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 In a wide range of species, from invertebrates to mammals, oxytocin-like 

neuropeptides link nutrient availability to feeding behavior and reproductive 

behaviors. 

 In the brain, oxytocin signals not only to the classical appetite-regulating centres, but 

also to brain regions involved in food reward.   

 Oxytocin preferentially suppresses the intake of sweet-tasting carbohydrates, both by 

actions on the brain’s reward systems and by effects on sweet taste receptors. 

 A major site of action is the ventromedial hypothalamus, which has a key role in 

glucose homeostasis as well as in reproductive behavior. 

 In the periphery, intrinsic oxytocin systems in the gut regulate glucose homeostasis 

and gut motility. 
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Abstract  

Mammalian neurons that produce oxytocin and vasopressin apparently evolved from an 

ancient cell type with both sensory and neurosecretory properties that probably linked 

reproductive functions to energy status and feeding behavior. Oxytocin in modern mammals 

is an autocrine/paracrine regulator of cell function, a systemic hormone, a neuromodulator 

released from axon terminals within the brain, and a “neurohormone” that acts at receptors 

distant from its site of release. In the periphery, oxytocin is involved in electrolyte 

homeostasis, gastric motility, glucose homeostasis, adipogenesis and osteogenesis, and within 

the brain it is involved in food reward, food choice and satiety. Oxytocin preferentially 

suppresses intake of sweet-tasting carbohydrates while improving glucose tolerance and 

supporting bone remodelling, making it an enticing translational target.  
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Oxytocin: convergent roles of central and peripheral oxytocin in glucose homeostasis? 

The classical roles of oxytocin are to mediate the milk-ejection reflex and to regulate 

uterine contractility [1]. Since the discovery of centrally-projecting oxytocin neurons, it has 

become apparent that oxytocin also acts within the brain where it is important for many 

reproductive and social behaviors, including sexual behavior, maternal behavior and (in 

monogamous species) pair bonding [2-4]. However it has also become apparent that oxytocin 

is involved in some behaviors that are not obviously related to reproduction, and in particular, 

that it is involved in regulating food intake. Early experiments revealed an inverse 

relationship between pituitary oxytocin secretion and sodium appetite in rats [5], and as it 

emerged that oxytocin secretion promoted natriuresis [6], it was proposed that peripherally 

and centrally secreted oxytocin act in concert to stimulate sodium excretion while inhibiting 

sodium ingestion [5]. 

In recent years however, evidence has accumulated for a role of oxytocin in food 

choice (Fig. 1). Oxytocin neurons are preferentially activated by ingestion of sweet-tasting 

carbohydrates, while oxytocin preferentially inhibits their ingestion [7]. The central sites of 

actions of oxytocin include the ventromedial nucleus, an area prominently implicated in the 

central regulation of glucose homeostasis, while peripheral sites of oxytocin actions include 

the pancreas. Taste buds also express oxytocin receptors [8], and, at these, oxytocin may 

modulate processing of sweet taste, while central actions of oxytocin on reward pathways 

may modulate the processing of food reward. 

 

Oxytocin, an ancient peptide regulating metabolism and reproduction 

Oxytocin, at first sight, is a quintessentially mammalian hormone: its one assuredly 

indispensable role is to mediate milk let-down in response to suckling during lactation [9]. In 

all mammals, either oxytocin or mesotocin is produced by hypothalamic neurons, many of 

which project to the neurohypophysis, from where it is secreted into the systemic circulation. 

Mesotocin, which is present in marsupials, differs from oxytocin by one amino acid in a 

neutral mutation, but binds equivalently at oxytocin receptors [10]. All mammals also have a 

second neurohypophysial hormone, vasopressin, which is so closely related to oxytocin that it 

clearly arose from a gene duplication event in evolution [11]. But it is not only mammals that 

have a neurohypophysis – all vertebrates do, and most have both an oxytocin-like peptide and 

a vasopressin-like peptide, so the gene duplication must have occurred early in chordate 

history.  
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 In invertebrates, oxytocin/vasopressin-like peptides emerged at about the same time 

as bilateral symmetry in body plans, and they are found in many modern nematodes, insects, 

annelids and molluscs [12]. In annelids and zebrafish, the neurons that produce the oxytocin 

homolog express common tissue-restricted microRNAs and a common cell-type-specific 

combination of transcription factors, indicating that they evolved from an ancient cell type 

with both sensory and neurosecretory properties [12]. These invertebrate peptides are 

consistently implicated in the regulation of reproductive behaviors, and, in many species, 

reproduction depends on food availability and is regulated by metabolic cues. For example, in 

