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Abstract

Stress during pregnancy negatively affects the fetus and increases the risk for affective 
disorders in adulthood. Excess maternal glucocorticoids are thought to mediate fetal 
programming; however, whether they exert their effects directly or indirectly remains 
unclear. During pregnancy, protective mechanisms including maternal hypothalamic–
pituitary–adrenal (HPA) axis hyporesponsiveness and placental 11β-hydroxysteroid 
dehydrogenase (11βHSD) type 2, which inactivates glucocorticoids, limit mother-to-
fetus glucocorticoid transfer. However, whether repeated stress negatively impacts 
these mechanisms is not known. Pregnant rats were exposed to repeated social stress 
on gestational days (GD) 16–20 and several aspects of HPA axis and glucocorticoid 
regulation, including concentrations of glucocorticoids, gene expression for their 
receptors (Nr3c1, Nr3c2), receptor chaperones (Fkbp51, Fkbp52) and enzymes that 
control local glucocorticoid availability (Hsd11b1, Hsd11b2), were investigated in the 
maternal, placental and fetal compartments on GD20. The maternal HPA axis was 
activated following stress, though the primary driver was vasopressin, rather than 
corticotropin-releasing hormone. Despite the stress-induced increase in circulating 
corticosterone in the dams, only a modest increase was detected in the circulation of 
female fetuses, with no change in the fetal brain of either sex. Moreover, there was no 
change in the expression of genes that mediate glucocorticoid actions or modulate local 
concentrations in the fetal brain. In the placenta labyrinth zone, stress increased Hsd11b2 
expression only in males and Fkbp51 expression only in females. Our results indicate 
that any role glucocorticoids play in fetal programming is likely indirect, perhaps through 
sex-dependent alterations in placental gene expression, rather than exerting effects via 
direct crossover into the fetal brain.

Introduction

Stress experienced during pregnancy has detrimental 
effects on the offspring across the life course, beginning 
during fetal development, persisting through the 
postnatal period and into adulthood (Glover et al. 2018). 

This phenomenon is known as fetal programming, 
where changes during fetal development bring about 
long-lasting effects (Barker 1990). In women, maternal 
anxiety or distress during pregnancy is associated with 
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a greater risk of psychiatric or affective disorders in the 
offspring (Entringer et  al. 2015, O'Donnell & Meaney 
2017). Wide-ranging effects of prenatal stress are also 
reported in animal studies, with adult offspring displaying 
phenotypes including increased anxiety- and depressive-
like behaviour, as well as cognitive and social deficits 
(Brunton 2013, Maccari et al. 2014).

Concomitant with these affective disorders and 
aberrant behavioural phenotypes, dysregulation of the 
hypothalamic–pituitary–adrenal (HPA) axis is frequently 
observed (Pariante & Lightman 2008). The HPA axis is 
the primary neuroendocrine stress response system. It is 
activated following perturbations to normal homeostasis, 
resulting in increased secretion of glucocorticoids from the 
adrenal gland, which mobilises energy stores to effectively 
deal with the stressor. Given glucocorticoids have wide-
ranging effects on gene expression, metabolism and neural 
function, excess or inappropriate glucocorticoid action can 
be detrimental (Sapolsky et al. 2000). Therefore, HPA axis 
activity is tightly regulated by a glucocorticoid negative 
feedback mechanism at the level of the anterior pituitary 
gland, hypothalamus and hippocampus, mediated via 
glucocorticoid receptors (NR3C1) and mineralocorticoid 
receptors (NR3C2) (Ulrich-Lai & Herman 2009). Local 
glucocorticoid availability in target organs is further 
controlled through the actions of 11β-hydroxysteroid 
dehydrogenase (HSD11B) enzymes, which interconvert 
glucocorticoids between their active and inactive 
11-ketosteroid forms. Glucocorticoid–NR3C1 interaction 
is also modulated by the chaperone proteins, FK506-
binding protein 51 (FKBP51) and 52 (FKBP52), which 
regulate receptor-ligand binding and nuclear translocation 
of NR3C1 (Wochnik et  al. 2005). FKBP51 is a negative 
regulator of NR3C1 function, reducing the binding affinity 
of NR3C1 for glucocorticoids and sequestering NR3C1 
in the cytoplasm; whereas FKBP52 positively modulates 
NR3C1 function, increasing the binding affinity of 
NR3C1 for glucocorticoids and facilitating NR3C1 
nuclear translocation (Baker et  al. 2018). Hence, changes 
affecting these mechanisms that mediate glucocorticoid 
negative feedback, regulate glucocorticoid availability and 
modulate NR3C1 function could contribute to the HPA 
axis dysregulation observed following prenatal stress.

In our model of repeated maternal social stress, the 
prenatally stressed adult offspring display heightened 
anxiety-like behaviour and exaggerated HPA axis responses 
to both physical and psychological stressors (Brunton 
& Russell 2010, Brunton et  al. 2015), together with lower 
hippocampal Nr3c1 and Nr3c2 gene expression, suggesting 
impaired glucocorticoid negative feedback control over 

the HPA axis (Brunton & Russell 2010). Sex differences 
in prenatal stress outcomes are also frequently reported 
in the offspring (Brunton & Russell 2010, Brunton et  al. 
2011, Glover & Hill 2012); however the mechanisms 
that underpin these, especially those involved at earlier 
developmental stages (e.g. in utero), have barely been 
investigated. For example, it is not known whether the 
reduction in hippocampal Nr3c1 and/or Nr3c2 gene 
expression reported in adult prenatally stressed rats 
manifest in fetal life, or whether there are any other 
changes in the developing HPA axis that can impact its 
function at maturity. Furthermore, the biological signal(s) 
that permits psychosocial stress, perceived by the mother, 
to be recognised by the fetus has not been fully identified 
(Rakers et al. 2017).

