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GLOBAL WELL-POSEDNESS FOR THE MASSLESS CUBIC DIRAC EQUATION

NIKOLAOS BOURNAVEAS AND TIMOTHY CANDY

Abstract. We show that the cubic Dirac equation with zero mass is globally well-posed for small data

in the scale invariant space 9H
n´1

2 pRnq for n “ 2, 3. The proof proceeds by using the Fierz identities

to rewrite the equation in a form where the null structure of the system is readily apparent. This null

structure is then exploited via bilinear estimates in spaces based on the null frame spaces of Tataru.

We hope that the spaces and estimates used here can be applied to other nonlinear Dirac equations in

the scale invariant setting. Our work complements recent results of Bejenaru-Herr who proved a similar

result for n “ 3 in the massive case.
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1. Introduction

Given a mass m ě 0 we consider the nonlinear Dirac equation

´iγµBµψ `mψ “ F pψq

ψp0q “ ψ0

(1)

for a spinor ψpt, xq : R1`n Ñ CN where N “ 2r n`1

2
s and rxs denotes the integer part of x P R. The

Gamma matrices γµ are constant N ˆN matrices satisfying the anti-commutativity properties

γµγν ` γνγµ “ 2Igµν

where gµν is the Minkowski metric g “ diag p1,´1, ...,´1q, and repeated upper and lower indices are

summed over µ “ 0, ..., n. We are interested in the special case of (1) where the nonlinearity F is cubic
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2 NIKOLAOS BOURNAVEAS AND TIMOTHY CANDY

and has some additional structure. More precisely, we consider the Lorentz invariant cubic nonlinearities

F pψq “

$
&
%

pψψqψ
pψγµψqγµψ

(2)

which are known as the Soler model [41], and the Thirring model [49] respectively. Here ψ “ ψ:γ0

is the Dirac adjoint, and ψ: is the complex conjugate transpose of the vector ψ. The nonlinear Dirac

equation is an important equation in relativistic quantum mechanics, and models the self-interaction of

Dirac fermions, we refer the reader to [17, 48] for more on the physical background of the Dirac equation.

The nonlinear Dirac equation (1) with cubic nonlinearity (2) and mass m “ 0 is invariant under the

scaling ψpt, xq ÞÑ λ
1

2ψpλt, λxq. Thus the scale invariant regularity is sc “ n´1
2

and it is expected that we

have some form of ill-posedness for data ψ0 P HspRnq with s ă n´1
2

. In terms of the well-posedness of

the Cauchy problem, in the n “ 3 case, work of Tzvetkov [50] via the method of commuting vector fields,

shows that we have global existence in time for small smooth data in the case |F pψq| À |ψ|p, p ą 2. This

extends earlier results of Reed [39], Dias-Figueira [14], and Escobedo-Vega [15]. In the low regularity

setting, Machihara-Nakanishi-Ozawa [31] obtained global existence for small data in HspR3q in the almost

critical case s ą 1 for positive mass m ą 0, and cubic nonlinearities (2). This was improved to radial data

(or data with some additional angular regularity) in H1pR3q by Machihara-Nakamura-Nakanishi-Ozawa

[30]. Very recently, Bejenaru-Herr [2] proved that provided m ą 0 and F pψq “ pψψqψ, we have global

well-posedness and scattering for small data in the critical space H1pR3q.
On the other hand, in the n “ 2 case, it was shown by Pecher [36, 37] that we have local well-posedness

from data in HspR2q in the almost critical case s ą 1
2
. In the n “ 1 case, global well-posedness for the

Thirring model with large data in HspRq with s ě 1 is due to Delgado [13], this was improved to s ą 1
2

by Selberg-Tesfahun [40]. The critical case s “ 0 was considered by the second author in [7] where it was

shown that the Thirring model is globally well-posed for large data in L2pRq. The question of scattering

for the massive case m ą 0 is still open. As well as the above mentioned results, if n “ 1 it is known that

the Thirring model F pψq “ pψγµψqγµψ is completely integrable [20, 51], and the stability of stationary

solutions has been studied [10, 38]. The existence of stationary solutions in n “ 3 is also known [9, 32, 45].

In the current article we are interested in the global well-posedness of small data in the critical space

9H
n´1

2 pRnq for n “ 2, 3. Our main result is the following.

Theorem 1.1. Let n “ 2, 3, m “ 0, and s ě n´1
2

. Assume F is as in (2). There exists ǫ ą 0 such that

if ψ0 P 9H
n´1

2 X 9HspRnq with

}ψ0}
9H

n´1

2 pRnq
ă ǫ

then we have a global solution ψ P C
`
R, 9H

n´1

2 X 9HspRnq
˘
to (1) with

sup
tPR

}ψptq}
9H

n´1

2 X 9HspRnq
À }ψ0}

9H
n´1

2 X 9HspRnq
.

Moreover, the solution ψ depends continuously on the initial data and is the unique limit of smooth

solutions. Finally, there exists ψ˘8 P C
`
R, 9H

n´1

2 X 9HspRnq
˘
with γµBµψ˘8 “ 0 such that

lim
tÑ˘8

››ψptq ´ ψ˘8ptq
››

9H
n´1

2 X 9HspRnq
“ 0.
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Remark 1.2. If m ą 0 then for small data in ψ0 P 9H
n´1

2 pRnq we have existence of a solution up to time

T ! m´1, see Remark 7.2. This is essentially due to the fact that for times T ! m´1 the solution to the

wave equation and Klein-Gordon equation is more or less the same. Of course if m ą 0 and n “ 3, then

we already have global existence due to the work of Bejenaru-Herr [2]. On the other hand, local existence

for m ą 0 with data in 9H
1

2 pR2q is new in the case n “ 2. Similarly, it is possible to use finite speed of

propagation to deduce local in time existence for large data in 9H
n´1

2 pRnq (this is true for any m ě 0).

Remark 1.3. If n “ 3 and we let γ5 “ iγ0γ1γ2γ3, then Theorem 1.1 also holds in the cases where F pψq
is given by

pψ̄γ5ψqγ5ψ, pψ̄ψqγ5ψ, pψ̄γ5ψqψ.

In other words, we can more or less handle any nonlinearity built up using the bilinear Dirac null forms

ψψ and ψγ5ψ.

Remark 1.4. The nonlinear Dirac equation (1) together with the nonlinearity (2), satisfies conservation

of charge }ψptq}L2
x

“ }ψp0q}L2
x
. Thus in Theorem 1.1 we may replace the homogeneous Sobolev spaces

9Hs with the inhomogeneous spaces Hs. We should point out that the Dirac equation has other conserved

quantities. However, they are not strictly positive, and thus do not appear to be immediately useful in

the large data theory.

The first step in the proof of Theorem 1.1 is to rewrite the equation so that the null structure of the

system is easy to exploit. The standard way to do this is to use projections to reduce (1) to studying the

scalar half wave equations pBt ˘ |∇|q. In particular this method was used in the recent work of Pecher [36]

and Bejenaru-Herr [2]. In the current article, we instead work with a vector valued formulation. Working

in the vector valued setting has two key advantages. The first is that it only makes use of the derivatives1

Bµ (as opposed to the Fourier multipliers |∇|), and thus behaves well under changes of coordinates. The

second advantage is that, after an application of a Fierz type identity [16], the null structure hidden in the

nonlinearities (2) manifests itself in products of vector valued waves traveling in opposite directions. On

the other hand, the cost of avoiding the Bt ˘ |∇| formulation of (1) and using a vector valued formulation,

is that the function spaces we construct need to retain this vectorial information in order to be able to

prove the bilinear estimates that are needed to close an iteration argument.

The second, and more difficult, step in the proof of Theorem 1.1 is to construct appropriate function

spaces and prove a number of bilinear null form estimates. The spaces used are a combination of vector

valued version of the null frame spaces of Tataru [47], together with Xs,b and energy type components. In

slightly more detail, we define a norm that is schematically of the form }ψ}F “ }ψ}
L8

t
9H

n´1

2
x

` }γµBµψ}Y

and take Y “ L1
t

9H
n´1

2

x `X´1

2
,1`NF where X´ 1

2
,1 is an Xs,b type space with ℓ1 sum over distances to the

cone, and NF is based on the null frame spaces of Tataru [47]. The construction of the required spaces

and the study of their basic properties is rather involved, and takes up a significant portion of the cur-

rent paper. However, we believe that these spaces should be applicable to other endpoint well-posedness

results for related systems such as the Dirac-Klien-Gordon, Maxwell-Dirac, Chern-Simons-Dirac etc. We

1This can be thought of as a higher dimensional analogue of the two n “ 1 formulations of the Dirac equation pBt ˘ Bxq

and pBt ˘ |Bx|q. The first formulation has the benefit that it is easy to write in the null coordinates pt˘xq, and this is more

or less the key property that led to the L2pRq critical result in [7].
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plan to return to this problem in the future.

To explain the key difficulties in the proof of Theorem 1.1, note that the well-posedness theory for (1)

would follow easily via standard energy estimates provided we had the L2
tL

8
x estimate

}ψ}L2

tL
8
x pR1`nq À }ψp0q}

9H
n´1

2
x pRnq

(3)

for solutions to (1) with F “ 0. Unfortunately, it is well-know that this estimate just fails in the n “ 3

case, and is far from true in the n “ 2 case. Thus the low regularity well-posedness theory for (1) has

more or less proceeded by trying to find suitable substitutes for the missing L2
tL

8
x Strichartz estimate

(3). One approach, used by Pecher [36, 37], is to move to the bilinear setting, and exploit the additional

structure of the nonlinearity (2) via bilinear estimates in Xs,b type spaces. While this works in the

subcritical setting, it does not appear sufficient to handle the critical case s “ n´1
2

, see Remark 3.3.

An alternative approach used in the work of Machihara-Nakamura-Nakanishi-Ozawa [30], is to exploit

the fact that (3) is in fact true for radial data in n “ 3. This is not quite enough on its own, as the

Dirac equation does not commute with rotations, and thus radial data does not lead to radial solutions.

Instead, Machihara-Nakamura-Nakanishi-Ozawa proved a version of (3) with additional regularity in the

angular variable.

The approach in the current article relies on the following crucial observation of Tataru [47]. Although

the estimate (3) fails for n “ 2, 3 (and m “ 0), the solution can be place into spaces of the form L2L8

provided we work in rotated null frames ptω, xωq where
?
2tω “ pt, xq ¨ p1, ωq, xω “ pt, xq ´ 1?

2
tωp1, ωq

where ω P Sn´1 is a direction on the sphere. These spaces exploit the fact that if supp pf Ă t|ξ| «
λ, | ξ

|ξ| ´ ω| ď pTλq´ 1

2 u, then for times |t| ď T we expect peit|∇|fqpxq « fpx ` tωq. A computation then

shows that }1|t|ăT ptqeit|∇|f}L2

tω
L8

xω
À p λ

T
qn´1

2 }f}L2. Of course to exploit this concentration property,

requires localising the Fourier support to small sets. Thus to control a general function, we need to use

many frames simultaneously.

In the n “ 1 case, the gain formed by working in null frames is particularly easy to observe as the

solution can only propagate in 2 directions x ˘ t. More precisely, note that in the case n “ 1, we can

write the solution to (1) as ψpt, xq “ fpx´ tq ` gpx` tq. Clearly ψ R L2
tL

8
x , however, we do have

}fpx´ tq}L2

x´tL
8
x`tpR1`1q “ }f}L2

xpRq.

Thus despite the fact that (3) fails, we can place our solution in spaces of the form L2
t˘xL

8
t¯x. This simple

observation played a key role in the n “ 1 proof of critical well-posedness [7]. In higher dimensions, the

solution can now travel in many directions ω P S
n´1, thus instead of a fixed frame L2

tω
L8
xω

, following

the work of Tataru [47] we are forced to work in atomic Banach spaces made up of ℓ1 sums of L2
tω
L8
xω

functions for various directions ω.

It is worth comparing the results presented here with the work of Bejenaru-Herr [2] on the positive

mass case m ą 0. There it was observed that if m ą 0 and n “ 3, then the estimate (3) is true, provided

we localise to frequencies À 1, or small angular caps. Unfortunately, while the additional dispersion given

by the positive mass is helpful for small frequencies, the loss of scaling and the additional curvature of

the characteristic surface complicates the analysis for high frequencies. In particular, to control the high



GLOBAL WELL-POSEDNESS FOR THE MASSLESS CUBIC DIRAC EQUATION 5

frequency components of the evolution, the work of Bejenaru-Herr required the use of null frames adapted

adapted to the hyperboloid τ “ ˘
a

|ξ|2 `m.

The outline of the paper is as follows. In Subsection 1.1 we rewrite the equation (1) in a more accessible

form, and use this formulation to provide a simple proof of a bilinear null form estimate in L2
t,x. The

main notation used is introduced in Section 2. In Section 3, we define the function spaces used to prove

Theorem 1.1. The main linear estimates we require are stated in Section 4. In Sections 5 and 6 we prove

our key bilinear and trilinear estimates. The proof of Theorem 1.1 is then given in Section 7. In Sections

8 and 9 we prove the linear estimates stated in Section 4. Finally, in Section 10, we prove a version of

the energy inequality needed in the proof of Theorem 1.1.

Acknowledgements. The authors would like to thank Prof. Bejenaru and Prof. Herr for corrections

and helpful conversations regarding the work [2].

1.1. Structure of Dirac equation. We take the standard representations of the Gamma matrices in

the terms of the Pauli matrices

σ1 “
˜
0 1

1 0

¸
, σ2 “

˜
0 ´i
i 0

¸
, σ3 “

˜
1 0

0 ´1

¸
.

In particular, for n “ 2 we take

γ0 “ σ3, γ1 “ iσ2, γ2 “ ´iσ1

and if n “ 3 we let

γ0 “
˜
I 0

0 ´I

¸
, γj “

˜
0 σj

´σj 0

¸
, j “ 1, 2, 3, γ5 “ iγ0γ1γ2γ3 “

˜
0 I

I 0

¸
.

To proceed further, we note that we have the special case of a Fierz type identity2

`
ψγµψ

˘
γµψ “

$
&
%

`
ψψ

˘
ψ n “ 2

`
ψψ

˘
ψ ´ pψγ5ψqγ5ψ n “ 3.

(4)

This somewhat magical identity is the key to showing that the Thirring model nonlinearity is also a null

form, and also shows that in n “ 2 the Thirring and Soler models are identical. Define

σ ¨ ∇ “ σjBj “

$
&
%
σ1B1 ` σ2B2 n “ 2

σ1B1 ` σ2B2 ` σ3B3 n “ 3
and β “

$
&
%
σ3 n “ 2

0 n “ 3.

We claim that (1) with m “ 0 is a special case of the system

pBt ` σ ¨ ∇qu “ B1pu, vqv `B2pu, vqβu

pBt ´ σ ¨ ∇qv “ B3pu, vqu`B4pu, vqβv
(5)

2This is essentially a special case of a Fierz Identity [16] which states that, in the n “ 3 case, given zj P C4 we have

pz1γ
µz2qpz3γµz4q “ pz1z4qpz3z2q ´ 1

2
pz1γ

µz4qpz3γµz2q ´ 1

2
pz1γ

µγ5z4qpz3γµγ
5z2q ´ pz1γ

5z4qpz3γ
5z2q,

see also [33]. The appendix to [34] contains the identities in general dimensions. Rearranging the Fierz identity

easily gives the identity (4). Alternatively one can show (4) by first noting that for vectors wj P C2 we have
ř

3

j“1
pw:

1
σjw2qσjw3 “ 2pw:

1
w3qw2 ´ pw:

1
w2qw3 and then computing the identity by hand.
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where the Bjpu, vq are a linear combination of the bilinear forms

u:v, v:u, v:βv, u:βu (6)

and u, v : R1`n Ñ C2. To prove the claim, if n “ 3 we decompose ψ “
˜
u` v

u´ v

¸
into left and right

spinors3, then a short computation using the Fierz identity (4) shows that the pair pu, vq is a solution

to (5) with B1pu, vq “ B3pu, vq “ 2ipu:v ` v:uq in the Soler model case, and B1pu, vq “ 4ipv:uq,
B3pu, vq “ 4ipu:vq in the Thirring model case (note that β “ 0 when n “ 3 so the B2, B4 terms vanish).

On the other hand, in the n “ 2 case, if we multiply both sides of (1) by β “ γ0 “ σ3 and use the

Fierz type identity (4) together with γ0γ1 “ σ1, γ0γ2 “ σ2 we get (5) with B1 “ B3 “ B4 “ 0 and

B2pu, vq “ pu:βuq. To summarise, Theorem 1.1 follows from the following.

Theorem 1.5. Let n “ 2, 3 and s ě n´1
2

. There exists ǫ ą 0 such that if pup0q, vp0qq P 9H
n´1

2 X 9HspRnq
with

}up0q}
9H

n´1

2 pRnq
` }vp0q}

9H
n´1

2

ă ǫ

then we have a global solution pu, vq P C
`
R, 9H

n´1

2 X 9HspRnq
˘
to (5) such that

sup
tPR

}pu, vqptq}
9H

n´1

2 X 9HspRnq
À }pu, vqp0q}

9H
n´1

2 X 9HspRnq
.

Moreover, the solution pu, vq depends continuously on the initial data and is the unique limit of smooth

solutions. Finally, there exists u˘8, v˘8 P C
`
R, 9H

n´1

2 X 9HspRnq
˘
with pBt`σ ¨∇qu˘8 “ pBt´σ ¨∇qv˘8 “

0 such that

lim
tÑ˘8

´››uptq ´ u˘8ptq
››

9H
n´1

2 X 9HspRnq
` }vptq ´ v˘8

››
9H

n´1

2 X 9HspRnq

¯
“ 0.

To prove Theorem 1.5, we need to study the linear operator pBt ˘ σ ¨ ∇q. To start with, note that in

the n “ 2 case, we have

pB ˘ σ ¨ ∇qβ “ βpBt ¯ σ ¨ ∇q. (7)

In particular, if pBt ` σ ¨ ∇qu “ 0, then pBt ´ σ ¨ ∇qβu “ 0. This has the important, and very useful,

consequence that to study the nonlinearity in (5), it suffices to study products u:v where u and v are

solutions to

pBt ` σ ¨ ∇qu “ 0

pBt ´ σ ¨ ∇qv “ 0
(8)

since, clearly, products like u:βu can be reduced to products of the form u:v after an application of (7).

We now claim that the product u:v is a null form, in other words it satisfies improved bilinear estimates

when compared to a product like |u|2. This is intuitively clear as since u and v should resemble waves

traveling in opposite directions, we expect that their product should decay faster than a corresponding

product like |u|2. An estimate that makes this idea more explicit, is the following.

Lemma 1.6. Let n “ 1, 2, 3. Assume pu, vq solve (8) with up0q “ f and vp0q “ g. Then

}u:v}L2

t,xpRn`1q À }f}L2
xpRnq}g}

9H
n´1

2 pRnq
. (9)

3Essentially we are decomposing into standard left and right spinors ψ “ ψL ` ψR where ψR “ 1

2
pI ´ γ5qψ and

ψL “ 1

2
pI ` γ5qψ and then writing ψL “

˜
u

u

¸
and ψR “

˜
v

´v

¸
.
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Note that this estimate is certainly not true for a product like |u|2, if n “ 1, 2 this is easy to see as

u R L4
t,xpR1`2q for solutions to (8). It is also worth noting that (9) is closely related to the missing L2

tL
8
x

Strichartz estimate. More precisely, if we had an L2
tL

8
x control over v, then the bilinear estimate (9)

would follow from a simple application of Hölder’s inequality. Thus, in some cases, Lemma 1.6 can form

a suitable substitute to the missing endpoint Strichartz estimate.

One way to prove Lemma 1.6 (at least in the case n “ 2, 3) is to introduce potentials φ and ϕ such

that

pBt ´ σ ¨ ∇qφ “ u, pBt ` σ ¨ ∇qϕ “ v.

Then a short computation shows that lφ “ lϕ “ 0 and furthermore, that u:v is made up of a linear

combination of the classical null forms

BtφBtϕ ´ ∇φ ¨ ∇ϕ, BµφBνϕ ´ BνφBµϕ.

Lemma 1.6 then follows by applying the sharp bilinear null form estimates of Foschi-Klainerman [18].

Alternatively, and more in the spirit of the current article, we present a softer argument that just relies

on a decomposition into traveling waves, followed by Hölder’s inequality and a change of variables. This

is similar to the approach used by Tataru [47] and Klainerman-Rodnianski [23].

Proof of Lemma 1.6. In the n “ 1 case, we can reduce the estimate (9) to a product of the form }fpx´
tqgpx` tq}L2

t,xpR1`1q and so lemma follows by a simple change of variables. On the other hand, if n “ 2, 3

we begin by decomposing v into an average of traveling waves. More precisely, define Πω “ 1
2

`
I ` σ ¨ ω

˘

and zΠ˘f “ Π˘ ξ
|ξ|

pf , note that Π:
ω “ Πω and Π2

ω “ Πω . Then writing the solution v in Polar coordinates

gives

vpt, xq “ eit|∇|Π`g ` e´it|∇|Π´g

“
ż

Sn´1

Πω

ż 8

0

eirpt`x¨ωqpgprωqrn´1 dr dSpωq `
ż

Sn´1

Π´ω

ż 8

0

e´irpt´x¨ωqpgprωqrn´1 dr dSpωq

“
ż

Sn´1

Πωgωpt` x ¨ ωq dSpωq (10)

where gωpaq “
ş8
0

“
eirapgprωq ` e´irapgp´rωq

‰
rn´1 dr. Consequently, by the self-adjointness of the projec-

tions Πω , we have the bound

}u:v}L2

t,x
ď
ż

Sn´1

››u:pt, xqΠωgωpt ` x ¨ ωq
››
L2

t,x

dSpωq

“
ż

Sn´1

››`Πωu
˘:pt ´ ω ¨ x, xqgωptq

››
L2

t,x

dSpωq

ď sup
ωPSn´1

››`Πωu
˘
pt ´ ω ¨ x, xq

››
L8

t L2
x

ż

Sn´1

}gω}L2

t
dSpωq.

It is easy enough to check that by undoing the Polar coordinates, and using an application of Holder in

the ω variables we obtain ż

Sn´1

}gω}L2

t
dSpωq À }g}

9H
n´1

2

.

Thus we reduce (9) to proving

sup
ωPSn´1

››`Πωu
˘
pt ´ ω ¨ x, xq

››
L8

t L2
x

À }f}L2
x
.
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Note that p´x ¨ ω, xq is a parameterisation of the null plane NP pωq orthogonal to the null vector p1, ωq,

NP pωq “
 

pt, xq P R
1`n

ˇ̌
pt, xq ¨ p1, ωq “ 0

(
.

