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Abstract—Emerging smart-grid-enabling technologies will al-

low an unprecedented degree of observability and control at all 
levels in a power system. Combined with flexible demand and 
storage, they could allow procuring energy at minimum cost and 
environmental impact. That however presupposes real-time co-
ordination of demand of individual households and industries 
down at the distribution level, with generation at the transmis-
sion level. This is closely related with the balancing market eco-
nomic dispatch (ED) problem, which currently does not take into 
account distribution network constraints and flexible demand 
characteristics. Still, assuming a suitably modified form of that 
problem was available, due to both computational and communi-
cations requirements, its centralized solution in its full detail 
would not be tractable. While there is currently a wealth of liter-
ature dealing with distributed optimization applications in power 
systems, it typically focuses on smaller parts of the overall energy 
management problem (e.g. transmission area synchronization or 
electric vehicles management) often without considering its full 
scale or establishing any association with energy market mecha-
nisms. The target of this paper is twofold: identify a flexible de-
mand and distribution network inclusive formulation for ED; 
and propose a solution method. 
 

Index Terms—distributed optimization, economic dispatch, 
electric vehicles, energy markets, optimal power flow, smart grid 

I.  INTRODUCTION 
HE economic dispatch is the basic mechanism used to 
determine close to real-time the operating set-points of all 

controllable devices connected in the power system in an eco-
nomically efficient way. In its traditional form it largely in-
volves committed conventional generators, known renewable 
generation and demand, and could well be approximated by a 
deterministic problem typically covering a short period in 
time. However this changes when deferrable demand is taken 
into consideration, as the utility gained by a unit of energy 
purchased by an electric vehicle (EV) or storage unit now, 
depends on the price of energy in the future, which is typically 
determined by the large generating units located at the trans-
mission level. While currently some system operators use eco-
nomic dispatch mechanisms that look up to 2 hours ahead [1], 
this is probably not an adequate period of time to schedule an 
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EV or a storage device. As [2] has shown, insufficient coordi-
nation between demand shifting decisions and generation 
scheduling can result in increased energy price volatility. In 
addition the increased flexible demand (mainly in the form of 
EVs) will put considerable strain on existing power distribu-
tion infrastructure. Consequently the balancing market should 
not only determine the price and optimal amount of energy 
trades for the current time-step (as it currently does) but also 
provide a good indication of the demand shifting impact on 
the value of energy in the near future. Furthermore, it would 
have to incorporate the constraints and peculiarities of distri-
bution networks. Overall the structure of the traditional ED 
problem has to change. Naturally two fundamental questions 
come up: what is the formulation and how could it be solved. 

A.  Investigating the Problem Structure 
A small number of papers have indeed considered the flex-

ible demand and generation coordination problem, but not in a 
balancing market context. The centralized approaches in [3, 4, 
5, 6] focus on unit commitment (UC). Reference [7] presents a 
transmission-level deterministic convexified OPF formulation 
including storage. While the multi-period optimization struc-
ture of these papers fits our problem, the solution approaches 
themselves do not. Due to the problem size they work through 
approximations by transmission-level demand aggregation. 
Thus taking into account distribution network constraints is 
out of the question. 

The difficulty of scale could be overcome through distrib-
uted solution approaches. References [8, 9] present Lagrangi-
an Relaxation (LR) based schemes, without however taking 
into account any network constraints. The approach in [10] 
does, but does not consider flexible demand or constraints at 
the distribution level. The latter is also the case for [11], which 
proposes a price-update mechanism to improve standard LR 
convergence speed. However convergence can lead to subop-
timal points and there is no clear indication of better perfor-
mance compared to other distributed methods that decompose 
an augmented Lagrangian. An alternative heuristic method for 
updating prices within a LR scheme is proposed in [12], which 
involves defining arbitrary limits to actual user flexibility. 
That paper focuses on device coordination within a microgrid 
however, and does not consider coordination of the latter with 
the rest of power system. Reference [13] proposes a two-level 
hierarchical structure for scheduling EVs but does not include 
distribution network constraints. None of these six papers con-
siders the stochastic nature of the problem. 

The aspect of uncertainty is considered in [14], which pro-
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poses a rolling horizon approach. This fits naturally to the 
balancing market which is cleared every few minutes. While 
that work uses a detailed unbalanced load flow model for the 
distribution network, it does not consider its coordination with 
the transmission level. In addition the need for such highly 
detailed models for all optimization periods is not justified, as 
there would be little point in e.g. optimizing losses or voltage 
when nodal demand variance is high. A problem structure 
closer to what [15] suggests, i.e. a discrete time model, with 
varying system modeling detail depending on the degree of 
uncertainty, seems a better option. That paper however focus-
es on unit commitment and does not consider flexible demand 
or distribution network constraints. 

B.  Contributions 
The underlying idea behind this work is that unavoidably 

any energy management application which involves signifi-
cant amounts of flexible demand (and subsequently demand 
shifting), is inherently tied to the balancing energy market and 
the associated ED problem. Consequently we seek to provide 
an answer to the following questions which current literature 
does not fully address: 1) how should ED change to account 
for the impacts of flexible demand; 2) to what extent is it rea-
sonable to manage distribution constraints within the ED prob-
lem; 3) how would demand at the low voltage level be man-
aged and represented in ED; 4) how would decentralized solu-
tions work and fit within the overall context of power system 
management. Current solutions relying on aggregation tech-
niques for parts of the system to ensure computational tracta-
bility, potentially imply a suboptimal operation of the distribu-
tion system, or designing it in such a way that its constraints 
may be neglected. Our proposed ED solution and its associat-
ed framework can overcome this issue. 

In this work we look into a simplified version of ED in that 
reserves and security constraints are not taken into account. 
Our main contributions are: 
 We propose a multi-period ED formulation which consid-

ers distribution network constraints and relevant stochastic 
aspects. This is a fundamental energy management problem 
for power networks with significant demand flexibility which 
has not been considered before in relevant literature in its full 
scale. Drawing ideas from current forward market practices, 
we propose suitable modifications to simplify the problem 
and enable its timely solution. Even in its simplified form 
distributed solutions are potentially necessary. 
 Based on practical considerations we propose a solution 

based on a hierarchical decentralized framework using prox-
imal decomposition methods and present indicative results. 
In contrast to previous work (e.g. [13]) our framework is 
based on stochastic elements of the problem rather than volt-
age levels. 
 We incorporate into our ED formulation an extended form 

of the EV aggregation model of [16, 17] for use at points 
where demand cannot be reliably forecast. 
 We propose a reference framework for energy manage-

ment, identifying how our ED formulation and decentralized 
solution methods could be applied, and identify problem 

characteristics and solution time specifications. 
These four points bring distributed energy management appli-
cations into perspective and effectively extend previously pub-
lished work on the subject, e.g. [8, 9, 13, 18]. 