One mechanism proposed to mediate fetal 
programming by maternal stress is exposure to excessive 
maternal glucocorticoids, following activation of the 
maternal HPA axis (Barbazanges et  al. 1996, Cottrell & 
Seckl 2009, Wyrwoll & Holmes 2012, Reynolds 2013). 
Glucocorticoids play a role in normal fetal growth and 
development, especially during the third trimester, 
when a glucocorticoid surge drives the maturation of 
tissues before birth (Fowden et  al. 1998). However, excess 
glucocorticoid signalling can impede fetal growth and 
development, especially at a time when the brain is 
vulnerable to changes (Moisiadis & Matthews 2014), 
and impact placental structure and function (Burton 
et  al. 2016). Despite this longstanding hypothesis, a 
clear relationship between maternal stress, maternal 
glucocorticoid concentrations and fetal glucocorticoid 
concentrations has not been convincingly demonstrated in 
the human or animal literature (Zijlmans et al. 2015, Glover 
et al. 2018, Valsamakis et al. 2020). Indeed, while repeated 
stress increases maternal corticosterone concentrations 
in rats (Ward & Weisz 1984, Brunton & Russell 2010), fetal 
plasma corticosterone concentrations do not increase in 
parallel and are similar to levels measured in fetuses from 
unstressed pregnancies (Ward & Weisz 1984). It is not 
known whether repeated maternal social stress affects the 
relationship between maternal and fetal glucocorticoids 
and no studies have quantified fetal corticosterone and 
11-dehydrocorticosterone (11-DHC) concentrations 
concurrently in response to repeated maternal stress.

Moreover, during pregnancy, several mechanisms 
exist to protect the developing fetus from exposure to 
excessive levels of maternal glucocorticoids, further 
complicating the ‘glucocorticoid hypothesis’. The first is 
attenuated maternal HPA axis responses to stress during 
pregnancy. Pregnant rats show significantly lower ACTH 
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and corticosterone secretion in response to acute stressors 
compared with non-pregnant females (Neumann et  al. 
1998, Johnstone et al. 2000, Brunton et al. 2009), reducing 
the pool of glucocorticoids that may potentially be 
transmitted to the fetus (Brunton et al. 2005, Brunton et al. 
2006, Brunton et al. 2009). This is also the case for repeated 
social stress (Brunton & Russell 2010); however, it is not 
known whether the stress-induced increase in maternal 
glucocorticoid secretion, although reduced, is of sufficient 
magnitude to influence glucocorticoid concentrations in 
fetal circulation.

The second protective mechanism lies in the placenta, 
the interface that controls the maternal–fetal exchange of 
substances. The rat placenta can be divided into two zones: 
the junctional zone, which contains spongiotrophoblasts, 
glycogen cells and secondary trophoblast giant cells, where 
many steroid and peptide hormones are produced, and 
the labyrinth zone, containing fetal trophoblast cells and 
capillaries, where most of the maternal–fetal exchange 
occurs (de Rijk et  al. 2002). The placenta expresses the 
enzyme HSD11B2, which in contrast to HSD11B1, catalyses 
the conversion of active corticosterone (or cortisol in 
humans) into inert 11-DHC (or cortisone in humans), 
regulating fetal glucocorticoid exposure (Wyrwoll et  al. 
2011). This enzyme acts as a protective barrier, minimising 
exposure of the fetuses to excessive levels of maternal 
glucocorticoids. Indeed, the offspring of rats administered 
HSD11B2 inhibitors during pregnancy and those of 
Hsd11b2 knockout mice display phenotypes reminiscent 
of those observed in prenatally stressed offspring, 
including heightened anxiety-like behaviour and HPA axis 
hyperactivity (Welberg et al. 2000, Holmes et al. 2006). It has 
been proposed that maternal stress may lead to the down-
regulation of placental HSD11B2; however to date, there 
is no consensus as to whether maternal stress increases or 
decreases its expression or activity (Welberg et  al. 2005, 
Mairesse et al. 2007, Jensen Peña et al. 2012, Cuffe et al. 2012, 
Gross et al. 2018). On the other hand, the administration 
of synthetic glucocorticoids upregulates placental Hsd11b2 
and HSD11B2 expression and activity (Ma et al. 2003, van 
Beek et al. 2004), perhaps providing a mechanism through 
which fetal exposure to glucocorticoids can be limited. 
Moreover, the placenta itself expresses NR3C1 and is 
responsive to glucocorticoids, which can alter perfusion 
and nutrient transfer (Fowden & Forhead 2015).

The aim of this study was to investigate the impact 
of repeated maternal social stress on the regulation of 
glucocorticoids in the maternal, placental and fetal 
compartments to better understand whether maternal 
glucocorticoids are directly involved in fetal programming 

the offspring. First, we characterised changes in the 
maternal HPA axis regulation following repeated social 
stress. Next, we determined whether any changes in 
corticosterone concentrations in the mother’s circulation 
are paralleled in the fetus. Finally, we investigated the 
impact of maternal stress on the expression of genes 
known to regulate glucocorticoid availability and action in 
the placenta and fetal brain.

Materials and methods

Animals

Female Sprague–Dawley rats (225–250 g on arrival) were 
purchased from Charles River (Margate, Kent, UK) and 
maintained on a 07:00–19:00 h light–darkness cycle, under 
controlled temperature and humidity. After ≥1 week of 
acclimatisation, female rats were housed overnight with a 
sexually experienced male. Mating was confirmed by the 
finding of a semen plug the following morning and this was 
designated gestational day 1 (GD 1). Two separate cohorts 
of females underwent mating 1 week apart to generate 
lactating dams (for use as ‘residents’ in the resident-
intruder test) and pregnant experimental rats (‘intruders’ 
and non-stressed controls). All breeding females were 
fed a 50:50 mixture of 14 and 19% protein diet ad libitum 
(Teklan, Harlan Laboratories, UK) throughout pregnancy 
and lactation and had free access to drinking water. 
Female rats were group housed (4–6/cage) prior to and after 
mating, until GD16, after which time all rats were housed 
individually. All animal experiments reported here were 
approved by the University of Edinburgh Animal Welfare 
and Ethical Review Body and performed in accordance 
with the UK Animals (Scientific Procedures) Act 1986.