In other words, we need to control the integral of Πωu over L2
`
NP pωq

˘
. By a change of variables we

deduce that

e¯ipt´x¨ωq|∇|fpxq “
ż

Rn

pfpξqe¯ipt´x¨ωq|ξ|eix¨ξdξ “
ż

Rn

”
pfpξqe¯it|ξ|J´1pξq

ı
pyqeiy¨xdy

where Jpξq “ 1 ˘ ξ
|ξ| ¨ ω « θpω,¯ξq2 is the Jacobian of the change of variables y “ ξ ˘ |ξ|ω, and θpξ, ξ1q

denotes the angle of the two vectors ξ, ξ1 P Rn. Hence using the “null form” estimate |ΠωΠ˘ ξ
|ξ|

| À θpω,¯ξq
(see (15) below) together with Plancheral, we have

››e¯ipt´x¨ωq|∇|ΠωΠ˘fpxq
››
L2

x

“
›››
”
ΠωΠ˘ ξ

|ξ|
pfpξqe¯it|ξ|J´1pξq

ı
pyq

›››
L2

y

“
››J´ 1

2 pξqΠωΠ˘ ξ
|ξ|

pf
››
L2

ξ

À
››θpω,¯ξq´1θpω,¯ξq pf

››
L2

ξ

“ }f}L2. (11)

If we apply this inequality to u “ eit|∇|Π´f ` e´it|∇|Π`f we obtain (9). Thus lemma follows. �

2. Notation

Throughout this article we take n “ 2, 3. We use the notation a À b to denote the inequality a ď Cb

for some constant C ą 0 which is independent of the variables under consideration. Similarly, we write

a ! b if a ď Cb with a small constant C ă 1
4
. For a complex valued n ˆ m matrix A, we let A: denote

the conjugate transpose. If Ω Ă R1`n, we define 1Ωpt, xq to be the corresponding indicator function.

Let Lq
tL

r
xpRn`1q denote the usual mixed-norm Lebesgue space with the associated norm

}u}Lq
tL

r
xpRn`1q “

´ż

R

” ż

Rn

|upt, xq|rdx
ı q

r

dt
¯ 1

q

.

Occasionally we omit the domain Rn`1 when we can do so without causing confusion. Most functions

that occur in this paper are C2 valued, although occasionally we make use of scalar valued maps as well.

The Schwartz class of smooth functions on Rn with rapidly decreasing derivatives is denoted by SpRnq,
we let S 1pRnq denote its dual, the collection of all tempered distributions. For a function f P SpRnq we

let

pfpξq “
ż

Rn

fpxqe´ix¨ξdx

denote the spatial Fourier transform. Similarly for upt, xq P SpRn`1q we let rupτ, ξq denote the space-time

Fourier transform. The Fourier transform is extended to S 1 by duality in the usual manner. For s ą ´n
2

we define the homogeneous Sobolev space 9HspRnq as the completion of S using the norm

}f} 9HspRnq “
››|ξ|s pfpξq

››
L2

ξ
pRnq.

Fix Φ P C8
0 pRq with supp Φ Ă t2´1 ď a ď 2u and for a “ 0

ÿ

λP2Z
Φpλ´1aq “ 1. (12)
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We define the (homogeneous) Besov-Lipschitz spaces 9Bs
p,q via the norm

}f} 9Bs
p,q

“
ˆ ÿ

λP2Z

´
λs}Pλf}Lp

¯q
˙ 1

q

where yPλf “ Φpλ´1|ξ|q pfpξq is the Fourier cutoff to the region |ξ| « λ. Given a Banach space X , we let

CpR, Xq denote the collection of all continuous maps u : R Ñ X .

Let Sn´1 “
 
x P Rn

ˇ̌
|x| “ 1

(
denote the standard unit sphere in Rn. If ξ, ξ1 P Rn, then we let

θpξ, ξ1q denote the positive, smallest, angle between the unit vectors ξ
|ξ| ,

ξ1

|ξ1| P Sn´1. We frequently use

the estimate θpξ, ξ1q « 1 ´ ξ
|ξ| ¨ ξ1

|ξ1| as well as the more explicit4

49

50
θpω, ω1q ď |ω ´ ω1| ď θpω, ω1q (13)

which holds for ω, ω1 P Sn´1 provided θpω, ω1q ď 1
4
. Given a subset κ Ă Sn´1 and vector ω P Sn´1, we let

θpω, κq “ inftθpω, ω1q |ω1 P κ u.

We often restrict the Fourier transform of a function to lie in a certain subsets of Rn`1. To exploit

this restriction, we make use of Bernstein’s inequality which states that if supp pf Ă Ω and p ě 2, then

for any q ď p we have

}f}Lp À |Ω| 1

q
´ 1

p }f}Lq .

Similarly, when considering products, if supp pf Ă Ω and supp pg Ă Ω1, we observe that the product fg

satisfies xfg Ă Ω ` Ω1.

2.1. Null Coordinates. As mentioned in the introduction, the standard pt, xq coordinate frame is not

sufficient to give the bilinear estimates that we require in the present paper. Instead, to exploit the

type of arguments leading used in the proof of Lemma 1.6, we need the flexibility to be able to work in

adapted null coordinate frames which are chosen depending on the Fourier support of the function under

consideration. The definitions are as follows.

Let ω P Sn´1 and ϑ “ 1?
2

p1, ωq P R1`n. We define the null coordinates ptω, xωq P R ˆ Rn as

tω “ pt, xq ¨ ϑ “ 1?
2

`
t ` ω ¨ x

˘
, xω “ x´ 1?

2

“
pt, xq ¨ ϑ

‰
ω.

Note that tωϑ is the projection of pt, xq onto the span of the null vector ϑ, while p´ω ¨ xω, xωq is a

parameterisation of the associated null hyperplane tpt, xq P R1`n | pt, xq ¨ ϑ “ 0 u. Moreover we have the

identity

pt, xq “ tωϑ ` p´ω ¨ xω , xωq.

To facilitate the computations we use later, we also decompose xω “ xK
ω ´ 1?

2
x1ωω where

x1ω “ 1?
2

pt ´ ω ¨ xq, xK
ω “ x´ px ¨ ωqω.

4This can be deduced by letting θ “ θpω, ω1q,

|ω ´ ω1|2 “ 2 ´ 2ω ¨ ω1 “ 2 ´ 2 cospθq “ 4 sin2
´ θ
2

¯
.

The estimate now follows by using the estimate sinpaq
a

x ď sinpxq ď x for 0 ă x ă a and the fact that 8 sinp 1

8
q ě 49

50
.
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Thus x1ω denotes the component of the vector pt, xq on the null cone in the direction p1,´ωq, while xK
ω

is the remaining component orthogonal to ω. We can translate from the ptω, xωq coordinate frame back

into the standard pt, xq frame by using the identities

t “ 1?
2
tω ´ ω ¨ xω x “ xω ` 1?

2
tω ω

“ 1?
2

ptω ` x1ωq “ xK
ω ` 1?

2
ptω ´ x1ωqω.

We also make use of the dual or frequency variables in null frames. If pτ, ξq denote the Fourier variables

associated to pt, xq, then we define the corresponding null frame versions pτω , ξωq by letting pτ, ξq ¨ pt, xq “
pτω , ξωq ¨ ptω, xωq. In other words we let

τω “ 1?
2

pτ ` ξ ¨ ωq, ξω “ ξ ´ τω “ ξK
ω ´

?
2ξ1ω ω

where as before ξK
ω denotes the component of ξω orthogonal to ω, and ξ1ω “ 1?

2
pτ´ξ ¨ωq. We can translate

from pτω , ξωq to pτ, ξq by using the identities

τ “ 1?
2
τω ´ 1

2
ω ¨ ξω ξ “ ξω ` p 1?

2
τω ´ 1

2
ω ¨ ξωqω

“ 1?
2

pτω ` ξ1ωq “ ξK
ω ` 1?

2
pτω ´ ξ1ωqω.

Finally we note the fundamental fact that the symbol of the wave operator l “ BγBγ satisfies the key

inequality

τ2 ´ |ξ|2 “ 2τωξ
1
ω ´ |ξK

ω |2.

This simple identity plays an important role in the arguments used in this paper.

If we have a function φpt, xq on R1`n, by default we use pt, xq coordinates. If we want to specify that

φ is in ptω , xωq coordinates we write φ˚, thus

φpt, xq “ φ˚ptω , xωq.

This convention also applies to the Fourier transform, pφpt, ξq denotes the Fourier transform with respect

to x, while xφ˚ptω, ξωq is the Fourier transform with respect to xω. A similar comment applies to the

spacetime Fourier transform rφpτ, ξq.

2.2. The Projections Πω and Π˘. Let ω P Sn´1 and define the projections Πω by

Πω “ 1

2

´
I ` σ ¨ ω

¯

where I denotes the 2 ˆ 2 identity matrix. The properties of the matrices σ implies that we have the

important identities

I “ Πω ` Π´ω, σ ¨ ω “ Πω ´ Π´ω, Π:
ω “ Πω, ΠωΠ´ω “ 0, Π2

ω “ Πω. (14)

Moreover we have the crucial (and well known) null structure estimate
ˇ̌
ΠωΠω1

ˇ̌
À θpω,´ω1q which follows

from the orthogonality of the projections Π˘ω by writing

ˇ̌
ΠωΠω1

ˇ̌
“

ˇ̌`
Πω ´ Π´ω1

˘
Πω1

ˇ̌
“ 1

2

ˇ̌
pω ` ω1q ¨ σΠω1

ˇ̌
À |ω ` ω1| À θpω,´ω1q. (15)

This angle estimate plays a crucial role in eliminating a number of dangerous bilinear interactions.
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Aside from using the projections Πω to exploit the null structure present in the Thirring model, they

can also be used decompose the Dirac equation into half wave operators Bt ˘ i|∇|. More precisely, define

the Fourier multipliers Π˘ as

zΠ˘fpξq “ Π˘ ξ
|ξ|

pfpξq.

Then using the identities (14) we see that the Dirac equation pBt ˘ σ ¨ ∇qu “ F is equivalent to

pBt ˘ i|∇|qΠ`u “ Π`F

pBt ¯ i|∇|qΠ´u “ Π´F.

This formulation for the Dirac equation has played a crucial role in the low regularity well-posedness the-

ory developed over the last decade or so. See for instance the work of D’Ancona-Foschi-Selberg [11, 12],

and Pecher [35, 36] and the second author [8], for the Dirac equation coupled to a scalar field, as well as

the of the current authors [5] for related ideas for the Spacetime-Monopole equation.

2.3. Solution Operators. Define the unitary operator U˘ptq on L2
xpRnq by the formula

U˘ptqrf s “ e¯it|∇|Π`f ` e˘it|∇|Π´f.

If we note that σ ¨ ∇ “ i|∇|pΠ` ` Π´q then a short computation shows that

pBt ˘ σ ¨ ∇qU˘ptqrf s “ 0

and U˘p0qf “ 0. Thus U˘ptqf gives the homogeneous solution to pBt ˘ σ ¨ ∇qu “ 0 with data up0q “ f .

2.4. Sets and Multipliers. The global well-posedness result in Theorem 1.1 depends on a number of

sharp bilinear estimates. The proof of these bilinear estimates relies on being able to localise to certain

frequency regions. The key tool to do this is the standard technique of dyadic decomposition.

Take Φ P C8
0 pRq as in (12) and let Φ0pξq “ ř

λď2´1 Φp a
λ

q with Φ0p0q “ 1. Define the Fourier multipliers

Pλ, Cd, and C
˘
d via

yPλfpξq “ Φ
´ |ξ|
λ

¯
pfpξq, ĆCdF pτ, ξq “ Φ

´ ˇ̌|τ | ´ |ξ|
ˇ̌

d

¯
rF pτ, ξq, ĆC˘

d F pτ, ξq “ Φ
´ ˇ̌τ ˘ |ξ|

ˇ̌

d

¯
rF pτ, ξq.

Note that Pλ restricts the Fourier support to the set t2´1λ ď |ξ| ď 2λu, Cd restricts the Fourier support

to be at distance « d from the cone, and C˘
d restricts the Fourier support onto the forward and backward

components of the cone. Similarly we define multipliers Cďd, C
˘
ďd as

ĆCdF pτ, ξq “ Φ0

´ ˇ̌|τ | ´ |ξ|
ˇ̌

d

¯
rF pτ, ξq, ĆC˘

d F pτ, ξq “ Φ0

´ ˇ̌τ ˘ |ξ|
ˇ̌

d

¯
rF pτ, ξq,

thus C˘
ďd and Cďd are the (smooth) restriction of the Fourier support to the sets

 ˇ̌
|τ | ´ |ξ|

ˇ̌
ď d

(
and ˇ̌

τ ˘ |ξ|
ˇ̌

ď d
(
. Note that if F P L2pR1`nq we can decompose

F “
ÿ

dP2Z
C˘

d F (16)

where the sum converges in L2pR1`nq. This is not true for F P L8
t L

2
x for instance, as the the righthand

side of (16) vanishes for functions with Fourier transforms supported on the lightcone, i.e. solutions to

the wave equation. Thus some care has to be taken when decomposing functions into dyadic distances
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from the cone, as in general, (16) only holds modulo solutions to the wave equation.

The number of ˘ signs that will be floating around in various formula throughout this article can be

daunting. To alleviate this somewhat, we define

C
˘
d “ Π`C

˘
d ` Π´C

¯
d .

Thus C
˘
d is the vector valued analogue of the C˘

d multipliers. Note that C
˘
d roughly corresponds to

localising spacetime frequencies to distance „ d from the characteristic surface of the equation pBt ˘ σ ¨
∇qu “ 0. In a similar vein, we define

S˘
λ,du “ C

˘
d Pλu.

The multipliers C˘
ďd and S˘

λ,ďd are defined in the obvious manner.

As well as the above multipliers, we also need to be able to decompose into angular regions. Let α ! 1

and define Cα to be a finitely overlapping cover of Sn´1 where every cap κ P Cα has radius α. We use

ωpκq to denote the centre of the cap κ P Cα and so κ “
 
ω P Sn´1

ˇ̌
θ
`
ω, ωpκq

˘
ď α u. For constants C ą 1

and κ P Cα, we also define Cκ “
 
ω P Sn´1

ˇ̌
θ
`
ω, ωpκq

˘
ď Cα

(
.

Given a subset κ P Cα we define the sets

Aλpκq “
 

pτ, ξq P R
1`n

ˇ̌
λ2´1 ď |ξ| ď 2λ, sgnpτq ξ

|ξ| P κ
(
, A˘

λ pκq “
 
ξ P R

n
ˇ̌
λ2´1 ď |ξ| ď 2λ, ¯ ξ

|ξ| P κ
(

note that Aλpκq Ă R1`n while A˘
λ pκq Ă Rn. These sets decompose the annulus t|ξ| « λu into radially

directed, rectangularly shaped sets of size λˆ pαλqn´1. Similarly we let

Aα,λpκq “
 
λ2´1 ď |ξ| ď 2λ,

ˇ̌
|τ | ´ |ξ|

ˇ̌
ď cα2λ, sgnpτq ξ

|ξ| P κ
(
,

and

A˘
α,λpκq “

 
λ2´1 ď |ξ| ď 2λ,

ˇ̌
τ ˘ |ξ|

ˇ̌
ď cα2λ, ¯ ξ

|ξ| P κ
(
,

where c ! is some small constant. Clearly we have R ˆA˘
λ pκq Ă Aλpκq and A˘

α,λ Ă Aα,λpκq.

For each of the angular sets defined above, we need the corresponding Fourier cutoffs. Fix α ! 1 and

let Φκ be a smooth partition of unity on Sn´1 subordinate to the caps κ P Cκ. Note that we may ensure

that, after a rotation to centre the cap κ on the ξ1 axis, we have for ξ “ 0 the derivative bounds

ˇ̌
BN
ξ1

“
Φκ

`
ξ

|ξ| q
‰ˇ̌

À |ξ|´N ,
ˇ̌
BN
ξj

“
Φκ

`
ξ

|ξ| q
‰ˇ̌

À pα|ξ|q´N j “ 1. (17)

We now define the corresponding Fourier multiplier

zR˘
κ fpξq “ Φκ

`
¯ ξ

|ξ|
˘ pfpξq

and take

R˘
κ, d “ C˘

!dR
˘
κ , P˘

λ,κ “ PλR
˘
κ , P

˘,α
λ,κ “ C˘

!α2λ
PλR

˘
κ .

The multipliers and corresponding sets are summerised in Table 1.

We would like to pretend that the operators introduced about are idempotent, i.e. satisfy P 2 “ P .

Unfortunately, this clearly fails (although it is almost the case, in the sense that P 2 is a cutoff to the

same region of frequency space). Thus, to work around this difficulty, we introduce cutoffs to slight
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Sets Fourier multipliers

t|ξ| « λu Pλ
 ˇ̌

|τ | ´ |ξ|
ˇ̌

« d
(

Cd
 ˇ̌
τ ˘ |ξ|

ˇ̌
« d

(
C˘

d 
¯ ξ

|ξ| P κ
(

R˘
κ ˇ̌

τ ˘ |ξ|
ˇ̌

! d ,¯ ξ
|ξ| P κ

(
R˘

κ,d

A˘
λ pκq P˘

λ,κ

A˘
α,λpκq P

˘,α
λ,κ

Table 1. Sets and corresponding Fourier multipliers

enlargements of the sets used above. More precisely, if A is one the sets defined above, then we let 6A be

the set which is 101
100

times larger, thus A Ă 6A. For example, we let

6A˘
λ pκq “ tλ2´1 100

101
ď |ξ| ď 2λ101

100
, ξ

|ξ| P 101
100

κu.

The sets 6Aλpκq, 6A˘
λ,αpκq, and 6Aλ,αpκq are defined similarly. Moreover, if A is one of previous sets, we

let 6P denote a corresponding multiplier that is 1 on A, and has support inside the corresponding set 6A.

For instance 6P˘
λ,κ restricts the Fourier transform to the set 6A˘

λ pκq. Note that we always have identities

of the form 6P˘
λ,κP

˘
λ,κ “ P˘

λ,κ and furthermore we may assume that the new multipliers 6R˘
κ still satisfy

the derivative bounds (17).

2.5. Estimate on coordinates in Aα,λpκq. For later use, we record here the following useful estimate

on the dual coordinates pτω , ξωq. We start by noting that

ˇ̌
ξ1ω
ˇ̌

“ 1?
2

ˇ̌
|τ | ´ |ξ| ` |ξ| ´ sgnpτqξ ¨ ω

ˇ̌
, |ξK

ω |2 “
ˇ̌
|ξ| ` ξ ¨ ω

ˇ̌
ˆ
ˇ̌
|ξ| ´ ξ ¨ ω

ˇ̌
, |τω| ď |τ | ` |ξ|. (18)

In particular, if α ! 1, κ P Cα, and pτ, ξq P Aλ,αpκq then have

|ξ1ω| À
`
maxtα, θpω, κqu

˘2
λ, |ξK

ω | À θpω, κqλ, |τω | À λ. (19)

Clearly the same bounds also hold for pτ, ξq P 6Aλ,αpκq.
A slightly sharper estimate is available if ω R 2κ. More precisely, the additional assumption on ω

implies that α ď θpω, κq and so
ˇ̌
|τ | ´ |ξ|

ˇ̌
! θ2pω, κqλ. Consequently

|ξ1ω| « θ2pω, κqλ, |ξK
ω | À θpω, κqλ, |τω| À λ. (20)

3. Function spaces

A standard method used to handle the critical wave equation, is to take a Banach space Y , and then

define a norm at scale λ via

}u}
F

˘
λ

“ }Pλu}L8
t L2

x
` }pBt ˘ ∇ ¨ σqPλu}Y

A good first choice for Y , (one that has worked well for the critical wave equation in high dimensions),

is to take

Y “ L1
tL

2
x `X´ 1

2
,1
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where Xb,1
λ is the relevant Xs,b type space with an ℓ1 sum in the distance to the cone, at scale |ξ| « λ.

The idea is that away from the light cone, we use the Xs,b type spaces, while close to the light cone,

where the symbol blows up, we use the L1
tL

2
x type norm.

If now apply our Y type norm to our well-posedness problem, the essentially point would be to control

the term
››pBt ` σ ¨ ∇q´1

“
pu:vqv

‰››
Y
.

Let F “ u:v. Since the product u:v is a null form, we should be able to put F P L2
t,x (i.e. as in Lemma

1.6). If we also let Fλ “ PλF , and vµ “ Pµv, we need to prove estimates of the form

}Fλvµ}Y À µ}Fλ}L2

t,x
}vµ}F´ . (21)

This estimate is essentially true for Y “ L1
tL

2
x ` X

´ 1

2
,1

λ except for one particularly bad case where the

output Fλvµ is concentrated near the null cone (so we are forced to use the L1
tL

2
x space), vµ is also close

to null cone (so is essentially a homogeneous solution), but F is far from the null cone. Our only option

is put Fλvµ in L1
tL

2
x, but then since Fλ P L2, we need vµ P L2

tL
8
x which fails (since vµ is essentially a

homogeneous solution). Note that this interaction is not a null interaction (as Fλ is far from the cone)

so null structure doesn’t help.

The key observation, due to Tataru, is that we do have a L2L8 type estimate, provided we look at

null coordinates ptω , xωq instead. This means that we can control the product in L1
tω
L2
xω

but not L1
tL

2
x.

Thus, for certain interactions, we need to replace the L1
tL

2
x component of the Y norm, with a L1

tω
L2
xω

type norm instead. This is possible but the construction of the required function spaces is a little involved.

In the rest of this section, we construct an appropriate replacement for the space Y . Essentially we

will take Y to be roughly L1
tL

2
x ` Xs,b ` NF with an added term to deal with the regions far from the

cone. Here NF are the null frame spaces originally appearing in the work of Tataru [47], and developed

further by Tao [46]. See also the results in [28, 29, 44, 43].

3.1. Xs,b type norms. We define the Dirac version of the Bourgain-Klainerman-Machedon spaces by

using the norm5

}u} 9X
b,q
˘

“
´ ÿ

dP2Z
dqb

››C˘
d u

››q
L2

t,x

¯ 1

q

.

The norm 9X
b,q
˘ is related to the more standard norms 9X

b,q
˘ adapted to the cone tτ ˘ |ξ| “ 0u by the

formula

}u} 9X
b,q

˘
« }Π`u} 9X

b,q

˘
` }Π´u} 9X

b,q

¯
(22)

where

}u} 9X
b,q

˘
“
´ ÿ

dP2Z
dqb}C˘

d u}q
L2

t,x

¯ 1

q

and we recall that C
˘
d “ C˘

d Π` ` C¯
d Π´. Note the this implies that }Π`u} 9X

b,q
˘

« }Π`u} 9X
b,q
˘

and a

similar equality in the Π´ case. The equivalence of the two norms (22) follows by simply using the

self-adjointness of the projections Π˘ to obtain
ş
pΠ˘uq:Π¯vdx “

ş
u:Π˘Π¯vdx “ 0.

5Note that } ¨ }
9X
b,q
˘

is not technically a norm, as it vanishes for distributions with Fourier support on the cone, thus it

is only a semi-norm. However we make the (fairly) standard abuse of notation and refer to all semi-norms as norms.
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The 9X
b,q
˘ norm is designed to exploit the fact that, at least for small times or small data, we expect

that the Π` component of the solution to

pBt ˘ σ ¨ ∇qu “ F

to concentrate close to the cone tτ ˘ |ξ| “ 0u. The Xs,b type norms have been a standard tool in the low

regularity theory of nonlinear dispersive PDE since the work of Bourgain [4], Kenig-Ponce-Vega [21], and

Klainerman-Machedon [22]. See also the earlier work of Beals [1] who used similar spaces in the study of

singularity formation for the nonlinear wave equation.

We make use of the following basic results.

Lemma 3.1. Let u P L2
t,x with supp ĆΠ`u Ă

 ˇ̌
τ ˘ |ξ|

ˇ̌
« du and supp ĆΠ´u Ă

 ˇ̌
τ ¯ |ξ|

ˇ̌
« du. Then we

can write

upt, xq “ 1

2π

ż

|τ |«d

eitτ U˘ptqrfτ sdτ (23)

where fτ P L2
x has the same ξ support as pu, and }fτ }L2

x
À }rupτ, ξq}L2

ξ
.