The paper is organized as follows: §II presents an idealized 
centralized ED formulation; §III describes the proposed re-
formulations; §IV describes the decentralized solution; §V 
presents indicative results and discusses practical implementa-
tion issues; while §VI presents the overall conclusions. With 
respect to mathematical notation: we use bold font for vectors 
or matrices (e.g. 퐳) and italics for scalars (e.g. 푧); 퐳( , ) indi-
cates element (푥,푦)of matrix 퐳; 푑푖푎푔{퐳} indicates a diagonal 
matrix whose diagonal elements are the elements of vector 퐳; 
the operator ‖∙‖  denotes the squared Euclidean norm; 퐳{ } 
indicates a matrix/scalar associated with element x. 

II.  IDEALIZED CENTRALIZED PROBLEM FORMULATION 
Based on the preceding discussion there are two basic 

points that have to be taken into consideration: 
P1. To account for the time-linkages of flexible demand (and 

generator ramp-rates) optimization has to be carried out 
over a time-period comparable to the time a flexible device 
(e.g. an EV) is available to control (e.g. 8-12 hours [19]). 

P2. Over such a period there will be uncertainty related to a 
variety of factors such as: output of renewable generation; 
power required by inflexible demand; energy requirements 
as well as arrival and departure times of EVs. 

Thus, a comprehensive way to describe our problem would be 
through a multi-period stochastic programming formulation, 
where uncertainty is modeled through a set of scenarios de-
scribing possible system states. The objective is the minimiza-
tion of expected cost (negative utility) over all possible scenar-
ios [10, 20]: 

min
퐏,퐐

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

π{ } 푢{ , }
∈[ , ]∈[ , ]

:

퐏,퐐 ∈
퐶 { , }
퐶 { , }

		
푖푓	푢푠푒푟	푖	푖푠	푔푒푛푒푟푎푡표푟
푖푓	푢푠푒푟	푖	푖푠	푑푒푚푎푛푑

푖∈[1,푛푢]
푠∈[1,푛푠]

													
퐏( , , ) = 퐏( , , )
퐐( , , ) = 퐐( , , )

∈[1,푛푢]
푠∈[2,푛푠]

퐶 { , , }
∈[1,푛푛]
푠∈[1,푛푠]
푡∈[1,푛푡]

퐶

													 ⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 (1) 

Where: 
퐶  Constraint set describing a demand block or device. 
퐶  Constraint set describing a large generator or wind park. 
퐶  Linear constraints set which couples all other sets together. 
퐶  Constraint set describing an ac network. 
푛  The number of transmission and distribution network areas. 
푛  Number of clients / network users including generators. 
푛  Number of scenarios of possible future power system states. 
푛  Number of time-steps in the optimization period. 
푢 Cost (negative utility) function of a user/client. 
퐏,퐐 푛 × 푛 × 푛  matrix of active and reactive power schedules 

with element (푖, 푠, 푡) representing the power schedule of user 
i in scenario s and time-step t. 

π Probability of a scenario. 
The above formulation comes with the following assumptions: 
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A1. The market is cleared at fixed intervals (e.g. every 15 
min) and as such variables and constraints associated with 
the first optimization time-step could be considered deter-
ministic. Thus the decision for the first time step is the same 
and binding for all scenarios. 

A2. Prior to the balancing market itself, unit commitment 
mechanisms have set the conventional generators operating 
status (on/off). As such we do not deal with the associated 
discrete variables or cost non-convexities. Market penalties 
for deviations are not explicitly considered but could be tak-
en into account through the addition of relevant objective 
function terms. 

The constraints in (1) describe in order: user/device con-
straints; the non-anticipativity constraints implied by assump-
tion A1; and the network and coupling constraints. 

A.  Network Constraints 
We assume that the network is separated to areas. A single 

area may represent part of the transmission and/or distribution 
network. The most straightforward way to describe an arbi-
trary ac network is through the following set of constraints (in 
complex numbers notation): 

퐶 { , , } =

⎩
⎨

⎧퐒 { , , } = 푑푖푎푔 퐕{ , , } 퐘{ }퐕{ , , }
∗

퐕{ } ≤ 퐕{ , , } ≤ 퐕{ }

퐘 { }퐕{ , , } ≤ 퐈 { } ⎭
⎬

⎫
 (2) 

Where: 
푛  The number of buses/nodes in the network. 
퐒  Bus apparent power injection 푛 × 1 vector. 
퐈  Line current limit vector. 
퐕 Bus voltages 푛 × 1 vector. 퐕 and 퐕 denote the upper and 

lower bounds on voltage magnitude respectively. 
퐘,퐘  Bus admittance and line flow admittance matrix respective-

ly. 
The equations in 퐶  describe in order: bus power balance; 
voltage magnitude constraints; line capacity constraints. 

B.  Generation Constraints 
For a generating unit the relevant constraints are: 

퐶 { , } =

⎩
⎪⎪
⎨

⎪⎪
⎧ 푢{ , } = 푐 { }퐏( , , ) + 푐 { }퐏( , , )

∈[1,푛푡]

푃{ , , } ≤ 퐏( , , ) ≤ 푃{ , , }	∀	푡 ∈ [1,푛푡]

푄{ } ≤ 퐐( , , ) ≤ 푄{ }	∀	푡 ∈ [1,푛푡]

푃 { , } ≤ 퐏( , , ) − 퐏( , , ) ≤ 푃 { , }	∀	푡 ∈ [2,푛푡]⎭
⎪⎪
⎬

⎪⎪
⎫

 (3) 

Where: 
푐 , 푐  Active power variable cost coefficients. Additional utility 

terms could be added relating to reactive power provision. 
푃  Ramp rate limits. 
For a conventional generator power limits are the same for any 
value of the index s. For a renewable generator the lower 
bound is zero, the upper bound varies following a given fore-
cast error distribution (e.g. [21]), while the ramp rate-
constraint is redundant. 