Induction of social stress

A modified resident-intruder paradigm was used to induce 
social stress as previously described (Brunton & Russell 
2010). This paradigm has previously been characterised 
as a relevant stressor for female rats (Neumann et al. 2001, 
Brunton & Russell 2010). Experimental pregnant dams 
(‘intruders’; n = 7) were transferred to the home-cage of an 
unfamiliar lactating dam (‘residents’; days 1–7 of lactation) 
for 10 min/day from GD16 to GD20, between 10:00 and 
14:00 h. On GD16–19, experimental pregnant dams 
were returned to their cages immediately after the social 
stress. Non-stressed pregnant controls (n = 7) remained 
individually housed from GD16 to GD20 and were 
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undisturbed except for daily weighing. On GD20, pregnant 
control and stressed dams were killed and tissues collected 
(see later). Control dams were undisturbed prior to being 
killed, while stressed dams were killed immediately after 
the final 10 min bout of social stress on GD20.

Tissue collection

Pregnant dams were killed by conscious decapitation 
on GD20. Trunk blood was collected into chilled tubes 
containing 5% (w/v) EDTA. Fetuses and placenta were 
rapidly removed and the sex of the feto-placental unit 
was determined by examining anogenital distance. Trunk 
blood from decapitated fetuses was collected using 
EDTA-coated capillary tubes and pooled by sex (from 3 
to 10 fetuses depending on litter size and the sex ratio of 
the litter) and litter. Maternal and fetal brains, placenta 
and fetal liver were rapidly collected and frozen on dry 
ice, then stored at −80°C until further processing. Blood 
was centrifuged; then plasma was separated and stored at 
−20°C until further analyses.

Liquid chromatography tandem mass spectrometry

Liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) quantification of steroids was carried out as 
described previously (Sze et al. 2018, Sze & Brunton 2021), 
with a modified method to quantify total corticosterone 
and 11-DHC. Briefly, C18 solid phase extraction was 
performed on 50 mg of fetal liver, 1/8th of a placenta 
(‘pie slice’ containing both junctional and labyrinth 
zones), 1 hemisphere of a fetal brain or plasma (diluted 
1:100). Plasma was pooled by sex for each litter, while one 
male and one female placenta, fetal liver or fetal brain 
from each litter were used for analysis. All samples were 
processed with corticosterone-d4 (#802905; Sigma) as an 
internal standard, alongside calibration standard solutions 
of 25,000, 10,000, 4000, 1600, 640, 256, 102.4 pg/mL 
corticosterone and 11-DHC (#Q1550-000 and #Q3690-000; 
both Steraloids Inc., RI, USA), under the same conditions 
as the samples (Supplementary Materials, see section on 
supplementary materials given at the end of this article). 
Extracted standards and samples then underwent C18 
reverse phase liquid chromatography, followed by positive 
electrospray ion trap mass spectrometry (Suppl. Info). 
Calibration curves were constructed using the ratio of the 
peak areas of corticosterone or 11-DHC to the peak areas 
of corticosterone-d4 obtained from the LC/MS analyses 
(Supplementary Materials). Concentrations of samples 
were extrapolated, and converted to ng/mL (for plasma) or 

normalised to the wet weight of the tissues (ng/g for brain, 
liver and placenta).

Adrenocorticotropic hormone radioimmunoassay

Maternal plasma adrenocorticotropic hormone (ACTH) 
concentrations were measured in duplicate samples using 
an ACTH Double Antibody RIA Kit (MP Biomedicals, 
Eschwege, Germany; #07106102) in accordance with the 
manufacturer’s instructions.

In situ hybridisation

In situ hybridisation (ISH) was used to investigate the 
expression of genes known to regulate or modulate 
glucocorticoid activity and signalling in the maternal 
brain, maternal pituitary gland, placenta and fetal brain. 
ISH was performed on 15 μm coronally sectioned maternal 
and fetal brains and midline-sections of placenta, using 
oligonucleotide probes (Supplementary Table 1A) for 
arginine vasopressin (Avp) and pro-opiomelanocortin 
(Pomc) or riboprobes (Supplementary Table 1B) for 
corticotropin-releasing hormone (Crh), glucocorticoid 
receptor (Nr3c1), mineralocorticoid receptor (Nr3c2), 
11β-hydroxysteroid dehydrogenase type 1 (Hsd11b1) and 
type 2 (Hsd11b2), FK506-binding protein 51 (Fkbp51) 
and 52 (Fkbp52), as previously described (Brunton 
et  al. 2005, Brunton et  al. 2009). One male and one 
female placenta/fetal brain from each litter were used 
for in situ hybridisation. For further details, refer to the 
Supplementary Materials.

Western blotting

Western blotting was used to quantify placental HSD11B2 
expression (one male and one female placenta/litter were 
used; n =  7/group). Briefly, 1/8th of a placenta containing 
both junctional and labyrinth zones was homogenised, 
and 50 µg protein/sample was electrophoresed on a gel 
and transferred onto a PVDF membrane. Membranes 
were blocked and incubated with a primary antibody 
targeting HSD11B2 (Abcam, #ab80317; 1:250), followed 
by a fluorescent secondary anti-rabbit IgG. After 
visualisation, the membrane was stripped and incubated 
again with a primary antibody targeting β-actin (Sigma, 
#A5411; 1:50,000) and a fluorescent secondary anti-
mouse IgG and visualised again. Band intensity was 
quantified on ImageJ and HSD11B2 band intensity was 
normalised against β-actin band intensity to obtain 
HSD11B2 expression for each placenta sample. For 
further details, refer to the Supplementary Materials.
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Data analysis and statistics

Statistical analyses were performed using PRISM 6.0 
(GraphPad Software Inc.). T-test with Welch’s correction 
was used for comparisons between control and stressed 

maternal groups (Figs. 1 and 2). Two-way ANOVA (with 
stress and sex as main factors) were used for comparisons 
in the placenta and fetuses, with Fisher's least significance 
difference test as the post-hoc test (Figs. 3-5). P < 0.05 was 
considered statistically significant in each case.