Proof. We simply let

fτ pxq “ 1

p2πqn
ż

Rn

“ĆΠ`upτ ¯ |ξ|, ξq ` ĆΠ´upτ ˘ |ξ|, ξq
‰
eix¨ξ dξ.

�

The identity (23) easily implies the well-known transference principle. Namely, if for every τ P R we

have the bound }eitτU˘ptqf}X À }f}L2
x
, then }u}X À }u}

9X
1

2
,1

˘

(for u P L2
t,x say). In other words, any

homogeneous estimate for the Dirac equation, immediately implies the same estimate holds for elements

of 9X
1

2
,1

˘ . See for instance [47, Proposition 5.1] or [24, Proposition 3.7]. In particular, 9X
1

2
,1

˘ controls

the Strichartz norms Lq
tL

r
x. More precisely, if say u P L2

t,x with supp pu Ă t|ξ| « λu, then for any
1
q

` n´1
2r

ď n´1
4

with pq, rq “ p2,8q we have6

}u}Lq
tL

r
x

À λnp 1

2
´ 1

r
q´ 1

q }u}
9X
1

2
,1

˘

(24)

The transference principle can save a significant amount of work when working with 9X
1

2
,1

˘ type norms.

Finally, we recall the well-known fact that after truncating in time, homogenous solutions belong to 9X
1

2
,1

˘ .

Lemma 3.2 (Homogeneous solutions belong to 9X
1

2
,1

˘ ). Let ρ P C8
0 pRq and T ą 0. Then

››ρ
`

t
T

˘
U˘ptqf

››
9X
1

2
,1

˘

À }f}L2
x

where the constant is independent of T .

6After an application of the triangle inequality and scaling, it is enough to consider the case u “ C
˘
1
u. We now apply

(23) followed by the homogeneous Strichartz estimate to deduce

}u}Lq
tL

r
x

ď

ż

|τ |«1

}U˘ptqfτ }Lq
tL

r
x
dτ À λ

np 1

2
´ 1

r
q´ 1

q

ż

|τ |«1

}fτ }L2
x
dτ À λ

np 1

2
´ 1

r
q´ 1

q }u}L2
t,x
.
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Proof. Let ρT ptq “ ρp t
T

q. If we observe that ČrρT ptqU˘ptqf spτ, ξq “ pρpτ ˘ |ξ|qzΠ`fpξq ` pρpτ ¯ |ξ|qzΠ´fpξq
then

››ρ
`

t
T

˘
U˘ptqf

››
9X
1

2
,1

˘

ď 2}ρT }
9B
1

2

2,1

}f}L2
x
.

Hence result follows by recalling that }ρT }
9B
1

2

2,1pRq
“ }ρ}

9B
1

2

2,1pRq
ă 8. �

Remark 3.3. An obvious question immediately arises, namely, can we simply prove Theorem 1.5 by

iterating the equation in the norm 9X
1

2
,1

˘ ? In other words, we are asking if we can bound the cubic term

in 9X
´ 1

2
,1

˘ , which in view of Lemma 1.6 and the transference principle, would more or less require the

estimate

}Fλvµ}
9X

´ 1

2
,1

`

À µ}Fλ}L2

t,x
}vµ}

9X
1

2
,1

´

(25)

for µ ! λ. Unfortunately, (25) fails. This can be seen by making the choice rF “ χΩ1
, rv “ χΩ2

where

Ω1 “ tλ´ 4 ď |τ | ď λ` 4, λ´ 4 ď |ξ| ď λ` 4u, Ω2 “ t|τ | ď 1, 2 ď |ξ| ď 3u.

Note that if 1
2
d ď |τ˘|ξ|| ď 2d and λ ď |ξ| ď λ`1, (for d ! 1 say), and pτ 1, ξ1q P Ω2, then pτ ´τ 1, ξ´ξ1q P

Ω1 since

|τ ´ τ 1| ď |τ ˘ |ξ|| ` |ξ| ` |τ 1| ď 2d ` λ` 1 ` 1 ď λ` 4

and similarly

|τ ´ τ 1| ě |ξ| ´ |τ ˘ |ξ|| ´ |τ 1| ě λ´ 2d´ 1 ě λ´ 4.

The argument for the ξ ´ ξ1 variable is similar. Therefore,

}CdpFvq}L2

t,x
“

›››
ż

Ω2

χΩ1
pτ ´ τ 1, ξ ´ ξ1qdτ 1dξ1

›››
L2

τ,ξ
p|τ˘|ξ|«dq

Á |Ω1|
ˇ̌
t|τ ˘ |ξ|| « d, λ ď |ξ| ď λ` 1u

ˇ̌ 1
2 « d

1

2

and consequently

}Fv}
X

´ 1

2
,1 ě

ÿ

d!1

d´ 1

2 d
1

2 “ 8.

On the other hand it is easy to check that the righthand side of (25) is finite, thus (25) fails. We make

the remark that this counterexample does not include interactions close to the cone, thus null structure

would not help. To summarise, endpoint Xs,b type spaces together with bilinear estimates, do not appear

to be enough to obtain critical well-posedness results.

3.2. Atomic Banach Spaces. The remaining function spaces used in this article have a complicated

structure as they need to capture certain space-time integrability properties of our solution in arbitrary

null frames. The method to define these spaces, going back to the work of Tataru [47], is via an atomic

construction. The standard set up is as follows. We start with a subset E Ă S 1 such that for every φ P S

we have

sup
fPE

ˇ̌
fpφq

ˇ̌
ă 8. (26)

The set E consists of our atoms. We then define the atomic Banach space ApEq as

ApEq “
!ÿ

jPN
cjfj

ˇ̌
ˇ pcjqjPN P ℓ1pNq, fj P E

)
(27)

with the norm

}f}ApEq “ inf
! ÿ

jPN
|cj |

ˇ̌
ˇ f “

ÿ

j

cjf, pcjqjPN P ℓ1pNq, fj P E
)

(28)
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It is easy to check that provided cj P ℓ1pNq and fj P E, the condition (26) implies that the sum
ř

j cjfj

converges in S 1 and thus ApEq is a well-defined subset of S 1. Moreover a standard computation shows

that } ¨ }ApEq is indeed a norm on ApEq (which is stronger than the standard Schwartz topology on S 1),

and the pair pApEq, } ¨ }ApEqq form a Banach space.

Given a linear operator T , and a Banach space X Ă S 1, we often need to prove inequalities of the form

››Tf
››
X

À }f}ApEq. (29)

In general, this can be broken down into two steps. The first step is to show that if f “
ř

jPN cjfj is a

decomposition of f into atoms fj P E, then

Tf “
ÿ

jPN
cjTfj (30)

with convergence in S 1 say. The second is to obtain (29) in the special case where f P E is an atom. In

other words show that we have the bound

sup
fPE

››Tf
››
X

À 1. (31)

It is a simple exercise to show that (30) and (31), together with the uniqueness of limits in S 1, implies

the bound (29). Note that in general, it is not true that boundedness on atoms (31) directly implies

the bound (29), see for instance [6] for an example related to the Hardy space. Thus some care has

to be taken to first check the identity (30) as well as the boundedness on atoms. However, in the

arguments used in the current paper, the identity (30) is almost immediately, and thus we often leave

the proof of (30) to the reader. The reduction of (29) to (31) is used frequently in the arguments to follow.

As a special case of (29), note that if X Ă S 1 is a Banach space with E Ă t}f}X À 1u (thus the set

of atoms is contained inside the unit ball of X), then we immediately deduce the continuous embedding

ApEq Ă X . Conversely, if the unit ball of X is contained in the set of atoms E, then we have X Ă ApEq.
Of course this condition can be weakened considerably, for instance if E contains a dense subset of

t}f}X ď 1u, then we still have X Ă ApEq. See [3] for a more general result of this nature.

3.3. Null Frame spaces - NF˘pκq, PW˘pκq, and rNF˘s˚pκq. As mentioned previously, the wave

equation satisfies improved regularity properties in certain null frames ptω, xωq. However, we cannot pick
a fixed frame ptω, xωq to work in, and instead have to work in certain averages over directions ω P κ. The
fact that we have to control our solution in many coordinates frames simultaneously forces us to use the

rather complicated atomic construction (27) and (28) to define the necessary spaces. The construction

below is heavily based on the original work of Tataru on the wave maps problem [47]. Accordingly we

follow, as much as possible, the notation introduce in [47].

The first null frame space we introduce is based on L1
tω
L2
xω
, and should be thought of as a suitable

replacement for the L1
tL

2
x norm. It is designed to capture the improved space-time estimates that we get

in null coordinates, and will handle the case where we are very close to the cone, in which case the 9X
´ 1

2
,1

˘

norm is not so effective. The definition is as follows.
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Let κ P Cα be a cap on the sphere. We say that F is a NF˘pκq atom if there exists ω R 2κ such that

}Π˘ωF }L1

tω
L2

xω
` θpω, κq´1}Π¯ωF }L1

tω
L2

xω
ď 1.

We then define the atomic Banach space NF˘pκq via7 (27) where we take E to be the set of all NF˘pκq
atoms, thus

NF˘pκq “
!ÿ

j

cjFj

ˇ̌
ˇ pcjq P ℓ1, Fj is a NF˘pκq atom

)

with the obvious norm defined as in (28). We frequently make use of the immediate inequality

}F }NF˘pκq ď inf
ωR2κ

´››Π˘ωF
››
L1

tω
L2

xω

` θpω, κq´1
››Π¯ωF

››
L1

tω
L2

xω

¯
.

The second null frame space we define forms a replacement for the missing L2
tL

8
x Strichartz estimate

and is based on L2
tω
L8
xω

type norms. Similar to the NF˘pκq space we use an atomic definition.

Let κ P Cα. We say ψ is a PW˘pκq atom, if there exists ω P 2κ such that

}Π˘ωψ}L2

tω
L8

xω
` α´1}Π¯ωψ}L2

tω
L8

xω
ď 1.

The atomic Banach space PW˘pκq is then defined to be made up of sums of PW˘pκq atoms as in (27)

with the induced norm (28). Provided we have two sufficiently separated caps κ and κ̄, the null frame

space NF˘pκ̄q and the plane wave type space PW˘pκq have a simple relation via what is essentially an

application of Holder’s inequality.

Lemma 3.4. Let 0 ă α, β ! 1. Assume κ P Cα and κ̄ P Cβ with θpκ, κ̄q ě 5maxtα, βu. Let ψ : Rn`1 Ñ
C2, and F a scalar valued function. Then

}Fψ}NF˘pκ̄q À }F }L2

t,x
}ψ}PW˘pκq.

More generally, for a fixed κ P Cα, we have the orthogonality property

ˆ ÿ

κ̄PCβ

θpκ,κ̄qě5maxtα,βu

›››P˘,β
λ,κ̄ Π`

`
Fv

˘›››
2

NF˘pκ̄q
`
›››P¯,β

λ,κ̄ Π´
`
Fv

˘›››
2

NF˘pκ̄q

˙ 1

2

À }F }L2
t,x

}v}PW˘pκq. (32)

Proof. We start by assuming ψ is a PW˘pκq atom ψ, thus there exists ω P 2κ such that

}Π˘ωψ}L2

tω
L8

xω
` α´1}Π¯ωψ}L2

tω
L8

xω
ď 1.

The assumption θpκ, κ̄q ě 5maxtα, βu implies that θpω, κ̄q ě θpκ, κ̄q ´ θpω, κq ě 3maxtα, βu. In partic-

ular, ω R 2κ̄ and θpω, κ̄q´1 À α´1. Hence via Holder’s inequality, we obtain

}Fψ}NF˘pκq ď
››FΠ˘ωψ

››
L1

tω
L2

xω

` θpω, κ̄q´1
››FΠ¯ωψ

››
L1

tω
L2

xω

À }F }L2

t,x

´
}Π˘ωψ}L2

tω
L8

xω
` α´1}Π¯ωψ}L2

tω
L8

xω

¯

ď }F }L2

t,x
.

7Note that if F is a NF˘pκq atom then for every φ P SpR1`nq,

|F pφq| ď
`
}Π˘ωF }L1

tω
L2

xω
` θpω, κq´1}Π¯ωF }L1

tω
L2

xω

˘
}φ}L8

tω
L2

xω
À

››p1 ` |t| ` |x|qn`1φ}L8
t,x

and so (26) holds.
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The argument for a general ψ P PW˘pκq follows by decomposing ψ “
ř

j cjψj where ψj are atoms, and

noting that Fψ “ ř
j cjFψj in S 1.

The proof of (32) is similar, but requires the additional complication of the orthogonality estimate

ˆ ÿ

κ̄PCβ

θpκ,κ̄qě5maxtα,βu

›››P˘,β
λ,κ̄ Π`G

›››
2

NF˘pκ̄q
`
›››P¯,β

λ,κ̄ Π´G
›››
2

NF˘pκ̄q

˙ 1

2

À }Π˘ωG}L1

tω
L2

xω
` α´1}Π¯ωG}L1

tω
L2

xω

which can be found in (iii) Corollary 8.2 below. �

The final null frame space we require is a version of the energy type norm L8
t L

2
x in null frames. Given

a cap κ Ă Cα, we define the norm } ¨ }rNF˘s˚pκq as

}u}rNF˘s˚pκq “ sup
ωR2κ

`
}Π˘ωu}L8

tω
L2

xω
` θpω, κq}Π¯ωu}L8

tω
L2

xω

˘
.

It is easy enough to check that we have the duality relation

ˇ̌
ˇ
ż
u:vdxdt

ˇ̌
ˇ ď }u}NF˘pκq}v}rNF˘s˚pκq (33)

and consequently, by a duality argument, we have the following counterpart to Lemma 3.4.

Lemma 3.5. Let 0 ă α, β ! 1. Assume κ P Cα and κ̄ P Cβ with θpκ, κ̄q ě 5maxtα, βu. Let u, v take

values in C2. Then

}u:v}L2

t,x
À }u}rNF˘s˚pκ̄q}v}PW˘pκq.

Remark 3.6. In the original work of Tataru [47], the null frame spaces were defined similarly but without

the added complications of the projections Π˘ω. The addition of the projections Π˘ω is needed to exploit

the vector valued nature of the Dirac equation, and is motivated by the fact that if supp pf Ă Aλpκq,
then from (10) we can write the homogeneous solution U´ptqf in the form

U´ptqf “
ż

κ

Πωfωp
?
2tωq dSpωq.

Thus the projections Πω appear naturally when we write the solution as an average of traveling waves.

Furthermore, morally speaking, as Πωfωp
?
2tωq is a multiple of a PW˘pκq atom, we should have the

bound

}ρptqU´ptqf}PW`pκq ď
ż

κ

}fω}L2pRqdSpωq, }ρptqU´ptqf}PW´pκq ď α´1

ż

κ

}fω}L2pRqdSpωq

where ρ P C8
0 pRq is a cutoff in time8 (see Corollary 8.8 below). In particular, as α ! 1, U´ptqf obeys much

better bounds in PW`pκq than PW´pκq. Without the projections Π˘ω built into the spaces PW˘pκq,
this observation would be much harder to exploit. Finally, we note that the additional regularity given

by placing U´ptqf P PW`pκq, is a manifestation of the null structure of the Dirac equation, and plays a

crucial role in the proof of Theorem 1.5.

8It is unclear to the authors if this is true without the cutoff ρ.
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3.4. The space N˘
λ . The space defined to hold the nonlinearity at scale λ, is made up of three compo-

nents, a L1
tL

2
x component, an Xs,b component, and a null frame L1

tω
L2
xω

component. As previously, the

definition is an atomic one, however, unlike the definition of NF˘pκq and PW˘pκq, we require 3 different

types of atoms.

(i) We say F is a NF˘
λ atom if there exists (a dyadic) 0 ă α ! 1 and a decomposition F “ ř

κPCα
Fκ

such that each Fκ P NF˘pκq with

supp {Π`Fκ Ă A˘
α,λpκq, supp {Π´Fκ Ă A¯

α,λpκq (34)

and we have the angular square function estimate

´ ÿ

κPCα

}Fκ}2NF˘pκq

¯ 1

2 ď 1.

(ii) We say that F is a PλpL1
tL

2
xq atom, or energy atom, if supp pF Ă t|ξ| « λu and

}F }L1

tL
2
x

ď 1.

(iii) We say that F is a 9X
´ 1

2
,1

˘ atom if

supp ĆΠ`F Ă
 

|ξ| « λ,
ˇ̌
τ ˘ |ξ|

ˇ̌
« d

(
, supp ĆΠ´F Ă

 
|ξ| « λ,

ˇ̌
τ ¯ |ξ|

ˇ̌
« d

(

and

}F }L2

t,x
ď d

1

2 .

We now define

N˘
λ “

!ÿ

j

cjFj

ˇ̌
ˇ pcjq P ℓ1pNq, Fj is either a N˘

λ atom, an energy atom, or a 9X
´ 1

2
,1

˘ atom
)

with the obvious norm given by (28). It is not so difficult to check that the condition (26) is satisfied,

thus the space N`
λ is a well-defined atomic Banach space.

In the proof of Theorem 1.1, our aim will be to place the nonlinearity in N˘
λ . Thus we shall frequently

be aiming to estimate terms of the form }PλF }
N

˘
λ
. To this end, we note that if PλF P L1

tL
2
x, then PλF

is multiple of an energy atom. Hence PλF P N˘
λ and we have the immediate bound

}PλF }
N

˘
λ

ď }PλF }L1
tL

2
x
. (35)

Similarly, if we can write PλF “ ř
dP2Z PλC

˘
d F , then as each PλC

˘
d F is a multiple of a 9X

´ 1

2
,1

˘ atom, we

have PλF P N˘
λ and

}PλF }N˘
λ

ď }PλF }
9X

´ 1

2
,1

˘

. (36)

The general strategy to put F P N˘
λ will be to decompose F into certain frequency regions, and then

make use of the previous bounds. Of course we will be unable to always place the nonlinearity in as nice

a space as L1
tL

2
x (or 9X

´ 1

2
,1

˘ ) and in certain frequency regions (notable when everything is close to the

cone) we have to use the additional flexibility given by the NF˘
λ type atoms.
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Remark 3.7. Let F be a NF˘
λ atom, and let F “

ř
κPCα

Fκ be the corresponding decomposition into

atoms. When we come to prove estimates for the Fκ, to use the fact that Fκ P NF˘pκq, we will be forced
to decompose Fκ “

ř
j F

pjq
κ into NF˘pκq atoms F

pjq
κ . Unfortunately this means that we may lose the

support properties (34), as there is no guarantee that the F
pjq
κ retain the same Fourier support as Fκ.

However, as we can write

Π`Fκ “ 6P˘,α
λ,κ Π`Fκ “

ÿ

j

cj
6P˘,α

λ,κ Π`F
pjq
κ

then as we have the bound

››6P˘,α
λ,κ Π˘ωΠ`F

pjq
κ

››
L1

tω
L2

xω

` θpω, κq´1
››6P˘,α

λ,κ Π¯ωΠ`F
pjq
κ

››
L1

tω
L2

xω

À
››Π˘ωF

pjq
κ

››
L1

tω
L2

xω

` θpω, κq´1
››Π¯ωF

pjq
κ

››
L1

tω
L2

xω

(see Lemma 3.14 below) the function 6P˘,α
λ,κ Π`F

pjq
κ is again a, perhaps slightly larger, NF˘pκq atom.

Thus we may always assume that the functions F
pjq
κ satisfy the slightly larger support properties

supp {Π`Fκ

pjq
Ă 6A

˘
α,λpκq, supp {Π´Fκ

pjq
Ă 6A

¯
α,λpκq.

This observation is frequently used without mention in the remainder of the article.

When we come to prove estimates using the N`
λ spaces, we often have to estimate a NF˘

λ atom in

L2
t,x. The following lemma is very useful in this regard.

Lemma 3.8. Let 0 ă α ! 1 and assume F “
ř

κPCα
Fκ is a NF˘

λ atom. Then

}C˘
d F }L2

t,x
À
`
mintd, α2λu

˘ 1

2 .

Proof. We only prove the ˘ “ ` case, the ´ case is similar. Let F “ ř
κPCα

Fκ. By orthogonality in

L2
t,x, and the observation that C`

d Fκ “ 0 for d ą α2λ, it is enough to show that

}C`
d Fκ}L2

t,x
À d

1

2 }Fκ}NF`pκq

for d À α2λ. Furthermore, by decomposing Fκ into NF`pκq atoms, we reduce to proving that for ω R 2κ

we have

}C˘
Àd

6P˘,α
λ,κ Π˘G}L2

t,x
À d

1

2

´
}ΠωG}L1

tω
L2

xω
` θpω, κq´1}Π´ωG}L1

tω
L2

xω

¯
. (37)

Note that if pτ, ξq P 6A˘
λ,αpκq and |τ ˘ |ξ|| À d, then from (20), we have |ξ1ω| « λθpω, κq2 and hence

ˇ̌
ˇτω ´ |ξK

ω |
2ξ1ω

ˇ̌
ˇ “

ˇ̌
|τ |2 ´ |ξ|2

ˇ̌

2|ξ1ω| À d

θpω, κq2 .

Thus, for fixed ξω, τω varies in a set of size d
θpω,κq2 . Therefore, by an application of Bernstein together

with the null form estimate |Π˘ ξ

|ξ|
Πω| À θpω,¯ξq « θpω, κq, we have

}C˘
d

6P˘,α
λ,κ Π˘G}L2

t,x
À }C˘

d
6P˘,α

λ,κ Π˘ΠωG}L2
t,x

` }C˘
d

6P˘,α
λ,κ Π˘Π´ωG}L2

t,x

À θpω, κq ˆ d
1

2

θpω, κq
››ĆΠωG

››
L2

ξω
L8

τω

` d
1

2

θpω, κq
››ČΠ´ωG

››
L2

ξω
L8

τω

À d
1

2

´
}ΠωG}L1

tω
L2

xω
` θpω, κq´1}Π´ωG}L1

tω
L2

xω

¯

as required. �
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3.5. Iteration Space. We now have the basic building blocks of the Banach space with which to prove

Theorem 1.1. Define

F˘
λ “

 
u P L8

t L
2
x

ˇ̌
supp pu Ă t|ξ| « λu, pBt ˘ σ ¨ ∇qu P N˘

λ

(

with the associated norm

}u}F˘
λ

“ }u}L8
t L2

x
`
››pBt ˘ σ ¨ ∇qu

››
N

˘
λ

.

We now sum up over frequencies to define

}u}F s,˘ “
´ ÿ

λP2Z
λ2s}Pλu}2

F
˘
λ

¯ 1

2

and let

F s,˘ “
 
u P L8

t
9Hs
x

ˇ̌
Pλu P F˘

λ , }u}F s,˘ ă 8
(
.

The space F˘
λ is essentially enough to prove the multi-linear estimates that we require, and via bilinear

estimates of the form in Lemma 1.6, it is possible to complete the proof of Theorem 1.1 with small data

in the slightly smaller space 9B
n´1

2

2,1 (i.e. with an ℓ1 sum over frequencies instead of a ℓ2 sum). To get the

more general 9H
n´1

2 result, we need some additional gain away from the light cone. To this end, motivated

by the recent work9 of Bejenaru-Herr [2], we define an additional semi-norm } ¨ }Y˘ as

}u}Y˘ “ sup
d

d
››C˘

d u
››
L

4n
3n´1

t L2
x

.