C elegans, the oxytocin-like peptide nematocin modulates both male mating circuits and a 

gustatory plasticity circuit that directs food preference. Nematocin acts at two G protein-

coupled receptors, NTR-1 and NTR-2, and most of the cells that express these receptors have 

no synaptic connections to any nematocin-expressing cells [13, 14]. Thus, in C elegans, 

nematocin communicates with its target cells not as a “conventional” neurotransmitter, but as 

a local paracrine or hormone-like messenger [13], as oxytocin does in the mammalian brain.  

 

Oxytocin and the control of appetite 

In rats, central (intracerebroventricular) injections of oxytocin affect social and sexual 

behavior, but also potently inhibit appetite [15-17], as do central injections of mesotocin in 

chicks [18]. In mammals, oxytocin is expressed in magnocellular neuroendocrine neurons 

that project to the neurohypophysis and in parvocellular neurons of the paraventricular 

nucleus (PVN), subsets of which project to forebrain regions, the caudal brainstem and spinal 

cord. Exactly how many anatomically distinct populations of parvocellular oxytocin neurons 

there are is not known, nor is it known how functionally heterogeneous these populations are, 

or how disparate are their responses to different stimuli (Box 1).  

Oxytocin projections from parvocellular neurons of the PVN densely innervate 

neurons of the dorsal vagal complex, particularly in the nucleus of the solitary tract (NTS) 

and the dorsal motor nucleus of the vagus, where there is a high density of oxytocin 

receptors. Other projrctions enter the spinal cord, with effects on thermogenesis as well as on 

pain processing [19] and erectile function [20]. The digestive functions of the stomach and 

esophagus are co-ordinated by parasympathetic and sympathetic reflexes that are regulated 

directly or indirectly by the PVN. In turn, NTS neurons project back to the PVN and other 

areas of the hypothalamus to control feeding behavior, and are important for meal 

termination. Thus modulation of the dorsal vagal complex by the PVN, including by oxytocin 

neurons, controls both gastric motility and feeding behavior (Box 2) [21, 22].  
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Oxytocin is clearly not essential for the control of feeding. Oxytocin knock-out mice 

eat similar amounts as wild-type mice in basal conditions; they are prone to late-onset 

obesity, but this seems to reflect a decreased sympathetic tone rather than hyperphagia [23]. 

However, they show a greater preference for palatable sucrose or saccharin solutions [24] and 

this change appears to be selective, as oxytocin knock-out mice do not over-consume 

palatable fat-containing solutions [25]. Several lines of evidence suggest that oxytocin may 

be specifically involved in regulating the intake of sweet-tasting carbohydrates, and this has 

been linked to actions of oxytocin in the nucleus accumbens, an important part of the brain’s 

reward circuitry [26, 27]. Oxytocin here and other parts of the reward system including the 

ventral tegmentum [28] has also been implicated in reward associated with social interactions 

[29-31]. It has accordingly been suggested that oxytocin suppresses reward-driven food 

intake while enhancing social reward, and that it is a “conditional anorexigen”, whose effects 

depend on physiological and social context [7].  

Genetically targeted ablation of oxytocin neurons in adult mice does not affect food 

intake, body weight or energy expenditure in mice maintained on a normal diet [32] but, as a 

consequence of reduced energy expenditure, male mice lacking oxytocin neurons are more 

prone to obesity when they are fed a high-fat diet. Male mice lacking oxytocin neurons also 

show a blunted anorexic response to leptin but a normal response to a melanocortin agonist 

[32], which is also surprising given that leptin is thought to mainly act on the PVN via 

melanocortin signaling. It seems that oxytocin neurons may be important for resisting diet-

induced obesity, but their role in feeding is permissive and can be compensated for by other 

pathways.  