Figure 1
Effect of maternal social stress on maternal HPA 
axis activity. Repeated social stress for 5 days 
resulted in an increase in (A) ACTH, (B) 
corticosterone and (C) 11-dehydrocorticosterone 
(11-DHC) concentrations in the maternal plasma. 
In the medial parvocellular region of the 
paraventricular nucleus (mpPVN), stressed dams 
displayed greater expression of arginine 
vasopressin (Avp) mRNA (D, E) and lower 
expression of (F, G) corticotropin-releasing factor 
(Crh) mRNA. In the anterior pituitary gland, 
stressed dams had greater pro-opiomelanocortin 
(Pomc) mRNA expression compared to non-
stressed controls (H, J). Representative images 
show clusters of silver grains indicating (E) Avp 
and (G) Crh mRNA hybridisation in the maternal 
mpPVN and (I) Pomc mRNA expression in the 
pituitary gland. (J) Representative high-power 
image of Pomc expression in the anterior lobe of 
the pituitary gland. *P < 0.05, **P < 0.01, 
***P < 0.001. Individual data points (n  = 7/group) 
overlay bars representing group means + s.e.m. 
Average pixel intensity is presented for (D) Avp 
and (F) Crh due to the greater intensity of silver 
grains. (H) Pomc was quantified using grain 
density (mm2/mm2). 3V, third ventricle; Ant., 
anterior; Int., intermediate; Post., posterior lobes 
of the pituitary gland.
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Results

Effect of repeated social stress on maternal body 
weight and litter size

Social stress exposure did not significantly affect the 
body weight gain of the dams between days 16 and 20 of 
pregnancy (% increase in body weight was 13.4 ± 1.2% 
in the controls and 12.3 ± 1.3% in the stressed dams; 
t = 0.63, P = 0.54). There were no significant differences 
in the total number of fetuses (control: 14 ± 0.5, stress: 
15 ± 0.4, t = 1.71, P = 0.11) or the male:female ratio 
(control: 1.3 ± 0.2, stress: 0.8 ± 0.2, t = 1.625, P = 0.13) of 
the litters from control and stressed dams.

Effect of repeated social stress on maternal HPA axis 
activity and regulation

Following the final bout of social stress on GD20, 
plasma   concentrations of ACTH (1.4-fold; P = 0.0034, 
t = 3.75; Fig. 1A), corticosterone (3.7-fold; P = 0.0052, 
t = 4.18; Fig. 1B) and 11-DHC (1.7-fold; P = 0.0174, t = 3.10; 
Fig. 1C) were significantly greater in the stressed dams 
compared to the non-stressed control dams.

Repeated social stress also resulted in significantly 
greater Avp expression (P = 0.044, t = 2.64; Fig. 1D-E), 
but lower Crh expression (P = 0.0373, t = 2.41; Fig. 1F-G) 
in the mpPVN compared with non-stressed controls. 
Gene   expression of the ACTH precursor, Pomc, was 

Figure 2
Effect of maternal social stress on maternal HPA axis regulation. Gene expression for (A) mineralocorticoid receptor (Nr3c2) and (C) glucocorticoid 
receptor (Nr3c1) was greater in each of the hippocampal subfields in the stressed dams (grey bars) compared to the non-stressed control dams (white 
bars). Representative images of the four regions of the hippocampus expressing (B) Nr3c2 and (D) Nr3c1 mRNA expression in the dentate gyrus (DG).  
(E, F) Fkbp51 expression did not differ between stressed and control dams in any of the hippocampal regions. 11β-hydroxysteroid dehydrogenase type 1 
(Hsd11b1) mRNA expression was lower in (G) the CA3 and DG region of the hippocampus and (I) medial parvocellular paraventricular nucleus (mpPVN) of 
the stressed dams, but not altered in (J) the anterior pituitary gland. (H) Representative photomicrograph shows an example of cells positively expressing 
Hsd11b1 mRNA (indicated by arrows) in the hippocampus. *P < 0.05, **P < 0.01, ***P < 0.001. Individual data points (n  = 6–7/group) overlay bars 
representing group means + s.e.m. Grain density (mm2/mm2) is presented in each case, except for Hsd11b1 in the maternal hippocampus (G) and mpPVN (I) 
where the number of positive cells was counted.
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markedly greater in the anterior pituitary gland of 
stressed dams compared to control dams (P < 0.0001, 
t = 7.91; Fig. 1H-J).

Stressed dams also had greater Nr3c2 (Fig. 2A-B) and 
Nr3c1 expression (Fig. 2C-D) in all four regions of the 
hippocampus (Nr3c2: CA1: P = 0.0014, t = 4.56; CA2: 
P = 0.0021, t = 4.26; CA3: P = 0.00024, t = 5.57; dentate 
gyrus (DG): P = 0.04, t = 2.36; Nr3c1: CA1: P = 0.014, 
t = 2.96; CA2: P = 0.0082, t = 3.29; CA3: P = 0.007, t = 3.38; 
DG: P = 0.0002, t = 5.66). Gene expression for Fkbp51 did 
not differ between the stressed and control dams in any of 
the hippocampal subfields (Fig. 2E-F).

