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Bayesian Nonparametric Approaches 
for ROC Curve Inference

Vanda Inácio de Carvalho, Alejandro Jara, and Miguel de Carvalho

Abstract The development of medical diagnostic tests is of great importance in
clinical practice, public health, and medical research. The receiver operating char-
acteristic (ROC) curve is a popular tool for evaluating the accuracy of such tests.
We review Bayesian nonparametric methods based on Dirichlet process mixtures
and the Bayesian bootstrap for ROC curve estimation and regression. The methods
are illustrated by means of data concerning diagnosis of lung cancer in women.

16.1 Introduction

Medical diagnostic tests are designed to discriminate between alternative states of
health, generally referred throughout as diseased and non-diseased/healthy states.
Their ability to discriminate between these two states must be rigorously assessed
trough statistical analysis before the test is approved for use in practice. In what
follows, we assume the existence of a gold standard test, that is, a test that perfectly
classifies the individuals as diseased and non-diseased. Compared to the truth one
wants to know how well the test being evaluated performs.

The accuracy of a dichotomous test, a test that yields binary results (e.g., posi-
tive or negative), can be summarized by its sensitivity and specificity. The sensitivity
(Se) is the test-specific probability of correctly detecting diseased subjects, while the
specificity (Sp) is the test-specific probability of correctly detecting healthy subjects.
In turn, the accuracy of a continuous scale diagnostic test is measured by the sep-
aration of test outcomes distribution in the diseased and non-diseased populations.
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The receiver operating characteristic (ROC) curve, which is a plot of Se against
1− Sp for all cutoff points that can be used to convert continuous test outcomes
into dichotomous outcomes, measures exactly such amount of separation and it is
probably the most widely used tool to evaluate the accuracy of continuous or ordinal
tests.

A critical aspect when developing inference for ROC curves is the specification
of a probability distribution for the test outcomes in the diseased and healthy groups.
The main issue is that parametric models, such as the binormal model (arising when
a normal distribution is assumed for both populations), are often too restrictive to
capture nonstandard features of the data, such as skewness and multimodality, po-
tentially leading to unsatisfactory inferences on the ROC curve. In these situations,
we would like to relax parametric assumptions in order to gain modeling flexibility
and robustness against misspecification of a parametric statistical model. Specifi-
cally, we would like to consider flexible modeling approaches that can handle non-
standard features of the data when that is needed, but that do not overfit the data
when parametric assumptions are valid.

Moreover, recently, the interest on the subject has moved beyond determining
the basic accuracy of a test. It has been recognized that the discriminatory power
of a test is often affected by patient-specific characteristics, such as age or gender.
In this situations, the parameter of interest is a collection of ROC curves associated
with different covariate levels. In this context, understanding the covariate impact on
the ROC curve may provide useful information regarding the test accuracy toward
different populations or conditions. On the other hand, ignoring the covariate effects
may lead to biased inferences about the test accuracy. As in the no-covariate case,
here it is also important to consider flexible modeling approaches for assessing the
effect of the covariates on test accuracy and, consequently, on the corresponding
ROC curves.

In this chapter, we discuss two Bayesian nonparametric (BNP) approaches that
are used to obtain data-driven inferences for a single ROC curve, based on mixtures
induced by a Dirichlet process (DP) and on the Bayesian bootstrap. We also discuss
an approach to model covariate-dependent ROC curves based on mixture models
induced by a dependent DP (DDP), which allows for the entire distribution of the
test outcomes, in each population, to smoothly change as a function of covariates.
The chapter is organized as follows. In Sect. 16.2 we provide background material
on ROC curves. BNP approaches for single ROC curve estimation are discussed in
Sect. 16.3. A BNP ROC regression model is discussed in Sect. 16.4. In Sect. 16.5
we illustrate the methods using data concerning diagnosis of lung cancer in women.
We conclude with a short discussion in Sect. 16.6.