The magnocellular oxytocin system 

The magnocellular oxytocin neurons (Box 3), which are critically involved in the 

milk-ejection reflex and parturition [1], are also involved in regulating energy balance and 

gastric function [33]. The PVN contains magnocellular oxytocin neurons as well as 

parvocellular (centrally projecting) oxytocin neurons, together with an array of other neuronal 

populations involved in metabolic regulation, but the rat supraoptic nucleus (SON) contains 

only magnocellular oxytocin and vasopressin neurons, all of which project to the 

neurohypophysis. Both the oxytocin neurons and the vasopressin neurons of the SON are 

activated after feeding in rats and mice [34-36], and oxytocin secretion into plasma is 

increased during re-feeding after a fast. In time restricted-fed rats, the onset of feeding is 



6 
 

accompanied by prompt induction of expression of c-fos at many brain sites, including the 

NTS, and in many hypothalamic nuclei, but nowhere more strongly than in the SON [34]. 

The activation of magnocellular vasopressin neurons has received less attention, probably 

because it is assumed that this reflects an antidiuretic reflex in anticipation of the solute load 

that accompanies food intake [37]. Oxytocin released from the neurohypophysis is involved 

in electrolyte homeostasis: in rodents, it promotes natriuresis by stimulating natriuretic 

hormone secretion from the heart and by direct actions at the kidney.  

The SON receives a strong projection from noradrenergic and peptidergic neurons in 

the NTS, and these preferentially innervate oxytocin neurons. In rats, systemic injections of 

cholecystokinin (CCK), a peptide hormone released from the duodenum in response to food 

ingestion, inhibit magnocellular vasopressin neurons but activate the oxytocin neurons [38] 

and stimulate oxytocin secretion into the blood. This response depends on activation of 

CCK1 receptors on the sensory endings of afferent neurons of the gastric vagus, and 

subsequent activation of noradrenergic (A2) neurons in the NTS [38], and of a subpopulation 

of NTS neurons that express prolactin-releasing peptide (PrRP). PrRP mediates, at least in 

part, the activation of oxytocin neurons in response to food intake, and the CCK-PrRP-

oxytocin pathway is involved in the control of meal termination [36]. Gastric distension also 

activates magnocellular oxytocin neurons, probably also via activation of NTS neurons, 

though whether these are the same neurons as are activated by CCK is not known [39]. Both 

oxytocin and vasopressin neurons in the SON are also activated by systemic administration of 

secretin [40], a hormone secreted from the duodenum in response to food intake which 

regulates gastric secretion and emptying, and this again is mediated by a vagal projection to 

the NTS [41].  

Glucagon-like peptide 1 (GLP-1), a hormone secreted the intestinal epithelium, is 

involved in both glucose homeostasis by its stimulatory effects on insulin secretion from the 

pancreas, and in appetite control. It is also expressed in gustatory neurons, and has been 

implicated in sweet taste transmission from taste buds [42]. Sweet taste receptors are also 

present in the gut and pancreas, and are important in glucose homeostasis during diet-induced 

obesity [43]. How important these peripheral taste receptors are for gut signaling to the brain 

remains to be established. The immediate-early gene c-fos has been extensively used as a 

marker of neuronal activation, as it is transiently expressed in many neurons following 

activation. Peripheral administration of GLP-1 induces expression of c-fos in the NTS and the 

SON but not in the PVN [44], while peripheral administration of the GLP-1 agonist exendin-
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4 activates c-fos mRNA expression in the arcuate nucleus and parvocellular PVN at low 

doses, and at higher doses also activates the magnocellular PVN and the SON, effects 

mediated in part by the vagus [45]. GLP-1 is also expressed in some NTS neurons that 

project to the PVN and SON, and central administration of GLP-1 increases plasma oxytocin 

concentration in rats, and suppresses feeding [46].  

