adam et 321 

al., 2020; Beck et al., 2021; Fayad et al., 2021). This is often caused by the lowest detected mode being noise rather 322 

than the ground leading to an underestimation of ground elevation (Beck et al., 2021) (Fig. 5a). SG 3 and SG 1 have 323 
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similar threshold settings but different Gaussian smoothing widths. Some samples of SG 1, with the larger smoothing 324 

width (6.5 ns), had much higher lowest detected modes than SG 3 (Fig. 5c, 6f). This suggests that SG 1’s lowest 325 

detected modes were convolved by its larger Gaussian smoothing width of 6.5 ns, resulting in a reduced number of 326 

detected modes that, in turn, often caused the highest detected mode to be misclassified as the ground. SG 1 and SG 327 

S results were similar because SG 1 was selected by SG S in ~92% of data. Due to the overall best performance of 328 

SG S all results reported in the remainder of this study are based on the SG S.  329 

Table 3. R2 values of the linear models of GEDI-RH98orb and GEDI-RH98sim for each algorithm setting group. 330 

Setting group R2 

1 0.479 

2 0.448 

3 0.455 

4 0.341 

5 0.129 

6 0.361 

S 0.48 

 331 

 332 
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Fig. 4. The % bias of various GEDI algorithm setting groups (a-g) within 1m bins of RH98sim. (2-column fitting image) 333 

 334 

Fig. 5. The difference of ground and canopy top estimations between GEDI algorithm setting groups to illustrate the impact of 335 
different parameter settings. Back threshold (SG 5: 2 sigma, SG 3: 6 sigma) (a, d); front threshold (SG 4: 6 sigma, SG 1: 3 sigma) 336 
(b, e); and second Gaussian smoothing width (SG 3: 3.5 sigma, SG 1: 6.5 sigma) (c, f). (2-column fitting image) 337 

3.3. GEDI sensitivity and ALS canopy cover  338 

The number of power and coverage beam GEDI footprints collected in nighttime conditions were 6301 and 6436, 339 

respectively. However, the daytime counts were much less, 1482 and 1602 for power and coverage beams, 340 

respectively. The large number of good quality GEDI footprints collected during the night can be explained by the 341 

lower background noise compared to the daytime acquisitions. The results are consistent with the reduced sensitivity 342 

of the day and night coverage beam (92%, 93%) compared to the day and night power beam (96%) (Fig. 6). The 343 

sensitivity of the night power beams were approximately 97% and did not reach the 99% stated by (Hancock et al., 344 

2019), presumably due to the influence of atmospheric transmission and the relatively high front and back thresholds 345 

for SG 1 (Hancock et al., 2019). A Welch’s Two Sample t-test in R (package: stats) (Team, 2013) was conducted on 346 

100 randomly sampled data to investigate if the sensitivity values of the beam types differed significantly. The result 347 

indicated that the coverage beams and power beams had significantly different sensitivity values, while the coverage 348 
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day and coverage night or power day and power night did not. There was no difference in bias for power vs. 349 

coverage beam or day vs. night acquisitions with a mean bias between 0 m and 0.5 m (data not shown). 350 

 351 

Fig. 6. Sensitivity of GEDI beam types (coverage vs. power) combined with time of acquisition (day vs. night). (Single fitting 352 
image) 353 

3.4. Influence of phenology on GEDI-RH98orb error 354 

The samples (footprints) of all test cases were pooled together in a single, combined analysis without considering 355 

phenological conditions. Overall, there was a positive relationship between GEDI-RH98orb and GEDI-RH98sim, with 356 

R2 of 0.48 (Table 4), and the GEDI-RH98orb observations underestimated GEDI-RH98sim, with a bias of -1.02 357 

m, %bias = -19.48%, RMSE = 1.93 m, %RMSE of 36.7%.  358 

After splitting the data based on phenological conditions, the leaf-on and leaf-off test cases had an R2 of 0.61 and 359 

0.43, respectively (Fig. 8, Table 4). For leaf-on test cases, the mean bias was -0.55 m (bold red line in Fig. 8a). Leaf-360 

off test cases, on the other hand, underestimated GEDI-RH98sim with a mean bias of -1.47 m. Leaf-on and leaf-off 361 

test cases had RMSE of 1.48 m and 2.27 m, respectively, indicating that leaf-off conditions lead to nearly 34% 362 

higher RMSE (Fig. 8b). The error measures of leaf-on condition were all lower than that of leaf-off condition, which 363 
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indicates that for the selected algorithm setting in the Version 2 product, GEDI estimates are more likely to detect the 364 

canopy top in leaf-on conditions. The impact of transitional phenological conditions (spring or autumn) could not be 365 

sufficiently assessed, as there were only five such cases. There was a weak positive relationship between the bias of 366 

test cases and relative greenness (R2 = 0.32) (Fig. 7), suggesting again that the GEDI-RH98sim was more 367 

representative of the canopy top when the trees had full, green canopies, than during drier, leaf-off conditions when 368 

the LiDAR pulse may be penetrating the denuded canopy to interact with lower parts of the trees.  369 