16.2 ROC Curves

Let Y0 and Y1 be two independent random variables denoting the diagnostic test
outcomes in the non-diseased and diseased populations, with cumulative distribution
function (CDF) F0 and F1, respectively. Further, let c be a cutoff value for defining a



positive test result and, without loss of generality, we proceed with the assumption
that a subject is classified as diseased when the test outcome is greater or equal
than c and as non-diseased when it is below c. Then, for each cutoff value c, the
sensitivity and specificity associated with such decision criterion are

Se(c) = Pr(Y1 ≥ c) = 1−F1(c), Sp(c) = Pr(Y0 < c) = F0(c).

Obviously, for each value of c, we obtain a different sensitivity and specificity. The
ROC curve summarizes the tradeoffs between Se and 1−Sp (also known as false
positive fraction) as the cutoff c is varied and it corresponds to the set of points

{(1−F0(c),1−F1(c)) : c ∈ IR}.

Alternatively, and letting p = 1−F0(c), the ROC curve can be expressed as

ROC(p) = 1−F1{F−1
0̄

(1− p)}, 0 ≤ p ≤ 1, (16.1)

where F−1
0 (1− p) = inf{z : F0(z) ≥ 1− p}. ROC curves measure the amount of

separation between the distribution of the test outcomes in the diseased and non-
diseased populations. Figure 16.1 illustrates the effect of separation on the resulting
ROC curve. When both distributions completely overlap, the ROC curve is the di-
agonal line of the unit square (that is, Se(c) = 1−Sp(c) for all c), thus indicating an
useless test. On the other hand, the more separated the distributions the closer the
ROC curve is to the point (0,1) in the unit square. A curve that reaches the point
(0,1) has Sp(c) = Se(c) = 1 for some cutoff c, and hence corresponds to a perfect
test. As it is clear from expression (16.1), estimating the ROC curve is basically a
matter of estimating the distribution functions of the diseased and non-diseased pop-
ulations and, hence, flexible models for estimating such distributions are in order.

Related to the ROC curve is the notion of placement value (Pepe and Cai 2004),
which is simply a standardization of test outcomes with respect to a reference popu-
lation. Let U = 1−F0(Y1) be the placement value of diseased subjects with respect
to the non-diseased population. This variable quantifies the degree of separation be-
tween the two populations. Specifically, if the test outcomes in the two populations
are highly separated, the placement of most diseased individuals is at the upper tail
of the non-diseased distribution, so that most diseased individuals will have small
placement values. In turn, if the populations overlap substantially, U will have a
Uniform(0,1) distribution. Interestingly, the ROC curve turns out to be the CDF
of U

Pr(U ≤ p) = Pr(1−F0(Y1)≤ p) = 1−F1{F−1
0 (1− p)}= ROC(p). (16.2)

It is common to summarize the information of the ROC curve into a single summary
index and the most widely used is the area under the ROC curve (AUC), which is
defined as

AUC =

∫ 1

0
ROC(p)dp. (16.3)
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Fig. 16.1 ROC curve illustrations: The first column displays the densities of the test outcomes for
diseased (solid black line) and non-diseased populations (dashed grey line). The second column
displays the corresponding distribution functions of the test outcomes for diseased (solid black
line) and non-diseased populations (dashed grey line). The third column displays the corresponding
ROC curves



The AUC can be interpreted as the probability that an individual chosen from the
diseased population exhibits a test outcome greater than the one exhibited by a ran-
domly selected individual from the non-diseased population, that is, AUC= Pr(Y1 >
Y0). A test with a perfect discriminatory ability would have AUC = 1, while a test
with no discriminatory power would have AUC = 0.5. Although there are some
other summary indices available, such as the Youden index (Fluss et al. 2005), which
has the nice feature of providing an optimal cutoff for screening subjects in practice,
or the partial AUC (Dodd and Pepe 2003), which is a meaningful measure for cases
where only a specific region of the ROC curve (e.g., high sensitivities or specifici-
ties) is of clinical interest, throughout this chapter we use the AUC as the preferred
summary measure of diagnostic accuracy.

