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Ice sheets as a missing source of silica to the
polar oceans
Jon R. Hawkings1, Jemma L. Wadham1, Liane G. Benning2,3,4, Katharine R. Hendry5, Martyn Tranter1,

Andrew Tedstone1,6, Peter Nienow6 & Rob Raiswell2

Ice sheets play a more important role in the global silicon cycle than previously appreciated.

Input of dissolved and amorphous particulate silica into natural waters stimulates the growth

of diatoms. Here we measure dissolved and amorphous silica in Greenland Ice Sheet

meltwaters and icebergs, demonstrating the potential for high ice sheet export. Our dissolved

and amorphous silica flux is 0.20 (0.06–0.79) Tmol year� 1, B50% of the input from Arctic

rivers. Amorphous silica comprises 495% of this flux and is highly soluble in sea water,

as indicated by a significant increase in dissolved silica across a fjord salinity gradient.

Retreating palaeo ice sheets were therefore likely responsible for high dissolved and

amorphous silica fluxes into the ocean during the last deglaciation, reaching values of

B5.5 Tmol year� 1, similar to the estimated export from palaeo rivers. These elevated silica

fluxes may explain high diatom productivity observed during the last glacial–interglacial

period.

DOI: 10.1038/ncomms14198 OPEN

1 Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK. 2 Cohen Biogeochemistry Laboratory,
School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK. 3 German Research Center for Geosciences GFZ, Telegrafenberg, Building C,
14473 Potsdam, Germany. 4 Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany. 5 School of Earth Sciences, University of Bristol,
Bristol BS8 1RJ, UK. 6 School of Geoscience, University of Edinburgh, Edinburgh EH8 9XP, UK. Correspondence and requests for materials should be addressed
to J.R.H. (email: jon.hawkings@bristol.ac.uk).

NATURE COMMUNICATIONS | 8:14198 | DOI: 10.1038/ncomms14198 | www.nature.com/naturecommunications 1

mailto:jon.hawkings@bristol.ac.uk
http://www.nature.com/naturecommunications


S
ilicon (Si) plays a crucial role in global biogeochemical
cycles, acting as an essential nutrient for a number of
marine organisms, particularly for diatoms, who use it to

build their cell frustules and which account for up to 50% of
oceanic carbon fixation1–3. Diatoms may be especially important
in the biological pump and therefore carbon cycle when silica (the
most common naturally occuring form of silicon) input is high4.
Furthermore, chemical weathering of silicate minerals in rock can
also sequester atmospheric carbon dioxide on geological
timescales5. Understanding the components of the Si cycle,
constructing silica budgets and evaluating how these have
changed in the past and may change in the future is therefore
of significant importance.

Over 70% of oceanic dissolved silica (DSi) is derived from
riverine input, with the majority of this (480%) believed to be
delivered as DSi6. Groundwater, aeolian dust, hydrothermal input
and seafloor weathering are also important contributors6.
Glaciers and ice sheets have largely been neglected in previous
DSi budgets, despite covering up to 30% of land surface area
during glacial cycles and discharging vast quantities of fresh water
and sediment into the coastal ocean7,8. There has long been
anecdotal evidence linking glacial meltwater and enhanced
production of upper and lower trophic species9,10. Recent
research indicates that glaciers and ice sheets are nutrient
factories, delivering substantial fluxes of bioessential nutrients
including iron, phosphorus and nitrogen to downstream
ecosystems, mainly in reactive particulate form11–18. However,
the role of glaciers and ice sheets in the global Si cycle has yet to
be fully established8,19, with recent evidence indicating that silica
dissolution rates in glacial environments may be higher than
previously believed20,21.

There have been a few studies documenting DSi concentrations
in runoff from small valley glaciers22, but there are currently little
data on concentrations or fluxes from large ice sheet catchments.
Previous studies have reported low DSi concentrations in glacial
meltwater, generally o30 mM22–24, compared with nonglacial
rivers (discharge weighted mean of 158 mM)25. We hypothesize
that DSi export from large ice sheet catchments may be higher
than previously appreciated for two main reasons. First, long
water residence times and intense physical erosion rates under
large ice sheet catchments26, and subsequent weathering of fresh
mineral surfaces, may promote enhanced silicate dissolution,
even with persistently low water temperatures21,26,27. Second,
as glaciers are also important agents of physical erosion28,29,
meltwaters that emerge from underneath the ice are turbid, and
carry fine suspended particulate matter (SPM), often in excess
of 1 g l� 1 (ref. 29). Research indicates that the role of
terrigenous material (as SPM) in elemental cycles is likely
underestimated30–32. SPM is likely an important source of DSi
because of fine-grained, highly reactive mineral surfaces coated in
amorphous nanoparticles11,12,22. Glacial SPM needs only to be
sparingly soluble to have a large impact on downstream silica and
carbon cycling30,32,33 because of the high sediment load of
meltwaters. The impact of glacial SPM on downstream silica
budgets has thus far been ignored, and only a small amount of
data currently exist11.