When examining the difference between the GEDI and ALS derived ground and canopy top estimates separately, the 370 

ground bias was almost close to 0 regardless of phenological impacts (Fig. 9c, 9d). The canopy top estimates were 371 

underestimated in both leaf-on and leaf-off conditions, butand in leaf-on conditions the mean bias of canopy top 372 

estimates (-2.64 m) was about 1 m smaller than leaf-off conditions (-3.7 m) (Fig. 9c, 9d). A Welch’s Two Sample t-373 

test (Team, 2013) was implemented on 100 random samples of data each group and demonstrated a significant 374 

difference (p < 0.05) between the canopy top estimates across all scenarios. However, the mean values of ground 375 

estimates were not significantly different. 376 

Table 4. Summary of comparison between GEDI-RH98orb vs. GEDI-RH98sim for all savanna sites and test cases under leaf-on 377 
and leaf-off conditions. 378 

Grouping R2 Bias (m) %bias (%) RMSE (m) %RMSE (%) 

Sample 

sizeGEDI 

Footprints 

Combined 

analysis,  

all test cases 

0.48 -1.02 -19.48 1.93 36.7 22813 

Combined 

analysis, 

 leaf-on 

0.61 -0.55 -11.15 1.48 29.85 7347 

Combined 

analysis,  

leaf-off 

0.43 -1.47 -26.53 2.27 40.94 8933 
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 379 

Fig. 7. The bias of test cases vs. MODIS relative greenness on the date of GEDIorb acquisition. A reduction in negative bias in 380 
RH98orb with increased greenness is evident. (Single fitting image) 381 
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 382 

 383 

Fig. 8. Density plots of RH98sim vs. RH98orb below 15 m for all test cases with leaf-on (a) and leaf-off (b) conditions. The black 384 
line is the diagonal reference line (slope = 1, intercept = 0) and the red line represents the mean bias. (2-column fitting image) 385 
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 386 

Fig. 9. The difference between GEDI and ALS derived ground and canopy top elevations for four scenarios: leaf-on & leaf-off 387 
(>2.35m) (a), leaf-on & leaf-off (<2.35m) (b), leaf-on (>2.35m) (c), and leaf-off (>2.35m) (d). The RH98 bias was mainly due to 388 
the underestimation of canopy top elevation. (1.5-column fitting image) 389 

3.5. GEDI-RH98orb Bias distribution with RH98 and canopy cover  390 

Fig. 10 gives the relative frequency of RH98sim values across all sites as context to the bias distribution. The bias of 391 

all individual GEDI footprints was investigated across RH98 height bins to determine any trends, stratified according 392 

to leaf-on and leaf-off conditions (Fig. 11a, 11b). For both leaf-on and leaf-off conditions, the variability of the bias 393 

generally increased with the RH98sim heights. Under leaf-on conditions, in the 2.35-3 m and 3-4 m RH98Sim bins, 394 

containing 35% of samples (Fig. 10), the mean bias (and %bias) was +0.31 m (+11.6%) and –0.17 m (-4.9%) 395 

respectively. The negative bias remained around 0.8 m (-10%), up to 7 m, which includes approximately 80% of the 396 

data. Above 7 m the bias peaked at -2.7 m (–20%) at RH98sim of 12-13 m and then steadily reduced to –2.5 m (-10%) 397 

at 15 m. The bias above 15 m was not reported as these heights represented only 0.16% of the samples. 398 

The bias under leaf-off conditions was almost double that of leaf-on above 4 m and peaked at -4.6 m (-40%) for 399 

RH98sim 8-9 m (Fig. 11). During leaf-off conditions, severe underestimations of up to –6 m (~-30%) occurred at 400 

higher RH98 between 10 and 15 m. The canopy cover (calculated from ALS data) did not have a significant 401 
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influence on the bias of RH98orb (leaf-on) which remained close to a mean of –0.5m between 20-90% cover and 402 

increased slightly to –0.7 between 90-100% cover (Fig. 11e). 403 

 404 

Fig. 10. Histogram of the relative frequency of RH98sim values of all GEDI footprints across all study sites (0-15 m). (single 405 
fitting image) 406 
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Fig. 11. Bias (a, b), and %bias (c, d) vs. GEDI-RH98sim (0-15 m) for leaf-on (left) and leaf-off (right) test cases. Mean Bias values 409 
are indicated with blue asterisks. The lowest bin range is 2.35 – 3 m. RH98 bias (leaf-on) vs. airborne LiDAR (ALS) canopy 410 
cover (e). (2-column fitting image) 411 