We also investigated whether the ability to modulate 
local glucocorticoid concentrations in the hippocampus 
was affected by repeated social stress by quantifying 
changes in the expression of Hsd11b1, which converts 
inert 11-DHC into corticosterone. Hsd11b1 expression in 
the CA3 and DG of the hippocampus was significantly 
lower in stressed dams compared to control dams (CA3: 
P = 0.021, t = 2.66; DG: P = 0.048, t = 2.199) on GD20, but 

no differences were observed in the CA1 and CA2 regions 
(Fig.  2G-H). The number of Hsd11b1 expressing cells was 
also lower in the mpPVN of stressed dams compared to 
control dams (P = 0.0034, t = 3.79; Fig. 2I), but no differences 
were observed in the anterior pituitary gland (Fig. 2J).

Impact of maternal stress on placental and fetal 
glucocorticoid concentrations

We next investigated whether the increase in 
corticosterone and 11-DHC detected in the maternal 
compartment was also evident in the placenta and the 
fetus, indicating maternal–fetal transmission.

In the placenta, there was a significant main effect 
of stress on both placental corticosterone and 11-DHC 
concentrations. The male placentae from stressed mothers 
contained significantly greater concentrations of both 
corticosterone (P = 0.0098; Fig. 3A) and 11-DHC (P = 0.03; 
Fig. 3B), compared to the male placentae from control 
rats; however, this difference was not observed in female 

Figure 3
Effect of maternal social stress on corticosterone and 11-DHC concentrations in the placenta and fetus. Both (A) corticosterone and (B) 11-DHC 
concentrations were greater in the placenta of stressed male fetuses than in the placenta of control male fetuses, with no significant differences in the 
female fetuses. (C) Plasma corticosterone concentrations were greater in the stressed female fetuses compared to control female fetuses, with no 
differences in the male fetuses. (D) Plasma 11-dehydrocorticosterone (11-DHC) concentrations were not altered by stress in either sex. In the fetal brain, 
no differences were detected in (E) corticosterone or (F) 11-DHC concentrations in either sex. (G) Hepatic corticosterone concentrations were greater  
in both male and female stressed fetuses compared to their respective controls, while (H) 11-DHC did not differ between any of the groups.  
*P < 0.05, **P < 0.01, ***P < 0.001. Individual data points (n  = 6–7/group) overlay bars representing group means + s.e.m.
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placentae (corticosterone: P = 0.297, 11-DHC: P = 0.294; 
Fig.  3A-B).

There was a significant main effect of stress on fetal 
plasma corticosterone concentrations (Fig. 3C). Post-
hoc comparisons revealed significantly greater plasma 
corticosterone concentrations in the stressed female 
fetuses compared with the control females (P = 0.017; 
Fig.   3C), albeit to a lesser extent (1.3-fold) than that 
observed between the stressed and controls dams (3.7-
fold). In contrast, there was no significant difference 
in plasma corticosterone concentrations between the 
stressed and control male fetuses (P = 0.259; Fig. 3C). 
Plasma 11-DHC concentrations did not differ between 
control and stressed fetuses of either sex (Fig. 3D).

In the fetal brain, there were no significant differences 
in corticosterone (Fig. 3E) or 11-DHC concentrations 
between any of the groups (Fig. 3F). Whereas in the fetal 
liver, there was a main effect of stress on corticosterone 

concentrations (Fig. 3G). Corticosterone concentrations 
in the liver were significantly greater in stressed 
fetuses   compared to control fetuses, for both males 
(P = 0.012) and females (P = 0.048). Hepatic 11-DHC 
concentrations were not different between the four 
groups (Fig. 3H).

Effect of maternal stress on glucocorticoid 
metabolism and action in the placenta

Next, we quantified gene expression for modulators of 
glucocorticoid action in the placenta. A main effect of 
stress was observed for Hsd11b2 expression in both the 
junctional and labyrinth zones of the placenta (Fig. 4A, B), 
with an additional sex × stress interaction detected only 
in the labyrinth zone (Fig. 4B). Hsd11b2 expression was 
significantly greater in stressed male placentae compared 
to control male placentae in both the junctional 

Figure 4
Effect of maternal social stress on gene and protein expression for 11β-hydroxysteroid dehydrogenase type 2 in the placenta. 11β-hydroxysteroid 
dehydrogenase type 2 (Hsd11b2) mRNA expression in both the placental (A, D – left) junctional and (B, D – right) labyrinth zones from stressed males was 
greater compared to control male placentae. While no differences in Hsd11b2 expression were observed between control and stressed female placentae in 
either zone (A, B), female control placenta displayed significantly greater Hsd11b2 mRNA expression compared to male controls in the labyrinth zone (B). 
There were no effects of stress or sex on placental 11β-HSD2 protein expression (C). Representative Western blots of 11β-HSD2 (E – top panel) and β-actin  
(E – bottom panel), after stripping and re-probing. *P < 0.05, ***P < 0.001. Individual data points (n = 6–7/group) overlay bars representing group means + s.e.m.
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(P = 0.0419; Fig. 4A, D) and labyrinth zones (P = 0.0008; Fig. 
4B, D); whereas in females, no significant differences in 
Hsd11b2 expression were observed (P = 0.29 for junctional 
zone, P = 0.55 for labyrinth zone). Additionally, in the 
labyrinth zone, control females were found to have 
significantly greater Hsd11b2 expression compared to 
control males (P = 0.0157); however, this sex difference 
was not observed in the stressed groups (P = 0.0774; Fig. 

4B). In contrast to the gene expression data, there was 
no significant effect of maternal social stress on placental 
HSD11B2 in either sex  (Fig. 4C, E).

There were no differences in placental Nr3c1 
expression between any of the four groups in either the 
junctional (Fig. 5A, C) or labyrinth zones (Fig. 5B, C).