Here we investigate the importance of the Greenland Ice Sheet
(GrIS), and by extension former northern hemisphere ice sheets
on broadly similar lithologies, for the global Si cycle. We present
DSi and easily dissolvable amorphous particulate silica (ASi)
concentrations from subglacial meltwaters exciting a glacial
catchment in western Greenland. The GrIS provides an accessible
ice sheet system, with large, land-terminating glaciers allowing
direct sampling of waters of subglacial origin at the ice margin.
We highlight the importance of a labile solid-phase amorphous
silica phase in meltwaters, with evidence of its dissolution across a

glaciatied fjord mixing zone. We also document measurements of
iceberg-rafted amorphous silica, and calculate potential fluxes
from both icebergs and meltwaters discharged from the GrIS to
the ocean. We propose that ice sheets deliver a large amount
of dissolved and labile amorphous silica downstream. They
therefore have a more important role in the silicon cycle, both
now and during past glacial-interglacial periods, than previously
apprechiated.

Results
Meltwater and iceberg sampling. Meltwater samples were
collected at least daily during the 2012 melt season from the
subglacial channel draining Leverett Glacier, south-west Green-
land (67.1�N 50.2�W; Fig. 1). Leverett Glacier is a large outlet
glacier of the GrIS (B600 km2 hydraulically active
catchment, B80 km long)29, overlying Archean and
Paleoproterozoic igneous shield rock common to much of
Greenland, northern Canada and Scandinavia34. Iceberg
samples were retrieved from a boat in Tunulliarfik Fjord in
southern Greenland in 2013 (61.1�N, 45.4�W; Fig. 1), and
Sermilik Fjord in eastern Greenland in 2014 (65.7�N, 37.9�W;
Fig. 1), using a clean ice axe. These icebergs calved from the
floating ice tongues of marine-terminating glaciers nearby.
Analytical methods are detailed in the Methods.

Amorphous and dissolved silica in meltwaters. Easily dis-
solvable ASi associated with SPM was the most significant source
of potentially bioavailable silica (DSiþASi) in glacial meltwaters.
ASi comprised 0.91 (0.51–1.21) wt.% of SPM equating to very
high mean ASi concentrations of 392 (120–627)mM (Fig. 2 and
Table 1). High-resolution transmission electron microscopic
(HR-TEM) and spectral elemental analyses (energy-dispersive
spectra (EDS)) confirmed the form of ASi present in meltwaters
and icebergs. ASi has not previously been identified and char-
acterized in any natural water SPM using HR-TEM. Amorphous
and poorly crystalline nanoparticulate silica was common in all
SPM and iceberg debris analysed (Fig. 3). The ASi denudation
rate of 436,000 kg Si km� 2 year� 1 (Table 1) exceeds rates found
in the literature by at least an order of magnitude, although data
are currently sparse.

DSi concentrations in bulk meltwater runoff were generally
low, with a discharge weighted mean of B10 mM (0.8–41.4 mM)
similar to runoff from other glaciers23,35. Higher DSi
concentrations (B40 mM) are at saturation with respect to
quartz (SIQtz¼ � 0.13 to 0.09; Fig. 4), but are still highly
undersaturated with respect to amorphous silica (SIASi¼ � 1.41
to � 1.63). Catchment DSi denudation rates of B980 kg Si
km� 2 year� 1 are comparable to other glaciers22 and Arctic
rivers25, despite low DSi concentrations (Table 1).

Amorphous and dissolved silica in icebergs. Iceberg ASi
concentrations were lower than those found in glacial meltwaters.
ASi SPM content at our two sites was 0.27 (0.16–0.46) wt.% for
Sermilik fjord icebergs (east Greenland) and 0.28 (0.16–0.47)
wt.% for Tunulliarfik fjord icebergs (south Greenland),
giving mean ASi concentrations of 47.9 (28.2–81.1) and 50.5
(28.2–83.2) mM for Sermilik and Tunulliarfik fjord icebergs,
respectively (assuming an estimated sediment load of
0.25–0.75 g l� 1 for icebergs16) (Table 1). ASi is concentrated in
the sediment-rich, basal ice layers compared with the cleaner ice.
Iceberg DSi concentrations were o20 mM in the sediment-rich
layers and o1mM in clean ice layers.

GrIS dissolved and amorphous silica fluxes. We estimate GrIS
meltwaters currently deliver 0.01 (o0.01–0.02) Tmol year� 1 of
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DSi and 0.16 (0.05–0.75) Tmol year� 1 of ASi to the surrounding
fjords and oceans (Table 1), based on the assumption that
Leverett Glacier DSi and ASi concentrations are representative of
the ice sheet at large. To calculate iceberg fluxes we use the mean
iceberg ASi concentration from both sites (0.28%), as ASi
concentrations are very similar (Table 1). Icebergs provide an
additional flux of 0.03 (0.01–0.04) Tmol year� 1 of ASi assuming
that our samples are representative of other Greenlandic icebergs.
Iceberg DSi fluxes are not included because of the low con-
centrations measured in clean ice (o1 mM). These calculations
give a total GrIS Si flux of 0.2 (0.06–0.79) Tmol year� 1. This is
1.8% (0.7–8.4%) of the estimated global Si input to the oceans
(9.4 Tmol year� 1)6 and nearly 3% (0.9–11.4%) of the terrestrial
input (6.9 Tmol year� 1)6, despite the GrIS covering only B1.1%
of land surface area.