Now, suppose that along with Y0 and Y1, covariate vectors x0 and x1 are also avail-
able. Hereafter, we assume that these covariates are the same in both populations.
However, this not always have to be the case. For instance, the severity of disease
could play an important role on the discriminatory power of the test. As a natural
extension of the ROC curve, the conditional or covariate-dependent ROC curve, for
a given covariate level x, is defined as

ROC(p | x) = 1−F1{F−1
0 (1− p | x) | x}, (16.4)

where F0(· | x) and F1(· | x) denote the conditional distribution function of Y0 and Y1

given covariate x, respectively. For each value of x, we possibly obtain a different
ROC curve and, hence, also a possibly different AUC value, which is computed
simply by replacing (16.4) in (16.3).

There is a vast literature on parametric, semiparametric, and nonparametric fre-
quentist ROC data analysis. The books by Pepe (2003) and Zhou et al. (2011) dis-
cuss many frequentist approaches to ROC curve estimation and regression. See also
the recent surveys by Gonçalves et al. (2014) and Pardo-Fernández et al. (2014).
The amount of existing work in the Bayesian literature is by comparison reduced.
This is particularly valid for the BNP literature, which is fairly limited. Recent work
on the latter includes the DP mixture (DPM) model-based approach of Erkanli et al.
(2006), the Bayesian bootstrap ROC curve estimator of Gu et al. (2008), and the
stochastic ordering approach of Hanson et al. (2008a). Moreover, Branscum et al.
(2008) used mixtures of finite Polya trees to analyze ROC data when the true dis-
ease status is unknown (that is, when there is no gold standard), while Hanson et al.
(2008b) used bivariate mixtures of finite Polya trees to model data from two contin-
uous tests. Additionally, Inácio et al. (2011) proposed the use of mixtures of finite
Polya trees to model the ROC surface for problems where the patients have to be
classified into one of three ordered classes. In what respects ROC regression, Inácio
de Carvalho et al. (2013) proposed to model the conditional ROC curve using DDPs,
whereas Rodrı́guez and Martı́nez (2014) used Gaussian process priors to model the
mean and variance functions in each population and then computed the correspond-
ing induced ROC curve. Finally, Branscum et al. (2014) proposed a method based
on mixtures of finite Polya trees to model ROC regression data when there is not a
gold standard test available.
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16.3 Modeling Approaches for the No Covariate Case

16.3.1 DPM Models

When seeking for flexible modeling approaches and inferences for the distributions
of the test outcomes in each population, mixture models appear as a natural option.
More specifically, mixtures of normal distributions are particularly well suited for
our purposes. Let (Y01, . . . ,Y0n0) and (Y11, . . . ,Y1n1) be random samples of sizes n0

and n1 from the non-diseased and diseased populations, respectively. It would be
natural to assume that

Y01, . . . ,Y0n0 | F0
ind.∼ F0,

and
Y11, . . . ,Y1n1 | F1

ind.∼ F1,

with

Fh(·) =
Kh

∑
k=1

ωhkΦ(· | μhk,σ2
hk), h ∈ {0,1}, (16.5)

where Φ(· | μ ,σ2) denotes the CDF of the normal distribution with mean μ and
variance σ2. Thus, each test outcome would arise from one of the Kh mixture com-
ponents, with each component having its own mean and variance. The model in
(16.5) can be equivalently written as

Fh(·) =
∫

Φ(· | μ ,σ2)dGh(μ ,σ2),

where Gh is a discrete mixing distribution given by

Gh(·) =
Kh

∑
k=1

ωhkδ(μhk,σ2
hk)
(·),

with δa(·) denoting the Dirac measure at a. Usually, the weights {ωhk} are assigned
a Dirichlet distribution, while the component specific parameters {(μhk,σ2

hk)} arise
from a prior distribution, say, G0h(μh,σ2

h ), typically, a normal-inverse-gamma dis-
tribution. Hence, placing a prior on the collection

({ωhk},{(μhk,σ2
hk)}),

is equivalent to placing a prior on the discrete mixture distribution Gh. A drawback
of this model specification is that we must choose the number of components Kh,
which is not a trivial task in general. Although there are methods available that
place an explicit parametric prior on Kh, they tend to be quite difficult to implement
efficiently. An alternative is to use a DP prior (Ferguson 1973, 1974) for Gh, which,
on one hand, offers the theoretical advantage of having full weak support on all
mixing distributions and, on the other hand, the practical advantage of automatically



determining the number of components that best fits a given dataset. We write Gh ∼
DP(αh,G0h) to denote that a DP prior is being assumed for Gh, which is defined
in terms of a parametric centering distribution G0h (for which E(Gh) = G0h), and a
precision parameter αh (αh > 0) which controls the uncertainty of Gh about G0h.