C.  Demand Constraints 
For user-level demand / devices the constraints are: 

퐶 { , } =

⎩
⎪
⎪
⎨

⎪
⎪
⎧푢{ , } = max 푐 { } 퐸{ , , } − 퐸 { , , } , 0

∈[ , ]

푃{ , , } ≤ 퐏( , , ) ≤ 푃{ , , }	∀	푡 ∈ [1,푛 ]	

퐸{ , , } = 퐸{ , , } + 푐 퐏( , , )	∀	푡 ∈ [1,푛 ]
퐸{ , } ≤ 퐸{ , , } ≤ 퐸{ , }	∀	푡 ∈ [1,푛 ]

퐐( , , ) = 퐏( , , )	푡푎푛휙	∀	푡 ∈ [1, 푛 ] ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (4) 

Where: 
푐  The cost of shedding demand (value of lost load). 
푐  Factor accounting for energy conversion losses. 
휙 Angle between active and reactive power. 
퐸 Energy stored at the end of a time step. We assume that 

퐸{ , , }=0 and that the energy bounds have been appropriate-
ly shifted. 

퐸  Energy target at a given time step. Note that by definition 
demand is negative, thus the utility function penalizes cases 
where energy consumed is less than the desired. 

In this work we consider the following types of demand / de-
vices which are adequately modeled by the above equations: 

Inflexible demand: The upper power bound would be 0, and 
the lower would vary in different scenarios following a cer-
tain forecast error. Energy bounds are redundant, while 
퐸 { , , } = ∑ 푃{ , , }∈[1,푛푡]  and 0 for all other time steps.  
Small scale renewables: These are simply assumed to be 
negative demand (i.e. 0 lower bound on power and 푐 = 0) 
Electric vehicles: For an EV 퐸  represents the energy re-
quirements for travelling purposes. Power bounds are set to 0 
if the vehicle is not connected. Typical probability distribu-
tions for vehicle connection / disconnection times and energy 
requirements may be found e.g. in [19]. We do not model 
self-discharge energy losses for battery systems as these typ-
ically amount to less than 5% during the first 24h [22], and 
are unlikely to affect a system-wide optimization results. 
Based on [23, 24] we assume that the majority of EVs oper-
ate in a unidirectional manner. 

The reasoning behind focusing on these particular devices is 
that their combined use would likely be the main cause of is-
sues with respect to distribution network operation. However 
there is a number of other types of demand that have their own 
role to play in energy management such as: storage (battery 
based storage is actually covered by (4)), household wet appli-
ances [25], heating systems [26], industrial processes, etc. 
Modeling the flexibility of each individual type of de-
vice/demand is a considerable task that goes beyond the pur-
poses of this work. However our formulation and solution 
approach are generic and it is easy to add additional constraint 
sets or modify existing ones. 

D.  Coupling Constraints 
The various constraint sets described above are linked to-

gether through an additional set of linear constraints: 
퐶 = {퐂 퐔{ , } = 0	∀	푠 ∈ [1,푛푠], 푡 ∈ [1,푛푡]} (5) 

The vector 퐔  is derived from the concatenation of 
퐏( , , ) ,퐐( , , ), 퐒 { , , } , and 퐕{ , , } for all constraint sets. Matrix 
퐂  has elements of 1, 0, -1 establishing coupling variables 
equality. This constraint set is further clarified in the Appen-
dix in §VII. 
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III.  REFORMULATION & DECENTRALIZATION 
It should be clear that, using centralized methods, problem 

(1) is probably intractable. Regarding its solution the follow-
ing points could be made: 
P3. When considering energy scheduling decisions in terms 

of each individual device it might not be possible to carry 
out a sufficient system-wide scenario reduction as e.g. done 
in UC. A more detailed representation of uncertainty could 
be required to manage variables at the distribution level 
(e.g. scheduling EVs at a heavily loaded low voltage feeder 
would depend on uncertainties related to the local network 
loading conditions, requiring efficient micromanagement of 
local resources; the transmission level would simply see a 
feeder absorbing almost constant power over time). 

P4. While distributed methods could help in dealing with the 
size of this problem, a price-based decomposition (e.g. La-
grangian Relaxation based method) would imply that 
2 × 푛 × 푛  prices would have to be updated at each decom-
position point (to account for active and reactive power, 
twice as many to account for voltage), while also tracking 
which prices correspond to which scenario. This would be 
challenging and would imply significant requirements in 
terms of communications bandwidth and reliability. 

P5. Even if it were possible to somehow avoid the scenario 
building process and coordinate subproblems through the 
exchange of probability distributions (for power and price), 
this would imply that at each iteration of a distributed opti-
mization approach, probabilistic optimal power flow prob-
lems would have to be solved. In terms of computational 
burden, this is not very realistic. 

Considering the points above simplifications are required. 

A.  Problem Simplification 
Before proceeding further we introduce the concept of 

market aggregator (MA), i.e. an entity that manages subsets of 
the constraints. The MA interacts with the rest of the system 
through his energy schedule at specific nodes. The simplifica-
tion we propose lies in that MAs are forced to submit a single 
power value for each time step of the optimization period for 
these specific nodes, set to be equal to the expected value of 
their power schedule. Mathematically it is equivalent to substi-
tuting the coupling constraint set 퐶  with: 

퐶∗ =
퐂 퐔{ , } = 0
∀	푠 ∈ [1,푛 ],
푡 ∈ [1,푛푡]

∩
퐂 훑( )퐔{ , }

∈[ , ]

= 0

∀		푡 ∈ [1, 푛푡]
 (6) 

Where 퐶  corresponds to coupling constraints (part of 퐂  and 
퐔) handled internally by the MAs, while 퐶  corresponds to 
constraints at nodes where different MAs interact (remaining 
part of 퐂  and 퐔). This is further clarified in §VII. This de-
couples the stochastic elements of MA subproblems and ex-
tends our list of assumptions: 
A3. For each time step connected MAs are forced to submit a 

single power value at their coupling nodes. As a conse-
quence they interact through a single price which they as-
sume to be a good estimate of the expected energy price. In 

addition possible scenarios need only be considered locally 
by each MA rather than for the whole system. This follows 
the reasoning of P3, and allows the MA to keep a sufficient-
ly high degree of uncertainty representation locally, without 
hindering the system-wide solution process. 

The proposed simplification in principle does not differ much 
from what is currently done in forward markets, i.e. the prob-
lem is solved in a semi-deterministic way by passing part of 
the uncertainty management to market players. Potentially 
푀퐴s could face market penalties for deviations, which would 
have to be calculated and be applied based on an ex-post as-
sessment of the market solution. These could be taken into 
account through additional objective function terms for each 
MA and potentially by relaxing the equality in 퐶  to allow the 
MA to submit any desired schedule. The actual design of the 
market rules (i.e. calculation and application of such penalties) 
is however outside the scope of this paper. It should be noted 
that despite this reformulation it is still not possible to solve 
this problem in a centralized manner due to the number of 
constraints and the fact that thousands of users would have to 
communicate with one central controller. A distributed solu-
tion is necessary and presupposes the determination of the 
constraint subsets that MAs would manage. 