Then we take G˘
λ as

G˘
λ “

 
u P F˘

λ

ˇ̌ ››u
››
Y˘ ă 8

(

with the norm

}u}
G

˘
λ

“ }u}
F

˘
λ

` λ´ n`1

4n }u}Y˘

where the λ´ n`1

4n term is to ensure that both components of the G˘
λ norm scale the same way. We now

define

Gs,˘ “
 
u P L8

t
9Hs
x

ˇ̌
Pλu P G˘

λ , }u}Gs,˘ ă 8 u
where

}u}Gs,˘ “
´ ÿ

λP2Z
λ2s

››Pλu
››2
G

˘
λ

¯ 1

2

.

Corresponding to the function spaces F s,˘ and Gs,˘, we aim to put the nonlinearity in the summed up

versions of the N˘
λ and L

4n
3n´1

t L2
x spaces. Namely, we define

}F }N s,˘ “
ˆ ÿ

λP2Z
λ2s

››PλF
››2
N

˘
λ

˙ 1

2

and

}F }pNXYqs,˘ “
ˆ ÿ

λP2Z
λ2s

››PλF
››2
N

˘
λ

` λ2ps´ n`1

4n
q››PλF

››2
L

4n
3n´1

t L2
x

˙ 1

2

.

These spaces satisfy the following important properties.

9In the work of Bejenaru-Herr, they also needed some additional integrability in time of functions supported away from

the light cone. To accomplish this, they made use of the norm (in the notation used in the current paper)

sup
d

d
››C˘

d
u
››
L

4

3
t L2

xpR1`3q
.

In the current paper, this norm is to strong, and we need to use the slightly weaker Y˘
λ

norm (note that 4n
3n´1

“ 3

2
if n “ 3,

thus we need less integrability in time).
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Theorem 3.9.

(i) (Energy inequality.) Let s ě 0. Then F s,˘ is a Banach space, and moreover we have the energy

inequality

}u}F s,˘ ď }up0q} 9Hs ` C
››pBt ˘ σ ¨ ∇qu

››
N s,˘ .

Similarly we have

}u}Gs,˘ ď }up0q} 9Hs ` C
››pBt ˘ σ ¨ ∇qu

››
pNXYqs,˘

(here C is some constant independent of u).

(ii) (Stability with respect to time cutoffs.) Let ρ P C8
0 pRq and T ą 0. Then

››ρp t
T

qu
››
F s,˘ À }u}F s,˘ ,

››1p´T,T qptqF
››
N s,˘ À }F }N s,˘

where the implied constants are independent of T . Similarly, if λ P 2Z and T ě λ´1, we have the

bound
››ρp t

T
qu
››
G

˘
λ

À }u}G˘
λ

where the implied constant is again independent of T .

(iii) (Scattering.) Let ρ P C8
0 pRq with ρptq “ 1 on r´1, 1s and assume supTą0 }ρp t

T
qu}F s,˘ ă 8. Then

there exists f´8, f`8 P 9Hs such that

lim
tÑ8

´››uptq ´ U˘ptqf`8
››

9Hs `
››up´tq ´ U˘p´tqf´8

››
9Hs

¯
“ 0.

Proof. We leave the proof to Section 10. �

Remark 3.10. Note that the previous theorem implies that we have the bound

}φ}F s,˘ ď }φp0q} 9Hs ` }pBt ˘ σ ¨ ∇qφ}L1

t
9Hs
x
.

In particular, }φ}F s,˘ ă 8 for every φ P S. A similar comment applies in the Gs,˘ case.

Remark 3.11. Our eventual aim will be to construct a solution in G
n´1

2
,˘, although this will require a

significant amount of work. To alleviate this somewhat, we note that if u P F˘
λ , then letting vpt, xq “

upt,´xq, a computation shows that10 v P F¯
λ . Similarly we can check that if u P G˘

λ then v P G¯
λ . On

the other hand, if we reflect in both t and x, i.e. we let wpt, xq “ up´t,´xq, then a similar calculation

shows that }u}G˘
λ

“ }w}G˘
λ

and }u}F˘
λ

“ }w}F˘
λ

while
`
Π˘u

˘
pt, xq “

`
Π¯w

˘
p´t,´xq. Together these

observations often allow us to reduce to considering just the ` case, rather than both ` and ´ cases.

In a similar vein, we observe that in the n “ 2 case a computation using (7) shows that we have

}βu}Gs,˘ « }u}Gs,¯ . As in the homogeneous case, this will allow us to deduce estimates for u:βu from

estimates of the form u:v.

The norm F˘
λ is fairly complicated due to its atomic structure. However it can be compared to the

more standard 9X
1

2
,q

˘ spaces by the following useful estimate.

10Essentially this boils down to showing that reflecting a N˘
λ

atom in x, gives a N¯
λ

atom, which is not to difficult to

show.
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Lemma 3.12. Let u P F˘
λ . Then

}u}
9X
1

2
,8

˘

À }u}
F

˘
λ
. (38)

Proof. By a reflection, we may assume that ˘ “ `. The estimate

}u}
9X
1

2
,8

`

« }pBt ` σ ¨ ∇qu}
9X

´ 1

2
,8

`

shows that is enough to prove that }F }
9X

´ 1

2
,8

`

À }F }
N

`
λ
. The atomic definition of N`

λ , implies that we

need to consider three cases, F is a 9X
´ 1

2
,8

` atom, F is an energy atom, and F is a NF`
λ atom. The

first case is obvious due to the embedding 9X
´ 1

2
,1

` Ă 9X
´ 1

2
,8

` . On the other hand, if F P L1
tL

2
x, then as

supp Ć
C

`
d F Ă

 ˇ̌
|τ | ´ |ξ|

ˇ̌
« d

(
, we see that for each fixed d

d´ 1

2 }C`
d F }L2

t,x
À

›› rF
››
L2

ξ
L8

τ

À }F }L1

tL
2
x
.

Taking the sup over d then gives the F P L1
tL

2
x case. Finally, if F is a NF`

λ atom, then by Lemma 3.8

we obtain }C`
d F }L2

t,x
À d

1

2 and so we clearly have }F }
X

´ 1

2
,8

`

À 1 as required.

�

Remark 3.13. Note that, if supp u Ă t|ξ| « λu and u P L2
t,xpR1`nq, then by decomposing u “ ř

dP2Z C
˘
d u

(which is possible as u P L2
t,x), by definition of N˘

λ together with (24) we have

}u}
F

˘
λ

ď }u}L8
t L2

x
`
››pBt ˘ σ ¨ ∇qu

››
N

˘
λ

À }u}
9X
1

2
,1

˘

`
ÿ

dP2Z
d´ 1

2

››pBt ˘ σ ¨ ∇qC˘
d u

››
L2

t,x

À }u}
9X
1

2
,1

˘

. (39)

In particular, we have the bounds

}u}
9X
1

2
,8

˘

À }u}F˘
λ

À }u}
9X
1

2
,1

˘

,

thus F˘
λ is within a log factor of an Xs,b spaces.

As mentioned previously, if we had access to a L2
tL

8
x Strichartz estimate, then the proof of GWP

would follow by an application of Hölder’s inequality. However, the L2
tL

8
x Strichartz estimate barely fails

in n “ 3, and is far from true in the n “ 2 case. Despite this, provided we are away from the cone,

we can control the L2
tL

8
x by a simple application of Bernstein together with the previous lemma. More

precisely, if u P F˘
λ , then by Lemma 3.12

}C˘
Áδu}L2

t,x
À

ÿ

dÁδ

}C˘
d u}L2

t,x
À }u}

9X
1

2
,8

˘

ÿ

dÁδ

d´ 1

2 À δ´ 1

2 }u}
F

˘
λ

(40)

and consequently

}C˘
Áδu}L2

tL
8
x

À λ
n
2 }C˘

Áδu}L2

t,x
À λ

n
2 δ´ 1

2 }u}
F

˘
λ
.

This estimate, as well as the important L2
t,x bound (40), is used frequently in the remainder of this article

as it essentially allows us to deal with the the region away from the light cone11. The remaining close

cone interaction is much more complicated, and requires the the full strength of the norms defined above.

11This is true in the bilinear case. In the proof of the trilinear estimates, Lemma 3.12 is not enough to deal with the far

cone regions and we require the addition decay in time provided by the Y˘ norms.
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3.6. Disposable Multipliers. We use some notation originally due to Tao [46]. We say a Fourier

multiplier M is disposable on a Banach space X , if we have

}MF }X À }F }X .

Clearly any Fourier multiplier with bounded symbol is disposable on L2
t,x by Plancheral. More generally

we have the following.

Lemma 3.14 (Multipliers are disposable). Let α, β ! 1 and κ P Cα, κ̄ P Cβ.

(i) Let ˘1 and ˘2 be independent choices of signs. Then P
˘1,α
λ,κ is given by a convolution with an

L1
t,xpR1`nq kernel. In particular, P˘1,α

λ,κ is disposable on NF˘2pκ̄q, PW˘2pκ̄q, and rNF˘2s˚pκ̄q.

(ii) Assume α À β and κ X κ̄ “ ∅. Then P
˘,α
λ,κ Π˘ is disposable on NF`pκ̄q, PW`pκ̄q, and

rNF`s˚pκ̄q. Similarly P¯,α
λ,κ Π˘ is disposable on NF´pκ̄q, PW´pκ̄q, and rNF´s˚pκ̄q.

(iii) The multipliers Cd, CÀd, C
˘
d , C˘

Àd are disposable on Lq
tL

2
x for 1 ď q ď 8.

(iv) Let d Á λ. Then PλCd, PλCÀd, and PλCÁd are disposable on Lq
tL

r
x for any 1 ď q, r ď 8.

Proof. (i) and (ii): We only show that P˘,α
λ,κ Π˘ is disposable as the remaining case is similar (but easier).

So assume that α À β and κX κ̄ “ ∅. The general idea is to show that the kernel of P˘,α
λ,κ Π˘ belongs to

L1
t,x, and then apply Holder. There is a slight complication however, as the definition of the null frame

spaces use the projections Π˘ω which do not commute with the Π˘. Thus showing that the kernel is in

L1
t,x would not suffice and we need to prove a stronger estimate exploiting the null form estimate (15).

Let rρpτ, ξq “ Φp |ξ|
λ

qΦκ

`
¯ ξ

|ξ|
˘
Φ0p |τ˘|ξ||

cα2λ
q where c is the small constant used in the definition of A˘

λ,αpκq,
thus P˘,α

λ,κ u “ ρ ˚ u. Fix any ω P S
n´1. The key is to prove that }Π˘ρ}L1

t,x
À 1 as well as the stronger

estimate

››`Π˘ ´ Π´ω

˘
ρ
››
L1

t,x

À maxtθpω, κ̄q, βu. (41)

Since assuming we have (41) and using the identity Π˘Πω “ pΠ˘ ´ Π´ωqΠω we deduce that

››P˘,α
λ,κ Π˘Πωu

››
L

q
tω

Lr
xω

“
››“`Π˘ ´ Π´ω

˘
ρ
‰

˚
`
Πωu

˘››
L

q
tω

Lr
xω

À maxtθpω, κ̄q, βu}Πωu}Lq
tω

Lr
xω
.

Similarly the L1
t,x bound gives

››P˘,α
λ,κ Π˘Π´ωu

››
L

q
tω

Lr
xω

“
››pΠ˘ρq ˚

`
Π´ωu

˘››
L

q
tω

Lr
xω

À }Π´ωu}Lq
tω

Lr
xω
.

Applying these bounds to the relevant atoms, we obtain the boundedness of P˘,α
λ,κ Π˘ on NF`pκ̄q,

PW`pκ̄q, and rNF`s˚pκ̄q.
We now prove (41). Let x “ px1, x1q P R ˆ Rn´1 and ξ “ pξ1, ξ1q P R ˆ Rn´1. By rotating the ξ

coordinates (and a reflection if needed) we may assume that ˘ “ ` and κ is centered around p´1, 0, ..., 0q,
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thus rρ is supported in the set tξ1 „ λ, |ξ1| À λαu. A computation gives

2
`
Π` ´ Π´ω

˘
ρ
`
t, x1 ` t, x1˘

“ 1

p2πqn`1

ż

Rn

ż

R

´
ω ` ξ

|ξ|
¯

¨ σrρpτ, ξqeix¨ξeitpτ`ξ1qdτdξ

“ 1

p2πqn`1

ż

Rn

ż

R

´
ω ` ξ

|ξ|
¯

¨ σrρ
`
τ ´ ξ1, ξ

˘
eix¨ξeitτdτdξ

“ pαλqn`1

p2πqn`1

ż

Rn

ż

R

´
ω ` pξ1, αξ1q

|pξ1, αξ1q|
¯

¨ σrρ
`
α2λτ ´ λξ1, λξ1, αλξ

1˘eiλpα2t,x1,αx
1q¨pτ,ξqdτdξ.

If we now rescale the pt, xq variables (which leaves the L1
t,x norm unchanged), it is enough to prove that

BN1

τ BN2

ξ1
∇N3

ξ1

ˆ´
ω ` pξ1, αξ1q

|pξ1, αξ1q|
¯
rρ
`
α2λτ ´ λξ1, λξ1, αλξ

1˘
˙

À maxtθpω, κ̄q, βu

where pτ, ξ1, ξ1q P t|τ | À 1, ξ1 « 1, |ξ1| À 1u. If we note that τ ´ ξ1 ` |ξ| “ τ ` |ξ1|2
ξ1`|ξ| we can write

rρ
`
α2λτ ´ λξ1, λξ1, αλξ

1˘ “ Φ
`
|pξ1, αξ1q|

˘
Φκ

´
´ pξ, αξ1q

|pξ, αξ1q|
¯
Φ0

´
c´1τ ` c´1|ξ1|2

ξ1 ` |pξ1, αξ1q|
¯

and thus whenever a derivative hits rρ, by (17), we at worst pick up a factor of α À β ! 1. Thus it

remains to show that
ˇ̌
ˇ̌BN2

ξ1
∇N3

ξ1

ˆ
ω ` pξ1, αξ1q

|pξ1, αξ1q|

˙ˇ̌
ˇ̌ À maxtθpω, κ̄q, βu.

Suppose N2 “ N3 “ 0. Let η “ pξ1, αξ1q and ξ˚ P κX κ̄p“ ∅q. Then ´ η
|η| P κ and moreover

ˇ̌
ˇ̌ω ` pξ1, αξ1q

|pξ1, αξ1q|

ˇ̌
ˇ̌ À θpω,´ηq À θpω, ξ˚q ` θp´η, ξ˚q À maxtθpω, κ̄q, βu

since κ̄ P Cβ. On the other hand for N1, N2 “ 0, we simple note that derivatives of ξ1 only add multiples

of α (which is acceptable as α À β), while

ˇ̌
ˇ̌Bξ1

ˆ
ω ´ pξ1, αξ1q

|pξ1, αξ1q|

˙ˇ̌
ˇ̌ “

ˇ̌
ˇ̌ pα

2|ξ1|2,´αξ1|ξ1|q
|pξ1, αξ1q|3

ˇ̌
ˇ̌ À α

which again is clearly acceptable. Thus we obtain (41), and clearly the same argument shows that

}Π`ρ}L1 À 1 as required.

(ii) and (iii): These are both well known, see for instance [46, Lemma 3].

�

Remark 3.15. It is clear from the proof that multipliers of the form 6PλR
˘
κC

˘
!d (and other similar

combinations) also satisfy the properties piq and piiq in the previous lemma provided d Á α2λ. In

particular, if supp pu Ă t|ξ| « λu, κ P Cα, and d Á α2λ, then we can write C˘
ďdR

˘
κ u “ ρ ˚ R˘

κ u with

ρ P L1
t,xpR1`nq. Thus

}C˘
ďdR

˘
κ u}PW˘1 pκq À }R˘

κ u}PW˘1 pκq

for any choice of signs ˘, ˘1.
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4. Linear Estimates

In this section we introduce the key linear estimate that we require. As similar versions of these es-

timates are known, at least for the related function spaces used in the waves maps case [47, 44, 29], we

leave the proofs till Sections 8 and 9.

In the subcritical setting, Strichartz estimates have proven to be a key tool in the local and global

well-posedness theory for the Dirac equation, especially in the n “ 3 case, see for instance [15, 30]. We

would like to show that our iteration norm F`
λ controls the Strichartz type norms Lq

tL
r
x. For the L1

tL
2
x

and 9X
´ 1

2
,1

˘ components of our norms, we have a transference type principle, and hence, roughly speaking,

any estimate satisfied by homogeneous solutions immediately holds general functions in spaces of the

form pBt ˘ σ ¨ ∇q´1
`
L1
tL

2
x ` 9X

´ 1

2
,1

˘
˘
, see for instance Section 4 in [42]. On the other hand, it is much

more difficult to show that null frame component of our norms controls the Strichartz norms. In fact, in

the case of the related function spaces used in the wave maps problem, initially only the “off the line”

Strichartz estimates (1
q

` n´1
2r

ă n´1
4

) were known, see for instance [46, 27]. However, recently, it was

observed by Sterbenz-Tataru [43] that the “on the line” Strichartz estimates also hold. In the current

article, by adapting the argument used in [43], we can show that the space F`
λ also controls the Strichartz

type norms. Note that, in the homogeneous case, the following estimates are immediate from the classical

Strichartz estimates together with the L2
x orthogonality of the angular projections Pλ,κ.

Theorem 4.1 (F˘
λ controls Strichartz). Let 2 ď q, r ď 8 with q ą 2 and 1

q
` n´1

2r
ď n´1

4
. Suppose

u P F˘
λ . Then we have the estimate

}u}Lq
tL

r
x

À λnp 1

2
´ 1

r
q´ 1

q }u}F˘
λ
.

More generally, let d P 2Z and suppose that M be Fourier multiplier with matrix valued symbol mpξq such

that |mpξq| À δ for every ξ P supp pu. Then with pq, rq as above

››MC˘1

ďdu
››
L

q
tL

r
x

À δλnp 1

2
´ 1

r
q´ 1

q }u}
F

˘
λ

where ˘ and ˘1 are independent choices of signs.

Proof. See Subsection 9.2 below. �

Remark 4.2. If supp pu is contained in a ball of radius µ ď λ in the annulus of size λ, then we can

replace λnp 1

2
´ 1

r
q´ 1

q with the smaller pµ
λ

qnp 1

2
´ 1

r
q´ 2

q λnp 1

2
´ 1

r
q´ 1

q , see Remark 9.4 below. This small scale

improvement follows from the refined Strichartz estimates of Klainerman-Tataru in [25] and can be very

useful in proving bilinear estimates, particularly in the high-high frequency interaction. In the current

article the high-high interaction is not particularly hard to deal with, and so this small scale refinement

is not needed.

The next set of linear estimates we require are bounds involve the null frame type norms PW˘pκq and
rNF˘s˚pκq.

Theorem 4.3 (Null frame bounds). Let α ! 1, λ P 2Z, T ą 0, and ρ P C8
0 pRq. Suppose u P F˘

λ . Then

we have the estimates
˜ ÿ

κPCα

››R˘
κ, α2λ

Π`u
››2

rNF˘s˚pκq `
››R¯

κ, α2λ
Π´u

››2
rNF˘s˚pκq

¸ 1

2

À }u}
F

˘
λ

(42)
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and ˜ ÿ

κPCα

››R˘
κ, α2λ

Π`
“
ρp t

T
qu
‰››2

PW¯pκq `
››R¯

κ, α2λ
Π´

“
ρp t

T
qu
‰››2

PW¯pκq

¸ 1

2

À pαλqn´1

2 }u}F˘
λ

(43)

where the implied constant is independent of T .

Proof. See Subsection 8.4 below. �

Remark 4.4. Theorem 4.3 is in some sense a null form estimate, as it depends on certain cancelations

involving the projections Π˘. In particular, if we tried to replace the PW¯pκq norm with PW˘pκq, then
we would only obtain (43) with the factor pαλqn´1

2 replaced with the much larger α
n´3

2 λ
n´1

2 .

Remark 4.5. We may replace the multiplies R˘
κ,α2λ

in Theorem 4.3 with R˘
κC

˘
Àα2λ

. In particular, it is

not necessary that |τ ˘ |ξ|| ! α2λ, it is enough to be localised to the larger region |τ ˘ |ξ|| À α2λ. This

follows by noting that we can always reduce the later condition to the former by using the 9X
1

2
,8

˘ spaces.

See for instance the proof of Corollary 4.6 below.

The final result in this section is a duality type estimate that helps to reduce the number of bilinear

estimates we need to prove.

Corollary 4.6 (F˘
λ controls dual of N˘

λ ). Let λ, µ P 2Z. Assume u P F˘
λ and v P N˘

µ . Then
ˇ̌
ˇ
ż

Rn`1

u:vdxdt
ˇ̌
ˇ À }u}

F
˘
µ

}v}
N

˘
λ
.

Proof. After a reflection, we may assume that ˘ “ `. The atomic definition of N`
λ implies that it suffices

to consider the case where v is an atom. If v is an energy or 9X
´ 1

2
,1

` atom, then the estimate follows easily

by duality together with the estimate

}u}L8
t L2

x
` }u}

9X
1

2
,8

`

À }u}F`
µ

which follows from Lemma 3.12. Thus it only remains to consider the case where v is a NF`
λ atom. By

definition, there exists α ą 0 such that we have a decomposition v “ ř
κ Fκ with supp ĆΠ˘Fκ Ă A˘

λ,αpκq
and ÿ

κPCα

}Fκ}2NF`pκq ď 1.

Note that if κ P Cα and κ1 P Cα
4
with κ X κ1 “ ∅, then for every ω P Sn´1, ω R 2κ implies ω R 2κ1 and

consequently }u}rNF`s˚pκq ď }u}rNF`s˚pκ1q. Hence an application of the duality estimate (33) gives
ˇ̌
ˇ
ż
u:v

ˇ̌
ď
ÿ

˘

ÿ

κPCα,κ1PCα
4

κXκ1 “∅

ˇ̌
ˇ
ż `

R˘
κ1C

˘
ďα2λ

Π˘u
˘:
Fκdxdt

ˇ̌
ˇ

ď
ÿ

κPCα,κ1PCα
4

κXκ1 “∅

}R˘
κ1Π˘u}rNF`s˚pκq}Fκ}NF`pκq

ď
ˆ ÿ

κ1PCα
4

}R˘
κ1C

˘
ďα2λ

Π˘u}2rNF`s˚pκ1q

˙ 1

2

.

We now decompose R˘
κ1C

˘
ďα2λ

Π˘u “ R˘
κ1,α

2

16
λ
Π˘u ` ř

d«α2λR
˘
κC

˘
d Π˘u. The first term we can directly

estimate by using Theorem 4.3. For the second term, we can not directly apply Theorem 4.3, as the

support is not sufficiently close to the light cone. Instead, we use Lemma 3.1 to decompose into an
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average of free waves, and note that as }U`ptqf}F`
λ

À }f}L2
x
(for f with Fourier support in |ξ| « λ), we

can apply Theorem 4.3 to deduce that

ÿ

d«α2λ

ˆ ÿ

κ1PCα
4

}R˘
κ1C

˘
d Π˘u}2rNF`s˚pκ1q

˙ 1

2

À
ż

|τ |«α2λ

ˆ ÿ

κ1PCα
4

}R˘
κ1Π˘U`ptqrfτ s}2rNF`s˚pκ1q

˙ 1

2

dτ

À
ż

|τ |«α2λ

}fτ}L2dτ À }u}
9X
1

2
,8

`

À }u}F`
λ

where we used Lemma 3.12 to estimate the 9X
1

2
,8

` norm. Thus result follows. �

5. Bilinear Estimates

The key estimate we prove in this section is the following bilinear null form estimate.