There was a main effect of stress and a stress × 
sex interaction for Fkbp51 gene expression in the 

Figure 5
Effect of maternal social stress on glucocorticorticoid regulatory mechanisms in the placenta. No differences were observed for glucocorticoid receptor 
(Nr3c1) expression between any of the groups in either region of the placenta (A, B). (C) Representative photomicrograph of Nr3c1 expression in the 
placenta. There was no difference in Fkbp51 expression between groups in the junctional zone (D, F – left); however, Fkbp51 expression in the labyrinth 
zone was significantly greater in stressed female placenta compared with control female placenta (E, F – right). No differences were detected in Fkbp52 
mRNA expression between any of the groups in either the (G) junctional or (H) labyrinth zone of the placenta. (I) Representative photomicrograph of 
Fkbp52 expression in the junctional (left) and labyrinth zone (right) of the placenta. *P < 0.05, ***P < 0.001. Grain density (mm2/mm2) is presented in each 
case. Individual data points (n  = 6–7/group) overlay bars representing group means + s.e.m.
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labyrinth   zone (Fig. 5E), but not in the junctional zone 
(Fig. 5D) of the placenta. Stressed female placentae had 
significantly greater Fkbp51 expression than control 
females (P < 0.0001) and stressed males (P = 0.0094) in 
the labyrinth zone (Fig. 5E, F). Gene expression for 
Fkbp52 did  not differ across the four groups in either the 
junctional (Fig. 5G, I) or labyrinth zone (Fig. 5H, I).

Effect of maternal stress on glucocorticoid 
metabolism and action in the fetal hippocampus

Finally, we sought to investigate whether maternal 
stress induced any other changes in genes that 
modulate glucocorticoid activity or action specifically 
in the fetal hippocampus. There were no differences 
in the expression   of either Nr3c2 (Fig. 6A, C) or Nr3c1 
(Fig.   6B,   C), nor were there any differences in Hsd11b1 
(Fig. 6D, F) or Hsd11b2 (Fig. 6E, F) expression between the 
four groups.

Discussion

Here we show that repeated social stress activates the HPA 
axis in late pregnant dams. Despite the large increase 
in corticosterone secretion in the pregnant dam, this 
evidently did not access the fetal compartment – only a 
modest increase in corticosterone was observed in the 
circulation of female fetuses, with no change in the male 
fetuses. Importantly, there was no stress-induced changes 
in corticosterone concentrations in the fetal brain of 
either sex. Sex-dependent changes were observed in the 
expression of genes involved in regulating glucocorticoid 
availability and action in the placenta. It is therefore 
expected that any role for maternal glucocorticoids in 
fetal programming the offspring’s brain and behaviour 
occurs via indirect actions, possibly through inducing 
changes in the placenta, rather than via direct crossover 
into the fetal circulation and subsequently accessing  
the fetal brain.

Figure 6
Effects of maternal social stress on glucocorticoid regulatory mechanisms in the fetal hippocampus. No differences in mRNA expression for (A) 
mineralocorticoid receptor (Nr3c2), (B) glucocorticoid receptor (Nr3c1), (D) 11β-hydroxysteroid dehydrogenase type 1 (Hsd11b1) or (E) 11β-hydroxysteroid 
dehydrogenase type 2 (Hsd11b2) were observed in the hippocampus between any of the groups. Representative photomicrographs show examples of 
hybridisation for (C) Nr3c2 (top) and Nr3c1 (bottom), and (F) Hsd11b1 (left) and Hsd11b2 (right). Grain density (mm2/mm2) is presented in each case. 
Individual data points (n  = 6–7/group) overlay bars representing group means + s.e.m.
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Maternal HPA axis

The maternal HPA axis was activated by social stress, 
reflected by the increased secretion of ACTH and 
corticosterone and an up-regulation of Pomc expression 
in the anterior pituitary gland, probably serving to 
replenish ACTH stores following its secretion (Zelena 
et  al. 2003). Given corticosterone secretion increases 
rapidly in response to stress, the increase measured here 
likely reflects the stress experienced during the final 
social stress bout. Nevertheless, the increase in ACTH 
and corticosterone secretion indicates the maternal HPA 
axis response to social stress persists even after repeated 
exposure, consistent with our previous findings using this 
stress paradigm, where we demonstrated that although 
corticosterone secretory responses are attenuated in late 
pregnant rats compared with virgin females, they are 
markedly greater than baseline and those measured in 
non-stressed pregnant rats (Brunton & Russell 2010). 
Circulatory 11-DHC concentrations were also elevated in 
the stressed dams, indicating the protective mechanism 
responsible for inactivating maternal corticosterone (e.g. 
placental HSD11B2) was functional following stress. We 
also detected altered gene expression in the maternal 
mpPVN. Avp expression was significantly greater and Crh 
expression was lower in stressed dams compared with non-
stressed dams. These changes are likely a result of repeated 
social stress, as they mirror the changes observed following 
repeated stress in non-pregnant rats (Ma et al. 1997). While 
acute stress induces upregulation of Crh gene transcription 
(which typically predominates), in contrast, following 
repeated homotypic stressors, habituation occurs in the 
Crh response resulting in a shift in the hypothalamic 
driver of ACTH secretion in favour of Avp, which helps 
maintain HPA axis reactivity (Scaccianoce et  al. 1991,  
de Goeij et  al. 1992, Ma et  al. 1997). Our data suggest  
that the HPA axis response, and critically corticosterone 
secretion, to repeated social stress is sustained in late 
pregnant rats, with the key ACTH secretagogue being 
Avp, rather than Crh. This is of interest as a lack of Avp, 
rather than Crh, secretion into the portal blood evidently 
underpins HPA axis hyporesponsiveness to acute stress 
in late pregnancy (Ma et  al. 2005). Hence, the greater 
activation of Avp-synthesising neurones in the mpPVN 
observed here may indicate this protective mechanism 
that restrains stress-induced HPA axis activation is 
disrupted under conditions of repeated stress exposure.