 412 

3.6. Error assessment of RH98 for individual study sites  413 

The error of individual sites and their test cases was examined to determine how accurately GEDI can characterize 414 

the canopy height of smaller study areas with contrasting vegetation structures (Table 5). There was some variability 415 

in errors between test cases of the same site. This could partially be attributed to variability in the specific area of a 416 

site that was sampled by each GEDI track and the varied number of good quality data samples (footprints) 417 

intersecting the site (Table 5). For all the individual savanna sites (notably D’Nyala, Agincourt, Venetia) the leaf-on 418 

test cases had much lower RMSE, smaller negative bias, and higher R2 compared to the leaf-off test cases of the 419 

same site (Table 5). The leaf-on test cases of all the savanna sites had R2 ranging from 0.43 to 0.71, %bias from -420 

12% to -2.7%, RMSE from 0.76 to 2.1m and %RMSE from 6% to 34%.  421 

The Addo site with evergreen thicket vegetation had a low average ALS CHM height of 3.9 m, but a high average 422 

ALS canopy cover of 66% (according to ALS CHM) (Table 1). It produced a relationship with an R2 of 0.42, mean 423 

bias of –0.08 m, %bias of -2.78%, and %RMSE of 6.75% (Fig. S2). This indicates that GEDI RH98 was fairly 424 

accurate in this dense, short stature vegetation above 2.35 m. However, it must be noted that within the Addo site a 425 

very large proportion of vegetation is below 2.35 m (16% of RH98sim < 2.35m), that cannot be accurately estimated 426 

due to the long GEDI pulse width (see Discussion for details). In contrast to the Addo site, the tall, evergreen forest 427 

of Dukuduku with an average ALS CHM of 9.7 m and 70% canopy cover, had an R2 of 0.521, mean bias of –0.91 428 

m, %bias of -12.5%, and %RMSE of 43.6% (Fig. S3). Overall, the error of GEDI RH98 did not show specific 429 

patterns related to sites or vegetation types and provided reliable estimates of canopy heights within individual sites 430 

during leaf-on conditions.  431 

Table 5. Summary of comparison between GEDI-RH98orb vs. GEDI-RH98sim for each study site grouped by phenological status. 432 

Study  

sites 

Mean  

R2  

Mean  

bias (m) 

Mean 

%bias1 (%) 

Mean  

RMSE (m) 

Mean  

%RMSE2 (%)  

GEDI 

footprintsSample 

size 

Addo 

(evergreen) 
0.428  -0.08 -2.78 0.203 6.75 2133 

Dukuduku 

(evergreen) 
0.521 -0.91 -12.55 3.11 43.63 1262 

Agincourt 0.486 -0.53 -8.93 1.852 31.30 479 
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(leaf-on) 

Agincourt 

(leaf-off) 
0.167 -2.1 -36.08 3.089 51.08 337 

D’Nyala 

(leaf-on) 
0.712 -0.168 -2.7 1.413 22.82 86 

D’Nyala 

(leaf-off) 
0.157 -1.905 -28.43 2.72 40.69 896 

Ireagh 

(leaf-on) 
0.512 -0.571 -11.72 1.61 33.51 780 

Ireagh 

(leaf-off) 
0.352 -1.503 -31.54 2.295 47.92 736 

Venetia 

(leaf-on) 
0.611 -0.459 -11.94 0.76 19.81 2038 

Venetia 

(leaf-off) 
0.373 -0.831 -21.57 1.162 30.21 592 

Limpopo 

(leaf-on) 
0.438 -0.901 -14.09 2.202 34.37 677 

Limpopo 

(leaf-off) 
0.476 -1.514 -25.94 2.313 40.47 2330 

Justicia 

(leaf-on) 
0.495 -1.165 -21.88 2.183 41.06 1322 

Justicia 

(leaf-off) 
0.492 -1.387 -26.98 2.276 44.28 1319 

Welverdiendt 

(leaf-on) 
0.536 -0.608 -12.35 1.544 31.738 1965 

Welverdiendt 

(leaf-off) 
0.417 -1.221 -22.11 1.836 33.35 2723 

 

4. Discussion 433 

This study provided a baseline validation of Version 2 GEDI RH98 in predominantly sparse (30-60% canopy cover), 434 

short stature savannas vegetation and to our knowledge, was the first to do so at the time of writing. This study 435 

compared the on-orbit GEDI RH98 with the simulated GEDI RH98 derived from ALS point cloud using the 436 

gediSimulator (Hancock et al., 2019), and as such allows for a direct and rigorous comparison (Roy et al., 2021). 437 