Undoubtedly, the most useful definition of the DP is its constructive definition
(Sethuraman 1994), according to which Gh has an almost sure representation of the
form

Gh(·) =
∞

∑
k=1

ωhkδ(μhk,σ2
hk)
(·), (16.6)

where (μhk,σ2
hk)

iid∼ G0h and the weights arise from a stick breaking construction

ωh1 = vh1, and ωhk = vhk ∏l<k(1− vhl), for k ≥ 2, with vhk
iid∼ Beta(1,αh).

The resulting model for the test outcomes in each population is then a DPM of
normals and is written as

Fh(·) =
∫

Φ(· | μ ,σ2)dGh(μ ,σ2), Gh ∼ DP(αh,G0h), (16.7)

where the centering distribution G0h is defined on IR× IR+. More specifically, we
take G0h to be the normal-inverse-gamma distribution, that is,

G0h ≡ N(mh,Sh)IG(τh1/2,τh2/2),

where N(μ ,σ2) is the normal distribution with mean μ and variance σ2 and IG(a,b)
refers to the inverse-gamma distribution with parameters a and b. The stick-breaking
representation of the DP given in (16.6) allows us to rewrite (16.7) as the following
countably infinite mixture of normals

Fh(·) =
∞

∑
k=1

ωhkΦ(· | μhk,σ2
hk).

The model specification is completed by assuming the following independent
hyper-priors

αh ∼ G(ah,bh), τh2 ∼ G(τsh1/2,τsh2/2),

mh ∼ N(μmh ,Smh), Sh ∼ IG(νh,Ψh),

where G(a,b) refers to the gamma distribution with parameters a and b.
Posterior inference can be conducted using two different kinds of Markov chain

Monte Carlo (MCMC) strategies: (i) to employ a truncation of the stick-breaking
representation (Ishwaran and James 2001) or (ii) to use a marginal Gibbs sampling
where the mixing distributions are integrated out from the model (MacEachern and
Müller 1998; Neal 2000). Finally, we can plug-in each MCMC realization of F0 and
F1 in (16.1) and compute the corresponding realization of the ROC curve. Note that
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the computation of the ROC curve requires the evaluation of the quantile function
of F0, which is done numerically. A model similar to the one described here was
proposed by Erkanli et al. (2006).

16.3.2 Bayesian Bootstrap

The Bayesian bootstrap (BB) estimator of the ROC curve was proposed by Gu et al.
(2008) and it is a computationally simple, yet robust, estimator. We start by outlin-
ing how the BB works in the one-population setting. Let (Y1, . . . ,Yn) be a random
sample from an unknown distribution F and suppose that F itself is the parameter
of interest. In Efron’s frequentist bootstrap (Efron 1979), estimation and inference
about F are obtained by repeatedly generating bootstrap samples, where each sam-
ple is drawn with replacement from the original data. In the bth bootstrap replicate,
F(b) is computed as

Fb(·) =
n

∑
i=1

π(b)
i δYi(·), (16.8)

where π(b)
i is the proportion of times Yi appears in the bth bootstrap sample, with

π(b)
i taking values on {0,1/n, . . . ,n/n}. By contrast, in Rubin’s BB (Rubin 1981),

the weights π(b)
i in expression (16.8) are assigned an Dirichletn(1, . . . ,1) distribu-

tion and thus are smoother than those from the frequentist bootstrap. It is important
to stress that in the BB the data is regarded as fixed and so we do not resample
from it. The BB has connections with the DP. Specifically, it can be regarded as a
non-informative version of the DP, which can be obtained by letting the precision
parameter tending to zero (Gasparini 1995, Theorem 2).