 The expression of oxytocin mRNA in the PVN and SON is suppressed by fasting in 

mice, and this is rescued by leptin administration [47]; similarly, in rats, fasting reduces the 

electrical activity of magnocellular oxytocin neurons, while systemically administered leptin 

enhances their electrical activity [48]. The magnocellular oxytocin neurons interact with the 

leptin-responsive pro-opiomelanocortin (POMC) neurons of the arcuate nucleus that produce 

the potent satiety peptide α-melanocyte stimulating hormone (α-MSH) together with a second 

anorectic neuropeptide, cocaine-and amphetamine regulated transcript (CART). The POMC 

neurons innervate both the PVN and the SON, which densely express MC3 and MC4 

receptors through which α-MSH acts in the brain [49]. In SON oxytocin neurons, α-MSH 

induces mobilisation of intracellular calcium stores, expression of c-fos, and dendritic 

oxytocin secretion, but it also inhibits their electrical activity and therefore inhibits secretion 

from the neurohypophysis [49]. The inhibition of electrical activity is the consequence of 

evoked production of endocannabinoids, which act on afferent inputs to the SON, 

suppressing the release of excitatory transmitters from afferent endings that express 

cannabinoid receptors. Interestingly, in pregnant rats α-MSH has no effect on oxytocin 

neurons [50], and while icv α-MSH increases c-fos expression in the PVN, SON, arcuate 

nucleus, and ventromedial nucleus of the hypothalamus (VMN) in non-pregnant rats, this 

response is also suppressed in pregnant rats [50]. How this change arises is not known, as the 

hypothalamic levels of mRNA expression of MC3 and MC4 receptors are unchanged in 

pregnancy, but it may contribute to the hyperphagia of late pregnancy. 

  

Central targets of the magnocellular oxytocin system 

 The magnocellular oxytocin system is the source of oxytocin in the plasma, but 

oxytocin is also released in abundance from the large dendrites of magnocellular neurons. 

Dendritic oxytocin release can be evoked by intracellular calcium mobilisation following 

activation of some G-protein coupled receptors, including those for α-MSH and for oxytocin 

itself. By contrast, release in response to electrical (spiking) activity depends on voltage-

gated calcium entry and hence on the anatomical disposition of the vesicles in which oxytocin 
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is stored: to be available for such activity-dependent release, the vesicles must be located 

close to clusters of voltage-dependent calcium channels in the plasma membrane [51]. 

Normally, vesicles in dendrites are distanced from these sites by a network of filamentous 

actin, and can be released only by increases in intracellular calcium that open channels in this 

network [52]. However, activation of some peptide receptors can “prime” the dendritic pool 

of vesicles by promoting their relocation to juxta-membrane sites. Thus activity-dependent 

oxytocin release requires a prior priming event, and because priming takes many minutes, it 

results in a delayed but long-lasting activation of release [53].  

So much oxytocin can be released from dendrites that it is in principle able to increase 

oxytocin concentrations substantially over large areas of the forebrain. Thus oxytocin 

signaling in many areas of the brain, like that of the ancestors of oxytocin cells in 

invertebrates, depends not on anatomical connectivity but only on the distribution of 

receptors [54]. The exact anatomical distribution of oxytocin released from dendrites is not 

known, but a substantial amount of oxytocin reaches the ventricles, as concentrations in CSF 

are much higher than in plasma. The half-life of oxytocin in CSF is about 20 min, but in 

neural tissue it is much shorter. Within neural tissue, oxytocin is degraded by a membrane-

bound enzyme, placental leucine aminopeptidase (P-LAP) [55]. Thus exactly where 

dendritically-released oxytocin goes and in what quantities depends on the direction and 

speed of flow of oxytocin in extracellular fluid, and on the rate of degradation and binding 

along those paths, and these are ill-defined.  

Dendritically-released oxytocin acts within the PVN and SON, including on the oxytocin 

neurons, but it is also likely to be the main source of oxytocin signaling to two relatively 

close sites that express abundant oxytocin receptors: the amygdala, which contains only a few 

oxytocin-containing fibres, and the VMN, which appears to contain none. The VMN is 

important for glucose homeostasis [56, 57], and controls sexual behavior, feeding, fear 

behavior and aggression, all of which are modulated by oxytocin at this site [58]. These 

behaviors are not mutually compatible: given the motivation and opportunity to have sex and 

to eat, animals generally do one or the other, unless they are afraid, in which case they may 

fight or flee but are unlikely to eat or mate. Oxytocin enhances sexual behavior while 

suppressing both feeding and fear, and so, by its actions at the VMN, oxytocin may be key to 

behavioral decisions. Magnocellular oxytocin neurons in the rat are rapidly activated by food 

intake, but dendritic release is delayed and long-lasting, potentially contributing to post-

prandial satiety and promoting post-prandial sexual appetite [59].  
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Oxytocin also acts on the arcuate nucleus, and in this case the actions may be mediated by 

collaterals of the axons of magnocellular oxytocin neurons en route to the neurohypophysis. 