Theorem 5.1 (Bilinear estimate in N˘
λ - close cone case). Let δ À mintλ,N1u. Assume v P F¯

N1
has

compact support in time. Suppose F is scalar valued with supp rF Ă
 

|ξ| À λ,
ˇ̌
|τ | ´ |ξ|

ˇ̌
À δ

(
. Then

››S˘
N0,!δ

`
FC¯

!δv
˘››

N
˘
N0

À
`
δmintλ,N1u

˘n´1

4 }F }L2

t,x
}v}

F
¯
N1

. (44)

Remark 5.2. We should emphasis that the implied constant in (44) is independent of v. In particular,

although the Theorem 5.1 requires v to have compact support in time, the implied constant does not

depend on the size of the support. This is due to fact that the only place the compact support assumption

is needed, is to control the PW˘pκq type norms. By Theorem 4.3, this is possible provided we can write

v “ ρp t
T

qv for some ρ P C8
0 pRq, with the implied constant being independent of T and v, and consequently,

independent of the size of the support. A similar comment applies to the bilinear estimates appearing in

Corollary 5.4 and Corollary 5.5 below.

Theorem 5.1 contains the main multi-linear estimate contained in this article. In fact all other bilinear

and trilinear estimates essentially follow by using Lemma 3.12 and (40) to control the region away from

the cone, and Corollary 4.6 to deduce bilinear estimates in L2
t,x by duality.

Proof of Theorem 5.1. After a reflection in x, we may assume that ˘ “ `. Note that as v P F´
N0

, we have

supp pv Ă t|ξ| « N0u. Thus the lefthand side of (44) vanishes unless maxtλ,N0, N1u « medtλ,N0, N1u,
where medta, b, cu is the median of a, b, c P R, we make use of this simple observation later. Let µ “
mintλ,N0, N1u. We claim that it is enough to consider the case δ ď µ. To prove the claim, note that if

δ ě µ, then using Lemma 3.12 we have the estimates

››PN0

`
FC´

Áµv
˘››

L1

tL
2
x

À µ
n
2 }F }L2

t,x
}C´

Áµv}L2

t,x
À µ

n´1

2 }F }L2

t,x
}v}F´

N1

(45)

and

››S`
N0,Áµ

`
Fv

˘››
9X

´ 1

2
,1

`

ď µ´ 1

2

››PN0
pFvq

››
L2

t,x

À µ
n´1

2 }F }L2

t,x
}v}L8

t L2
x

À µ
n´1

2 }F }L2

t,x
}v}

F
´
N1

(46)

together with the obvious bounds (35) and (36), reduce the problem to estimating S`
N0,!µpFC´

!µvq, this
is almost the case δ “ µ, but we need to restrict the support of F further. To this end, we observe the
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identity12

S`
N0,!µpFC´

!µvq “ S`
N0,!µpCÀaFC

´
!µvq

where a “ µ` mintN0, N1u. Then as we already have supp rF Ă
 ˇ̌

|τ | ´ |ξ|
ˇ̌

À δ u with δ À λ, we deduce

that supp ČCÀaF Ă
 ˇ̌

|τ | ´ |ξ|
ˇ̌

À µ u. Thus we can reduce the case δ ě µ to δ ď µ, hence it is enough to

consider the case δ ď µ as claimed.

It remains to consider the case δ ď µ. To this end we decompose S`
N0,!δ into terms of the form

C˘
!δPN0

Π˘ and note that, after a reflection (in t and x), it is enough to prove

››C`
!δPN0

Π`
`
FC˘

!δv
¯˘››

N
`
N0

À
`
δmintλ,N1u

˘n´1

4 }F }L2

t,x
}v}F´

N1

where we let v¯ “ Π¯v. We now decompose the distance to the cone into three main interactions

C`
!δ

“`
FC˘

!δv
¯‰ “

ÿ

dÀδ

C`
d

“
C`

ÀdFC
˘
Àdv

¯‰ `
ÿ

dÀδ

C`
Àd

“
C`

ÀdFC
˘
d v

¯‰ `
ÿ

dÀδ

C`
!d

“
C`

d FC
˘
!dv

¯‰

“ AI `AII `AIII .

Roughly the strategy is to use the 9X
1

2
,1

˘ type estimates whenever the output Fv or v is away from the

light cone (the interactions AI and AII), and for the more delicate interaction, AIII , apply the null frame

bounds in Theorem 4.3.

Case 1: AI . The main idea is to use the close cone condition to limit the possible angular interactions.

The key tool to accomplish this will be the elementary angle estimate

θpξ ` ξ1,˘ξ1q2 «
ˇ̌
|ξ ` ξ1| ¯ |ξ1| ´ |ξ|

ˇ̌
ˆ
ˇ̌
|ξ ` ξ1| ¯ |ξ1| ` |ξ|

ˇ̌

|ξ1 ` ξ||ξ1| . (47)

This estimate is used as follows. Suppose that

pτ, ξq P supp ČCÀdF , pτ 1, ξ1q P supp ČC˘
Àdv

¯, pτ ` τ 1, ξ ` ξ1q P
 

|ξ| « N0,
ˇ̌
τ ` |ξ|

ˇ̌
« du.

Then using the assumption δ À λ we have

ˇ̌
|ξ ` ξ1| ¯ |ξ1| ´ sgnpτq|ξ|

ˇ̌
ď

ˇ̌
τ ` τ 1 ` |ξ ` ξ1|

ˇ̌
`
ˇ̌
τ 1 ˘ |ξ1|

ˇ̌
` |τ | ` |ξ| À λ

and ˇ̌
|ξ ` ξ1| ¯ |ξ1| ` sgnpτq|ξ|

ˇ̌
À

ˇ̌
τ ` τ 1 ` |ξ ` ξ1|

ˇ̌
`
ˇ̌
τ 1 ˘ |ξ1|

ˇ̌
`
ˇ̌
|τ | ´ |ξ|

ˇ̌
À d.

Therefore (47) shows that θpξ ` ξ1,˘ξ1q À
b

λd
N0N1

. This suggests that we should localise v and the

product Fv to caps of radius
b

λd
N0N1

, as if the Fourier support of v was contained in a cap of radius
b

λd
N0N1

, then the Fourier support of Fv must be contained in a similar cap. More precisely, letting

α “
b

λd
N0N1

, the angle estimate implies the decomposition

PN0
C`

d

“
CÀdFC

˘
Àdv

¯‰ “
ÿ

κ,κ̄PCα

θpκ,κ̄qÀα

P`
N0,κ̄

C`
d

“
CÀdF R

˘
κC

˘
Àdv

¯‰.

12 This follows by noting that if pτ ` τ 1, ξ` ξ1q, pτ 1, ξ1q P
 ˇ̌

|τ | ´ |ξ|
ˇ̌

! µu and |ξ` ξ1| « N0, |ξ1| « N1 then the inequality

ˇ̌
|τ | ´ |ξ|

ˇ̌
ď

ˇ̌
|τ ` τ 1| ´ |ξ ` ξ1|

ˇ̌
`
ˇ̌
|τ 1| ´ |ξ1|

ˇ̌
` 2mint|ξ ` ξ1|, |ξ1|u

shows that
ˇ̌
|τ |´|ξ|

ˇ̌
À µ`mint|ξ`ξ1|, |ξ1|u which gives the claimed identity. This method of deducing close cone information

on F , from close cone information on the output Fv and v, occurs frequently in what follows.
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Consequently, by orthogonality in L2
x, together with an application of Bernstein’s inequality, and the null

structure estimate |ΠωΠω1 | À θpω,´ω1q we obtain

››PN0
C`

d Π`
“
CÀdF ptqC˘

Àdv
¯ptq

‰››
L2

x

À
ˆ ÿ

κ,κ̄PCα

θpκ,κ̄qÀα

›››
ż

Rn

|CÀd
pF pt, ξ ´ ηq|

ˇ̌
ˇΠ ξ

|ξ|
Π¯ η

|η
{R˘
κC

˘
Àdvpt, ηq

ˇ̌
ˇdη

›››
2

L2

ξ
rA`

N0
pκ̄qs

˙ 1

2

À α
`
αmintN0, N1u

˘n´1

2

`
mintN0, N1u

˘ 1

2 }CÀdF ptq}L2
x

´ ÿ

κPCα

››R˘
κC

˘
Àdvptq

››2
L2

x

¯ 1

2

À d
n`1

4

`
mintλ,N0, N1u

˘n´1

4 }CÀdF ptq}L2
x
}C˘

Àdvptq}L2
x
.

Thus taking the L2
t norm of both sides, we that PN0

C`
d Π`

“
CÀdFC

˘
Àdv

¯‰ is a multiple of a 9X
´ 1

2
,1

` atom,

in other words, the AI term is a sum of 9X
´ 1

2
,1

` atoms. Therefore, the atomic definition of N`
N0

gives

›››
ÿ

dÀδ

C`
d PN0

Π`
“
CÀdFC

˘
Àdv

¯‰›››
N

`
N0

ď
ÿ

dÀδ

d´ 1

2

›››C`
d PN0

Π`
“
CÀdFC

˘
Àdv

¯
N1

‰›››
L2

t,x

À
`
mintN0, N1u

˘n´1

4 }F }L2
t,x

ÿ

dÀδ

d
n`1

4
´ 1

2 }C˘
Àdv}L8

t L2
x

À
`
δmintN0, N1u

˘n´1

4 }F }L2

t,x
}v}

F
´
N1

where we used an application of (iii) in Lemma 3.14 to dispose of the C˘
ďd multiplier, and the fact that

n´1
4

ą 0 to control the sum over d.

Case 2: AII . We follow a similar argument to that used to control AI . Let α “
b

λd
N0N1

. A moments

thought shows that, as in the AI case, we have the angle estimate θpξ ` ξ1,˘ξ1q À α. Consequently we

have the decomposition

PN0
C`

Àd

“
CÀdFC

˘
d v

¯‰ “
ÿ

κ,κ̄PCα

θpκ,κ̄qÀα

P`
N0,κ̄

C`
Àd

“
CÀdF R

˘
κC

˘
d v

¯‰.

Moreover, for any caps κ, κ̄ P Cα with θpκ, κ̄q À α we have by Bernstein and the null form estimate

››P`
N0,κ̄

Π`
“
F R˘

κ v
¯‰››

L2
x

À
›››
ż

Rn

| pF pξ ´ ηq|
ˇ̌
Π ξ

|ξ|
Π¯ η

|η|
zR˘

κ vpηq
ˇ̌
dη
›››
L2

ξ
rA`

N0
pκ̄qs

À α
`
αmintN0, N1u

˘n´1

2

`
mintN0, N1u

˘ 1

2 }F }L2
x

››R˘
κ v

››
L2

x

À d
n`1

4

`
mintN0, N1u

˘n´1

4 }F }L2
x

››R˘
κ v

››
L2

x
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Therefore, by the L2
x orthogonality of the projections R˘

κ we have
›››PN0

C`
ÀdΠ`

“
CÀdF C

˘
d v

¯‰›››
N

`
N0

ď
››PN0

C`
ÀdΠ`

“
CÀdFC

˘
d v

¯‰››
L1

tL
2
x

À
›››
´ ÿ

κ,κ̄PCα

θpκ,κ̄qÀα

››P`
N0,κ̄

Π`
“
CÀdFC

˘
d R

˘
κ v

¯‰››2
L2

x

¯ 1

2

›››
L1

t

À d
n`1

4

`
mintN0, N1u

˘n´1

4

›››}CÀdF }L2
x

´ ÿ

κPCα

››C˘
d R

˘
κ v

¯››2
L2

x

¯ 1

2

›››
L1

t

À d
n`1

4

`
mintN0, N1u

˘n´1

4 }F }L2

t,x

››C˘
d v

¯››
L2

t,x

À d
n`1

4
´ 1

2

`
mintN0, N1u

˘n´1

4 }F }L2

t,x
}v}

F
´
N1

where we made use of the L2
t,x bound away from the cone (40). If we now apply the triangle inequality

and sum up in d À δ, we obtain the required inequality.

Case 3: AIII . The remaining case AIII is more difficult as it includes interactions where both the

output and v can be concentrated very close to the cone (so it is hard to use Xs,b type norms), while F

can be (relatively) far from the light cone. Since F is just an arbitrary L2 function, it is not easy to use

the fact that F lies away from the light cone, in particular we have no weights of the form |τ ` |ξ|| to
exploit (which is what makes Xs,b type norms so useful away from the light cone). The key observation

is that it is only possible for F and v to produce interactions close to the light cone, if the spatial Fourier

supports are at an angle of
b

λd
N0N1

. The difference to the previous cases is that we will have a bound on

the angle from above and below. This angular separation allows us to make use of the null frame type

spaces, in particular it means we can use the simple bilinear estimate in Lemma 3.4.

Another way to view this, is that we can no longer put the output Fv, or the function v, into the

L2
t,x based 9X´ 1

2
,1 type spaces. Thus we are essentially forced to put Fv in either L1

tL
2
x or the null frame

version L1
tω
L2
xω
. Clearly we can not put Fv P L1

tL
2
x as this would require a L2

tL
8
x bound on v which is

out of reach. The only remaining option is to put Fv into the null frame type norms L1
tω
L2
xω

, and then

v P L2
tω
L8
xω
. This is possible, but requires that we spend powers of N1. Thus in the case where N1 is

very large, we need to ensure that v is localised to small caps to get the right constants.

We start by making the following observation. Suppose that

pτ, ξq P supp ĆCdF , pτ 1, ξ1q P supp ČC˘
!dv

¯, pτ ` τ 1, ξ ` ξ1q P
 

|ξ| « N0,
ˇ̌
τ ` |ξ|

ˇ̌
! du. (48)

Then since |τ | ` |ξ| « maxt
ˇ̌
|τ | ´ |ξ|

ˇ̌
, |ξ|u « maxtd, |ξ|u we have

ˇ̌
|ξ ` ξ1| ¯ |ξ1| ´ sgnpτq|ξ|

ˇ̌
“
ˇ̌
pτ ` τ 1 ` |ξ ` ξ1|q ´ pτ 1 ˘ |ξ1|q ` sgnpτqp|τ | ` |ξ|q

ˇ̌
« maxtd, |ξ|u.

Moreover, an application of (47), together with the observation that
ˇ̌
|ξ ` ξ1| ¯ |ξ1| ` sgnpτq|ξ|

ˇ̌
« d gives

C

d
dmaxtd, |ξ|u

N0N1

ď θpξ ` ξ1,˘ξ1q À
d
dmaxtd, |ξ|u

N0N1

. (49)

Note that we have a bound on the angle from above and below. This estimate suggests that we should

decompose the output Fv, and v, into caps of size
b

|ξ|d
N0N1

. On the other hand, if we are at frequency

µ, and modulation ! d, then geometrically, the natural size of the caps should be
b

d
µ
as this matches
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the correct Fourier support properties used in the definition of the null frame atoms. The difficulty is

that these natural sizes may not always match up, and particularly in the case N0 « N1, an additional

decomposition is required. Consequently, unlike in the cases AII and AIII , we cannot consider all the

various frequency interactions simultaneously. Thus we separate the argument into the cases N0 " N1,

N0 ! N1, and N0 « N1.

Case 3a: AIII and N0 " N1. Note that if we have pτ, ξq and pτ 1, ξ1q as in (48), then |ξ| « N0. Hence

the angle estimate (49) implies that

C

c
d

N1

ď θpξ ` ξ1, ξ1q À
c

d

N1

.

Let α “ C
100

b
d
N1

and β “ C
100

b
d
N0

, note that α ě β. By decomposing v into caps of radius α, and the

output Fv into caps of size β, we have the identity

PN0
C`

!d

“
CdFC

˘
!dv

¯‰ “
ÿ

κ̄PCβ

ÿ

κPCα

5αďθpκ,κ̄qÀα

P
`,β
N0,κ̄

“
CdF R

˘
κ, α2N1

v¯‰.

Since β ď α, the angle condition implies that fixing a cap κ̄ P Cβ essentially fixes the cap κ P Cα.

Therefore, by the orthogonality estimate in Lemma 3.4 and the PW˘pκq estimate in Theorem 4.3 (note

that v has compact support in time), we have

ˆ ÿ

κ̄PCβ

››››
ÿ

κPCα

5αďθpκ,κ̄qÀα

P
`,β
N0,κ̄

Π`
“
CdF R

˘
κ, α2λ

v¯‰
››››
2

NF`pκ̄q

˙ 1

2

À
´ ÿ

κPCα

ÿ

κ̄PCβ

5αďθpκ,κ̄qÀα

››P`,β
N0,κ̄

Π`
“
C`

d F R
˘
κ, α2N1

v¯‰››2
NF`pκ̄q

¯ 1

2

À }CdF }L2

t,x

´ ÿ

κPCα

››R˘
κ, α2N1

v¯››2
PW`pκq

¯ 1

2

À pαN1qn´1

2 }CdF }L2

t,x
}v}F´

N1

À pdN1qn´1

4 }CdF }L2

t,x
}v}F´

N1

Consequently PN0
C`

!d

“
CdFC

˘
!dv

¯‰ is a multiple of a NF`
N0

atom, and therefore

›››
ÿ

dÀδ

PN0
C`

!dΠ`
“
CdFC

˘
!dv

¯‰›››
N

`
N0

À }F }L2

t,x
}v}

F
´
N1

ÿ

dÀδ

pdN1qn´1

4 À pδN1qn´1

4 }F }L2

t,x
}v}

F
´
N1

which is acceptable as N1 “ mintλ,N0, N1u.

Case 3b: AIII and N0 ! N1. We start by observing that if we have pτ, ξq, pτ 1, ξ1q as in (48), then

|ξ| « N1. Consequently, from (49) we deduce that

C

c
d

N0

ď θpξ ` ξ1, ξ1q À
c

d

N0

.

If we let α “ C
100

b
d
N1

and β “ C
100

b
d
N0

, then the angle estimate implies the decomposition

PN0
C`

!d

“
CdFC

˘
!dv

¯
N1

‰
“

ÿ

κ̄PCβ

ÿ

κPCα

4βďθpκ,κ̄qÀβ

P
`,β
N0,κ̄

“
CdF R

˘
κ, α2N1

v¯‰.
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The key difference to the previous case, is that since we now have α ď β, if we fix a cap κ̄ P Cβ , the

condition θpκ, κ̄q « β no longer fixes the cap κ P Cα. Thus to regain an ℓ2 sum over the caps κ P Cα, we

need to exploit an additional orthogonality property. The key point is the identity

θ
`
sgnpτqξ,¯ξ1˘2 «

ˇ̌
|ξ ` ξ1| ` sgnpτq|ξ| ¯ |ξ1|

ˇ̌
ˆ
ˇ̌
|ξ ` ξ1| ´ sgnpτq|ξ| ˘ |ξ1|

ˇ̌

|ξ||ξ1| .

As in the derivation of (49), for frequencies localised as in (48), since N0 ! N1 « |ξ| we have the crude

estimate
ˇ̌
|ξ ` ξ1| ´ sgnpτq|ξ| ˘ |ξ1|

ˇ̌
À N1 and hence

θ
`
sgnpτqξ,¯ξ1˘ À

c
d

N1

« α.

Therefore, if we also decompose F into caps of radius α, we can refine our decomposition and obtain

PN0
C`

!d

“
CdFC

˘
!dv

¯‰ “
ÿ

κ,κ1PCα

θpκ,κ1qÀα

ÿ

κ̄PCβ

4βďθpκ,κ̄qÀβ

P
`,β
N0,κ̄

“
CdRκ1F R˘

κ, α2N1

v¯‰

which gives the required orthogonality in the κ sum. If we now apply Lemma 3.4 and Theorem 4.3 we

deduce that
ˆ ÿ

κ̄PCβ

››P`,β
N0,κ̄

Π`
“
CdFC

˘
!dv

¯‰››2
NF`pκ̄q

˙ 1

2

ď
ÿ

κ,κ1PCα

θpκ,κ1qÀα

ˆ ÿ

κ̄PCβ

4βďθpκ,κ̄qÀβ

››P`,β
N0,κ̄

“
CdRκ1F R˘

κ, α2N1
v¯‰››2

NF`pκ̄q

˙ 1

2

À
ÿ

κ,κ1PCα

θpκ,κ1qÀα

}Rκ1F }L2

t,x

››R˘
κ, α2N1

v¯››
PW`pκq

À pαN1qn´1

2 }F }L2

t,x
}v}F´

N0

.

Thus, as in the previous case, PN0
C`

!d

“
CdFC

˘
!dv

¯‰ is a multiple of a NF`
N0

atom, and consequently by

summing up over d À δ we obtain a constant of the size pδN1qn´1

4 « pδmintλ,N1uqn´1

4 as required.

Case 3c: AIII and N0 « N1. Unlike the previous cases, we no longer have an estimate on |ξ|
from below. Thus to exploit the angle estimate (49), we need to dyadically decompose F further into

F “ P!dF ` ř
dÀλ1Àλ Pλ1F . After an application of the triangle inequality, we reduce to estimating

ÿ

dÀδ

››PN0
C`

!dΠ`
`
CdP!dFC

˘
!dv

¯˘››
N

`
N0

`
ÿ

dÀδ

ÿ

dÀλ1Àλ

››PN0
C`

!dΠ`
`
CdPλ1FC˘

!dv
¯˘››

N
`
N0

. (50)

We start with the first term. Assume that

pτ ` τ 1, ξ ` ξ1q P
 

|ξ| « N0,
ˇ̌
τ ` |ξ|

ˇ̌
! du, pτ, ξq P

 ˇ̌
|τ | ´ |ξ|

ˇ̌
« d

(
, pτ 1, ξ1q P supp ĆC˘

!dv (51)

and |ξ| ! d. Clearly, we have |τ | « d. Moreover, the close cone condition on pτ ` τ 1, ξ ` ξ1q and pτ 1, ξ1q
implies that

d « |τ | «
ˇ̌
τ ´

`
τ ` τ 1 ` |ξ ` ξ1|

˘
`
`
τ 1 ˘ |ξ1|

˘ˇ̌
“

ˇ̌
|ξ ` ξ1| ¯ |ξ1|

ˇ̌
.

However, as |ξ| ! d, this is only possible if ˘ “ ´ and d « N1. In particular, the first term in (50) is

only nonzero if we have ˘ “ ´ and d « N1. Consequently, from (49) we have θpξ ` ξ1,´ξ1q « 1 and so

letting α “ 1
100

we deduce the identity

ÿ

dÀδ

C`
!dPN0

`
CdP!dFC

´
!dv

`˘ “
ÿ

d«N1

ÿ

κ,κ̄PCα

α!θpκ,κ̄q«α

P
`,α
N0,κ̄

`
CdP!dF R

´
κ, α2N1

v`˘.
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Therefore

ÿ

d«N1

››PN0
C`

!dΠ`
`
CdP!dFC

˘
!dv

¯˘››
N

`
N0

ď
ÿ

d«N1

´ ÿ

κ,κ̄PCα

α!θpκ,κ̄q«α

››P`,α
N0,κ̄

`
CdP!dFR

´
κ, α2N1

v`˘››2
NF`pκ̄q

¯ 1

2

À }F }L2

t,x

´ ÿ

κPCα

}R´
κ, α2N1

v`}2PW`pκq

¯ 1

2

À
`
N1

˘n´1

2 }F }L2

t,x
}v}

F
´
N1

«
`
δmintλ,N1u

˘n´1

4 }F }L2

t,x
}v}

F
´
N1

where we used the fact that N1 « d À δ and the assumption d À δ À λ À N1, together with Lemma 3.4

and Theorem 4.3.