The representation of the ROC curve given in (16.2) provides the rationale for the
following two-step BB algorithm, which we fully describe due to its simplicity. Let
us suppose, again, that (Y01, . . . ,Y0n0) and (Y11, . . . ,Y1n1) are random samples from
the non-diseased and diseased populations and let B be the number of BB resamples.

Bayesian bootstrap algorithm

For b = 1, . . . ,B:
Step 1 (Compute the placement values based on the BB resam-
pling)
For j = 1, . . . ,n1, compute the placement values

Uj =
n0

∑
i=1

q(b)i I(Y0i ≥ Y1 j), (q(b)1 , . . . ,q(b)n0 )
ind.∼ Dirichletn0(1, . . . ,1).

(continued)



Step 2 (Generate a random realization of the ROC curve)
Based on (16.2), generate a random realization of ROC(p), the cu-
mulative distribution function of (U1, . . . ,Un1), where

ROC(b)(p)=
n1

∑
j=1

r(b)j I(Uj ≤ p), (r(b)1 , . . . ,r(b)n1 )
ind.∼ Dirichletn1(1, . . . ,1),

with 0 ≤ p ≤ 1. Compute the AUC associated with ROC(b)(p),
AUC(b), using numerical integration.

The BB estimate of the ROC curve, denoted as ̂ROC
BB

(p), is then obtained by
averaging the random realizations of the ROC curve, that is,

̂ROC
BB

(p) =
1
B

B

∑
b=1

ROC(b)(p), 0 ≤ p ≤ 1.

Similarly,

̂AUC
BB

=
1
B

B

∑
b=1

AUC(b).

16.4 Modeling Approaches for the Covariate Case

Let {(x01,Y01), . . . ,(x0n0 ,Y0n0)} and {(x11,Y11), . . . ,(x1n1 ,Y1n1)} be regression data
for the non-diseased and diseased groups, respectively, where x0i ∈ X ⊆ IRp and
x1 j ∈ X ⊆ IRp are p-dimensional covariate vectors and Y0i and Y1 j are test out-
comes, for i = 1, . . . ,n0, j = 1, . . . ,n1. It is assumed that given the covariates, the
test outcomes in the diseased and non-diseased populations are independent and
that

Y0i | x0i
ind.∼ F0(· | x0i), i = 1, . . . ,n0,

Y1 j | x1 j
ind.∼ F1(· | x1 j), j = 1, . . . ,n1.

Here, we detail the approach proposed by Inácio de Carvalho et al. (2013) for the
conditional ROC curve estimation problem, which extends the no covariate ap-
proach of Sect. 16.3.1. Specifically, these authors proposed a model for the con-
ditional ROC curves based on the specification of a probability model for the entire
collection of distributions Fh = {Fh(· | x) : x ∈ X }, for h ∈ {0,1}, and they fur-
ther modeled the conditional distributions in each population using the following
covariate-dependent mixture of normal models
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Fh(· | x) =
∫

Φ(· | μ ,σ2)dGhx(μ ,σ2), h ∈ {0,1}.

The probability model for the conditional distributions is induced by specifying a
prior for the collection of mixing distributions

GhX = {Ghx : x ∈X } ∼ Gh,

where Ghx denotes the random mixing distribution at covariate x, which is defined
on IR× IR+, and Gh is the prior for the collection GhX .

One possibility for modeling Gh is the DDP proposed by MacEachern (2000),
which is built upon the constructive definition of the DP in (16.6), where the atoms
and the components of the weights are realizations of a stochastic process over X ,
and the weights arise from a stick-breaking representation. Justified by results in
Barrientos et al. (2012), on the full support of MacEachern’s DDPs, Inácio de Car-
valho et al. (2013) considered the ‘single weights’ DDP (De Iorio et al. 2004, 2009;
De la Cruz et al. 2007; Jara et al. 2010), where only the atoms are indexed by the
covariates, thus resulting in the following specification for the conditional random
mixing distribution

Ghx(·) =
∞

∑
k=1

ωhkδθ hk(x)(·), (16.9)

where the weights {ωhk} match those from a standard DP and the atoms are given by
θ hk(x) = (mhk(x),σ2

hk), where {mhk(x) : x ∈X } are iid. Gaussian processes which
are independent across h.