POMC cells express oxytocin receptors and are apparently in contact with oxytocin-

containing axonal boutons [60]. Dopamine neurons in the arcuate nucleus also respond to 

oxytocin; these are neuroendocrine neurons that control prolactin secretion, but they have 

extensive intrahypothalamic projections and are integrated into the appetite-regulating 

circuitry [61]. Finally, the mouse arcuate nucleus contains glutamatergic neurons that project 

to the PVN and which express oxytocin receptors. Optogenetic or pharmacogenetic activation 

of these neurons rapidly inhibits feeding in mice, and the effect of oxytocin on these neurons 

is potentiated by α-MSH in vitro [62]. 

Peripheral targets of meal-induced oxytocin release 

In rodents, oxytocin secretion promotes sodium excretion (natriuresis) by direct 

actions on oxytocin receptors at the kidney, and indirectly, by stimulating natriuretic hormone 

secretion from the heart, and it influences gastric motility [22, 63, 64]. However, these effects 

are not seen in all mammals. In man, oxytocin secretion is stimulated by high intensity 

exercise, and this is associated with altered fluid balance [65], but oxytocin secretion is not 

activated by osmotic stimuli as it is in rodents, nor does oxytocin induce natriuresis [66]. 

Oxytocin secretion in man is generally not stimulated by feeding-induced gastric distension 

or by systemic administration of CCK; instead, these stimuli activate vasopressin secretion, 

whereas CCK inhibits vasopressin secretion in rats.  

However, oxytocin as well as its receptor is present throughout the gastrointestinal 

tract in human, guinea pig, rabbit and rat [67]. In mice, some enteric neurons and enterocytes 

express both oxytocin and oxytocin receptors, and oxytocin signaling not only acts as a brake 

on intestinal motility, but also decreases mucosal activation of enteric neurons, promotes 

enteric neuronal development and survival, regulates proliferation of crypt cells and mucosal 

permeability [68], and is protective against inflammation [69]. Oxytocin receptors are also 

expressed in the rat pancreas [70], and signaling through these stimulates insulin and 

glucagon secretion. 

 Adipocytes also express oxytocin receptors, and signaling though these induces 

lipolysis [71]. Adipocytes and osteoblasts arise from the same progenitor cells (marrow 

stromal cells). Osteoblasts produce oxytocin as well as oxytocin receptors, and there is 

evidence that oxytocin is a paracrine-autocrine regulator of bone formation that is modulated 
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by estrogens [72, 73]. Oxytocin increases osteoclast formation, and in mature osteoclasts it 

inhibits bone resorption. Mice lacking oxytocin or its receptor develop osteoporosis that 

worsens with age: their skeletons have a lower vertebral and femoral trabecular volume, 

osteoblasts exhibit less mineralization activity, and genes for osteoblast differentiation are 

down-regulated [74]. There is a reciprocal relationship between osteoblast and adipocyte 

differentiation: while glucocorticoids favor differentiation towards cells of the adipocyte 

lineage, oxytocin promotes osteogenesis in both human multipotent adipose-derived stem 

cells, and marrow stromal cells [75]. In rabbits, glucocorticoid-induced osteoporeosis can be 

prevented by systemic oxytocin administration [71], and in mice, oxytocin can reverse 

ovariectomy-induced osteopenia and adiposity [76]. 

Several studies in man and other animals have reported that systemically administered 

oxytocin affects appetite, weight gain, glucose homeostasis, lipid metabolism and 

thermoregulation. Many of these have involved doses of oxytocin that far exceed 

physiological circulating concentrations, doses that may result in actions at peripheral 

vasopressin receptors as well as oxytocin receptors [77], and at receptors that normally are 

regulated by local paracrine sources of oxytocin rather than blood-borne oxytocin of 

neurohypophysial origin. These doses are in many cases so high that, despite an effective 

blood-brain barrier to oxytocin, they may be active within the brain.  