B.  Market Aggregator Structure 
The overall multi-period problem structure may be visual-

ized on the table-like structure of Fig.1. As may be observed 
the problem has a hierarchical structure which is indicative of 
how it should be decomposed and of the interrelations be-
tween the generated subproblems. First a number of 푀퐴 s 
would be managing parts of the transmission system. As such 
we have the transmission system operator (푀퐴 ) type of 
subproblems which manage subsets of the transmission con-
straints. Linked with them are the problems of distribution 
system operators (푀퐴 ) managing parts of the distribution 
network at a specific bus, and the problems of independent 
large generators (푀퐴 ). At an even lower level one could 
find a small number of medium voltage nodes and/or all users 
at a low voltage feeder managed by a microgrid operator 
(푀퐴 ). The initial optimization problem may be decom-
posed into these general types of subproblems. At this point 
we further extend the assumptions regarding our solution ap-
proach: 
A4. Each market aggregator is equipped with a digital device 

which solves a generic subproblem formulation (described 
in section IV) and handles the necessary communications 
with the rest of the system. Constraint parameters values 
and forecasts are provided by the user / aggregator but 
changes are not possible during an optimization run. 

A5. The size of an MO is such that the uncertainty regarding 
its expected power schedule can be reasonably small. From 
a market perspective this size could be indirectly determined 
through imposed penalties for deviations. Following [27] we 
assume that marginal pricing is also applied to 푀푂s. 

In the following subsections we present the decomposition 
approach and the various MA subproblems. 
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IV.  DECOMPOSITION 
Current power systems literature presents a wide variety of 

papers dealing with distributed solutions in power flow or 
energy management problems. References such as [28, 29, 30] 
deal with optimal power flow decomposition in multiple 
transmission areas but do not deal with the particular problems 
of demand. A more detailed review of such methods may be 
found in [18, 31] which indicate that proximal based decom-
position methods (in particular the so called Alternating Direc-
tion Method of Multipliers – ADMM) are promising candi-
dates for the present application. Similar in principle proximal 
based algorithms have been also used for EV management, 
e.g. [32], but do not include network constraints. Our decen-
tralized solution is based on ADMM but of course any similar 
method could be applicable. For brevity we do not present the 
theoretical background in detail as relevant information and 
convergence considerations may be found in [31, 33, 18]. For 
reference, if 풙 is a vector of all optimization variables and 퐱  
is the subset of 퐱 involved in 퐶  our initial problem may be 
written as: 

min
풙∈ \
풛∈

{푓 (퐱):퐳 = 퐱 } 
(7) 

Then ADMM gives three consecutive iterative steps: 

퐱 = argmin
∈ \

푓 (퐱)
	

+ 훌 퐱
	

+ 휌‖퐱 − 퐳 ‖
	

 (8) 

		퐳 = argmin
퐳∈ 풍

풆풙
퐱 − 퐳  (9) 

		훌 = 훌 + 2휌(퐱 − 퐳 ) (10) 
Where 휌 a penalty factor, and 훌  a row vector of Lagrange 
multipliers corresponding to the constraints 퐳 = 퐱 . The cost 

term in (8) is the objective function of (1), the price term is 
related to the Lagrangian multipliers, while the penalty term is 
introduced by the method, is 0 at the optimum and essentially 
is what ensures smooth convergence. Problems (8)-(10) are 
separable with respect to MAs. It should be noted that the only 
information exchange required at each iteration is that of the 
power schedule. As such privacy over information is main-
tained and the volume of data transferred per iteration is very 
low. Based on the general guidelines presented in [18], 휌 is set 
to be a percentage (~20%) of an estimate of the expected value 
of max{흀 } at the optimum. Such an estimate would generally 
be available from a previous ED solution. With respect to the 
decomposition structure the following observations may be 
made: 
P6.  Regarding the decomposition of the transmission net-

work: 1) for large degrees of decomposition especially in 
certain congested or contingent cases convergence can be 
slow [18, 34]; 2) contingency constraints typically involved 
in OPF are not necessarily easy to decompose. Thus it can 
be expected that at this level decomposition, would be lim-
ited to a rather small number of areas, implying that TSO 
subproblems would remain computationally intensive. 

P7. Following the above it is of interest to limit as much as 
possible iterations at this level (i.e. number of TSO prob-
lems that have to be solved). However, these are bound to 
increase with increasing disaggregation (i.e. larger number 
of MOs) [18]. At the same time however it is also of interest 
to disaggregate demand and represent it in as much detail 
as reasonably possible, given that ED is the last attempt to 
coordinate resources system-wide in an economically opti-
mal way. Any dispatch / control mechanisms that follow 
would have to act locally and as a consequence cannot pos-

 
Fig.1. Left: Schematic representation of involved constraint sets. Each block represents a constraint set. The columns and rows correspond to 
time-steps and constraint set type respectively. There is a third dimension to this table as multiple copies of the same constraint type may 
exist (indicated by blocks piled on top of each other). Each arrow-line indicates coupling between sets (part of 퐶 ). Note that blocks with
time-linkage constraints, e.g. flexible demand (퐶 ), cover multiple columns. For the illustrated example there exist three copies of 퐶  for each 
time-step at the transmission level. The constraint set of area 1 is linked with the distribution constraints of buses 2 and 4, the generators at 
bus 2 and the other two transmission area constraint sets. The distribution network constraint set of bus 4 is in turn linked with various low 
voltage network constraint sets and the individual users. Right: Schematic representation of the underlying decomposition structure. Each 
block represents a market aggregator and arrow-lines indicate coupling and required bi-directional communications links. 
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sibly be optimal in that same sense. 
One way to account for these two considerations is to carry 
out the decomposition in two consecutive passes [18]: 
 TSO level: First the problem is decomposed to 푀퐴 , 
푀퐴∗  and 푀퐴  types of problems. An 푀퐴∗  problem 
involves all distribution network and user constraints of a 
transmission bus. 
 DSO level: At this point the 푀퐴∗  problem is further de-

composed into the actual 푀퐴  problem containing most of 
the distribution network constraints and the individual 푀퐴  
types of problems which include all user constraints. 

With this two-level decomposition, independently of the de-
gree of disaggregation at the DSO level, iterations at the TSO 
level remain unaffected. A flowchart describing the solution 
approach may be seen on Fig.2. In the following we present 
the subproblems this method generates based on (8). 