Discussion
DSi values are an order of magnitude lower than the discharge
weighted global mean riverine value of 158 mM25 (Table 1), and
suggest low silica denudation rates compared with nonglacial
river catchments when viewed in isolation. DSi concentrations,
SIQtz and SIASi track the evolution of subglacial drainage (Figs 2
and 4). Higher concentrations (B40 mM) were found at the onset
of the melt season, when an inefficient drainage system was
present at the glacier bed and dilution by dilute supraglacial
meltwater was lower36. As the melt season progressed, lower

DSi concentrations and electrical conductivity, as efficient
drainage pathways opened up, suggest greater dilution by
supraglacial meltwater (Fig. 2), with waters becoming
increasingly undersaturated (SIQtz and SIASi minimums are
� 1.71 and � 3.21, respectively).

Glacial silica export is dominated by the ASi fraction (Table 1).
The ASi fraction of SPM (0.51–1.21 wt.%) was comparable to
those measured in the Ganges basin (mean 1.2% by weight)37,
which is characterized by high sediment yields38, and is higher
than the estimated global river SPM ASi of 0.6 wt.%33. The
corresponding mean concentrations of ASi in glacial meltwaters
were nearly six times higher than the concentrations measured
in the Ganges basin (68 mM)37 and far exceed the mean
concentration of ASi in river waters given by Conley39

of 28 mM that is used in recent ocean silica budget estimates6.
This difference is caused by both higher mean SPM
concentrations (B1 versus B0.1 g l� 1)38 and the higher mean
ASi (B0.9 versus B0.6 wt.%)33 in glacial runoff. ASi was mostly
associated with the fringes of larger platy material (Fig. 3),
suggesting it is a product of aluminosilicate mineral weathering40

and/or mechanical grinding41,42. EDS of most ASi identified the
incorporation of other elements into the ASi nanostructures,
most commonly Al and Fe (Fig. 3a,b). This is not unexpected as
naturally occurring mineral ASi incorporates less soluble
elements as impurities during formation, because of its loose
structure and high water content43.

Leverett Glacier

Sermilik Fjord

Tunulliarfik Fjord

30 km

50 km

20 km

N

N

N

a

b

c

Figure 1 | Location of study sites in Greenland. Meltwater samples were collected from (a) Leverett Glacier, with the catchment boundary from

Palmer et al.71 outlined. Iceberg samples were collected from (b) Sermilik Fjord in east Greenland and (c) Tunulliarfik Fjord in south Greenland. The

approximate regions where icebergs samples were collected are shaded white in (b,c). All images are from Google, Landsat, USGS/NASA.
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It has previously been demonstrated that iceberg-rafted debris
is likely a large source of reactive nanoparticulate iron to the
euphotic zone16. Our results indicate that icebergs also have
the capacity to supply ASi to surface waters. Iceberg ASi
concentrations (Table 1) fall at the lower end of concentrations
reported for glacial and some nonglacial waters, but exceed

the Conley39 estimated concentration of ASi in river waters.
Significantly lower concentrations of ASi in iceberg-rafted
debris compared with our glacial meltwaters reflect unsorted
sediments in iceberg sediment bands versus finer more reactive
material carried as SPM in glacial meltwaters, and lower
SPM concentrations in icebergs versus meltwaters (B0.5 versus
B1 g l� 1).

Recent studies have exploited the use of modern nano-
observation technologies to study ASi formation on mineral
surfaces from aqueous weathering processes40. Two chemical
weathering mechanisms have previously been identified. First, the
dissolution–reprecipitation mechanism, where ASi forms as a
precipitated weathering crust on freshly ground and leached
particles. This has been observed even in solutions that are
significantly undersaturated with respect to silica. Second, the
leached surface layer hypothesis44, where preferential removal of
weakly bonded ions (for example, Naþ and Kþ ) from the
mineral surface leave an amorphous crust rich in more insoluble
ions such as silica. Both mechanisms invoke higher chemical
weathering rates in subglacial environments than previously
realized20, as ASi concentrations are high.

The comminution of bedrock by glaciers and ice sheets is
also likely to be important in producing structural change to
mineral surfaces41,42,45. Grinding of quartz produces a disturbed
amorphous surface layer42 that is much more soluble than the
primary mineral41. For example, Henderson et al.41 found freshly
ground silica particles were more than an order of magnitude
more soluble (115 p.p.m.) than ‘cleaned’ crushed quartz particles
(11 p.p.m.) at pH 8. Silicate minerals that have been freshly
abraded by glacial action are therefore likely to be substantially
more soluble than unaltered mineral surfaces.