Although such formulation leads to a very flexible prior, it implies sampling re-
alizations of the Gaussian processes at each distinct value of the covariate and, thus,
inferences could take prohibitively long. This motivated Inácio de Carvalho et al.
(2013) to elaborate on a linear DDP (LDDP) prior formulation (De Iorio et al. 2004,
2009; Jara et al. 2010), where the Gaussian processes are replaced by sufficiently
rich linear (in the coefficients) functions, mhk(x) = z′β hk. Here z is a q-dimensional
design vector possibly including nonlinear transformations of the original covariates
x. To this end, the authors considered an additive formulation based on B-splines
(Eilers and Marx 1996), referred to as B-splines DDP,

mhk(x) = βhk0 +
p

∑
l=1

(
Kl

∑
n=1

βhklnψ(xl ,dl)

)
,

where ψn(x,d) corresponds to the nth B-spline basis function of degree d evalu-
ated at x, and β hk = (βhk0, . . . ,βhkpKp). This formulation allows for the inclusion of
discrete and continuous predictors.

Thus, under the LDDP formulation, the base stochastic processes are replaced
with a group-specific distribution G0h that generates the component specific regres-
sion coefficients and variances. Therefore, the B-splines DDP mixture model can be
equivalently formulated as a DPM of Gaussian regression models



Fh(· | x) =
∫

Φ(· | z′β ,σ2)dGh(β ,σ2), Gh ∼ DP(αh,G0h). (16.10)

For each group, normal-inverse-gamma distributions were used for the parametric
centering distribution,

G0h ≡ Nq(μh,ΣΣΣ h)× IG(τh1/2,τh2/2).

The model specification is completed by specifying the following hyper-priors

αh ∼ G(ah,bh), τh2 ∼ G(τsh1/2,τsh2/2),

μh ∼ Nq(mh,Sh), ΣΣΣ h ∼ IWq(νh,ΨΨΨ h).

With regard to posterior inference, the computational strategies for Dirichlet process
mixture models referred in Sect. 16.3.1 apply here in the covariate setup directly. Fi-
nally, after obtaining MCMC samples for each of the parameters, we can plug-in,
for each covariate x, each MCMC realization of F0(· | x) and F1(· | x) in (16.4) and
compute the corresponding realization of the conditional ROC curve. The model
previously described is implemented in the function LDDProc of the R library
DPpackage (Jara et al. 2011).

16.5 Illustration

The accuracy of a soluble isoform of epidermal growth factor receptor (sEGFR),
present in blood, as a diagnostic test for lung cancer in women is investigated. How
this accuracy may vary with age is also subject of interest. The data were collected
from a case–control study conducted at the Mayo clinic in Minnesota between 1998
and 2003. The dataset includes information for 140 non-diseased women and 101
lung cancer cases. This dataset was previously analyzed by Branscum et al. (2013).

Figure 16.2 shows the histogram of the − log(sEGFR) in both populations. The
minus sign is due to the fact that the values of sEGFR tend to be lower for lung
cancer cases than for controls, and so with the minus sign the usual convention
that diseased individuals tend to have larger test outcomes than the non-diseased
ones applies. As it can be observed, normality does not seem to apply, especially
for the non-diseased population, where a bimodality is easily noticed. Figure 16.2
also displays the estimated densities, in each group of women, under the DPM of
normals model, and we can see that the model captures well the bimodality in the
non-diseased group, as well as, a certain skewness in the diseased group. The hyper-
priors of the DPM of normals model were set to ah = 5, bh = 1, τh1 = 2, τsh1 = 2,
τsh2 = 10, μmh = 0, Smh = 100, νh = 5, and Ψh = 1, for h ∈ {0,1}, while the BB
estimates were obtained using 5000 resamples. With respect to the estimation of the
CDFs, which are displayed in Fig. 16.3 [Panels (a) to (f)], it can be observed that
the estimates provided by the DPM of normals and the BB are almost indistinguish-
able. When superimposing these fits (DPM and BB) with the one obtained by the
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binormal model, a discrepancy can be seen, especially in the non-diseased group.
The resulting ROC curves, also presented in Fig. 16.3, are smooth and practically
identical (except the one obtained by the binormal fit) and the corresponding poste-
rior means (95% credible interval) of the AUC are 0.792 (0.728,0.848) under the
DPM model and 0.792 (0.731,0.848) under the BB method. These values reveal a
quite good discriminatory ability of the sEGFR to detect lung cancer in women.
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Fig. 16.2 sEGFR data: Histogram of the − log(sEGFR) in the nondiseased (Panel a) and diseased
(Panel b) populations along with a rug representation of the data. The posterior mean of the density
for each population under the DPM of normals models is displayed as a solid line