A.  Decomposition Subproblems 
For each 푀퐴  we have the following subproblem: 

min
퐱풂

훌 : 퐱 :

	

+ 휌 퐱 : − 퐳

	 	

:
퐱 ∈ 퐶 { , , } ∩ 퐶 :

∗ 	∀	푠 ∈ [1, 푛 ], 푡 ∈ [1,푛 ]
 (11) 

The index ‘a’ indicates subsets of variables and sets managed 
by the aggregator. For each 푀퐴  we have: 

min
퐱풂

푓 : (퐱 )
	

+ 훌 : 퐱 :

	

+ 휌 퐱 : − 퐳

	 	

:
퐱 ∈ 퐶 { , } ∩ 퐶 :

∗ 	∀	푠 ∈ [1, 푛 ]
 (12) 

For each 푀퐴  we have: 

min
풙

⎩
⎪⎪
⎨

⎪⎪
⎧

훌 : 퐱 :

	 	
	

+ 휌 퐱 : − 퐳

	 	

+

+ 훌 : 퐱 :

	
	

+ 휌 퐱 : − 퐳

	 	

:
퐱 ∈ 퐶 { , , } ∩퐶 :

∗ 	∀	푠 ∈ [1, 푛 ], 푡 ∈ [1, 푛 ]⎭
⎪⎪
⎬

⎪⎪
⎫

 (13) 

Where ‘′’ indicates variables related with the DSO level de-
composition pass. Finally for each 푀퐴  we have: 

min
퐱풂

푓 : (퐱 )
	

+ 훌 : 퐱 :

	

+ 휌 퐱 : − 퐳

	 	

:
퐱 ∈ 퐶 { , } ∩ 퐶 { , , } ∩ 퐶 :

∗ 	∀	푠 ∈ [1, 푛 ], 푡 ∈ [1, 푛 ]
 (14) 

Effectively (14) represents the only hard stochastic subprob-
lems that have to be solved. Note that since network con-
straints are fully separable in time the TSOs and DSOs can 
actually solve their 푛  network subproblems in parallel. The 
above subproblems are further clarified in §VII. 

B.  Microgrid Operator Subproblems 
Considering the solution of the MO problem with a poten-

tial further decomposition to the individual user: 
P8. For similar reasons to those mentioned in P3-P5 decom-

position might not be easy. On the other hand given the 
much smaller size of the microgrid level problem centralized 
solutions might be tenable, albeit not fast enough to work 
within a decentralized solution framework. 

P9. Most of the available controls at the individual user level 

may be expected to be discrete in practice. One decentral-
ized method which could deal with such constraints is pre-
sented in [8, 12] however it does not deal with uncertainties 
and it is not clear how it would perform as part of a larger 
decomposition scheme. 

P10. There might not be any actual benefit from privacy of 
information. Individual users would receive bills which 
would reflect how well their aggregate demand was man-
aged and as such would be inclined to reveal their flexibility 
and actual utility to the MO. In addition with a large scale 
deployment of smart meters and real-time measurements the 
MO could identify what devices e.g. a household uses at a 
given time, even if the latter did not directly disclose such 
information. 

P11. On a nodal basis (when looking at a single or a few 
households) demand variance can be expected to be quite 
high compared to its expected value. Under presence of 
such uncertainty one can have nothing more than an edu-
cated guess regarding system quantities (voltage, power, 
etc.) at a significant computational cost. In UC formulations 
(e.g. [15]) in such cases simpler, more abstract models are 
used. The same concept could be applied in ED. 

Considering the points above, in this work: 
A6. For managing users we use a practical three-step ap-

 
Fig.2. Decentralized optimization approach flowchart. The indices 
푘, 푙 correspond to TSO and DSO level decomposition respectively, 
and are transmitted to enable agent synchronization. It is assumed 
that the tap changing action of the transformer decouples the voltage 
between TSO and DSO. 
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proach similar in principle with [16] where users communi-
cate in a single round their requirements and willingness to 
pay to the MO, and the latter builds an approximate aggre-
gate model which is used to determine the optimal aggre-
gate demand at each iteration of Fig.2. After market clearing 
the MO breaks down the aggregate demand to individuals. 

A7. The approximate aggregate model is built right before a 
decentralized ED run commences. As such the time required 
to build the model will affect only how recent measurements 
/ forecasts may be used for its creation, and will have no 
impact whatsoever in ED convergence time. 

The aggregate model should adequately represent the feasibil-
ity region of the aggregate demand power but at the same time 
be sufficiently fast to solve. One possible approach to aggre-
gation is through various scenario reduction techniques [5, 6]. 
However the resulting number of constraints can still be quite 
large. An analytical method is presented in [35] but considers 
only the state of charge as a stochastic variable. In [36] an 
approach based on heuristics is proposed but the computation-
al cost is still significant. Another approach is modeling an EV 
fleet as a single vehicle [3] which is based on expected values 
of the constraints. Along similar lines an aggregate model for 
an EV fleet is presented in [16] which calculates and sets 
bounds on the total energy that the fleet can consume. With 
respect to power it considers an upper bound which incorpo-
rates grid capacity constraints. The model was extended in 
[17] to take into account uncertainty on EV arrival and depar-
ture times. Given the excellent scalability and solution speed 
we use a modified form of that model, which combines both 
flexible and inflexible demand and allows demand curtail-
ments. 

C.  Microgrid Level Demand Aggregation 
In order to build the aggregate model first a set of scenarios 

is generated by sampling probability distributions to determine 
power for inflexible demand, energy requirements and availa-
bility for flexible demand (i.e. EV arrival and departure 
times). Then the aggregate power and energy bounds for each 
of those scenarios are estimated. While these power bounds 
are not generally a one-to-one function of aggregate power 
they may fall in a rather limited band as e.g. shown on Fig.3 
and could be approximated by linear constraints. Using the 
expected values of points A to E allows rewriting (14) as: 

min
퐏 ,퐏퐜

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧푐 퐏 ( )

∈[ : ]

+ 훌 : [퐏 ;퐐 ] + 휌 [퐏 ;퐐 ] − 퐳 :

퐸 { } ≤ 퐸 { } = 푐 퐏 ( ) − 퐏 ( ) + 퐸 { }

푃 { } ≤ 퐏 ( ) ≤ 푃 { } 		(lines	A,B)

푢 { }퐸 { } + 푢 { } ≤ 푐 퐏 ( )	(line	C-D)
푃 { } ≥ 푐 퐏 ( ) −퐏 ( ), 		퐏 ( ) ≥ 0	(line	E)

퐐 = 퐏 	푡푎푛휙 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 (15) 

Where: 
퐏풂,퐏풄 Aggregate energy consumption and curtailment schedule 

푛 × 1 vectors. 
퐸풂 Aggregate energy including curtailed energy. 
퐸풂ퟏ Aggregate energy which if not met will imply curtailments 

calculated based on the targets 퐸  of individual devices. 