There is considerable uncertainty around the lability of ASi
before long-term burial in fjords and near coastal regions. We
believe ASi associated with glacial sediments will be highly labile
downstream for three main reasons. First, glacial rock flour is
potentially highly reactive because of a disturbed surface layer and
large surface area per unit mass35,45, and because it has been
observed to form buoyant flocs on contact with salt water46.
Second, the extraction protocol used is designed to capture the
silica that will likely dissolve in sea water (that is, the highly labile
component)33,47. Last, ASi (and unreactive silicate minerals)
dissolution is catalysed by the presence of alkali metals (for

Table 1 | Mean silica concentrations, yields and estimated fluxes for global rivers, Pan-Arctic rivers and the Greenland Ice Sheet.

Global rivers Pan-Arctic rivers Greenland Ice Sheet Antarctic Ice Sheet

Meltwater Icebergs Meltwater Icebergs

DSi (mM) 158 (ref. 25) 102 (ref. 25) 9.6 (0.8–41.4) — 130–210 (ref. 27) —
ASi (% dry weight) 0.6 (ref. 33) 1.2*, (ref. 37) 0.91 (0.51–1.21) 0.28 (0.16–0.47) — —
ASi (mM) 28 (ref. 39) 24w 392 (120–627) 49 (28–83) — —
Total discharge (km3 year� 1) 39,080 (ref. 79) 3,310 (ref. 25) 437z, (ref. 77) 612y, (ref. 58) 65 (ref. 63) 1,321 (ref. 64)
Total SPM load (Tg) 12,800 (ref. 80) 207 (ref. 25) 485 (300–1,700) 306 (150–459) — —
DSi yield (kg Si km� 2 year� 1) 1,500 (ref. 25) 560 (ref. 25) 980|| — — —
ASi yield (kg Si km� 2 year� 1) 830z, (ref. 25) 160w 36,000|| —# — —
DSi flux (Tmol) 6.2±1.8**, (ref. 6) 0.34 (ref. 25) 0.01 (0–0.02) — 0.01 —
ASi flux (Tmol) 1.1±0.2 (ref. 6) 0.09 0.16 (0.05–0.75) 0.03 (0.01–0.04) 0.01ww 0.06zz

% Of global budget 78 4.6 1.8 0.4 0.2 0.6

*Unknown and hence upper limit taken from Frings et al.37

wCalculated from mean SPM of 0.06 g l� 1 for Arctic rivers and extractable SPM ASi of 1.2%.
zMean meltwater discharge from 2000 to 2012.77

yMean solid ice discharge from 2000 to 2010.58

||Based on Leverett Glacier catchment area and corresponding catchment DSi/ASi flux.
zAssuming mean riverine ASi of 0.6% from Frings et al.33.
#Catchment data unavailable.
**Does not include reduction (B25%) due to of reverse weathering and trapping in the estuary.
wwEstimated using the lowest Leverett Glacier ASi concentration (120mM).
zzEstimated using mean Greenland iceberg ASi concentration (49mM).
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example, Naþ ) and alkali earth metals (for example, Ca2þ )48.
ASi is therefore expected to dissolve much more rapidly in marine
waters than fresh waters49,50, generating DSi for diatom uptake.
ASi has been found to be up to two orders of magnitude more
soluble in saline waters than fresh waters49,51 and is expected to
dissolve relatively rapidly (on timescales of days to weeks)50. For
example, Kato and Kitano50 found complete dissolution of 50 mg
of synthetic ASi in 1 litre of artificial sea water in o22 days.

We performed a simple seawater leach on Leverett Glacier
SPM to determine the lability and therefore potential bio-
availability of ASi (see Methods for details). This demonstrated
rapid release of DSi from ASi over a period of days to weeks
(Fig. 5). Treated sediment, with ASi removed before leaching
(pre-extracted with 0.1 M Na2CO3), showed only minor Si
dissolution over a period of 672 h (28 days; Fig. 5) compared with
untreated sediment. Untreated sediments displayed up to 25%
ASi dissolution over the same time period, indicating ASi will
likely dissolve relatively rapidly in high salinity waters. The DSi