It remains to consider the more interesting second term in (50). Suppose that pτ ` τ 1, ξ ` ξ1q and

pτ 1, ξ1q are as in (51). If |ξ| « λ1 Á d, then the angle estimate (49) implies that

C

c
dλ1

N0N1

ď θpξ ` ξ1,˘ξ1q À
c

dλ1

N0N1

(52)

Let α “ C
100

b
dλ1

N0N1

. The estimate on the angle (52) implies that we should be decomposing the output

Fv and v into caps of radius α. However, as α2N0 « λ1

N1

d, if we want to decompose Fv into NF`
N0

atoms,

the output Fv should be at a distance λ1

N1
d from the cone. Thus we need to first deal with the case where

the distance to the cone is in the region λ1

N1

d À ‚ ! d. To this end, by exploiting the null structure as in

Case 1 above and using the decomposition

PN0
C`

λ1
N1

dÀ‚!d

“
CdPλ1FC˘

!dv
¯‰ “

ÿ

κ,κ̄PCα

θpκ,κ̄q«α

P`
N0,κ̄

C`
λ1
N1

dÀ‚!d

“
CdPλ1F C˘

!dR
˘
κ v

¯‰

(which follows from (52) ) we obtain by an application of Corollary 3.14

››PN0
C`

λ1
N1

dÀ‚!d
Π`

“
CdPλ1FC˘

!dv
¯‰››

N
`
N0

À
´dλ1

N1

¯´ 1

2

›››
ÿ

κ,κ̄PCα

θpκ,κ̄q«α

P`
N0,κ̄

Π`
“
CdPλ1F C˘

!dR
˘
κ v

¯‰›››
L2

t,x

À
´dλ1

N1

¯´ 1

2

α}F }L2
t,x

›››
´ ÿ

κPCα

} {C˘
!dR

˘
κ v}2L1

ξ

¯ 1

2

›››
L8

t

À
´dλ1

N1

¯´ 1

2

α
`
αN1

˘n´1

2 pN1q 1

2 }F }L2

t,x
}C˘

!dv}L8
t L2

x

À pλ1dqn´1

4 }F }L2

t,x
}v}

F
´
N1

.

Hence summing up in d and λ1 gives the required estimate. Similarly, if we fix v to have modulation in
λ1

N0
d À ‚ ! d, then by following a similar argument to that used in Case 2 we obtain

››PN0
C`

!dΠ`
“
CdPλ1FC˘

λ1
N0

dÀ‚!d
v¯
N1

‰››
N

`
N0

À
›››

ÿ

κ,κ̄PCα

θpκ,κ̄q«α

P`
N0,κ̄

Π`
“
CdPλ1F P˘

N1,κ
C˘

λ1
N0

dÀ‚!d
v¯‰›››

L1

tL
2
x

À α
`
αN1

˘n´1

2 pN1q 1

2 }F }L2}C˘
λ1
N0

dÀ‚Àd
v˘}L2

t,x

À pλ1dqn´1

4 }F }L2

t,x
}v}

F
´
N1

which again is acceptable.
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Thus it remains to deal with the term C`
! λ1

N1
d

“
CdPλ1FC˘

! λ1
N0

d
v¯‰. By exploiting the angle estimate

(52), we have the decomposition

PN0
C`

! λ1
N1

d

“
CdPλ1FC˘

!dv
¯‰ “

ÿ

κ,κ̄PCα

5αďθpκ,κ̄qÀα

P
`,α
N0,κ̄

“
CdPλ1F R˘

κ,α2N1
v¯‰.

Therefore, as PN0
C`

! λ1
N1

d

“
CdPλ1FC˘

!dv
¯‰ is now a multiple of a NF`

N0
atom, by again using Lemma 3.4

together with Theorem 4.3 we obtain

››C`
! λ1

N1
d
Π`

“
CdPλ1FC˘

!dv
¯‰››

N
`
N0

À
´ ÿ

κ,κ̄PCα

5αďθpκ,κ̄qÀα

››P`,α
N0,κ̄

Π`
“
CdPλ1F R˘

κ,α2N1
v¯‰››2

NF`pκ̄q

¯ 1

2

À }F }L2

t,x

´ ÿ

κPCα

}R˘
κ,α2N1

v¯››2
PW`pκq

¯ 1

2

À pαN1qn´1

2 }F }L2

t,x
}v}

F
´
N1

« pλ1dqn´1

4 }F }L2

t,x
}v}

F
´
N1

and hence by summing up in d and λ1 we obtain the required estimate. �

Remark 5.3. It is possible to improve the factors on the righthand side, for instance we can replace

mintλ,N1u with mintλ,N0, N1u by a minor additional argument. Other improvements are also possible,

particularly in the high-high case N0 « N1. However as we have no need for any further refinements

here, we leave this as an exercise to the interested reader.

We now present a number of useful bilinear estimates that follow from Theorem 5.1. The first is a “far

cone” version of Theorem 5.1.

Corollary 5.4 (Bilinear estimates in N˘
N - Far cone case). Let v P F¯

N1
have compact support in time.

(i) Let 1 ď a ď 2 and δ Á N1. Assume F P La
tL

2
x is scalar valued. Then

››PN0

`
Fv

˘››
N

˘
N0

`
››S˘

N0,Àδ

`
FC¯

Àδv
˘››

N
˘
N0

À
`
N1

˘n´1

2
` 1

a
´ 1

2 }F }La
tL

2
x
}v}

F
¯
N1

.

(ii) Let 1 ď a ă 2, b ě 2, and 1
a

` n´1
2b

ě 1. Assume λ ! N1 and F P L2
t,x is scalar valued with

supp pF Ă t|ξ| À λu. Then

››PN0

`
Fv

˘››
N

˘
N0

À
´
λ

n´1

2 }F }L2

t,x
`
`
N1

˘n
b

` 1

a
´1}CÁN1

F }La
tL

b
x

¯
}v}

F
¯
N1

.

Proof. (i): As usual, we may assume ˘ “ `. By interpolation, it is enough to considering the cases

a “ 1 and a “ 2. The former case is simply an application of Sobolev embedding together with (35).

On the other hand, the a “ 2 case can be reduce to Theorem 5.1 by using 9X
b,q
˘ spaces to deal with the

region away from the cone. More precisely, if we let λ « maxtN0, N1u, then from the estimates (45) and

(46), we reduce to estimating S`
N0,!N1

pFC´
!N1

vq. Noting the identity13

S`
N0,!N1

pFC´
!N1

vq “ S`
N0,!N1

pPÀλCÀN1
FC´

!N1
vq

the required estimate now follows from Theorem 5.1.

13As in the proof of the δ ě mintN0, λ,N2u case in Theorem 5.1, the identity follows from the inequality

ˇ̌
|τ | ´ |ξ|

ˇ̌
ď

ˇ̌
|τ ` τ 1| ´ |ξ ` ξ1|

ˇ̌
`
ˇ̌
|τ 1| ´ |ξ1|

ˇ̌
` 2mint|ξ ` ξ1|, |ξ1|u.
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(ii): As in the proof of (i), we can use (45) and (46), to reduce to estimating the close cone term

S`
N0,!λpFC´

!λvq. We would like to now deduce that F must also be λ from the cone, and thus simply

apply Theorem 5.1. This is true for when we have the output Fv and v localised close to a ˘ cone, but

can fail when we Fv is near a ˘ cone, and v is close to a ¯ cone. However in the latter case, we have

the redeeming feature that F is in fact N1 " λ away from the cone, which gives the second term in (i).

The details are as follows.

Write

S`
N0,!λpFC´

!λvq “ S`
N0,!λpCÀλF C

´
!λvq ` S`

N0,!λpC"λF C
´
!λvq.

For the first term we can simply use Theorem 5.1 with δ “ λ. On the other hand, for the second term,

we observe that if

pτ, ξq P supp ČC"λF , pτ 1, ξ1q P supp Ć
C

´
!λv, pτ ` τ 1, ξ ` ξ1q P t|ξ| « N0,

ˇ̌
|τ | ´ |ξ|

ˇ̌
! λu,

then we have

ˇ̌
|τ | ´ |ξ|

ˇ̌
«

ˇ̌`
τ ´ sgnpτq|ξ|

˘
`
`
τ 1 ´ sgnpτ 1q|ξ1|

˘
´
`
τ ` τ 1 ´ sgnpτ ` τ 1q|ξ ` ξ1|

˘ˇ̌

“
ˇ̌
sgnpτ ` τ 1q|ξ ` ξ1| ´ sgnpτ 1q|ξ1| ´ sgnpτq|ξ|

ˇ̌
(53)

Therefore, as N1 " λ, and the left hand side of (53) is " λ, we must have
ˇ̌
|τ |´|ξ|

ˇ̌
« |ξ1| and consequently

we have the identity

S`
N0,!λ

`
C"λF C

´
!λv

˘
“ S`

N0,!λ

`
CÁN1

F C
´
!λv

˘
.

Note that the conditions on pa, bq imply that the pair p a
a´1

, 2b
b´2

q is Strichartz admissible. Thus, by an

application of Holder’s inequality together with Theorem 4.1, we deduce that

››S`
N0,!λ

`
CÁN1

F C
´
!λv

˘››
N

`
N0

ď
››S`

N0,!λ

`
CÁN1

F C
´
!λv

˘››
L1

tL
2
x

À }CÁN1
F }La

t L
b
x
}C´

!λv}
L

a
a´1

t L
2b

b´2
x

À
`
N1

˘np 1

2
´ b´2

2b
q´ a´1

a }CÁN1
F }La

tL
b
x
}v}

F
´
N1

“
`
N1

˘n
b

` 1

a
´1}CÁN1

F }La
t L

b
x
}v}F´

N1

as required.

�

By duality, Theorem 5.1 also implies the following bilinear estimates in L2
t,x.

Corollary 5.5 (L2 Bilinear Estimates). Let u P F˘
N1

and v P F¯
N2

have compact support in time.

(i) Let δ ď mintN1, N2u. Then

››CÀδ

“
pC˘

!δuq:
C

¯
!δv

‰››
L2

t,x

À
`
δmintN1, N2u

˘n´1

4 }u}
F

˘
N1

}v}
F

¯
N2

.

(ii) Let a, b ě 2 and δ ě mintN1, N2u. Then

››u:v
››
La

t L
b
x

`
››pC˘

Àδuq:
C

¯
Àδv

››
La

t L
b
x

À
`
mintN1, N2u

˘n
2

´ 1

a
p 1

2
` 1

b
q`
maxtN1, N2u

˘pn´ 1

a
qp 1

2
´ 1

b
q}u}

F
˘
N1

}v}
F

¯
N2

.
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Proof. (i): After a reflection, it is enough to consider the case N1 ě N2 and ˘ “ `. Let λ “ 4N1 and

note that u:v “ Pďλpu:vq. An application of the the duality estimate in Corollary 4.6 together with

Theorem 5.1 gives

››CÀδ

“
pC`

!δuq:
C

´
!δv

‰››
L2

t,x

“ sup
}F }

L2
t,x

ď1

ˇ̌
ˇ̌
ż

Rn`1

CÀδPďλF
“
pC`

!δuq:
C

´
!δv

‰
dtdx

ˇ̌
ˇ̌

ď
ÿ

N0«N1

sup
}F }

L2
t,x

ď1

ˇ̌
ˇ̌
ż

Rn`1

u:S`
N0,!δ

“
CÀδPďλF C

´
!δv

‰
dtdx

ˇ̌
ˇ̌

À }u}
F

`
N1

ÿ

N0«N1

sup
}F }

L2
t,x

ď1

››S`
N0,!δ

“
CÀδPďλFC

´
!δv

‰››
N

`
N0

À
`
δmintN1, N2u

˘n´1

4 }u}
F

`
N1

}v}
F

´
N2

as required.

(ii): The cases pa, bq “ p8,8q, p8, 2q, p2,8q follow by Sobolev embedding and the L4
tL

8
x Strichartz

estimate in Theorem 4.1. Thus by interpolation we reduce to the case pa, bq “ p2, 2q. Without loss of

generality, we may assume N1 ě N2. To deal with the far cone case, we use (40) to obtain the inequalities

››`C`
ÁN2

u
˘:
v
››
L2

t,x

À }C`
ÁN2

u}L2

t,x
}v}L8

t,x
À

`
N2

˘n´1

2 }u}
F

`
N1

}v}
F

´
N2

and
››u:

C
´
ÁN2

v
››
L2

t,x

ď }u}L8
t L2

x
}C´

ÁN2
v}L2

tL
8
x

À
`
N2

˘n´1

2 }u}
F

`
N1

}v}
F

´
N2

.

Therefore we reduce to estimating pC`
!N2

uq:
C

´
!N2

v “ CÀN2

“
pC`

!N2
uq:

C
´
!N2

v
‰
in L2

t,x, but this follows

from piq by taking δ “ N2.

�

6. Cubic Estimates

We now come to main trilinear estimate we require. In this case, although the bilinear estimates only

required u P F˘
N , we are forced to make use of the stronger G˘

N spaces. Essentially this is due to the fact

that away from the light cone, we require the additional integrability in t given by the Y˘ norm.

Let Nmin, Nmed, and Nmax denote, respectively, the minimum, the median, and the maximum, of the

set tN1, N2, N3u. Our aim is to prove the following.

Theorem 6.1. Let T ą 0 and assume that ˘ and ˘1 are independent choices of signs. There exists ǫ ą 0

such that if u1 P G˘1

N1
, u2 P G¯1

N2
, u3 P G¯

N3
then

››1p´T,T qptqPN0

“`
u

:
1u2

˘
u3
‰››

N
˘
N0

À
`
NminNmed

˘n´1

2

´Nmin

Nmed

¯ǫ

}u1}
G

˘1
N1

}u2}
G

¯1
N2

}u3}G¯
N3

where the implied constant is independent of T .

To deal with the close cone region, the following lemma will prove crucial.

Lemma 6.2. Let δ ě Nmin and λ “ mintmaxtN1, N2u,maxtN0, N1uu. Assume supp ruj Ă
 ˇ̌

|τ | ´ |ξ|
ˇ̌

ď
δ, |ξ| « Nj

(
. Then

CďδPN0

“
pu:

1u2qu3
‰

“ CďδPN0

´
CÀδPÀλ

“
u

:
1u2

‰
u3

¯
.
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Proof. The inequality

ˇ̌
|τ ` τ 1| ´ |ξ ` ξ1|

ˇ̌
ď

ˇ̌
|τ | ´ |ξ|

ˇ̌
`
ˇ̌
|τ 1| ´ |ξ1|

ˇ̌
` 2mint|ξ|, |ξ1|u (54)

implies that if pτ, ξq, pτ 1, ξ1q P
 ˇ̌

|τ | ´ |ξ|
ˇ̌

ď δ
(
and δ ě mintN1, N2u, then

ˇ̌
|τ ` τ 1| ´ |ξ ` ξ1|

ˇ̌
À δ. Con-

sequently we have the identity u:
1u2 “ CÀδPÀmaxtN1,N1u

“
u

:
1u2

‰
. On the other hand, if δ ě mintN0, N1u,

can again use (54) to deduce the identity CďδPN0

`
Fv3

˘
“ CďδPN0

`
CÀδPÀmaxtN0,N1uFv3

˘
. Thus lemma

follows. �

Proof of Theorem 6.1. After a reflection, we may assume ˘ “ `. We also fix ˘1 “ `, as the ˘1 “ ´
argument is identical. Let ρ P C8

0 pRq with ρ “ 1 on r´1, 1s and fix T ˚ " maxtT,Nmaxu. An application

of (ii) in Theorem 3.9, together with the identity

1p´T,T qptqPN0

“`
u

:
1u2

˘
u3
‰

“ 1p´T,T qptqPN0

“`
pρp t

T˚ qu1q:pρp t
T˚ qu2q

˘
ρp t

T˚ qu3
‰

shows that it is enough to prove

››PN0

“`
u

:
1u2

˘
u3
‰››

N
`
N0

À
`
NminNmed

˘n´1

2

´Nmin

Nmed

¯ǫ

}u1}
G

`
N1

}u2}
G

´
N2

}u3}
G

´
N3

under the additional assumption that each uj has compact support in time (thus, in particular, we can

make use of the bilinear estimates in the previous section). Let n`1
4n

ă a ă 1
2
and take

δ “
`
Nmin

˘ 1

2
´a`

Nmed

˘ 1

2
`a
.

The strategy is roughly to decompose into regions δ away from the light cone, and regions within δ of

the light cone. In the close cone region, we can essentially just apply the bilinear estimate Theorem 5.1.

On the other hand, in the region away from the light cone, the argument is more involved and we need

to exploit the bilinear estimates in Corollaries 5.5 and 5.4, together with the additional integrability in t

given by the Y˘ norms.

We break the proof into three main cases, N3 “ Nmax " Nmed, N3 « Nmed, and N3 « Nmin.

Case 1: N3 “ Nmax " Nmed. We begin by decomposing

pu:
1u2qu3 “ CÀδpu:

1u2qu3 ` C"δpu:
1u2qu3. (55)

Note that by the L4
tL

8
x Strichartz estimate in Theorem 4.1 we have the inequalities

››PN0

`“
u

:
1u2

‰
C

´
Áδu3

˘››
N

`
N0

À }u1}L4
tL

8
x

}u2}L4
tL

8
x

}C´
Áδu3}L2

t,x

À
`
NminNmed

˘n´1

2
` 1

4 δ´ 1

2 }u1}
F

`
N1

}u2}
F

´
N2

}u3}
F

´
N3

(56)

and

››C`
ÁδPN0

`“
u

:
1u2

‰
u3
˘››

N
`
N0

À δ´ 1

2 }
“
u

:
1u2

‰
u3}L2

t,x

À δ´ 1

2 }u1}L4

tL
8
x

}u2}L4

tL
8
x

}u3}L8
t L2

x

À
`
NminNmed

˘n´1

2
` 1

4 δ´ 1

2 }u1}F`
N1

}u2}F´
N2

}u3}F´
N3

. (57)

Since
`
NminNmed

˘ 1

4 δ´ 1

2 “
´

Nmin

Nmed

¯a
2

both estimates are acceptable. Observe that neither (56) nor (57)

made any use of the structure of the product. Thus we can always control the case where the output,
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pu:
1u2qu3, or the Nmax term are δ from the cone, by putting the low frequency terms in L4

tL
8
x . Moreover,

as the estimates (56) and (57) only made use of L2
x based spaces, together with Theorem 4.1, we can

freely add C
˘
δ multipliers to the left hand side without affecting the validity of (56) and (57). These

observations are also used in the case N3 « Nmed and N3 « Nmin.

The estimate for the first term in (55) is now straightforward. By (56) and (57), we reduce to

considering the term C
`
!δ

`
CÀδ

“
u

:
1u2

‰
C

´
!δu3

˘
. An application of Theorem 5.1 and Corollary 5.5 then

gives

››C`
!δPN0

`
CÀδ

“
u

:
1u2

‰
C

´
!δu3

˘››
N

`
N0

À
`
δNmed

˘n´1

4 }u:
1u2}L2

t,x
}u3}F´

N3

À
`
Nmin

˘n´1

2

`
δNmed

˘n´1

4 }u1}F`
N1

}u2}F´
N2

}u3}F´
N3

which is acceptable since
`

δ
Nmed

˘n´1

4 “
`
Nmin

Nmed

˘p 1

2
´aq n´1

4 and n`1
4n

ă a ă 1
2
.

On the other hand, to deal with the second term in (55), assume for the moment that we have the

inequalities
››C"δpu:

1u2q
››
L2

t,x

À
`
Nmin

˘n
2 δ´ 1

2 }u1}
F

`
N1

}u2}
F

´
N2

(58)

and
››CÁN3

pu:
1u2q

››
L

8n
5n`3

t L
4n
3

x

À
`
NminNmed

˘n´1

2

´Nmin

Nmed

¯ 1

4n `
N3

˘´ 3pn`1q
8n }u1}

G
`
N1

}u2}
G

´
N2

. (59)

Then by (ii) in Corollary 5.4 with pa, bq “ p 8n
5n`3

, 4n
3

q (note that this pair is admissible), we have

››PN0

“
C"δpu:

1u2qu3
‰››

N
`
N0

À
”`
Nmed

˘n´1

2 }C"δpu:
1u2q}L2

t,x
`
`
N3

˘ 3pn`1q
8n }CÁN3

pu:
1u2q}

L
8n

5n`3

t L
4n
3

x

ı
}u3}

F
´
N3

À
”`
Nmin

˘n
2

`
Nmed

˘n´1

2 δ´ 1

2 `
`
NminNmed

˘n´1

2

´Nmin

Nmed

¯ 1

4n
ı
}u1}

G
`
N1

}u2}
G

´
N2

}u3}
F

´
N3

À
`
NminNmed

˘n´1

4

´Nmin

Nmed

¯mint 1

4n
,a
2

u
}u1}

G
`
N1

}u2}
G

´
N2

}u3}
F

´
N3

.

Thus, to complete the proof of the case N3 " Nmed, it only remains to deduce the inequalities (58) and

(59). We start with the more difficult (59). To this end, note that the inequality (54) and the assumption

N3 " Nmed implies the decomposition

CÁN3

“
u

:
1u2

‰
“ CÁN3

“`
C

`
ÁN3

u1
˘:
u2
‰

` CÁN3

“`
C

´
!N3

u1
˘:
C

´
ÁN3

u2
‰
.

Essentially the point is that if the output of u:
1u2 is far from the cone, then it is not possible for both

u1 and u2 to have Fourier support close the cone. If we now apply Lemma 3.14 to dispose of the CÁN3

multiplier, followed by the L
8n

5´n

t L8
x Strichartz estimate (note that 8n

5´n
ě 4), by the definition of the Y˘

norm we deduce that

››CÁN3

“`
C

`
ÁN3

u1
˘:
u2
‰››

L
8n

5n`3

t L
4n
3

x

À
`
N1

˘n
2

´ 3

4

››C`
ÁN3

u1
››
L

4n
3n´1

t L2
x

}u2}
L

8n
5´n
t L8

x

À
`
N1

˘n
2

´ 3

4

`
N2

˘n
2

´ 5´n
8n

`
N3

˘´1››u1
››
Y` }u2}

F
´
N2

À
`
N1

˘n´1

2
` 1

4n
`
N2

˘n´1

2
` 5pn´1q

8n
`
N3

˘´1}u1}
G

`
N1

}v2}
F

´
N2

which is acceptable since, using the fact that N3 ě N1, N2,

`
N1

˘n´1

2
` 1

4n
`
N2

˘n´1

2
` 5pn´1q

8n
`
N3

˘´1 ď pNminNmed

˘n´1

2

`
N3

˘´ 3pn`1q
8n

´Nmin

Nmed

¯ 1

4n

.
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A similar argument handles the CÁN3

“`
C

`
!N3

u1
˘:
C

´
ÁN3

u2
‰
term, we just put C

`
!N3

u1 P L
8n

5´n

t L8
x and

C
´
ÁN3

u2 P Y´. Thus we obtain (59). The proof of (58) is similar, we just note that again the inequality

(54) implies that

C"δ

“
u

:
1u2

‰
“ C"δ

“`
C

`
Áδu1

˘:
u2
‰

` C"δ

“`
C

´
!δu1

˘:
C

´
Áδu2

‰
.