In leptin-deficient mice and in leptin-resistant mice [16], systemic administration of 

oxytocin at doses of 5-150 µg/day reduces food intake and adiposity, but worsens glucose 

homeostasis, possibly by stimulating corticosterone production. These daily doses exceed the 

total pituitary content of oxytocin by at least 10 fold, and at these high doses some oxytocin is 

likely to enter the brain despite the presence of a very effective blood-brain barrier to 

oxytocin. However, their effects still may be exerted at peripheral locations, as the effects on 

feeding involve actions of oxytocin on the nerve endings of afferent vagal neurons [78]. In 

rhesus monkeys, systemic administration of comparably large doses of oxytocin (200-400 

µg/kg) reduce body weight and increases energy expenditure and lipolysis [79], again 

possibly by peripheral actions. In rats, peripheral injections of oxytocin inhibit sucrose intake 

and sucrose-seeking behaviour, but only at extremely high doses (3 mg/kg i.p.) [80]. 

 In man, intravenous infusions of oxytocin at doses in the physiological range have 

little effect on food intake or gastric emptying in normal subjects, but a number of recent 

studies have looked at the effects of intranasal application of oxytocin on food intake in man. 

These involve very high doses of oxytocin that raise plasma concentrations to 
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supraphysiological levels; a small amount of the applied oxytocin probably reaches the brain, 

but whether it does so in effective amounts is uncertain [81]. These studies typically show 

reductions in food intake, and Ott et al. [82] reported a marked reduction in intake of sweet 

snacks after intranasal administration of 24 IU (~50µg). This does not necessarily imply a 

central action, as in humans and in mice, taste buds express oxytocin receptors [8], and in 

mice oxytocin decreases sweet taste sensitivity [83]. Intranasal oxytocin has also been 

reported to improve glucose tolerance by effects on pancreatic beta cells [84]. Given the 

diversity of peripheral tissues that express oxytocin receptors, and that intranasally 

administered oxytocin may also activate vasopressin receptors at many peripheral sites, it 

remains to be established what if any of the claimed effects of intranasal oxytocin actually 

involve actions in the brain. 

Concluding remarks 

Oxytocin has multiple roles in energy balance and metabolism, some of which are exerted in 

the CNS, some peripherally by secretion from the neurohypophysis, and some by local 

paracrine actions of an oxytocin system intrinsic to the gut. Oxytocin inhibits food intake, and 

preferentially inhibits the intake of sweet-tasting carbohydrates, in part by actions on the 

appetite regulating centres of the hypothalamus, in part by actions at sweet taste receptors, 

and possibly also by actions on the brain’s reward centres. It increases energy expenditure 

and lipolysis, slows gastric motility, and improves glucose tolerance by actions at the 

pancreas. These actions have their evolutionary origin in an ancient cell type with both 

sensory and neurosecretory properties that probably linked reproductive functions to energy 

status and feeding behavior. Particular translational interest lies in the effects of oxytocin on 

bone remodelling and on effects on food preference and energy expenditure; difficulties in 

developing therapeutic applications will mainly arise from preventing off-target effects and 

their unintended consequences, particularly of long-term treatment. Mechanistic 

understanding remains incomplete (see Outstanding Questions), and a current problem in 

distinguishing physiological from pharmacological effects of systemic oxytocin arises from 

pervasive confusion about measurements of oxytocin in plasma [85].  
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Box 1: The oxytocin systems of the mammalian brain 

The distribution of oxytocin neurons in the brain is relatively consistent across 

species, but the distribution of projections is more variable and that of receptors is very 

variable. The main aggregations in rats are in the PVN, extending into the adjacent 

periventricular nucleus, and in the SON. A third, rostral aggregation, sometimes called the 

anterior commisural nucleus, extends into the bed nucleus of the stria terminalis and the 

preoptic area. However, many neurons are scattered as isolated cells or small clusters in the 

lateral and anterior hypothalamic areas between the PVN and the SON, and some appear in 

the dorsomedial hypothalamic nucleus. In the mouse, a few oxytocin cells surpass the rostral 

border of the SON, impinging into the medial preoptic area, and the medial amygdala [86]. 