Changes related to glucocorticoid negative feedback 
control of the maternal HPA axis were also observed. 
Hippocampal Nr3c1 and Nr3c2 expression in the 

pregnant dams was significantly upregulated following 
repeated social stress, with no change in expression 
of the Nr3c1 co-chaperone, Fkbp51. Exposure of these 
receptors to increased levels of the ligand through 
exogenous administration or chronic stress is typically 
expected to lead to down-regulation of Nr3c1 and 
Nr3c2 transcription, at least in male rodents (Gómez 
et al. 1996, Paskitti et al. 2000, Hügin-Flores et al. 2004); 
however, in late pregnant rats, the opposite was observed. 
This may be a compensatory mechanism serving to 
enhance negative feedback control over the HPA axis 
and dampen corticosterone responses given attenuated 
HPA axis responses to stress are well established in late 
pregnancy and are considered protective (Brunton et  al. 
2008, Brunton & Russell 2011, Russell & Brunton 2019). 
Indeed, basal expression of Nr3c1 is up-regulated in the 
dentate gyrus in late pregnancy (Johnstone et  al. 2000). 
In contrast, Hsd11b1 expression in the mpPVN and 
hippocampal CA3 and DG regions was lower in the stressed 
dams. In late pregnancy, HSD11B1 activity is increased 
in the PVN and anterior pituitary gland (though not 
the hippocampus), where it is expected to enhance local 
intracellular glucocorticoid concentrations and promote 
negative feedback control of the HPA axis (Johnstone 
et  al. 2000). The promoter region of the Hsd11b1 gene 
possesses a glucocorticoid-response element (Moisan 
et al. 1992a, Yang et al. 2007) and glucocorticoids acting 
via Nr3c1 up-regulate Hsd11b1 promoter activity and 
gene transcription (Low et  al. 1994, Yang et  al. 2007), 
so here the finding of lower Hsd11b1 expression in the 
stressed dams was unexpected. However, alterations 
in Hsd11b1 expression may provide a mechanism 
through which the exposure of glucocorticoid-sensitive 
neurones, such as those in the hippocampus and PVN, to 
corticosterone can be regulated locally to ensure optimal 
exposure under  conditions of repeated stress and elevated 
corticosterone levels.

Overall, these changes suggest that regulation of the 
maternal HPA axis following chronic stress as compared 
to single acute stressors during pregnancy is complex; 
however, the maternal HPA axis is able to mount a 
significant corticosterone response and glucocorticoid 
negative feedback mechanisms do not appear impaired.

Changes in the placenta and glucocorticoid transfer

The fundamental basis of the glucocorticoid programming 
hypothesis centres around the assumption that circulating 
glucocorticoid concentrations are considerably lower in 
the fetus than in the mother (Chapman et al. 2013). Excess 
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glucocorticoids, which are small lipophilic molecules, 
would therefore have the tendency to cross the placenta 
via simple diffusion unless inactivated by placental 
HSD11B2. Here, contrary to these assumptions, absolute 
concentrations of both fetal circulating corticosterone 
and 11-DHC were greater than circulating maternal 
concentrations. Furthermore, following maternal stress, 
corticosterone concentrations were unchanged in the 
male fetuses and only 1.3-fold greater than non-stressed 
controls in the female fetuses, which is a modest increase 
compared with the 3.7-fold increase measured in the 
mothers. These measurements are consistent with previous 
studies in rats using radioimmunoassays, where increases 
in plasma corticosterone concentrations in the fetuses 
following maternal stress were of far lower magnitude than 
those observed in the pregnant dam (Ward & Weisz 1984, 
Takahashi et al. 1998, Williams et al. 1999, Bingham et al. 
2013, Scott et al. 2020).

The sex differences observed in fetal plasma 
corticosterone concentrations also corroborate findings 
in mice, where a small increase in corticosterone levels 
is observed in the female, but not in the male fetuses 
following maternal restraint stress (Montano et al. 1993). 
This sex difference may suggest placental transport of 
corticosterone from the maternal blood is greater in 
the female than in the male fetuses, especially given 
stress up-regulated placental Hsd11b2 in the male, but 
not the female fetuses, which would be expected to 
provide a stronger barrier against corticosterone transfer 
to male fetuses, resulting in an increase in circulating 
corticosterone only in the female fetuses. However, in 
view of the finding that Hsd11b2 expression was already 
significantly greater in the placental labyrinth zone (the 
major site of feto-maternal exchange) of female fetuses 
compared with male fetuses under non-stress conditions 
(such that there was no sex difference in the fetuses of 
stressed dams) and that protein expression of Hsd11b2 was 
not different between sexes, this seems unlikely. Instead, it 
may be that the small increase in circulatory corticosterone 
concentrations in female fetuses following maternal stress 
arises from increased secretion by the fetuses’ own adrenal 
glands, which in rats are capable of secreting corticosterone 
from GD 16 (Boudouresque et al. 1988). The fetal HPA axis 
responds to maternal stress during pregnancy (Williams 
et al. 1999, Ohkawa et al. 1991); however, the mechanisms 
involved in the fetal perception of maternal stress and 
fetal HPA axis activation are unclear, though may involve 
hypoxia due to reduced uterine blood flow or increased 
oxidative stress (Morishima et al. 1979, Ohkawa et al. 1991, 
Scott et al. 2020).