Recent studies that have calculated the quantiles of canopy heights from a horizontal aggregation of equally 438 

weighted ALS CHM values within a GEDI footprint have not directly accounted for factors such as geolocation 439 

error, laser pulse shape and the distribution of energy within the footprint (Liu et al., 2021; Potapov et al., 2021), thus 440 

confounding interpretation of differences. In contrast to ALS CHM’s, the GEDI RH98 is the 98th quantile of the 441 

energy returned by the vertical profile of vegetation and includes a large fraction of energy returned from the ground, 442 

especially in sparse savannas. We recommend that studies aimed at validation of GEDI footprint elevation and height 443 
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data products consider the separation of differences resulting from waveform processing and definition of canopy 444 

structure.  445 

The Version 2 GEDI data products have a much-improved geolocation accuracy since systemic errors have been 446 

minimized as part of standard processing (Beck et al., 2021). This study found Version 2 GEDI products contained a 447 

mean geolocation error of approximately 12 m. However, these results were limited to GEDI orbits intersecting the 448 

study areas, and this study was therefore not a comprehensive assessment of GEDI geolocation error, as conducted 449 

elsewhere (Roy et al., 2021). The present study only accounted for systematic geolocation error of the GEDI tracks, 450 

however relatively small random geolocation errors remain for individual footprints, conservatively estimated to be 451 

within 2 m, contributing to the overall error in on-orbit and simulated GEDI comparisons. These random geolocation 452 

errors have not been formally quantified by the GEDI Science Team, so were conservatively estimated to be within 2 453 

m (~10% of the footprint diameter). To quantify the contribution of this random geolocation error, 100 random 454 

offsets were generated by sampling from a random uniform distribution between 0 and 2 m and added to the 100 455 

leaf-on GEDI footprint coordinates across all sites, before simulating the waveforms. The difference between the 456 

relocated and corrected RH98, along with various error metrics were calculated (for details see Supplementary 457 

Material). For RH98, the results suggest that these random geolocation errors contribute 14% of absolute bias below 458 

8 m and 20.7% of the overall RMSE. Therefore, a minor but non-trivial component of the reported uncertainty can 459 

be attributed to random geolocation errors, rather than error in vertical canopy height estimates. In addition, tThehis 460 

spresent study only accounted for systematic geolocation error of the GEDI tracks, while 0-2m random geolocation 461 

errors for individual footprints remain in the data, contributing to the overall error in on-orbit and simulated GEDI 462 

comparisons.  463 

Recent GEDI studies confirmed that the SGs using different algorithm parameter settings performed differently in 464 

various vegetation types, as were expected (Adam et al., 2020; Beck et al., 2021; Hofton et al., 2020) (Table 2). In 465 

the current study, SG 5 performed poorly because it has the lowest back threshold that potentially causes confusion 466 

between noise and the start of the ground return, leading to significant overestimation of RH98 (Fig. 5a). This was 467 

expected, as SG 5 was designed specifically for dense vegetation where there is difficulty in estimating the peak 468 

ground return because of the lower laser penetration through the canopy. SG 4 had the most pronounced negative 469 

bias of –20 to –45% for RH98sim above 3m, which was caused by the high front threshold of 6 sigma that leads to 470 

truncation of the canopy top signal (Fig 6e). Version 2 of GEDI algorithms automatically select the best SG for each 471 
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GEDI footprint and indicates the selected algorithm in GEDI L2A data products. Thus, SG S provided the best 472 

overall performance, slightly better than SG 1, which was the most frequently selected by the SG S dataset for our 473 

study.  474 

The GEDI power beams have a stronger energy pulse than the coverage beams as they were designed to provide 475 

more stable GEDI ground estimates in forests with canopy cover above 95% (Duncanson et al., 2020; Hancock et al., 476 

2019). Although the present study confirmed the higher sensitivity of the power beam compared to the coverage 477 

beam (Fig. 6), there was no difference in the bias and RMSE of RH98orb between the two beam types. Daytime 478 

GEDI acquisitions are impacted by background solar illumination noise, while nighttime acquisitions are not (Beck 479 

et al., 2021). This resulted in a much larger number of good quality nighttime than daytime footprints in the data. 480 

However, the time of acquisition (day vs. night) did not have any influence on the bias or RMSE of RH98orb. 481 

Furthermore, because the minimum sensitivity was set to 0.9, the ability of the GEDI power beam to penetrate high 482 

canopy cover of up to 90% brought no advantage in the present study where ALS canopy cover seldom exceeded 483 

70%.  484 

The prevailing phenological conditions of vegetation at the time of GEDI data acquisition had a very large influence 485 

on the error of RH98orb. During leaf-on conditions for savanna vegetation with RH98sim < 15 m, RH98orb was very 486 

accurate with R2 = 0.61, mean bias = -0.55 m, %bias = -11.1%, RMSE = 1.64 m and %RMSE = 29.8%. During leaf-487 

off conditions, RH98orb was less accurate with R2 = 0.43, mean bias = -1.47 m, %bias = -26.5%, RMSE = 2.03 m 488 

and %RMSE = 40.9% (Table 4). Therefore, in leaf-off conditions, the mean bias of GEDI-RH98orb was about three 489 

times higher than during leaf-on conditions. Leaf-off conditions had significant underestimations of up to –6 m 490 