푃  Power which if not drawn will imply curtailments based on 
the target 퐸  and power limits of individual devices. 

푃 ,	푃  Minimum and maximum aggregate power devices could 
draw irrespective of energy capacity but including network 
limitations (due to capacity, voltage drop/rise, voltage im-
balances). The latter may be derived by solving a maxi-
mum flow problem given the devices connected at each 
time-step, or roughly be approximated by the maximum 
aggregate power the network has been observed to be able 
to draw in practice. 

푐풂 Average cost of shedding demand. 
푐풍 A coefficient ∈ [0,1] approximating losses. 
휙 Average active / reactive power angle. Note that the rele-

vant constraint could be replaced by bounds on reactive 
power if there is local reactive power control capability. 

푢 ,푢  Coefficients calculated based on expected values of C,D. 
The above process may be executed iteratively until no notice-
able changes are observed in expected bounds or a certain 
time has passed. While this model for the first few optimiza-
tion time-steps can be accurate (given the limited aggregate 
uncertainty and choice in distributing aggregate energy), for 
the remaining time-steps it is approximate in terms of power 
limitations and equivalent utility, as these depend on the indi-
vidual state of each user and this information is lost on aggre-
gation. We would like to stress that this model is not expected 
to give a definitive decision on individual devices schedules. 
Rather it is expected to produce with very low computational 
burden, an adequately good estimate of the expected power 
injection of the microgrid to the rest of the network. This for-
mulation is not meant to be restrictive. Use of more complex 
models to cover other device types, or uncertainty and net-
work constraints in more detail is possible, as long as the 
computational time is not significantly increased (not more 
than that of the solved in parallel DSO subproblems). 

V.  RESULTS & DISCUSSION 

A.  Base Test Case 
Our test system is a slightly modified version of the RBTS 

6 bus system, which is the only IEEE test system that includes 
distribution network (data and schematics may be found in 

Fig.3. Simple example illustrating bounds on power at time-step 6 for 
a randomly generated population of 100 EVs and sets of randomly 
selected charging schedules. These limits could be approximately 
represented by three linear constraints with A 0,푃 , B 0,푃 , C 
(determined through a simple search process by gradually increasing 
and allocating aggregate energy, 푃 , D (0, sum of total energy that 
could be stored to all devices connected by that hour), E 0,푃 . 
 

0
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[37]). Regarding our test case: 
 We assume that approximately 6kW of peak demand corre-
spond to a residential user, 30% of whom own an EV, 30% 
of which are connected at the start of the optimization period. 
The maximum EV charging power is assumed to be 6.6kW 
[35] while the battery size is assumed to be 50푘푊ℎ. The re-
sulting demand with the addition of EVs if left uncontrolled 
would create congestion or significant voltage drops at the 
distribution level. However if controlled the existing network 
is sufficient for meeting requirements in terms of energy 
without curtailments. 
 The optimization period is divided into 12, 1h time-steps, 
which is assumed to be an adequate look-ahead period for 
managing EVs. The time-step length could of course be se-
lected to be smaller or vary depending on the distance from 
the first time-step. 
 In order to illustrate the ability of the method to coordinate 
TSO subproblems the transmission network was separated 
into 3 areas as seen on Fig.1. The demand at each distribu-
tion node is managed by an MO aggregator. This is not re-
strictive however; the demand at a node could have been 
managed by multiple MOs or multiple nodes could have 
been managed by one MO. In general (assuming aggregate 
models are used) as the number of MOs decreases, conver-
gence speed may be expected to increase (fewer iterations at 
the distribution level), but the quality of modeling detail in 
terms of devices and distribution network would be worse. In 
practice the relation between distribution nodes and MO ag-
gregators is uncertainty dependent. Investigating this relation 
based on actual measurements would be a subject of particu-
lar interest. As it is our test case involves: 3 TSOs, 181 MOs 
and 5 DSOs. Building the aggregate models took less than 1 
min for each MO. 
 Stochastic inflexible demand forecast errors are assumed to 
follow a uniform distribution (ud). For an EV not connected 
at the first time-step truncated normal distributions (tnd) are 
used. The selected parameters are: 
 distribution (휇 ,휎) [푚푖푛,푚푎푥] 
inflexible demand ud - [−푡, 푡] ∙ 1.5% 
EV arrival time tnd (3,1) [2,8] 
EV departure time tnd (12,1) [7,14] 
EV arrival charge state tnd (75%, 25%) [25%, 95%] 
These data are representative of the level of uncertainty 
which might be found in practical situations (e.g. similar data 
may be found also in [19, 38]) and are chosen for illustrative 
purposes. Any other distributions derived from particular real 
situations could equally well be used. 

The time required by a subproblem for a single iteration is the 
sum of computational time of that subproblem and the com-
munications latency (i.e. the time required for communicating 
the energy schedules to other agents), i.e.: 

				푡 = max 푡 , 푡 … , 푡 , … , 푡∗ , …  (16) 

푡∗ = max 푡 , 푡 , 푡 , …  (17) 

The operator Σ stands for the summation over all iterations at 
that level. Given that at the moment there is no fully fledged 
standard regarding smart grid communications, a value of 0.1s 

is assumed for the latency. Regarding the results: 
 As may be seen on Fig.4 in terms of transmission level iter-

Fig.4. Convergence results for the IEEE RBTS: 
a-b. Active and reactive power marginal prices convergence for each 
transmission bus and all time-steps. 
c-d. Iterations and time required for DSOs subproblems. 
e. First time-step real power marginal prices for all system nodes 
(different color used for nodes belonging to different buses - bus 1 
only has a set of generators and no other distribution network, and as 
such is not easy to distinguish here). Due to losses higher prices are 
observed at the end of distribution feeders (particularly so for a 
lengthy 33kV feeder on bus 6). 
f. Aggregate convergence time for the fully decentralized solution. 
g-h. System-wide power and energy schedules and indicative repre-
sentation of the corresponding extreme bounds (shaded area indi-
cates normal operation without curtailments).  
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ations convergence is achieved in about 140 iterations at the 
TSO level. During each such iteration each DSO problem re-
quires its own number of iterations. Note that the latter as the 
optimization progresses tend to decrease thanks to the fact 
that the TSO level marginal prices stabilize near their opti-
mal values, while the DSO subproblems have the good initial 
points provided by the previous TSO level iteration. 
 The system involves 6 transmission buses and 286 distri-

bution nodes. This means about 7k power balance and 3.5k 
line capacity constraints. The constraints number for MO 
subproblems would be on the order of 17k. Despite the small 
size of the system the resulting problem is large. The results 
indicate the ability of the proposed scheme to coordinate en-
ergy management within a time frame (in this case less than 
4min) acceptable for market applications. As may be seen 
the first optimization time step corresponds to a time of high 
demand with domestic consumption near its peak. The flexi-
ble part of demand is shifted towards later hours. The end re-
sult is a rather flat price and demand profile. 