(measured as silicic acid) released into solution is bioavailable to
marine diatoms. We propose two possible scenarios for longer-
term dissolution of ASi in saline waters (428 days). The first uses
a linear dissolution function derived from the final two time
points (306 and 672 h; dashed black line in Fig. 5). Under this
scenario complete ASi dissolution would occur within 259 days
(B9 months). The second uses a more conservative power fit
function derived from all time points (dotted black line in Fig. 5).
Under this scenario, at least 60% of ASi dissolves within a year.
We therefore hypothesize that 60 to 100% of SPM ASi will
dissolve within a year in saline waters. Benthic processing of
glacial material, and delivery back into the euphotic zone, is likely
to be important on longer timescales, as has been demonstrated
in other fjord environments52.
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We found further evidence of rapid ASi dissolution
from Greenlandic meltwaters, with more than an order of
magnitude increase in DSi concentrations across a buoyant
SPM-rich glacial meltwater plume mixing with saline fjord
waters downstream of Leverett Glacier (Fig. 6)53. Our data set
represents a limited number of observations and a snapshot in
time, but the positive association between DSi and salinity is
contrary to what is usually observed in nonglacial estuaries and
deltas, where there is removal of B25% DSi because of reverse
weathering and diatom uptake6. The DSi concentration observed
at S5 (21.1mM; B40 km from S1) is an order of magnitude
greater than oceanic surface water DSi concentrations in the
North Atlantic (generally o2 mM), despite the high diatom
productivity observed in west Greenland fjords19,53. Recent
studies have also recorded higher concentrations (mean
concentration of 2.22 mM) of surface DSi in coastal and open
ocean waters on the Greenland Shelf54 compared with the North
Atlantic. In a similar manner, iceberg ASi will also likely provide
an important source of DSi as iceberg-rafted debris melts out in
marine waters. Enhanced primary production has been recorded
in the wake of icebergs, through observation of surface
chlorophyll concentrations55,56, and diatom communities have
been observed growing on the underside of icebergs in the
Southern Ocean57. This is consistent with icebergs being a
primary source of nutrients, including silica, to ocean surface
waters.

The glacial impact on the marine Si cycle and associated
budgets will depend on the magnitude of the glacial flux and the
lability of the exported Si. High rates of physical weathering29 and
the presence of a labile ASi solid-phase indicative of subglacial
silicate mineral chemical and/or physical weathering mean that
ice sheets are likely a significant source of DSi to downstream
fjords and near coastal regions. Concentrations derived from
Leverett Glacier are likely to be typical of other large land-
terminating outlet glaciers that export large quantities of
meltwater from the GrIS following drainage across the glacier
bed58. There are clear limitations to using a single glacier to
estimate Si meltwater export from the GrIS and we acknowledge
there may be large uncertainties in our estimates because of the
extrapolations we have made. However, Leverett Glacier is
significantly larger (by almost two orders of magnitude) than
any other glaciated catchment reported thus far in the literature
(both in Greenland and worldwide). The underlying geology59

and catchment hydrology60 are likely typical of other large
land-terminating outlet catchments of the GrIS and therefore the
values we derive are a reasonable first-order approximation of
GrIS fluxes, until more data become available.

GrIS dissolved and amorphous silica fluxes are comparable
to the total estimated input from atmospheric deposition
(0.5 Tmol year� 1), groundwater (0.6 Tmol year� 1) and hydro-
thermal sources (0.6 Tmol year� 1)6. We find it is likely to be the
most dominant single source of dissolved and amorphous silica to
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The shaded region indicates the approximate range of regional sea surface dissolved silica concentrations from Painter et al.54. The plot x axis is reversed to

reflect site positioning in (a). The satellite image in (a) is from Google, Landsat, USGS/NASA.
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the pan-Arctic region if we compare the GrIS Si flux with Arctic
rivers. Using DSi estimates from Durr et al.25, and an upper ASi
of B1.2 wt.% for riverine SPM (an upper estimate derived from
Frings and co-workers33,37 as there are no data for Arctic rivers),
we estimate an Arctic riverine Si input of 0.35 Tmol year� 1

(Table 1). The GrIS could therefore provide up to B37% of total
DSiþASi input into the coastal regions of Arctic seas 460�N
(B50% of the total nonglacial riverine flux). The wider impact of
these fluxes will depend on physical oceanographic factors around
the GrIS that may not favour significant off-shelf export61.
Processing of dissolved and amorphous silica may also limit the
flux of silica out of long fjord systems. However, glaciated fjords
harbour highly productive microbial ecosystems53, are important
feeding grounds for seabird and marine mammals9 and have been
identified as regions of high carbon burial62.