(~30%) at higher RH98 between 10 and 15 m, suggesting that the height of tallest deciduous trees would be 491 

significantly underestimated (Fig. 11). The influence of phenology is further underscored by the positive relationship 492 

(R2 = 0.32) between relative greenness and bias (Fig. 7). The results clearly indicate that GEDI is better able to detect 493 

the highest canopies when they are fully covered in green leaves. After the trees have shed their leaves, the LiDAR 494 

signal presumably penetrates further through the denuded branches before interacting with the lower strata of the 495 

trees. The signal at the start of the waveform may therefore be weaker and truncated as noise, leading to a large 496 

negative height bias. Therefore, assessments of deciduous vegetation structure should ideally be conducted during 497 

leaf-on periods.  498 
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Overall, the results for leaf-on conditions agreed with recent publications on initial comparisons of GEDI RH metrics 499 

and ALS CHMs. Potapov et al., (2021) compared GEDI-RH90 metrics with 90th percentile distribution of ALS-500 

derived height metrics at a global scale, with a similar R2 of ~0.7 and bias of –0.7 m. Adam et al., (2020) tested the 501 

relationship between ALS and GEDI-derived canopy height models (CHMs) and found that GEDI-derived CHM’s 502 

underestimated canopy heights in temperate forests, with a median CHM-difference of 0.23m. More recently, Liu et 503 

al., (2021) compared GEDI “canopy heights” (RH98) and canopy heights (98th quantiles calculated from ALS CHM 504 

values within GEDI footprints), across a wide range of vegetation types, with an R2 of 0.82, bias of -0.8 m 505 

and %RMSE of 30%. Wang et al., (2022) compared the on-orbit GEDI RH100 with the simulated GEDI RH100 506 

from ALS datasets across the US, with an R2 of 0.83, bias of -0.6 m and RMSE of 3.09 m.  Ilangakoon et al., (2021) 507 

recently observed that GEDI RH98 (version 1) significantly overestimated canopy heights of low (<5m), semi-arid 508 

vegetation and suggested further investigation of GEDI’s performance in shrublands. In the only other published 509 

study to simulate GEDI waveform and metrics (RH95) from ALS data collected five years earlier, Roy et al., (2021) 510 

demonstrated that geolocation uncertainty of GEDI Version 1 footprints should account for significant error in 511 

canopy height estimation (best R2 = 0.59 after geolocation correction) in secondary tropical forests. The best 512 

performance attained using ICESat-2 in boreal forests (strong beam/night/summer acquisitions), underestimate 513 

canopy height by 0.56 m, with %bias of 3.18%, RMSE% of 13.75%, for canopy cover 40-85% (Neuenschwander et 514 

al., 2020). However, the residual error of these ICESat-2 height estimates increased rapidly with canopy cover below 515 

40%, reaching 1.7 m at 20% canopy cover. While the results of the present study and this ICESat-2 study were not 516 

directly comparable, future research should directly compare the accuracy of coincident GEDI and ICESat-2 height 517 

metrics in savannas. 518 

The investigation of the bias within specific RH98 bins was essential to understanding GEDI’s under and 519 

overestimations across various canopy heights and canopy cover conditions (Fig. 11). When considering only leaf-on 520 

conditions, in the lowest RH98sim bin of 2.35-3 m, the mean bias was +0.31 m (+11.6%). This overestimation could 521 

be related to the GEDI pulse width of 15.6 ns, the waveform smoothing width of 6.5 ns of SG 1, and the resulting 522 

minimum height value for RH98 of 2.34 m over flat, bare ground, that is discussed in more detail below. In the 3-4 523 

m bin accounting for 25% of all the data (Fig. 10), the mean bias was only –0.17 m or -4.9%. The mean negative bias 524 

remained less than 0.79 m or -10%, up to 7 m, which suggest that GEDI’s RH98orb is very accurate between 3 and 7 525 

m. This range incorporates a very large portion of canopy heights in savannas and 80% of our study sites (Fig. 10). 526 
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The mean bias increased from -1.2 m (-17%) to –2.7 m (-20%) from 7 to 13 m (Fig. 11). This negative bias could be 527 

due to the absence of GEDI signal noise in GEDI simulator, leading to the underestimation of canopy top elevations 528 

(Fig. 9c). There was no relationship between canopy cover (calculated from ALS data) and bias of RH98orb (leaf-on) 529 

that remained close to a mean of –0.5m between 30-90% cover (Fig. 11e). Notably, below 30% cover, the bias 530 

decreased to –0.2 m (Fig. 11e). GEDI’s RH98 estimates, therefore, remained consistently accurate even with sparse 531 

canopy cover below 30%, which is often prevalent in savannas. This was in contrast with the findings for ICESat-2 532 

which reportedly does not capture enough canopy reflection for accurate canopy height estimates when canopy cover 533 

was < 40%, leading to a positive bias of up to 0.5 m at 20% canopy cover (Neuenschwander et al., 2020). Other 534 