Hence putting the far cone terms in L2
t,x we obtain

››C"δ

“
u

:
1u2

‰››
L2

t,x

À
`
Nmin

˘n
2

´
}C`

Áδu1}L2

t,x
}u2}L8

t L2
x

` }u1}L8
t L2

x
}C´

Áδu2}L2

t,x

¯

À
`
Nmin

˘n
2 δ´ 1

2 }u1}F`
N1

}u2}F´
N2

.

Therefore we obtain (58) and so the case N3 “ Nmax " Nmed follows.

Case 2: N3 « Nmed. Note that N3 « Nmed implies that Nmin « mintN1, N2u. If u1 is δ away from

the cone, then by piq in Corollary 5.4 we have

››PN0

`“`
C

`
Áδu1

˘:
u2
‰
u3
˘››

N
`
N0

À
`
Nmed

˘n´1

2

››`C`
Áδu1

˘:
u2
››
L2

t,x

}u3}F´
N3

À
`
Nmin

˘n
2

`
Nmed

˘n´1

2

››C`
Áδu1

››
L2

t,x

}u2}L8
t L2

x
}u3}F´

N3

À
`
NminNmed

˘n´1

2

´Nmin

δ

¯ 1

2 }u1}
F

`
N1

}u2}
F

´
N2

}u3}
F

´
N3

which is acceptable as
`
Nmin

δ

˘ 1

2 “
`
Nmin

Nmed

˘ 1

4
` a

2 . A similar argument handles the case where u2 is δ away

from the cone.

On the other hand, when u3 is δ away from the cone, the argument is more involved as we need to

make use of the Y˘ norms to gain the correct factors Nmin, Nmed. An application of Holder together

with piiq in Corollary 5.5 gives

››PN0

`“`
C

`
!δu1

˘:
C

´
!δu2

‰
C

´
Áδu3

˘››
N

`
N0

ď
››PN0

`“`
C

`
!δu1

˘:
C

´
!δu2

‰
C

´
Áδu3

˘››
L1

tL
2
x

À
››`C`

!δu1
˘:
C

´
!δu2

››
L

4n
n`1

t L2
x

}C´
Áδu3}

L
4n

3n´1

t L8
x

À
`
Nmin

˘n
2

´ n`1

4n
`
Nmed

˘n
2 δ´1}u1}F`

N1

}u2}F´
N2

}u3}Y´

À
`
Nmin

˘n
2

´ n`1

4n
`
Nmed

˘n
2

` n`1

4n δ´1}u1}
F

`
N1

}u2}
F

´
N2

}u3}
G

´
N3

which is acceptable since

`
Nmin

˘n
2

´ n`1

4n
`
Nmed

˘n
2

` n`1

4n δ´1 “
`
NminNmed

˘n´1

2

´Nmin

Nmed

¯a´ n`1

4n

and n`1
4n

ă a ă 1
2
. The final far cone case is when the output is δ from the cone. However here we can

simply argue as in (56) but put the low frequency terms in L4
tL

8
x , and the Nmax term in L8

t L
2
x.

It remains to deal with the close cone case S`
N0,!δ

`“`
C

`
!δu1

˘:
C

´
!δu2

‰
C

´
!δu3

˘
. To this end, as in the

N3 « Nmax case, we apply Lemma 6.2, Theorem 5.1, and Corollary 5.5 to obtain

››S`
N0,!δ

`“`
C

`
!δu1

˘:
C

´
!δu2

‰
C

´
!δu3

˘››
N

`
N0

“
››S`

N0,!δ

`
CÀδ

“`
C

`
!δu1

˘:
C

´
!δu2

‰
C

´
!δu3

˘››
N

`
N0

À
`
δNmed

˘n´1

4

››CÀδ

“`
C

`
!δu1

˘:
C

´
!δu2

‰››
L2

t,x

}u3}F´
N3

À
`
Nmin

˘n´1

2

`
δNmed

˘n´1

4 }u1}
F

`
N1

}u2}
F

´
N2

}u3}
F

´
N3

.
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which is acceptable as
`

δ
Nmed

˘n´1

4 “
`
Nmin

Nmed

˘n´1

4
p 1

2
´aq

. Therefore we obtain the case N3 « Nmed.

Case 3: N3 « Nmin. Without loss of generality, we assume that N1 ě N2, thus N1 « Nmax. The

argument to control the case N3 « Nmin is very similar to the previous case, essentially the only difference

is that we need to reverse the order in which we estimate the far cone case to avoid having to estimate the

multiplier C˘
!δ in F˘

N with δ ! N . As before, we start by dealing with the far cone case. An application

of Corollary 5.5 gives the bound

››PN0

`“
u

:
1u2

‰
C

´
Áδu3

˘››
N

`
N0

ď
››“u:

1u2
‰
C

´
Áδu3

››
L1

tL
2
x

À
`
Nmin

˘n
2

››u:
1u2

››
L2

t,x

››C´
Áδu3

››
L2

t,x

À
`
Nmed

˘n´1

2

`
Nmin

˘n
2 δ´ 1

2 }u1}
F

`
N1

}u2}
F

´
N2

}u3}
F

´
N3

which is as before is acceptable. Together with (56), (but with the minor difference that we put the low

frequency terms u2 and u3 in L4
tL

8
x ), we may assume that the output is within δ of the cone. Similarly,

when u1 is δ away from the cone, we follow (57) and put u2, u3 P L4
tL

8
x by using Theorem 4.1. Finally,

if u2 is δ away from the cone, then we use (i) in Corollary 5.4 together with the Y˘ norm to deduce that

››S`
N0,!δ

`“`
C

`
!δu1

˘:
C

´
Áδu2

‰
C

´
!δu3

˘››
N

`
N0

À
`
Nmin

˘n
2

´ n`1

4n
››`C`

!δu1
˘:
C

´
Áδu2

››
L

4n
3n´1

t L2
x

}u3}
F

´
N3

À
`
Nmin

˘n
2

´ n`1

4n
`
Nmed

˘n
2

››C`
!δu1

››
L8

t L2
x

››C´
Áδu2

››
L

4n
3n´1

t L2
x

}u3}
F

´
N3

À
`
Nmin

˘n
2

´ n`1

4n
`
Nmed

˘n
2 δ´1}u1}

F
`
N1

}u2}Y´}u3}
F

´
N3

ď
`
NminNmed

˘n´1

2

´Nmin

Nmed

¯a´ n`1

4n }u1}F`
N1

}u2}G´
N2

}u3}F´
N3

which again is acceptable.

The final case is the close cone term S`
N0,!δ

`“`
C

`
!δu1

˘:
C

´
!δu2

‰
C

´
!δu3

˘
. As previously, by applying

Lemma 6.2 and Corollaries 5.4 and 5.5, we obtain

››S`
N0,!δ

`“`
C

`
!δu1

˘:
C

´
!δu2

‰
C

´
!δu3

˘››
N

`
N0

“
››S`

N0,!δ

`
CÀδ

“`
C

`
!δu1

˘:
C

´
!δu2

‰
C

´
!δu3

˘››
N

`
N0

À
`
Nmin

˘n´1

2

››CÀδ

“`
C

`
!δu1

˘:
C

´
!δu2

‰››
L2

t,x

}u3}F´
N3

À
`
Nmin

˘n´1

2

`
δNmed

˘n´1

4 }u1}F`
N1

}u2}F´
N2

}u3}F´
N3

which is acceptable. Therefore we obtain the case N3 « Nmin and hence theorem follows. �

To control the Y˘ component of the G˘
λ norm, we use the following.

Theorem 6.3. Let T ą 0 and ˘, ˘1 be independent choices of signs. There exists ǫ ą 0 such that for

u1 P F˘1

N1
, u2 P F¯1

N2
, and u3 P F¯

N3
we have

››1p´T,T qptqpu:
1u2qu3

››
L

4n
3n´1

t L2
x

À
`
NminNmed

˘n´1

2

´Nmin

Nmed

¯ǫ`
Nmax

˘n`1

4n }u1}
F

˘1
N1

}u2}
F

¯1
N2

}u3}
F

¯
N3

where the implied constant is independent of T .

Proof. As in the proof of Theorem 6.1, we only consider the case ˘ “ ˘1 “ ` as the remaining cases

are essentially identical. The required estimate follows by an application of the Strichartz estimates in

Theorem 4.1, together with the bilinear estimates in Corollary 5.5. More precisely, if N3 « Nmax, then
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as pq, rq “ p 4n
n´1

, 2n
n´1

q is Strichartz admissible, by an application of Holder, followed by Theorem 4.1 and

piiq in Corollary 5.5 with pa, bq “ p2, 2nq, we deduce that

}pu:
1u2qu3}

L
4n

3n´1

t L2
x

ď }u:
N1
u2}L2

tL
2n
x

}u3}
L

4n
n´1

t L
2n

n´1
x

À
`
mintN1, N2u

˘n´1

2
` n´1

4n
`
maxtN1, N2u

˘n´1

2
´ n´1

4

`
N3

˘n`1

4n }u}F`
N1

}v}F´
N2

}v}F´
N3

À
`
NminNmed

˘n´1

2

´Nmin

Nmed

¯n´1

4n `
Nmax

˘n`1

4n }u}F`
N1

}v}F´
N2

}v}F´
N3

as required. On the other hand, if N3 ! Nmax, then we put u3 P L4
tL

8
x and again apply piiq in Corollary

5.5 with pa, bq “ p 4n
2n´1

, 2q to obtain

}pu:
1u2qu3}

L
4n

3n´1

t L2
x

ď }u:
N1
u2}

L
4n

2n´1

t L2
x

}u3}L4

tL
8
x

À
`
mintN1, N2u

˘n´1

2
` 1

4n
`
N3

˘n´1

2
` 1

4 }u}F`
N1

}v}F´
N2

}v}F´
N3

ď
`
NminNmed

˘n´1

2

´Nmin

Nmed

¯ 1

4n `
Nmax

˘n`1

4 }u}
F

`
N1

}v}
F

´
N2

}v}
F

´
N3

.

�

Combining the previous results, we deduce the following corollary.

Corollary 6.4. Let s ě n´1
2

, T ą 0 and suppose ˘ and ˘1 are independent choices of signs. Assume

u1 P Gn´1

2
,˘1

, u2 P Gn´1

2
,¯1

, u3 P Gn´1

2
,¯. If we let

Γ “ }u1}
G

n´1

2
,˘1 ` }u2}

G
n´1

2
,¯1 ` }u3}

G
n´1

2
,¯

then

››1p´T,T qptq
`
u

:
1u2

˘
u3
››

pNXYqs,˘ À
`
}u1}Gs,˘1 ` }u2}Gs,¯1 ` }u3}Gs,¯

˘
Γ2

where the implied constant is independent of T .

Proof. As previously, we may assume that ˘1 “ ˘ “ `. After dyadically decomposing uj, an application

of Theorems 6.1 and 6.3 gives

λ
n`1

4n

››1p´T,T qptqPλ

“`
u

:
1u2

˘
u3
‰››

N
`
λ

`
››1p´T,T qptqPλ

“`
u

:
1u2

˘
u3
‰››

L
4n

3n´1

t L2
x

À
ÿ

Nmax«maxtλ,Nmedu

`
NminNmed

˘n´1

2

´Nmin

Nmed

¯ǫ

pNmaxqn`1

4n

››PN1
u1
››
G

`
N1

››PN2
u2
››
G

´
N2

››PN3
u3
››
G

´
N3

.

The required estimate now follows by summing up over λ, and exploiting the
`
Nmin

Nmed

˘ǫ
factor by using

the inequality

ÿ

λ1,λ2P2Z
λ1ďλ2

`
λ1

λ2

˘ǫ
aλ1

bλ2
À
ˆÿ

λ1

paλ1
q2
˙ 1

2

ˆÿ

λ2

pbλ2
q2
˙ 1

2

.

In more detail, as we have now exploited all the structural properties of the product, we may assume

that N1 ě N2 ě N3. We consider separately the cases N1 " N2, and N1 « N2. In the former case, by
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summing up in λ we obtain
ˆÿ

λ

λ2s
´››1p´T,T qptqPλ

“`
u

:
1u2

˘
u3
‰››

N
`
λ

` λ´ n`1

4n

››1p´T,T qptqPλ

“`
u

:
1u2

˘
u3
‰››

L
4n

3n´1

t L2
x

¯2
˙ 1

2

À
ˆÿ

λ

ˆ ÿ

N1«λ,N2ěN3

`
N2N3

˘n´1

2

´N3

N2

¯ǫ

pN1qs
››PN1

u1
››
G

`
N1

››PN2
u2
››
G

´
N2

››PN3
u3
››
G

´
N3

˙2˙ 1

2

À
ÿ

N2ěN3

`
N2N3

˘n´1

2

´N3

N2

¯ǫ››PN2
u2
››
G

´
N2

››PN3
u3
››
G

´
N3

ˆÿ

N1

pN1q2s
››PN1

u1
››2
G

`
N1

˙ 1

2

À }u1}Gs,` }u2}
G

n´1

2
,´ }u3}

G
n´1

2
,´ .

On the other hand, if N1 « N2, then as s ´ n`1
4n

ą 0, we deduce that

ˆÿ

λ

λ2s
´››1p´T,T qptqPλ

“`
u

:
1u2

˘
u3
‰››

N
`
λ

` λ´ n`1

4n

››1p´T,T qptqPλ

“`
u

:
1u2

˘
u3
‰››

L
4n

3n´1

t L2
x

¯2
˙ 1

2

À
ÿ

N1«N2ěN3

`
N2N3

˘n´1

2

´N3

N2

¯ǫ

pN1qn`1

4n

››PN1
u1
››
G

`
N1

››PN2
u2
››
G

´
N2

››PN3
u3
››
G

´
N3

ˆ ÿ

λďN1

λ2ps´ n`1

4
q
˙ 1

2

À
ÿ

N1«N2

`
N1

˘s`
N2

˘n´1

2

››PN1
u1
››
G

`
N1

››PN2
u2
››
G

´
N2

ÿ

N3ďN2

´N3

N2

¯ǫ

pN3qn´1

2 }PN3
u3}

G
´
N3

À }u1}Gs,`}u2}
G

n´1

2
,´ }u3}

G
n´1

2
,´ .

Therefore result follows. �

7. Proof of Global Well-posedness

The proof of global existence and scattering follows from a more or less standard argument from the

energy type inequality in Theorem 3.9, together with the crucial trilinear estimate in Corollary 6.4. We

begin by considering the smooth case.

Theorem 7.1. Let n “ 2, 3, m “ 0, and s ě n´1
2

. Let ρ P C8
0 pRq. There exists ǫ ą 0 such that if

f, g P C8
0 pRnq with

}f}
9H

n´1

2 X 9Hs
` }g}

9H
n´1

2 X 9Hs
ă ǫ (60)

then we have a global solution pu, vq P C8pR1`nq to (5) such that pu, vqp0q “ pf, gq and

}u}
L8

t
9Hs ` }v}

L8
t

9Hs À }f} 9Hs ` }g} 9Hs .

Moreover, if f 1, g1 P C8
0 pRnq also satisfies (60) and pu1, v1q denotes the corresponding solution to (5) with

pu1, v1qp0q “ pf 1, g1q, then we have the Lipschitz bound

sup
Tą0

´››ρp t
T

q
`
u´ u1˘››

F s,` `
››ρp t

T
q
`
v ´ v1˘››

F s,´

¯
À }f ´ f 1}

9H
n´1

2 X 9Hs
` }g ´ g1}

9H
n´1

2 X 9Hs
.

Proof. Let pf, gq P C8
0 pRnq satisfy (60). A standard fixed point argument in14 L8

t H
N with N ą n

2
shows

that there exists T ˚ ą 0 and a smooth solution pu, vq P C
`
p´T ˚, T ˚q, HN pRnq

˘
with pu, vqp0q “ pf, gq.

Let T ă T ˚ and define puT , vT q as the solution to

pBt ` σ ¨ ∇quT “ 1p´T,T q
`
B1pu, vqv `B2pu, vqβu

˘

pBt ´ σ ¨ ∇qvT “ 1p´T,T q
`
B3pu, vqu`B4pu, vqβv

˘

14Alternatively we could appeal to work of Pecher [36, 37] in the n “ 2 case, and Escobedo-Vega [15] in the n “ 3 case,

although these results do not directly deal with the system (5).
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with
`
uT p0q, vT p0q

˘
“ pf, gq. Note that puT , vT q is the extension of pu, vq from p´T, T q ˆ Rn to R1`n by

a linear solution, in particular, we have puT , vT q “ pu, vq on p´T, T q ˆ Rn. Define

aspT q “ }uT }Gs,` ` }vT }Gs,´ .

The bound

}F }pNXYqs,˘ À
››F

››
L1

t
9Hs
x

`
››F

››
L

4n
3n´1

t
9H
s´ n`1

4n
x

together with the equation for puT , vT q, implies that for T, T 1 ď T ˚

ˇ̌
aspT q ´ aspT 1q

ˇ̌
Àu,v,T˚ |T ´ T 1| 3n´1

4n .

In particular, aspT q is a continuous function of T . Moreover, an application of Corollary 6.4 gives

aspT q ď }f} 9Hs ` }g} 9Hs ` C
`
an´1

2

pT q
˘2
aspT q. (61)

Thus as we clearly have asp0q ď }f} 9Hs ` }g} 9Hs , a continuity argument shows that provided ǫ ą 0 is

sufficiently small (independent of T and T ˚) we have for every T ă T ˚

aspT q ď 2}f} 9Hs ` }g} 9Hs . (62)

Hence we have the bound

}u}L8
t

9Hspp´T˚,T˚qˆRnq ` }v}L8
t

9Hspp´T˚,T˚qˆRnq ď sup
TăT˚

aspT q ď 2
`
}f} 9Hs ` }g} 9Hs

˘
.

If we apply this with s ą n
2
, then the classical local existence theory shows that the solution pu, vq exists

globally in time, i.e we may take T ˚ “ 8.

It only remains to show the Lipschitz bound. To this end, let f 1, g1 P C8
0 pRnq satisfy (60) and let

pu1, v1q denote the corresponding solution. Another application of the cubic estimate in Corollary 6.4

together with the bound (62) shows that for any T ă 8

}uT´u1
T }

G
n´1

2
,` `}vT ´v1

T }
G

n´1

2
,´ ď }f´f 1}

9H
n´1

2

`}g´g1}
9H

n´1

2

`Cǫ2
´

}uT ´u1
T }

G
n´1

2
,` `}vT´v1

T }
G

n´1

2
,´

¯
.

Hence as ǫ ą 0 is small, for any T ą 0 we obtain the Lipschitz bound

}uT ´ u1
T }

G
n´1

2
,` ` }vT ´ v1

T }
G

n´1

2
,´ ď 2

´
}f ´ f 1}

9H
n´1

2

` }g ´ g1}
9H

n´1

2

¯
.

Similarly, for higher regularities s ą n´1
2

, we can use a similar argument to show that

}uT ´ u1
T }Gs,` ` }vT ´ v1

T }Gs,´

À }f ´ f 1} 9Hs ` }g ´ g1} 9Hs ` Cǫ2
´

}uT ´ u1
T }Gs,` ` }vT ´ v1

T }Gs,´

` }uT ´ u1
T }

G
n´1

2
,` ` }vT ´ v1

T }
G

n´1

2
,´

¯

À }f ´ f 1}
9H

n´1

2 X 9Hs
` }g ´ g1}

9H
n´1

2 X 9Hs
` Cǫ2

´
}uT ´ u1

T }Gs,` ` }vT ´ v1
T }Gs,´

¯

and hence

}uT ´ u1
T }Gs,` ` }vT ´ v1

T }Gs,´ ď 2
´

}f ´ f 1}
9H

n´1

2 X 9Hs
` }g ´ g1}

9H
n´1

2 X 9Hs

¯
. (63)

Let ρ P C8
0 pRq and note that provided we choose δ sufficiently large,

ρp t
T

qpu, vq “ ρp t
T

qpuδT , vδT q.
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Therefore by (ii) in Theorem 3.9 we have

››ρp t
T

q
`
u´ u1˘››

F s,` `
››ρp t

T
q
`
v ´ v1˘››

F s,´

“
››ρp t

T
q
`
uδT ´ u1

δT

˘››
F s,` `

››ρp t
T

q
`
vδT ´ v1

δT

˘››
F s,´

À
››uδT ´ u1

δT

››
F s,` `

››vδT ´ v1
δT

››
F s,´

À
››uδT ´ u1

δT

››
Gs,` `

››vδT ´ v1
δT

››
Gs,´ .

Thus the required Lipschitz bound follows from (63) and noting that all constants are independent of

T ą 0. �

The proof of Theorem 1.5 is now straightforward.

Proof of Theorem 1.5. Let s ě n´1
2

with f, g P 9H
n´1

2 X 9Hs and

}f}
9H

n´1

2

` }g}
9H

n´1

2

ă ǫ

where ǫ is the constant in Theorem 7.1. By rescaling, we may assume that (60) holds (if s “ n´1
2

this

is already true, if s ą n´1
2

then the 9Hs norm is subcritical so we can rescale it to be small without

changing the size of the data in 9H
n´1

2 ). Choose a sequence fj , gj P C8
0 pRnq satisfying (60) such that

pfj , gjq Ñ pf, gq in 9H
n´1

2 X 9Hs and let puj , vjq denote the corresponding solution given by Theorem 7.1.

Let ρ P C8
0 pRq with ρ “ 1 on r´1, 1s. Then as

}φ}L8
t

9Hb ď sup
Tą0

››ρp t
T

qφ
››
L8

t Hb
x

ď sup
T

››ρp t
T

qφ
››
F b,˘

the Lipschitz bound in Theorem 7.1 shows that puj , vjq is a Cauchy sequence in L8
t

9H
n´1

2 X L8
t

9Hs and

hence converges to a solution pu, vq P CpR, 9H
n´1

2 X 9Hsq. Moreover, for every T ą 0, ρp t
T

qpuj , vjq forms

a Cauchy sequence in F b,` ˆ F b,´ for b “ n´1
2
, s. Consequently we must have ρp t

T
qpu, vq P F b,` ˆ F b,´

with

sup
Tą0

´››ρp t
T

qu
››
F b,´ `

››ρp t
T

qv
››
F b,´

¯
À }f} 9Hb ` }g} 9Hb .

Therefore, by (iii) in Theorem 3.9, we see that pu, vq scatters to a homogeneous solution in 9H
n´1

2 X 9Hs

as required. Thus Theorem 7.1 follows. �

Remark 7.2. If we have positive mass m ą 0, then we can prove local existence up to times T ! m´1

essentially by just treating the mass term as an additional perturbation. To see this, note that by

rescaling, we may assume that m “ 1. Then instead of (61) we would have

aspT q ď }f} 9Hs ` }g} 9Hs `C
´
T
`
}u}L8

t
9Hs ` }v}L8

t
9Hs

˘
` T

3n´1

4n

`
}u}

L8
t

9H
s´ n`1

4n
` }v}

L8
t

9H
s´ n`1

4n

˘
` ǫ2aspT q

¯
.

If we now note that

}φ}
9H
s´ n`1

4n
À }φ}L2

x
` }φ} 9Hs

and use the fact that the charge (i.e. the L2
x norm) is conserved15, then provided T ! 1 we obtain

aspT q ď 2
`
}f} 9Hs ` }g} 9Hs

˘
` }f}L2

x
` }g}L2

x
.

We can follow a similar minor modification of the remainder of Theorem 7.1 to deduce an equivalent

result with the restriction T ! 1, which after undoing the scaling, corresponds to T ! m´1.