Comparable sex differences have been reported in 
human placenta, with Hsd11b2 more highly expressed 
in placentae of females than males (Mericq et  al. 2009), 
while maternal stress is associated with increased Hsd11b2 
expression in male placentae and reduced expression in 
female placentae (Mina et  al. 2015). Here, stress-induced 
up-regulation of placental Hsd11b2 in the male fetuses 
may be driven by increased placental corticosterone 
concentrations (van Beek et  al. 2004), a finding observed 
in males, but not in females. Placental HSD11B2 protein 
expression was not correlated with Hsd11b2 gene expression. 
This is not entirely surprising since it is accepted that 
mRNA transcript abundance only partially predicts protein 
abundance, for a range of reasons, e.g. post-transcriptional 
regulation, different production, degradation and stability 
rates between mRNA and protein (Vogel & Marcotte 2012). 
Nevertheless, our data do not support a role for maternal 
stress in down-regulating HSD11B2, rather the data suggest 
that the protective HSD11B2 placental barrier, considered 
to minimise fetal exposure to maternal glucocorticoids, 
is not compromised by maternal social stress during 
pregnancy. Indeed, recent studies using human placenta 
have questioned the importance of HSD11B2 in protecting 
the fetus from high maternal glucocorticoid transfer, as 
less than 10% of labelled cortisol crosses from the maternal 
to fetal circulation even when HSD11B2 is inhibited (Stirrat 
et  al. 2018). These findings suggest that in addition to 
the well-established inactivation of glucocorticoids by 
HSD11B2, additional mechanisms may play an important 
role in regulating glucocorticoid transport, such as 
placental ATP-binding cassette transporters (Bloise et  al. 
2016), but any potential influences of maternal stress on 
these mechanisms have not yet been investigated.

Given that glucocorticoids influence placental 
function (Fowden & Forhead 2015), it is possible that 
placental HSD11B2 plays a role in regulating local 
corticosterone levels, which may in turn affect placental 
functions such as oxygen and/or nutrient transfer. 
Here, placentae of stressed female, but not male fetuses, 
displayed increased Fkbp51 expression in the labyrinth 
zone. While placental Nr3c1 expression remained 
unchanged following stress in both sexes, Nr3c1 signalling 
within the placenta may be reduced in the stressed females 
as FKBP51 inhibits NR3C1 action. These data suggest 
that the male and female placentae may adopt different 
strategies to mitigate the effects of maternal stress. 
Several sex differences in the placenta that contribute to 
prenatal programming have been identified, including 
glucocorticoid regulation (Schmidt et  al. 2019), and 
epigenetic mechanisms (Howerton & Bale 2014). Therefore, 
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it is possible that sex differences in adulthood behavioural 
outcomes in prenatally stressed rats can be traced back to 
sexually dimorphic mechanisms in the placenta during 
development, which remain poorly understood.

Changes in the fetal brain and liver

Ultimately, the physiological effects of glucocorticoids in 
the fetus are dependent on their action in target organs. 
While glucocorticoids are required for normal fetal growth, 
the expression of their receptors, receptor chaperone 
proteins and converting enzymes undergo dynamic 
changes to continually fine-tune the system to ensure 
appropriate glucocorticoid action in the fetal tissues. 
In this study, there were no changes in corticosterone or 
11-DHC concentrations in the fetal brain of either sex, 
despite the slightly greater circulating concentrations in 
the female fetuses. This is the first time corticosterone and 
11-DHC have been quantified in the developing rat brain 
in both sexes, and no sex differences in corticosterone were 
observed at this stage, contrary to the adult brain when 
the HPA axis is fully mature (Sze et  al. 2018). However, 
there could be regional differences as recently described 
in the developing mouse brain (Hamden et  al. 2021). 
Nevertheless, our current data do not support a role for 
maternal glucocorticoids exerting direct actions on the 
fetal brain to exert programming effects.

Nr3c1 and Nr3c2 were not altered by stress in the 
fetal hippocampus; thus, the reduction in receptor gene 
expression observed in adulthood (Brunton & Russell 
2010) likely emerges postnatally. Hsd11b1 and Hsd11b2 
expression in the fetal hippocampus was also unchanged 
following stress; however, Hsd11b1 and Hsd11b2 expression 
is low in the fetal hippocampus in late pregnancy (Moisan 
et al. 1992b, Diaz et al. 1998, Wyrwoll et al. 2015); thus, local 
control may be less important at this developmental stage.

Interestingly, greater hepatic corticosterone 
concentrations were observed in the stressed fetuses, 
irrespective of sex. This may result from uptake from the 
maternal or fetal circulation since the liver is perfused 
by both the umbilical vein (maternal source) and the 
hepatic portal vein (fetal source) (Murphy et  al. 2006). It 
is also possible that corticosterone is generated locally as 
prenatal stress increases fetal liver Hsd11b1 expression 
in mice where it is linked to metabolic dysregulation 
(Maeyama et  al. 2015). Previous studies report that 
maternal stress and increased corticosterone levels affect 
hepatic gluconeogenic capacity in rat fetuses, potentially 
leading to the programming of metabolic diseases (Franko 
et al. 2017). Indeed, we previously found alterations in the 

hepatic expression of genes regulating glucose homeostasis 
and lipid metabolism in adult prenatally stressed offspring 
(Brunton   et  al. 2013), suggesting that liver function is 
particularly sensitive to changes in maternal stress.

In summary, this study demonstrates that repeated 
maternal social stress stimulates corticosterone secretion 
in late pregnant rats, though the primary driver of the 
HPA axis is Avp, rather than Crh. Despite the increase in 
circulating corticosterone in the maternal circulation, 
only a modest increase was detected in the fetal circulation 
of female, but not male fetuses, with no changes in fetal 
brain levels of corticosterone in either sex. In contrast to 
previous reports, repeated maternal social stress did not 
down-regulate placental Hsd11b2 or HSD11B2 (Mairesse 
et al. 2007, Jensen Peña et al. 2012), suggesting the placental 
barrier understood to safeguard fetuses from excess 
maternal glucocorticoid exposure was intact. Maternal 
stress also exerted a sex-specific increase in the expression 
of the NR3C1 co-chaperone, Fkbp51, in the placenta of 
female, but not male fetuses, indicating sex differences 
in responses to stress are evident in prenatal life and 
further suggesting that mechanisms underpinning fetal 
programming are likely sex-dependent, with the placenta 
playing a significant role. In conclusion, our results 
indicate that any role for maternal glucocorticoids in 
fetal programming the offspring’s brain and behaviour is 
likely mediated through indirect actions, perhaps through 
altering placental gene expression and function in a sex-
specific manner, rather than exerting direct effects via 
crossing the placenta and accessing the fetal brain.
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