GEDI studies suggest that canopy cover only starts reducing canopy height estimation accuracy when it exceeds 90% 535 

and GEDI cannot effectively detect the ground (Liu et al., 2021).  536 

Given the GEDI pulse length of 15.6 ns, RH98 has a theoretical minimum value of half the pulse width of 2.34 m 537 

over flat, bare ground, which is similar to the height of shrubs (< 3 m) that cover substantial areas of savannas 538 

(O’Connor et al., 2014). In the present study, approximately 20% of GEDI footprints had RH98sim < 2.35 m and 539 

13.6% between 2.35 m and 3 m, where characterizing the vegetation canopy height can be challenging (mean bias = 540 

-1.16 m) (Fig. 9b). Characterizing low vegetation over the predominantly flat savannas may therefore benefit from 541 

more intricate deconvolution of the waveform (McGlinchy et al., 2014; Neuenschwander, 2008) which is a topic of 542 

on-going research. Moreover, the measurement of shrub vegetation may be approaching GEDI’s limits of 543 

detectability, which is determined not only by the pulse duration, but by multiple factors including cover, target 544 

reflectivity, topographic relief and noise (Adam et al., 2020; Liu et al., 2021). This study provided crucial insight into 545 

the lower limits of canopy height detection that impacts the measurement of shrub cover which is essential to 546 

ecological studies and biomass estimation in savannasMeasuring shrub cover is, however, essential to ecological 547 

studies and rangeland management in savannas (Mograbi et al., 2015; O’Connor et al., 2014; Stevens et al., 2016; 548 

Venter et al., 2018) and may require different approaches to waveform interpretation and estimation of other GEDI 549 

metrics, e.g., canopy cover fraction, plant area index. GEDI is a sampling mission with footprints separated 60 m 550 

along track and 600 m across track (Dubayah et al., 2020) (Fig. S4), and therefore does not provide continuous 551 

measurements akin to a conventional high resolution ALS CHM used in small area ecological studies. These GEDI 552 

footprint samples (L2 data), as well as the L3 and L4B gridded products (1 km x 1 km) can, however, provide unique 553 

broad-area metrics of woody vegetation structure and aboveground biomass estimates (Dubayah et al., 2022; 554 
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Duncanson et al., 2022) for regional ecological studies investigating, e.g. the drivers of structure changes (Sankaran 555 

et al., 2008), impact of fire regimes (Smit et al., 2016, 2010) and carbon storage of savannas (Ross et al., 2021). The 556 

research community is actively engaged in using GEDI, ICESat2 and the combination of the two space-based 557 

LiDAR sensors to address these pressing ecological questions. 558 

5. Conclusions  559 

This study provided the firsta baseline validation of Version 2 GEDI RH98 canopy height estimates in African 560 

savannas by simulating the GEDI waveform from ALS data. The results provide valuable insights into the accuracy 561 

and precision of GEDI-RH98 across highly heterogeneous, short stature vegetation. The time of acquisition (day vs. 562 

night) and beam type did not have any influence on the bias or RMSE of RH98. The RH98 accuracy and bias was 563 

not influenced by canopy cover and remained consistently accurate even with sparse canopy cover below 30%. 564 

Woody vegetation phenology had a large influence on results. During leaf-off conditions, the mean bias of GEDI-565 

RH98orb was about three times higher and significantly underestimated high canopy heights (10-15 m) by an average 566 

of 3.75 m. Therefore, the use of GEDI data to assess deciduous vegetation structure should be limited to leaf-on 567 

periods. During leaf-on conditions for vegetation, typical of savannas (RH98sim < 15 m), RH98orb was accurate with 568 

R2 = 0.61, mean bias = -0.55 m, %bias = -11.1%, RMSE = 1.48 m and %RMSE = 29.8%. Due to the challenge of 569 

differentiating the vegetation return from that of the ground with a pulse width of 15.6 ns, the Version 2 GEDI-RH98 570 

data product cannot reliably be used for estimating canopy heights of shrubs below 2.34 m. However, algorithm 571 

development focused on savanna and shrubland ecosystems may extend the limits of detection for low stature 572 

vegetation. In leaf-on conditions, GEDI’s RH98orb was very accurate between 3 and 7 m, with a mean negative bias 573 

of about -0.79 m or -10%, up to 7 m. The mean bias remained –2.5 m up to 15 m. Therefore, while shrubs below 3 m 574 

could not be accurately measured by GEDI’s RH98, the canopy height of trees between 3 and 15 m were reliably 575 

estimated. While GEDI was designed for measurement of Earth’s tropical and temperate forests and has limitations 576 

for characterizing the vertical structure of shrubs, RH98 can reliably characterize tree canopy heights across African 577 

and, potentially, global savannas. 578 
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List of Figure Captions 