We now examine the age effect on the accuracy of the sEGFR. The B-splines
dependent DPM of normals model was fit by assuming K1 = 3, ah = 5, bh = 1,
τh1 = 2, τsh1 = 2, τsh2 = 10, mh = (0,0,0,0), Sh = 100× I4, νh = 5, and ΨΨΨ h = I4,
for h ∈ {0,1}. Figure 16.4 shows the posterior means for the conditional mean func-
tions, along with point-wise 95% credible bands for − log(sEGFR) levels. These
estimates are overlaid on the top of the raw data. This figure suggests that the
− log(sEGFR) levels are more concentrated in the non-diseased than in the dis-
eased women, across age and, further, a slightly nonlinear behavior of the condi-
tional mean function of both groups can be observed.

Figure 16.5 presents the estimated posterior means, along with 95% point-wise
credible bands, of the conditional distribution functions in the two groups of women
at three selected ages (40, 55, and 70 years old), and a change across age is clearly
seen. Obviously, the same is visible in terms of the corresponding estimated ROC
curves.
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Fig. 16.3 sEGFR data: Panels (a) and (b) show the estimated posterior mean (solid black line),
along with the point-wise 95% credible bands (grey area) of the cumulative distribution function
of the non-diseased population, under the DPM of normals model and the Bayesian bootstrap,
respectively. In Panel (c) the two estimates are superimposed along with the estimates obtained
under the binormal model (solid black line represents the DPM estimate, light grey dashed line
represents the BB estimate, and dark grey dotted line is the binormal estimate). Panels (d), (e), and
(f) show the analogous figures but in terms of the cumulative distribution function of the diseased
population, and panels (g), (h), and (i) in terms of the ROC curve
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Fig. 16.4 sEGFR data: Posterior mean (solid line) and 95% point-wise credible band (grey area)
for the conditional mean function in the group of non-diseased women (Panel (a)) and in the group
of diseased women (Panel (b))

To examine the age effect further, Fig. 16.6 shows the estimated posterior mean,
as well as the 95% point-wise credible band, of the AUC as a function of age. This
figure suggests a decrease in AUC until an age around 60 years old, and then a slight
increase.

16.6 Concluding Remarks

ROC curves are a valuable tool for assessing the discriminatory power of continuous
diagnostic tests. We have described and illustrated BNP approaches for ROC curve
estimation and regression. Specifically, we have discussed DPM models and the BB
for ROC curve estimation and an extension for the regression case based on DDP
mixture models. A nice feature of the latter model is that the complete distribution
of the test outcomes is allowed to smoothly change with the values of the covariates
instead of just one or two characteristics (such as the mean and/or variance), as
implied for most ROC regression models.

Topics of future research on BNP methods for ROC analysis include, among oth-
ers, modeling diagnostic tests with mass at zero, optimal combinations of multiple
tests, and time-dependent ROC curves. We end remarking that R packages for the
implementation of ROC analysis tools are of great importance for practitioners.
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Fig. 16.5 sEGFR data: Panels (a), (d), and (g) display the estimated posterior mean (solid line),
as well as, the 95% point-wise credible bands (grey area) of the conditional distribution function,
in the non-diseased group, for ages of 40, 55, and 70 years old. Panels (b), (e), and (h) show the
analogous figures for the diseased group. Panels (c), (f), and (i) show the corresponding ROC
curves
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