It should be noted that the time to convergence could poten-
tially be improved if instead of a flat start (i.e. in (8) 휆 =
푧 = 0) the simulation was initialized based on a solution of 
the previous time-step. More efficient implementations of the 
used optimization algorithms are also possible than our current 
ones (done in MatLab). For the optimization subproblems we 
used closed-form solutions if possible, and the primal-dual 
barrier interior point algorithm of MatLab optimization 
toolbox otherwise. The iterative nature of this distributed solu-
tion could allow for improved constraint management heuris-
tics which would remove inequality constraints that are not 
expected to become active in the subproblems, thus reducing 
computational burden. 

B.  Time-wise Scalability 
In this section we investigate the impact of look-ahead pe-

riod in terms of convergence. Based on the RBTS 6 bus test 
case a series of simulations were performed with a gradually 
decreasing number of time-steps. The results may be seen on 
Fig.5. The differences in convergence time and iterations are 
due to the fact that, as the time-steps number changes, these 
are effectively different optimization problems with slightly 
different solutions. Nevertheless the changes in time are not 
significant. The reason is that MO subproblems (which in-
crease in size) are solved in parallel with the more computa-
tionally intensive DSO network subproblems which do not 
change in scale (network subproblems for the new time-steps 
are solved in parallel with the existing ones). The results indi-
cate that it is possible to increase the number of time-steps 
without any negative impact on convergence time. 

C.  Network Scalability & Implementation Challenges 
In this section we try to gain some insight with respect to 

scalability in terms of network size. Unfortunately data de-
scribing a large network including both transmission and dis-
tribution were not available. Therefore we set up an additional 
test case based on the IEEE 118 bus network (base data avail-
able on [39]). We retained the transmission level system data 
as is, and we added distribution data as copies of the RBTS 

feeders, e.g. for the 118 system bus 59 (277MW), three copies 
of the RBTS bus 3 distribution feeders (85MW) were added 
with inflexible demand slightly scaled to give the total of 
277MW. This yielded a problem with a total of 1024 distribu-
tion nodes, i.e. about 4 times larger than our base test case. In 
all other respects (e.g. EV penetration) the test case was con-
structed in a similar fashion with the base case. With respect 
to decomposition structure: the transmission network was con-
sidered as a single area/subproblem; for buses with large dis-
tribution networks, sets of feeders were considered as separate 
subproblems (e.g. for the previously mentioned bus 59 three 
equivalent DSO subproblems were created) giving a total of 
102 DSOs and 731 MOs. As may be seen on Fig. 6 conver-
gence is achieved in about 5.5 min. This increase in time was 
due to the slightly increased number of iterations required at 
both the transmission and distribution level, and also the larger 
size of certain subproblems. 

Unavoidably when one moves to even larger systems, as 
the solution time of the network subproblems increases, so 
will the overall convergence time. Based on the presented re-

Fig.5. Effect of number of time-steps 푛  on convergence speed. 

Fig.6. Convergence results for the modified IEEE-118 bus network: 
a-b. Active and reactive power marginal prices convergence. 
c. Iterations required for DSO subproblems. 
d. Aggregate convergence time for the fully decentralized solution. 
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sults the proposed method appears to be applicable to small or 
medium sized systems. To determine its applicability on larger 
systems further testing is required considering that: 
 If the communications delays are ignored (i.e. latency is 

set to 0) then the solution time for the RBTS-6 and IEEE-118 
reduces to about 1 and 2 minutes respectively. Further inves-
tigation into communications structures and modeling ex-
pected delays realistically is an important issue, as is the di-
rectly related subject of efficient implementation (in software 
& hardware) of the optimization subproblems solvers. 
 Investigating what are the most efficient distributed solu-

tion methods, especially at the distribution level (potentially 
exploiting their radial structure), is also an important subject. 
 Decomposing a very large transmission network into even 

a small number of areas could imply a much faster solution 
of TSO level subproblems, despite an increase in terms of 
iterations (relevant information may be found in [18]). How-
ever, the inclusion of security constraints and investigating 
efficient methods for their decomposition are key issues. 

Overall, we would like to stress that what we present in this 
paper is the basic solution concept. Several extensions are 
required before a full practical application, but these go far 
beyond the purpose of a single paper. 

D.  Coordination 
As pointed out in A1 ED presupposes coordination with 

UC mechanisms. In addition, the fact that we cannot have a 
definitive decision regarding individual microgrid level devic-
es schedules as part of our overall ED solution, implies that an 
additional microgrid dispatch (MD) mechanism is required. 
The latter should operate at a time resolution much faster than 
that of ED, and should be capable satisfying user require-
ments, handling microgrid network constraints in their full 
detail, while following the ED solution as closely as possible. 
A wide variety of methods have been proposed in the litera-
ture (e.g. [12, 14, 40, 41]) which could be suitably adapted to 
serve this purpose. The overall energy framework we envision 
in this work is illustrated in Fig.7. Electricity markets (through 
UC and ED) are there to achieve coordination over time and 
utility maximization across the whole network; dispatch at the 
microgrid level will be there to follow the ED signals to the 
best of its ability while satisfying user energy requirements. 

VI.  CONCLUSIONS 
This paper described a conceptual framework for the bal-

ancing market ED that could enable an efficient, close to real-
time, management of flexible demand and distributed system 
resources. Based on practical considerations we identified a 
suitable formulation and solution approach based on a partial-
ly decentralized hierarchical structure where the microgrid is 
considered as the fundamental component. The presented 
method involves the disaggregation of demand to the degree 
that it is meaningful to do so (based on associated uncertainty) 
bringing the following advantages: 1) allows a much better 
solution quality in terms of distribution network constraints 
compared to approaches which would use aggregate models at 
the transmission level; 2) allows a more exact representation 

of both flexibility and network related limitations through the 
aggregate MO models; 3) limits the scale of MD problems so 
that they may be solved adequately fast to respond to the high-
ly variable demand at that level. The proposed framework 
holds promise for a future application in practice, as our simu-
lation results indicate convergence within an acceptable 
amount of time is possible. However, much further research is 
required in several directions. Further investigating the repre-
sentation of microgrid level problems and the impact of secu-
rity constraints, and reducing iterations to convergence are 
among our key future research targets. 