Fig. 1. (A) Study area in South Africa with relevant FAO Global Ecological Zones. (B) Zoom-in of northern South 

Africa with detailed location of individual sites covered by airborne LiDAR data (ALS): (1) D’Nyala, (2, 3, 4) 

Limpopo, (5) Venetia, (6) Welverdiendt, (7) Agincourt, (8) Ireagh, (9) Justicia, (10) Dukuduku, (11) Addo (B). (2-

column fitting image)  

Fig. 2. Workflow of GEDI and ALS data processing and analysis. (1.5-column fitting image) 

Fig. 3. Example of one GEDI L1B waveform (GEDI orbit: 7433, waveform ID: 54731) and parameters used by 

different algorithm setting groups (SGs) (Table 2) to identify canopy mode (yellow line) and ground mode (green 

line). (2-column fitting image) 

Fig. 4. The % bias of various GEDI algorithm setting groups (a-g) within 1m bins of RH98sim. (2-column fitting 

image) 

Fig. 5. The difference of ground and canopy top estimations between GEDI algorithm setting groups to illustrate the 

impact of different parameter settings. Back threshold (SG 5: 2 sigma, SG 3: 6 sigma) (a, d); front threshold (SG 4: 6 

sigma, SG 1: 3 sigma) (b, e); and second Gaussian smoothing width (SG 3: 3.5 sigma, SG 1: 6.5 sigma) (c, f). (2-

column fitting image) 

Fig. 6. Sensitivity of GEDI beam types (coverage vs. power) combined with time of acquisition (day vs. night). 

(Single fitting image) 

Fig. 7. The bias of test cases vs. MODIS relative greenness on the date of GEDIorb acquisition. A reduction in 

negative bias in RH98orb with increased greenness is evident. (Single fitting image) 

Fig. 8. Density plots of RH98sim vs. RH98orb below 15 m for all test cases with leaf-on (a) and leaf-off (b) 

conditions. The black line is the diagonal reference line (slope = 1, intercept = 0) and the red line represents the mean 

bias. (2-column fitting image) 

Fig. 9. The difference between GEDI and ALS derived ground and canopy top elevations for four scenarios: leaf-on 

& leaf-off (>2.35m) (a), leaf-on & leaf-off (<2.35m) (b), leaf-on (>2.35m) (c), and leaf-off (>2.35m) (d). The RH98 

bias was mainly due to the underestimation of canopy top elevation. (1.5-column fitting image) 

Fig. 10. Histogram of the relative frequency of RH98sim values of all GEDI footprints across all study sites (0-15 

m). (single fitting image) 

Fig. 11. Bias (a, b), and %bias (c, d) vs. GEDI-RH98sim (0-15 m) for leaf-on (left) and leaf-off (right) test cases. 

Mean Bias values are indicated with blue asterisks. The lowest bin range is 2.35 – 3 m. RH98 bias (leaf-on) vs. 

airborne LiDAR (ALS) canopy cover (e). (2-column fitting image) 

 

 



 GEDI waveform LiDAR sensor and algorithms were designed for dense forests. 

 First validation of GEDI canopy height estimates (Relative Height 98) in savannas. 

 On-orbit GEDI-RH98 was compared to simulated RH98 from airborne LiDAR data. 

 Leaf-on vs. leaf-off conditions had a very large influence on results. 

 RH98 was very accurate:  R2 = 0.61, bias = -0.55 m, %bias = -11.1%, RMSE = 1.64 m. 

 GEDI provides reliable canopy height estimates in savannas, for height classes >3m. 
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Table 1. Properties of study sites and airborne LiDAR (ALS) data acquired. 

Site#  Site  

name 

Vegetation  

type (Dayaram et al. 

2019)/  

transformed  

cover 

Deciduous 

Savannas   

/Evergreen 

Mean  

annual  

rainfall  

(mm) 

Mean  

annual  

temp 

(°C)     

Mean (STD) 

ALS  

vegetation 

 height (m) 

ALS 

canopy 

cover  

(%) 

Date  

of  

ALS 

Area 

(km2) 

Mean 

(STD) 

Slope 

(degree) 

 

1 D’Nyala Roodeberg, Waterberg 

Mountain & Limpopo 

Sweet Bushveld 

Deciduous 

Savannas  

375 21 3.9  

(2.3) 

74.3 March 

2018 

53.26 2.36 

(3.69) 

2.3.4 Limpopo Tsende Mopaneveld, 

Granite Lowveld, 

Gravelotte Bushveld & 

Tzaneen Sour Bushveld 

Deciduous 

Savannas 

613 27 3.3 

(2.1) 

51.5 March/ 

April 

2018 

163.32 1.7 

(1.28) 