The Antarctic Ice Sheet (AIS) may also be a significant source
of dissolved and amorphous silica to the Southern Ocean.
Previous published estimates indicate the AIS DSi flux is in the
region of B0.1 Tmol year� 1 (ref. 6), but it neglected the potential
export of ASi attached to SPM and iceberg-hosted sediments. We
make a comparison with these original estimates using results
from more recent research combined with our data of GrIS ASi
concentrations to provide a revised approximation of the silica
flux from the AIS. The only meltwaters to be sampled from the
basal environment of the AIS come from subglacial Lake
Whillans27. These waters indicate that Antarctic meltwaters are
enriched in DSi compared with GrIS meltwaters, likely because of
the long residence time of waters, and lack of dilution by
incoming supraglacial melt (as in the GrIS). This study suggests
that DSi concentrations in subglacial Antarctic meltwaters may be
between 130 and 210 mM27, similar to the mean nonglacial global
riverine estimate25. We estimated the DSi contribution from
AIS subglacial meltwater using modelled basal melt rates of
65 km3 year� 1 (ref. 63). This gives a meltwater DSi flux of
B0.01 Tmol year� 1, similar to the GrIS DSi flux (Table 1). AIS
meltwater sediment flux is highly uncertain as no measurements
exist. We therefore use a conservative ASi concentration estimate
of 120 mM (the lowest value recorded at Leverett Glacier) with the
above meltwater flux63. This gives a total AIS DSiþASi
meltwater flux of B0.02 Tmol year� 1 that is a similar order of
magnitude to the flux of Treguer8 (0.04 Tmol year� 1), but
substantially less than the GrIS (0.2 Tmol year� 1). Iceberg
calving fluxes are significantly higher from the AIS than the
GrIS. Depoorter et al.64 estimate an iceberg calving flux of
1,321±144 km3 year� 1 from the AIS. If we assume a similar
sediment loading (0.5 g l� 1) and ASi wt.% to our GrIS iceberg
estimates (Table 1), this gives a AIS iceberg flux of
B0.06 Tmol year� 1. Our estimated AIS dissolved and
amorphous silica flux is therefore in the region of
B0.08 Tmol year� 1, around half that of the GrIS, and similar
to the previous AIS estimate (B0.1 Tmol year� 1)8. We estimate
that the total ASiþDSi flux from the AIS and GrIS is therefore
B0.3 Tmol year� 1, B3% of the global Si budget (Table 1).
However, the AIS DSi and ASi flux estimate remains speculative
because of uncertainties in subglacial meltwater discharge and
DSi concentrations, as well as no data on ASi concentrations for
SPM in AIS meltwaters or iceberg-hosted sediments.

Studies postulate a link between the supply of Si to the ocean
and the efficiency of the biological carbon pump1–3. Diatoms
dominate the phytoplankton community during periods where
the silica flux to the oceans is high, and are likely more efficient
exporters of carbon than other primary producers2. Peaks in
diatom abundance in marine sediment records from the last
deglaciation have previously been explained by enhanced surface
supply of DSi as a result of changes in ocean circulation and
upwelling65–68. However, here we suggest that glacial runoff and

iceberg-entrained debris may deliver an additional high DSiþASi
flux during deglaciation, especially during meltwater pulse events
and Heinrich events. We construct crude estimates of palaeo ice
sheet fluxes of DSi and ASi to the oceans using recent model
estimates for meltwater release during the last deglaciation69.
These calculations indicate that meltwater pulse event 1a
(B15,000 to 14,500 years before present) contributed meltwater
discharge of at least 15,000 km3 year� 1, equivalent to sea level
rise of 44 cm year� 1. A crude calculation indicates ice sheets
would have delivered on the order of 5.7 Tmol year� 1 of
DSiþASi to the oceans, assuming a similar SPM, ASi and DSi
concentration to modern-day Leverett Glacier (Table 1).
Nonglacial riverine discharge was likely significantly lower
during the Last Glacial Maximum compared with present day
(by at least 20–25%)70. Our estimated palaeo ice sheets flux is
therefore similar to the approximate DSiþASi flux for palaeo
rivers (B5.5–5.8 Tmol year� 1, assuming nonglacial riverine silica
fluxes broadly scale with discharge). The impact of the palaeo ice
sheet Si flux will be felt for an extended period after input1, given
the long residence time of Si in the oceans of 410,000 years33.

Our findings indicate that ice sheets play a more significant
role in the global Si cycle than previously recognized, mainly via
export of large quantities of potentially labile amorphous silica.
This phase dominates the glacial dissolved and amorphous silica
meltwater flux, with ASi concentrations up to 627 mM and yields
of 436,000 kg Si km� 2 measured at a large ice sheet catchment.
Our flux estimates of dissolved and amorphous silica for the GrIS
demonstrate that meltwater and iceberg discharge are significant
and may provide similar amounts to the oceans as dust
deposition, groundwater discharge and hydrothermal input.
Hence, the GrIS likely contributes a large proportion of the
dissolvable silica in the productive fjord and near coastal regions,
where diatoms make up a large proportion of the phytoplankton
community. These results indicate that glaciated regions play a
more important role in the Si cycle than previously appreciated,
and should be considered in future marine dissolved and
amorphous silica budgets. Our findings have significant
implications for the understanding of the Si cycle in the past,
with globally significant fluxes of silica into the oceans likely
during catastrophic melting of the large palaeo ice sheets that
covered nearly 30% of land surface area. Large ice sheet pulses
of dissolved and amorphous silica during these periods are a
viable driver of deglacial diatom-dominated phytoplankton
communities as observed in core records, in turn potentially
enhancing the efficiency of the biological pump.