In the rat, oxytocin neurons project to all main regions of the forebrain [87], as well as 

to the dorsal vagal complex in the caudal brainstem and to the spinal cord. The anatomical 

distribution of oxytocin neurons and fibres is relatively consistent amongst mammals, but 

there is considerable species variation in oxytocin receptor expression, reflecting differences 

in the oxytocin receptor gene [88], and this is associated with differences in reproductive 

behavior. For example, in rodents oxytocin receptors are concentrated in brain regions 

involved in olfactory processing, but in primates they are concentrated in regions involved in 

visual processing and attention [89].  

 Species differences in receptor expression are not matched by equivalent differences 

in the anatomy of oxytocin pathways, suggesting that oxytocin signaling extensively reflects 

extrasynaptic release of oxytocin. In the rat, the olfactory bulb, ventral pallidum, medial 
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preoptic area, and VMN all express moderate to high levels of oxytocin receptors but are not 

directly innervated by oxytocin neurons. The last three of these regions are close to the PVN 

and SON, and are thus likely to be reached by dendritically released oxytocin; the olfactory 

bulb seems likely to receive oxytocin via the CSF. Of these sites, the VMN appears to be the 

most evolutionarily conserved region of receptor expression. Oxytocin receptor binding is 

prominent in the VMN in mice, rats, guinea pigs, prairie and montane voles, and in rhesus 

monkeys [90] and humans [91].  

 

Box 2: The PVN and the dorsal vagal complex. 

The gastrointestinal tract has an intrinsic nervous plexus that gives the intestine 

considerable neural autonomy, but the digestive functions of the stomach and esophagus are 

co-ordinated by parasympathetic and sympathetic reflexes which are regulated by the dorsal 

vagal complex, comprising the NTS, the dorsal motor nucleus of the vagus and a 

circumventricular organ, the area postrema, which are densely interconnected. This complex 

is regulated directly and indirectly by the PVN.  

Gastric distension and gastric hormones stimulate sensory vagal afferent pathways 

which activate NTS neurons, including noradrenergic neurons of the A2 cell group and other 

neurons that express a variety of neuropeptides, while blood-borne gastric hormones activate 

the area postrema, which lies outside the blood-brain barrier. A projection from the NTS to 

the dorsal motor nucleus of the vagus regulates efferent vagal activity, completing a vago-

vagal reflex loop. This reflex is modulated by a recurrent neural circuit from the NTS to the 

PVN, and from the PVN back to the dorsal vagal complex, and this involves a projection 

from parvocellular oxytocin neurons. The NTS neurons also project to the hypothalamus to 

control meal termination.   

The PVN is characterised by expression of the transcription factor Sim1, and ablation 

of Sim1 neurons in mice results in hyperphagia and altered energy expenditure [92, 93]. 

Conversely, activation of Sim1 neurons in the PVN suppresses feeding, and this is mediated 

by Sim1 neurons that express nitric oxide synthase. These include both magnocellular and 

parvocellular oxytocin neurons, but in mice, pharmacogenetic activation of the PVN oxytocin 

neurons alone is not sufficient to suppress food intake [94].  

However, some parvocellular oxytocin neurons project to the spinal cord, and direct 

activation of PVN Sim1 neurons increases energy expenditure and increases intrascapular 

temperature overlying brown adipose tissue, and PVN oxytocin neurons that project to the 

spinal cord contribute to this response [94].  
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The arcuate nucleus neurons that co-express neuropeptide Y and agouti-related 

peptide (AgRP) are obligatory for feeding behavior at least under normal circumstances. 

These neurons target and inhibit oxytocin neurons in the PVN [95], and the feeding that is 

evoked by activation of the AgRP neurons involves suppression of oxytocin neuron activity. 

This does not imply that the PVN oxytocin neurons are essential for the control of feeding: 

different subsets of AgRP neurons project to different targets which can independently 

activate feeding [96]. 

 

Box 3: The magnocellular oxytocin neurons 

In the rat, the magnocellular oxytocin neurons comprise about 10,000 neurons in the 

SON, PVN, and in scattered cells and smaller aggregations (accessory nuclei) between these 

main aggregations. These neurons all project a single axon to the neurohypophysis from 

where they secrete oxytocin into the systemic circulation, but some also project centrally, 

including to the amygdala and to the arcuate nucleus. The neurons each have 1-3 thick 

dendritic processes which contain abundant oxytocin-containing vesicles, and are a major 

source of oxytocin secretion within the hypothalamus. In the SON, these dendrites form a 

dense mat at the base of the brain (Figure 2). Oxytocin secretion from dendrites can be 

triggered by peptides which mobilise intracellular calcium from intracellular stores without 

any increase in electrical spike activity, and hence independently of secretion from their 

axonal nerve endings in the neurohypophysis. Dendritic secretion can also be evoked by 

spike activity, but this requires prior “priming” of the dendritic pool of vesicles. 