VII.  APPENDIX 
Using the simple example of Fig.8 we will clarify the pro-

posed solution process. In our example, 푃  is a conventional 
generator, 푃  is inflexible demand with three possible scenari-
os (high/medium/low power), 푃  represents a set of EVs with 
four possible scenarios (early/late connection time and 
high/low energy request), resulting in a total of 12 possible 
scenarios for the whole system. Thus: 푛 = 12, 	푛 = 3 and we 
set 푛 = 8. For brevity we present only the constraints associ-
ated with real power (voltage magnitudes equal to 1) and omit 
the non-anticipativity constraints. As such our example does 
not include voltage coupling constraints (the relevant exten-
sion is straightforward). With respect to decomposition we set 
풛{ } = 퐏(1,푡),푃푏1{푡}

′ , 푃푏2{푡} ,푃푏2{푡}
′ , 풛 { } = 푃푎{푡} ,푃푏4{푡} and let 

흀 { }, 흀 { }  be the corresponding Lagrange multipliers. The 
constraints based on the centralized formulation, MA-based 
simplifications, and the corresponding MA subproblems based 

Fig.7. Conceptual energy management framework. The arrows repre-
sent transmission of information. This framework and presented solu-
tion approach may be extended to take particular market rules and 
penalties into account. 

 
Fig.8. Simple decomposition example. For each bus/node we may 
define two power vectors, e.g. for bus 4: 푃 + 푃 = 0. 
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on equations (11)-(14) may be seen on this page. 
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Centralized Formulation  Simplified by Market Aggregators  

퐶 { , , } =

⎩
⎨

⎧퐏 { , , } = 푟푒푎푙 푑푖푎푔 퐕{ , , } 퐘{ }퐕{ , , }
∗

퐏 { , , } = 푃 { , },푃 { , }, 0

퐕{ , , } = 푉 { , },푉 { , },푉 { , } ⎭
⎬

⎫
 퐶 = 퐶 { , , }

푡∈[1,8]

 

Given that constraints are determinis-
tic, power and voltages have the same 
values independent of scenario. Thus in 
the simplified equations index s is 
dropped. 

퐶 { , , } =
퐏 { , , } = 푟푒푎푙 푑푖푎푔 퐕{ , , } 퐘{ }퐕{ , , }

∗

퐏 { , , } = 푃 { , },푃 { , } ,퐕{ , , } = 푉 { , },푉 { , }
 퐶 = 퐶 { , , }

푡∈[1,8]

 The DSO network constraints also 
simplify to a deterministic problem. 

퐶 { , } =

⎩
⎪
⎨

⎪
⎧푢{ , } = 푐 { }퐏( , , ) + 푐 { }퐏( , , )

∈[ , ]

푃{ } ≤ 퐏( , , ) ≤ 푃{ }

푃 { } ≤ 퐏( , , ) − 퐏( , , ) ≤ 푃 { } ⎭
⎪
⎬

⎪
⎫

 퐶 = 퐶 { , } 

These are the constraints of the genera-
tor. They too become deterministic. 

퐶 { , , } =
퐏 { , , } = 푟푒푎푙 푑푖푎푔 퐕{ , , } 퐘{ }퐕{ , , }

∗

퐏 { , , } = 퐏 { , },퐏 { , } ,퐕{ , , } = 퐕 { , },퐕 { , }

퐶 { , } 		=
푢{ , } = 푐 { } 퐏( , , )

∈[ , ]
푃{ , , } ≤ 퐏( , , ) ≤ 0	

퐶 { , } 	=
푢{ , } = max 푐 { } 퐸{ , , } − 퐸 { , } , 0
푃( , , ) ≤ 퐏( , , ) ≤ 0	
퐸{ , } ≤ 퐸{ , , } = 퐸{ , , } + 푐 퐏( , , )

 퐶 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧푃 { } = 훑( )

∈[1,12]

푃 { , }

퐶 { , , }
푡∈[1,8]
푠∈[1,12]

퐶 { , }
푠∈[1,12]

	

퐶 { , }
푠∈[1,12] ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

The constraints of the low voltage net-
work and the two demand devices 
combine to the constraints of the MO. 
This is still a stochastic problem and 
the MO interacts with the rest of the 
network through 푃 . Coupled with 
퐶  these would correspond to the 
푀퐴∗  type of problem. 

퐶 =

⎩
⎪
⎨

⎪
⎧

			

⎣
⎢
⎢
⎢
⎡
퐏( , , ) − 푆 { , }
퐏( , , ) + 퐏( , , ) − 푃 { , }

푃 { , } + 푃 { , }

푃 { , } + 푃 { , } ⎦
⎥
⎥
⎥
⎤

= ퟎ

⎭
⎪
⎬

⎪
⎫

 
퐶 =

⎩
⎪
⎨

⎪
⎧

			

⎣
⎢
⎢
⎢
⎡퐏( , ) − 푃 { }
푃 { } − 푃 { }

푃 { } + 푃 { }

푃 { } + 푃 { }⎦
⎥
⎥
⎥
⎤

= 0

⎭
⎪
⎬

⎪
⎫

퐶 = 퐏( , , ) + 퐏( , , ) − 푃 { , } = 0

 

The coupling constraints may be writ-
ten as two sets: 퐶  which is used in 
the decomposition and 퐶  which is 
handled internally by the MO. 

Decomposition Subproblems  

min
퐱풂{ }≡

푃푏1{푡}
′

푃푏2{푡}

훌 {푡}( ) ,훌 {푡}( ) 퐱 { } +
	

휌 퐱 { } − 퐳{푡}( ) ,퐳{푡}( )

	 	

:	퐱 ∈ 퐶
∈[1,8]

 TSO subproblem based on 
(11) 

min
퐱풂{ }≡퐏( , )

푢{ , }(퐱 )
	

+ 훌 { }( )퐱 { }

	

+ 휌 퐱 { } − 퐳{ }( )

	 	

∈[ , ]

:퐱 ∈ 퐶  IG subproblem based on (12) 

min
퐱 { }≡ { }

{ }

훌 { }( )퐱 ( )

	 	
	

+ 휌 퐱 ( ) − 퐳{ }( )

	 	

+ 훌 { }( )퐱 ( )

	
	

+ 휌 퐱 ( ) − 퐳{ }( )

	 	

∈[ , ]

:퐱 ∈ 퐶  DSO subproblem based on 
(13) 

min
퐱풂{ }≡[ { } ]

푢{ , } + 푢{ , }
∈[ , ]

	

+ 훌 { }( )퐱 { }

	

+ 휌 퐱 { } − 퐳{ }( )

	 	

∈[ , ]

: 퐱 ∈ 퐶 ∩ 퐶  
MO subproblem based on (14) 
– may be approximated based 
on (15) 
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