Methods
Study areas. Glacial meltwater samples were collected from Leverett Glacier
(67.1�N, 50.2�W) in 2012. Leverett Glacier is a large land-terminating outlet of the
GrIS. It is B80 km long, and has a hydrologically active catchment area of
B600 km2 (refs 29,71). Mean summer discharge in 2012 was 4200 m3 s� 1

(ref. 12). Runoff feeds a large glacial river system, Watson River, that discharges
into Søndre Strømfjord. The glacier overlies predominantly Precambrian
crystalline bedrock, typical of large areas of Greenland59. The catchment hydrology
is well documented and although comparative data sets are thus far lacking, it is
believed typical of the large Greenland outlet glaciers that dominate discharge of
meltwaters from the GrIS36,72. In addition, fjord samples were taken from a 30 km
transect of Søndre Strømfjord, downstream of Leverett Glacier, in 2012 (Fig. 3).

Iceberg samples were collected from Tunulliarfik Fjord (61.1�N 45.4�W) in July
2013 and Sermilik Fjord (65.7�N 37.9�W) in July 2014. Both fjords receive ice
discharged from local marine-terminating glaciers and were sampled at least
B18 km (Tunulliarfik Fjord) and B40 km (Sermilik Fjord) downstream of where
they calved. The shield bedrock geology from these catchments is broadly similar to
Leverett Glacier 59.

Sample collection and filtration. Bulk meltwater samples were collected at least
once daily (1,000–1,200 h and occasionally 1,800–2,000 h) throughout the main
melt period (May, June, July for Leverett Glacier in 2012)11,18. Grab samples were
collected in 2 l high-density polyethylene (HDPE) Nalgene bottles rinsed three
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times before final sample collection. Meltwater samples for DSi were filtered
through a 47 mm 0.45 mm cellulose nitrate filter (Whatman), mounted onto a PES
filter Unit (Nalgene) at Leverett Glacier. Three replicate samples collected at
Leverett Glacier using the filter unit and syringe filter methods showed no
significant difference in final measured concentration (±2%). DSi samples were
stored in clean in the dark 30 ml HDPE bottles (Nalgene) rinsed three times with
filtrate, refrigerated to prevent polymerization and analysed within 3 months of
collection. Samples for ASi (n¼ 25) were collected from the retained sediment on
the cellulose nitrate filter. These were stored air dried and refrigerated until
analysis.

Fjord water was collected (17 June 2012) using a 0.45 mm Whatman GD/XP
PES syringe filter using a PP/PE syringe. Surface water samples were collected in
2 L HDPE bottle. Bottles were rinsed three times with sample water and then fully
immersed B0.3 m below the surface to collect the final sample. Salinity and pH
were taken at each sampling site.

Iceberg samples were retrieved from a boat in Tunulliarfik Fjord (n¼ 12),
southern Greenland and Sermilik fjord (n¼ 5), eastern Greenland, using a clean ice
axe. Excavated blocks of iceberg were placed in new, clean Whirl-Pak bags. The
outer layer of ice was allowed to melt and was discarded to minimize potential
contamination from the sampling process. The remaining ice was transferred to a
new Whirl-Pak bag and allowed to melt completely. Iceberg-entrained sediments
were collected by filtration of the melted ice through a 47 mm 0.4 mm Whatman
Cyclopore PC membrane filter mounted on a Nalgene PS filtration unit. The filtrate
was retained for analysis of DSi.

Analytical procedures. DSi was determined using a LaChat QuikChem 8500
series 2 flow injection analyser (QuikChem Method 31-114-27-1-D). This method
uses the well-established molybdic acid colourimetric method. Seven standards
(matrix matched for fjord samples) were used, ranging from 10 to 2,000 mg l� 1

(0.36–71.43 mM) Si. The methodological limit of detection was 0.3 mM, precision
±0.5% and accuracy � 1.2%.

ASi was determined using an alkaline digestion47. This weak base digestion is
believed to dissolve amorphous/poorly crystalline silica. It is commonly employed
to determine biogenic opal and pedogenic opal in marine waters, as well as
adsorbed Si and poorly crystalline aluminosilicates in terrestrial soils and
sediments47,73. Approximately 30 mg of sediment was accurately weighed into a
60 ml HDPE bottle (Nalgene), with 50 ml of a 0.096 M Na2CO3 solution added.
Bottles were placed in an 85 �C hot water bath, and 1 ml aliquots of samples were
taken from the sample bottle after 2, 3 and 5 h, using a precalibrated 1 ml automatic
pipette. Aliquots were stored in 2 ml PP microcentrifuge tubes at 4 �C until analysis
o24 h later. Before analysis, 0.5 ml of sample was neutralized with 4.5 ml of
0.021 M HCl in a 10 ml plastic centrifuge tube. Samples were analysed using the
dissolved silica method described above. Total ASi was determined by calculating
the intercept of a linear regression line through collected aliquots at 2, 3 and 5 h,
assuming amorphous Si phases dissolve completely within the first hour of
extraction and clays/more crystalline material release DSi at a constant rate over
the experimental time frame47,74,75.