5 Venetia Musina Mopane Bushveld 

& Limpopo Ridge 

Bushveld 

Deciduous 

Savannas 

368  22.8 2.5  

(1.1) 

41.6 March 

2018 

56.31 1.97 

(1.75) 

6 Welverdiendt  

 

 

Granite lowveld &  

Legogote Sour Bushveld  / 

subsistence cultivation 

Deciduous 

Savannas 

353  25 3.7 

 (2.0) 

44.2 June 

2018 

126.75 1.74 

(1.68) 

7 Agincourt Deciduous 

Savannas 

353  25 4.2  

(2.4) 

41.9 May 

2018 

35.88 5.14 

(4.84) 

8 Ireagh Deciduous 

Savannas 

687  21.3  3.2 

(2.3) 

32.3 June 

2018 

 

65.08 

 

2.43 

(2.09) 

 

9 Justicia Deciduous 

Savannas 

550 25 3.4 

(2.5) 

28.9 June  

2018 

81.25 2.55 

(1.48) 

10 Dukuduku Maputaland Coastal belt & 

Northern Coastal Forest 

mix, Subtropical Alluvial / 

exotic tree plantations, 

subsistence cultivation 

Evergreen 967 21.7 9.3  

(5.6) 

70.0 June 

2018 

141.38 1.84 

(2.41) 

11 Addo Sundays mesic & Valley 

thicket,   

Grassridge Bontveld & 

Albany Alluvial 

Evergreen 388 18.4 2.3 

(0.88) 

66.3 March 

2018 

109.84 2.63 

(3.05) 
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Table 2. Parameters of different GEDI processing setting groups (SG). 

SG Smooth width zcross (ns) 
Front 

threshold 

Back 

threshold 

1 6.5 3 6 

2 3.5 3 3 

3 3.5 3 6 

4 6.5 6 6 

5 3.5 3 2 

6 3.5 3 4 

 

 

 

 

Table 3. R2 values of the linear models of GEDI-RH98orb and GEDI-RH98sim for each setting group. 

Setting group R2 

1 0.479 

2 0.448 

3 0.455 

4 0.341 

5 0.129 

6 0.361 

S 0.48 

 

 

 

 

Table 4. Summary of comparison between GEDI-RH98orb vs. GEDI-RH98sim for all savanna sites and test cases under leaf-on 

and leaf-off conditions. 

Grouping 

Mean  

R2 

(STD) 

Mean  

bias (m) 

(STD) 

Mean 

%bias (%) 

(STD)   

Mean  

RMSE (m) 

(STD) 

Mean  

%RMSE (%) 

(STD) 

Sample size 

Combined 

analysis,  

all test cases 

0.48 -1.02 -19.48 1.93 36.7 18215 

Combined 

analysis, 

 leaf-on 

0.61 -0.55 -11.15 1.48 29.85 7347 

Combined 

analysis,  

leaf-off 

0.43 -1.47 -26.53 2.27 40.94 8933 



Table 5. Summary of comparison between GEDI-RH98orb vs. GEDI-RH98sim for each study site grouped by phenological status. 

Study  

sites 

Mean  

R2  

Mean  

bias (m) 

Mean 

%bias1 (%) 

Mean  

RMSE (m) 

Mean  

%RMSE2 (%)  
Sample size 

Addo 

(evergreen) 
0.428  -0.08 -2.78 0.203 6.75 2133 

Dukuduku 

(evergreen) 
0.521 -0.91 -12.55 3.11 43.63 1262 

Agincourt 

(leaf-on) 
0.486 -0.53 -8.93 1.852 31.30 479 

Agincourt 

(leaf-off) 
0.167 -2.1 -36.08 3.089 51.08 337 

D’Nyala 

(leaf-on) 
0.712 -0.168 -2.7 1.413 22.82 86 

D’Nyala 

(leaf-off) 
0.157 -1.905 -28.43 2.72 40.69 896 

Ireagh 

(leaf-on) 
0.512 -0.571 -11.72 1.61 33.51 780 

Ireagh 

(leaf-off) 
0.352 -1.503 -31.54 2.295 47.92 736 

Venetia 

(leaf-on) 
0.611 -0.459 -11.94 0.76 19.81 2038 

Venetia 

(leaf-off) 
0.373 -0.831 -21.57 1.162 30.21 592 

Limpopo 

(leaf-on) 
0.438 -0.901 -14.09 2.202 34.37 677 

Limpopo 

(leaf-off) 
0.476 -1.514 -25.94 2.313 40.47 2330 

Justicia 

(leaf-on) 
0.495 -1.165 -21.88 2.183 41.06 1322 

Justicia 

(leaf-off) 
0.492 -1.387 -26.98 2.276 44.28 1319 

Welverdiendt 

(leaf-on) 
0.536 -0.608 -12.35 1.544 31.738 1965 

Welverdiendt 

(leaf-off) 
0.417 -1.221 -22.11 1.836 33.35 2723 
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