The magnocellular oxytocin and vasopressin neurons appear to act as glucose and 

metabolic sensors [97]. The oxytocin neurons co-express several other anorectic peptides, 

including CCK and nesfatin, which is also expressed in parvocellular oxytocin neurons [98] 

and in many magnocellular vasopressin neurons [99], and express receptors for many 

appetite-regulating peptides, including the peripherally produced hormones insulin and leptin 

and the centrally produced anorectic peptides α-MSH and CCK. They produce 

endocannabinoids and nitric oxide in an activity-dependent manner, and they also express the 

vesicle glutamate transporter VGLUT2, so their central projections appear to use glutamate 

as a conventional neurotransmitter. The promoter region of the oxytocin gene contains a 

putative transcription factor binding site for retinoid-related orphan receptor α, which is 

activated by the metabolic regulator, peroxisome proliferator-activated receptor coactivator-

1α (PGC-1α) [100].  
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Key Figure: Central and peripheral targets of the brain oxytocin systems in the 

regulation of energy balance and metabolism.  

Oxytocin is expressed by neurons of the PVN and SON. Parvocellular oxytocin neurons in 

the PVN (pPVN) project axons to diverse sites (as indicated by the dotted lines), including to 

the amygdala, nucleus accumbens (nAcc), dorsal vagal complex (DVC) and spinal cord, each 

of which contains oxytocin receptor-expressing neurons and is importantly involved in the 

regulation of energy balance. Magnocellular oxytocin neurons in the SON and mPVN project 

to the posterior pituitary, from where oxytocin is secreted into the systemic circulation. 

Effects of circulating oxytocin on gut motility and (in rats) on sodium excretion from the 

kidneys are well established, but the pancreas and adipocytes also express oxytocin receptors 

and may be targets of circulating oxytocin. The arcuate nucleus (ARC) also receives afferent 

oxytocin fibers, shown here as coming from magnocellular neurons, but possibly coming 

from parvocellular neurons. Oxytocin receptors are very densely expressed in the 

ventromedial nucleus (VMN) and amygdala: these sites contain very few oxytocin fibres but 

are likely to be accessed by extrasynaptic oxytocin release, including oxytocin secreted from 

the dendrites of magnocellular neurons in the SON and PVN (as indicated by the black 

arrows). 

 

 

Figure 2: The rat SON 

In the rat, magnocellular oxytocin neurons (red) mainly occupy the dorsal SON while 

vasopressin neurons (green) predominate in the ventral SON. The dendrites of the oxytocin 

neurons form a dense mat at the base of the nucleus. Image by courtesy of Mike Ludwig. 
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Outstanding Questions Box (1232 characters) 

 How independent are the central oxytocin systems – are there many functionally 

distinct populations, or is it reasonable to think of the oxytocin systems of the brain as 

a functionally coherent system? 

 Are magnocellular oxytocin neurons preferentially activated by ingestion of sweet-

tasting carbohydrates? 

 Sweet receptors are present in the mouth and also in the gut – how does signaling 

from these affect the oxytocin systems? 

 By which pathways does the ventromedial nucleus regulate glucose homeostasis: does 

this involve efferent regulation of insulin and glucagon secretion? 

 Does circulating oxytocin regulate the oxytocin receptors in the gut, or are these 

regulated solely by locally-produced oxytocin? 

 In pregnancy and lactation, the oxytocin system undergoes extensive adaptations – 

how do these affect food choice and glucose homeostasis? 

 The central oxytocin systems also regulate social and sexual behavior – how exactly 

are these linked to food choice? 

 The spinally projecting oxytocin neurons have been implicated in pain processing, 

thermogenesis and penile erectile functions – what, if anything, links these apparently 

diverse actions? 

 Is the gut oxytocin system autonomous, or is it regulated by the CNS? 
 

Outstanding Questions
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