ASi is expressed as both % dry weight and as concentration in mM. The ASi
wt.% was calculated using the weight of sediment added for each extraction, the
amount of extraction solution at each sampling time point (2, 3 and 5 h) and the
amount of dissolved silica in the solution at that time point. The final ASi % was
the value of intercept of the linear regression as described above. The concentration
of ASi was derived from the SPM concentration (in g l� 1) at the sampling time
point and the wt.% ASi of that sample. The ASi concentration was then converted
from mg l� 1 to mM.

Seawater sediment leach. A simple leach on SPM from Leverett Glacier was
conducted using natural low Si sea water. The seawater DSi concentration was
1.6 mM, and the salinity 35.49 PSU. All sea water was sterilized by filtration through
a 0.22mm PES Stericup filtration unit. Two types of Leverett Glacier SPM were
used. Both were derived from the same bulk SPM sample (itself an amalgamation
of SPM from several time points to create a homogenous sample). The first,
‘treated’ sediment, was extracted using the 0.1 M Na2CO3 procedure described
above, before the seawater leach to remove SPM-associated ASi. The second,
‘untreated’, was SPM with no prior treatment (that is, natural). Four 15 ml
centrifuge tubes (PET, Fisherbrand) were filled with 10–15 mg of accurately
weighted sediment and 10 ml of sea water (1–1.5 g l� 1) for each of the four time
points (72, 184, 306 and 672 h) when measurements were taken. Tubes were
incubated at lab temperature (18 �C) in the dark, and gently agitated on an orbital
shaker (at 50 r.p.m.). Leaches were terminated by filtration of 5 ml aliquots through
a 0.22mm syringe filter (PES, Millex) into a clean 15 ml centrifuge tube. Aliquots
were stored refrigerated before analyses for DSi within 24 h of sampling, following
the procedure above. Results are expressed as the percentage of ASi that has
dissolved. The ASi content of the all sediment used was determined according the
analytical procedure above, to calculate this.

Micro-spectroscopic analysis. The morphology and structure of silica phases was
determined using high-resolution field emission gun transmission electron
microscopy (HR-TEM; FEI Tecnai TF20) operating at 200 kV. Particulate material

were removed from the filters and dispersed in ethanol using an ultrasonic bath for
B1 min. A drop of this solution was pipetted onto a standard holey carbon support
cupper grid. High-resolution images were complemented by (acquired with an
Oxford Instrument analyses system) to determine the elemental characteristics of
material. Amorphous silica was characterized by the lack of any crystallinity and
the large Si and O peaks in the EDS, although other cations were also often present.

Hydrological monitoring and mass fluxes. Leverett Glacier was hydrologically
gauged at stable bedrock sections throughout the 2012 ablation season from late
April until mid-August, according to the methods detailed by others11,72,76. Stage
was converted to discharge using ratings curves determined from rhodamine dye-
dilution experiments (n¼ 41) over a range of water levels. Errors associated with
discharge readings are estimated to be o15% (ref. 76). Total meltwater fluxes were
determined from the cumulative sum of discharge over the ablation season.

Suspended sediment concentrations were determined using a season-long
record of turbidity. This turbidity record was converted to suspended sediment
concentrations by calibration with manually collected samples; 300–500 ml of
meltwater was filtered through a pre-weighed 47 mm 0.45 mm cellulose nitrate
filters (Whatman). Filters were subsequently oven dried overnight and re-weighed.
Uncertainty in suspended sediment measurements is estimated to be ±6% (ref. 29).

Flux estimates. GrIS freshwater fluxes were derived using mean modelled
meltwater runoff from 2000 to 2012 of 437 km3 year� 1 from Tedesco et al.77

Minimum, mean and maximum sediment fluxes are derived from minimum,
discharge weighted mean and maximum suspended sediment concentrations
measured at Leverett Glacier. This produces a total sediment flux of
300–1,700 Tg year� 1. An iceberg mass flux of 612 km3 year� 1 (2000–2010) is
derived from the solid ice discharge data of Bamber et al.58. We use an estimated
minimum, median and maximum iceberg sediment load of 0.25, 0.5 and 0.75 g l� 1

as sediment content of icebergs is poorly constrained. These values may be
conservative as higher concentrations of 0.6–1.2 g l� 1, based on excess 224Ra
activity in the vicinity of icebergs in the Weddell Sea, have been estimated by
others78. This produces a GrIS iceberg sediment flux of 150–459 Tg year� 1.

Paleo ice sheet fluxes were calculated using modelled ice sheet reconstruction
data (ICE-6G_C) from Peltier et al.69. These meltwater flux values are likely
underestimates as they assume no accumulation on ice sheets during the
period of estimated mass loss; for example, the net mass balance may be
� 15,000 km3 year� 1 (contribution to sea level rise), but glacial runoff may have
been B25,000 km3 year� 1 with B10,000 km3 year� 1 of mass accumulation in the
ice sheet interior.

Data availability. The data used in this article are available from the
corresponding author (jon.hawkings@bristol.ac.uk) on request.
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