15Strictly speaking, the charge is not necessarily conserved for the general system as written in (5). However, charge is

conserved for the original system (1). Thus for the versions of (5) we are interested in, the charge is certainly conserved.
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8. Null Frame Bounds

The proof of the null frame bounds is based on a transference type argument to reduce to the linear

case. For the L1
tL

2
x and 9X´ 1

2
,1 components of our iteration space, this is not so difficult. On the other

hand the NF`
λ case is more challenging and requires some theory on how the Dirac equation behaves in

null coordinates. In particular we rely on a version of the Duhamel formula for the Dirac equation in null

coordinates. The results in this section are based on related arguments in the work of Tataru [47] and

Tao [46].

8.1. Preliminary Results on Null Frames. We start with a number of results on the geometry of

null frames. These results are more or less implicit in [47, 46], but the readers convenience, we include

the statements and proofs here.

For a set A Ă Rn`1 we define PrωpAq “ A ` p1, ωqR to be the projection along the null direction

p1, ωq. Note that the projected sets PrωpAq depend only on the ξω coordinate. More precisely, since

1PrωpAqpτ, ξq “ 1PrωpAqp0, ξ ´ τωq we have

`
1PrωpAq

˘˚pτω , ξωq “ 1PrωpAqp0, ξωq. (64)

Moreover, we have the following.

Lemma 8.1 (Geometric Properties of Null Projections).

(i) Let α, β ! 1, κ P Cα, κ̄ P Cβ, and
16 ω R 2κ. Then

t|τ | “ |ξ|u
č

Prω
“6Aα,λpκq X 6Aβ,λpκ̄q

‰
Ă

”
6Aλp3

2
κq X 6Aλp3

2
κ̄q
ı
.

(ii) Let α ! 1 and ω P Sn´1. Let J Ă Cα be a collection of caps with ω R 2κ for every κ P J . Then

the sets Ωαpκq “ Prω
“6Aα,λpκq

‰
have finite overlap in the sense that

ÿ

κPJ
1Ωαpκqpt, xq À 1.

Proof. (i): Let pτ, ξq P t|τ | “ |ξ|u X Prω
“6Aα,λpκq X 6Aβ,λpκ̄q

‰
, in other words there exists a P R such

that

pτ, ξq ´ pa, aωq P 6Aα,λpκq X 6Aβ,λpκ̄q, |τ | “ |ξ|.

Let ξK denote the component of ξ orthogonal to ω. Then since

|ξK|2 ` pτ ´ ξ ¨ ωq2 “ |ξ|2 ` τ2 ´ 2τξ ¨ ω “ 2 sgnpτq|ξ|pτ ´ ξ ¨ ωq

together with the fact that |ξK| “ |pξ ´ aωqK| « λθpω, κqθpω,´κq and the estimate

τ ´ ξ ¨ ω “ τ ´ a´ sgnpτ ´ aq|ξ ´ aω| ` sgnpτ ´ aq|ξ ´ aω| ´ ω ¨ pξ ´ aωq « λθpω, κq2 (65)

we obtain |ξ| « λ.

It remains to show that sgnpτq ξ
|ξ| P 3

2
κ X 3

2
κ̄. To this end, by noting that pτ ´ aq2 ´ |ξ ´ aω|2 “

´2apτ ´ ξ ¨ ωq we get

|a| “
ˇ̌
|τ ´ a|2 ´ |ξ ´ aω|2

ˇ̌

2|τ ´ ξ ¨ ω| «
ˇ̌
|τ ´ a| ´ |ξ ´ aω|

ˇ̌

θpω, κq2

16An important point here is that we can take any κ̄ P Cβ , there is no condition needed on ω with respect to κ̄.
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Consequently, using the assumption τ “ sgnpτq|ξ|, we have

ˇ̌
ˇ̌sgnpτq ξ|ξ| ´ sgnpτ ´ aωq ξ ´ aω

|ξ ´ aω

ˇ̌
ˇ̌
2

“ 2 ´ 2
sgnpτqξ

|ξ| ¨ sgnpτ ´ aωqpξ ´ aωq
|ξ ´ aω|

“ 2

τ

`
τ ´ a´ sgnpτ ´ aωq|ξ ´ aω|

˘
` 2a

τ

ˆ
1 ´ ω ¨ ξ ´ aω

|ξ ´ aω|

˙

À
ˇ̌
|τ ´ a| ´ |ξ ´ aω|

ˇ̌

λ
ď 1

100
pmintα, βuq2 (66)

(provided we choose the close cone constant in the definition of 6Aα,λpκq to be sufficiently small). Let

ω1 denote the centre of κ. Since κ P Cα, we have θ
`
sgnpτ ´ aqpξ ´ aωq, ω1˘ ď 101

100
α. Thus from (66) we

deduce that

ˇ̌
ˇ sgnpτq ξ|ξ| ´ ω1

ˇ̌
ˇ ď

ˇ̌
ˇ sgnpτq ξ|ξ| ´ sgnpτ ´ aωq ξ ´ aω

|ξ ´ aω

ˇ̌
ˇ `

ˇ̌
ˇ sgnpτ ´ aωq ξ ´ aω

|ξ ´ aω| ´ ω1
ˇ̌
ˇ

ď 1

10
mintα, βu ` 101

100
α ď 6

5
α.

Therefore, using (13) we obtain

θ
`
sgnpτqξ, ω1˘ ď 50

49

´6
5
α
¯

“ 60

49
α ă 3

2
α

and so sgnpτqξ P 3
2
κ. Similarly, since pτ, ξq ´ ap1, ωq P 6Aλpκ̄q, then using ω̄ to denote the centre of κ̄, we

get

θ
`
sgnpτqξ, ω̄

˘
ď 50

49

ˇ̌
ˇ sgnpτq ξ|ξ| ´ sgnpτ ´ aωq ξ ´ aω

|ξ ´ aω

ˇ̌
ˇ ` 50

49

ˇ̌
ˇ sgnpτ ´ aωq ξ ´ aω

|ξ ´ aω| ´ ω̄
ˇ̌
ˇ

ď 50

49

´ 1

10
mintα, βu ` 101

100
β
¯

ď 3

2
β

as required.

(ii): It is enough to show that if κ1, κ2 P J with Ωαpκ1q X Ωαpκ2q “ ∅, then θpκ1, κ2q À α. As

if this holds, then the result follows by using the bounded overlap of the collection Cα. So suppose

pτ, ξq P Ωαpκ1q X Ωαpκ2q. Note that for every a P R

pτ, ξq P Ωαpκ1q X Ωαpκ2q ðñ pτ, ξq ` ap1, ωq P Ωαpκ1q X Ωαpκ2q

In particular, since τ ´ ω ¨ ξ “ 0 by17 (65), we may take a “ τ2´|ξ|2
2pτ´ω¨ξq and consequently

pτ, ξq ` ap1, ωq P Ωαpκ1q X Ωαpκ2q X t|τ | “ |ξ|u.

Therefore, by the first half of the lemma, we must have 6Aλp3
2
κ1q X 6Aλp3

2
κ2q “ ∅, which by the finite

overlap of the collection Cα implies that θpκ1, κ2q À α as required.

�

The previous geometric lemma implies the following important orthogonality properties.

Corollary 8.2 (Orthogonality in Null frames). Let α, β ! 1 and κ̄ P Cβ.

17Note that the derivation of (65) did not make use of the assumption |τ | “ |ξ|.



GLOBAL WELL-POSEDNESS FOR THE MASSLESS CUBIC DIRAC EQUATION 49

(i) Assume supp ruκ Ă 6Aα,λpκq for κ P Cα. Then

›››
ÿ

κPCα
6κXκ̄ “∅

uκ

›››
rNF˘s˚pκ̄q

À
˜ ÿ

κPCα
6κXκ̄ “∅

}uκ}2rNF˘s˚pκ̄q

¸ 1

2

(ii) Let F P NF˘pκ̄q with supp pF Ă t|ξ| « λu. Then

˜ ÿ

κPCα

κXκ̄“∅

››R˘
κ,α2λ

Π`F
››2
NF˘pκ̄q `

››R¯
κ,α2λ

Π´F
››2
NF˘pκ̄q

¸ 1

2

À }F }NF˘pκ̄q.

(iii) Let ω P Sn´1. Let J Ă Cα be a collection of caps with ω R 2κ and θpω, κq Á δ for every κ P J .

Then
˜ ÿ

κPJ

››P˘,α
λ,κ Π`F

››2
NF˘pκq `

››P˘,α
λ,κ Π´F

››2
NF˘pκq

¸ 1

2

À }Π˘ωF }L1

tω
L2

xω
` δ´1}Π¯ωF }L1

tω
L2

xω
.

Proof. (i): If α Á β the sum only contain Op1q terms and thus the inequality follows by the triangle

inequality. It remains to consider the case α ! β. Let ω R 2κ̄. Then for every κ P Cα with κ X κ̄ “ ∅ we

have ω R 2κ. Note that the ξω support of uκ lies in the set Ωαpκq “ Prω
“6Aα,λpκq

‰
. By Lemma 8.1 these

sets are essentially disjoint and thus we deduce that

››››
ÿ

κPCα

κXκ̄ “∅

pu˚ptω , ξωq
››››
2

L2

ξω

À
ÿ

κPCα

κXκ̄ “∅

}pu˚ptω , ξωq}2L2

ξω

.

By taking L8
tω

norms of both sides, inserting the relevant Πω projections, and then taking the sup over

ω R 2κ̄ we obtain (i).

(ii): It is enough to consider the case ˘ “ `. As in the proof of (i), if α Á β then the sum only

contains Op1q terms and so the required inequality follows by (i) in Lemma 3.14. Thus we may assume

that α ! β. Let ω R 2κ̄. Note that this implies that ω R 2κ for every κ P Cα with κX κ̄ “ ∅. As in Lemma

8.1, we let Ωαpκq “ Prω
“
Aα,λpκqs. Define ČPω

ΩpκqG “ 1Ωαpκqpξωq rG, clearly R˘
κ,α2λ

F “ Pω
ΩαpκqR

˘
κ,α2λ

F .

Thus an application of Lemma 3.14 to dispose of the R˘
κ,α2λ

multiplier, followed by an application of

Plancheral gives

ÿ

κPCα

κXκ̄ “∅

››R˘
κ,α2λ

Π˘F
››2
NF`pκ̄q À

ÿ

κPCα

κXκ̄ “∅

››Pω
ΩpκqF

››2
NF`pκ̄q

À
ÿ

κPCα

κXκ̄ “∅

}Pω
ΩpκqΠωF }2L1

tω
L2

xω

` θpω, κ̄q´2}Pω
ΩpκqΠ´ωF }2L1

tω
L2

xω

.

We now observe that, by the finite overlap of the sets Ωαpκq in Lemma 8.1 together with the identity

(64), we have

ÿ

κPCα

κXκ̄“∅

}Pω
ΩpκqΠ˘ωF }2L1

tω
L2

xω

ď
››››
´ ż

Rn

ÿ

κPCα

κXκ̄ “∅

ˇ̌
1Ωαpκqp0, ξωq {Π˘ωF

˚
ptω , ξωq

ˇ̌2
dξω

¯ 1

2

››››
2

L1
tω

À }Π˘ωF }2L1

tω
L2

xω

.

Applying these inequalities to NF`pκ̄q atoms, we obtain (ii).

(iii): We follow a similar argument to (ii). The properties of the collection J imply that the sets

Ωαpκq finitely overlap for κ P J . Hence, after an application of Lemma 3.14 to dispose of the multipliers
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P
˘,α
λ,κ , we obtain

ÿ

κPJ

››P˘,α
λ,κ Π`F

››2
NF˘pκq `

››P¯,α
λ,κ Π´F

››2
NF˘pκq À

ÿ

κPJ

››Pω
ΩpκqF

››2
NF˘pκq

À
ÿ

κPJ

››Pω
ΩpκqΠ˘ωF

››2
L1

tω
L2

xω

` θpω, κq´2
››Pω

ΩpκqΠ¯ωF
››2
L1

tω
L2

xω

À
››Π˘ωF

››2
L1

tω
L2

xω

` δ´2
››Π¯ωF

››2
L1

tω
L2

xω

as required. �

8.2. The Dirac Equation in Null coordinates. We want to write the equation

pBt ˘ σ ¨ ∇qu “ F (67)

in null coordinates ptω, xωq. A computation shows that

?
2BtωΠ˘ωu˘ pσ ¨ ∇K

xω
qΠ¯ωu “ Π˘ωF

´pω ¨ ∇xω
qΠ¯ωu˘ pσ ¨ ∇K

xω
qΠ˘ωu “ Π¯ωF.

Rearranging, and assuming that we can divide by ω ¨ ∇xω
(i.e. we assume that ru and rF are supported

away from the null plane ω ¨ ξω “ 0 ô τ “ ω ¨ ξ), we see that u satisfies

´?
2Btω ` |∇K

xω
|2

ω ¨ ∇xω

¯
Π˘ωu “ Π˘ωF ˘ σ ¨ ∇K

xω

ω ¨ ∇xω

Π¯ωF

Π¯ωu “ ˘σ ¨ ∇K
xω

ω ¨ ∇xω

Π˘ωu´ 1

ω ¨ ∇xω

Π¯ωF.

(68)

The equation (68) is interesting as it shows that, in null coordinates ptω, xωq, the Π¯ωu component of

u solves what is essentially an elliptic equation. This observation is the motivation for building the

projections Π˘ω into the definition of the null frame spaces PW˘pκq and NF˘pκq, as it allows us to

isolate the “elliptic” and dispersive components of the evolution.

The equation (68) also shows that we can write the forward fundamental solution in null coordinates

as

`
E˘

ω ˚ F
˘˚ptω, xωq “ ˘ σ ¨ ∇xω?

2ω ¨ ∇xω

ż tω

´8
e

´ptω´aq
|∇K

xω
|2

?
2ω¨∇xω

´
Π˘ω ˘ σ ¨ ∇K

xω

ω ¨ ∇xω

Π¯ω

¯
F˚paq da ´ 1

ω ¨ ∇xω

Π¯ωF.

It is easy to check that u “ E˘
ω ˚ F gives us a solution to (67), and moreover, that

´ σ ¨ ∇xω?
2ω ¨ ∇xω

e
´tω

|∇K
xω

|2
?

2ω¨∇xω f
¯˚

pxωq “
ż

Rn

σ ¨ ξω
´2ξ1ω

e
itω

|ξK
ω |2

2ξ1ω pf˚pξωq eixω ¨ξω dξω

is a solution to the equation pBt ` σ ¨ ∇qu “ 0 (lets assume that f has support away from ξ1ω “ 0 for

simplicity). The fundamental solution operator E˘
ω plays a crucial role in the proof of Theorem 4.3

as it gives a suitable substitute for the missing transference type principle. In other words, using the

following lemma, we are able to essentially deduce the required null frame bounds from their homogeneous

counterparts.

Lemma 8.3 (Decomposition of E˘
ω ˚ F into free waves, cf. [47, Proposition 3.4]). Let α, β ! 1 and

κ P Cα, κ̄ P Cβ. Fix ω R 2κ. Assume supp rF Ă 6Aα,λpκq X 6Aβ,λpκ̄q. Then we can write

E˘
ω ˚ F “

ż tω

´8
ψa da` Π¯ωG
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where ψa satisfies pBt ˘ σ ¨ ∇qψa “ 0 and

supp zΠ˘ψa Ă 6A
˘
λ p3

2
κq X 6A

˘
λ p3

2
κ̄q, supp zΠ¯ψa Ă 6A

¯
λ p3

2
κq X 6A

¯
λ p3

2
κ̄q,

and G P L2
t,x with supp rG “ supp rF . Moreover we have the bound

ż

R

}ψa}L8
t L2

x
da ` }G}

9X
1

2
,1

˘

À }Π˘ωF }L1

tω
L2

xω
` θpω, κq´1}Π¯ωF }L1

tω
L2

xω
. (69)

Proof. If we let

pψaq˚ptω, xωq “ ˘ σ ¨ ∇xω?
2ω ¨ ∇xω

e
´ptω´aq |∇K

xω
|2

?
2ω¨∇xω

´
Π˘ω ˘ σ ¨ ∇K

xω

ω ¨ ∇xω

Π¯ω

¯
F˚paq

and G “ ´ 1
ω¨∇xω

Π¯ωF , then by definition of E˘
ω , we have a decomposition

E˘
ω ˚ F “

ż tω

´8
ψa da`G.

A calculation using (68) shows that pBt ˘ σ ¨ ∇qψa “ 0 and thus rψa is supported on the light cone. On

the other had, if pτ, ξq P supp rψa, then

ξ ´ τω P
ď

aPR
supp pψ˚paq Ă

ď

aPR
supp pF˚paq

and so pτ, ωq P Prω
`
supp rF

˘
. Consequently the claim on the support of ψa follows from Lemma 8.1.

Thus it only remains to prove the bound (69). To this end, note that

“
e

´tω
|∇K

xω
|

?
2ω¨∇xω f˚‰pt, xq “

ż

Rn

pf˚pξωqe´ipt`x¨ωq |ξK
ω |2

2ω¨ξω eipx´ 1

2
pt`x¨ωqωq¨ξωdξω

“
ż

Rn

pf˚pξωqe´it
|ξω |2
2ω¨ξω eix¨pξω´ |ξω |2

2ω¨ξω ωqdξω

“
ż

Rn

”
pf˚pξωqe´it

|ξω |2
2ω¨ξω J´1pξωq

ı
pyqeix¨ydy

where dy “ Jpξωqdξω and18 the Jacobian is given by Jpξωq “ 1
2

` |ξω |
ω¨ξω

˘2
. Thus by an application of

Plancheral we get

›››
”
e

´tω
|∇K

xω
|

?
2ω¨∇xω f˚

ı
pt, xq

›››
L2

x

“
›››
”
pf˚pξωqe´it

|ξω |2
2ω¨ξω J´1pξωq

ı
pyq

›››
L2

y

“ 2
›››pω ¨ ξωq

|ξω| f˚pξωq
›››
L2

ξω

.

If we now observe that supp pF˚paq Ă
 

|ξω ¨ ω| « θpω, κq2λ, |ξK
ω | À θpω, κqλ

(
we obtain

}ψa}L8
t L2

x
«

›››ω ¨ ξω
|ξω|

σ ¨ ξω
ω ¨ ξω

´
Π˘ω ˘ σ ¨ ξK

ω

ω ¨ ξω
Π¯ω

¯
xF˚pa, ξωq

›››
L2

ξω

À }Π˘ωF
˚paq}L2

xω
` θpω, κq´1}Π¯ωF

˚paq}L2

ξω
.

Integrating over a then controls the ψa component. To estimate G, we write G “ 1
ω¨∇xω

Π´ωΠ`F `
1

ω¨∇xω
Π´ωΠ´F . Note that for pτ, ξq P supp ĆΠ˘F Ă 6A

˘
λ,αpκq, we have |ω ¨ ξω| « |ξ1ω | « λθpω, κq2 as

18One way to see this is to note that we are only changing ξω in the ω direction, thus if we let a “ ω ¨ξω and b “ |ξω |, then

we are effectively computing the Jacobian for the change of variables a1 “ a´ a2`b2

2a
which is 1

2
` b2

2a2
“ a2`b2

2a2
“ 1

2

` |ξω |
ω¨ξω

˘
2
.
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well as the null form estimate Π¯ ξ
|ξ|
Π´ω À θpω, κq. Therefore, using the bound (37) and the fact that

α À θpω, κq, we have

››› 1
ω¨∇xω

Π´ωΠ˘F
›››

9X
1

2
,1

`

À 1

λθpω, κq2
ˆ ÿ

dÀα2λ

d
1

2

››C˘
d Π˘Π´ωΠ˘F

››
L2

t,x

`
ÿ

dÀλ

d
1

2

››C¯
d Π¯Π´ωΠ˘F

››
L2

t,x

˙

À λ
1

2α ` λ
1

2 θpω, κq
λθpω, κq2 }Π˘F }L2

x
À }ΠωF }L1

tω
L2

xω
` θpω, κq´1}Π´ωF }L1

tω
L2

xω

as required. �

Remark 8.4. The bound for the “elliptic” term G “ 1
ω¨∇xω

Π¯ωF can be improved somewhat. For in-

stance, by a similar argument, we could replace }G}
9X
1

2
,1

˘

with the larger λ
1

2
θpω,κq2
mintα,βu }Π¯ωG}L2

t,x
. However,

the use of the 9X
1

2
,1

˘ norm is technically convenient, and slightly simpler to state.

As an application of the previous result, we obtain control the solution E˘
ω ˚ F in L8

t L
2
x.

Corollary 8.5 (L8
t L

2
x Control of Fundamental solution in Null Frames). Let α ! 1 and κ P Cα. Assume

supp rF Ă 6Aα,λpκq and ω R 2κ. Then

}E˘
ω ˚ F }L8

t L2
x

À
››Π˘ωF

››
L1

tω
L2

xω

` θpω, κq´1
››Π¯ωF

››
L1

tω
L2

xω

.

Proof. By Lemma 8.3, we can write

E˘
ω ˚ F “

ż tω

´8
ψada `G

where ψa, G are as in the statement of the Lemma. Thus by an application of Minkowsi’s inequality and

(24) we have

››E˘
ω ˚ F

››
L8

t L2
x

ď
ż

R

}ψa}L8
t L2

x
da ` }G}L8

t L2
x

À
ż

R

}ψa}L8
t L2

x
da ` }G}

9X
1

2
,1

˘

.

Hence result follows by Lemma 8.3. �

We also have the following crucial energy type inequality.

Corollary 8.6. Suppose F P N˘
λ and pBt ˘ σ ¨ ∇qu “ F . Then

}u}L8
t L2

x
ď }up0q}L2

x
` C}F }

N
˘
λ

for some constant C (independent of u and F ).

Proof. It is enough to consider the case ˘ “ `. By writing u “ u´U`ptq
“
up0q

‰
`U`ptq

“
up0q

‰
and using

the homogeneous energy estimate, we reduce to the case up0q “ 0. By definition of N`
λ , we reduce to

considering the case where F is an L1
tL

2
x atom, a 9X

´ 1

2
,1

` atom, or a NF`
λ atom.

The case F P L1
tL

2
x is immediate by the standard energy inequality. On the other hand, if F is an

9X
´ 1

2
,1

` atom, then we write

Π˘u “ pBt ˘ i|∇|q´1Π˘F ´ e¯it|∇|“pBt ˘ i|∇|q´1Π˘F p0q
‰
.

Then

››Π˘u
››
L8

t L2
x

À
››pBt ˘ i|∇|q´1Π˘F

››
L8

t L2
x

À d
1

2

››pBt ˘ i|∇|q´1Π˘F
››
L2

t,x

« d´ 1

2 }F }L2

t,x
À 1

as required.
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Finally, if F is a NF`
λ atom, then there exists a decomposition F “

ř
κPCα

Fκ with supp Π˘Fκ Ă
A˘

λ,αpκq. Let ω R 2κ. Then by Corollary 8.5 we obtain

›››
ż t

0

U`pt ´ sqFκpsqds
›››
L8

t L2
x

“
››E`

ω ˚ Fκ ´ U`ptq
“
E`

ω ˚ Fκp0q
‰››

L8
t L2

x

À }E`
ω ˚ Fκ}L8

t L2
x

À }ΠωFκ}L1

tω
L2

xω
` θpω, κq´1}Π´ωFκ}L1

tω
L2

xω
.

If we apply this estimate to NF`pκq atoms (and using an application of Lemma 3.14 to retain the support

properties) we deduce that

›››
ż t

0

U`pt ´ sqFκpsqds
›››
L8

t L2
x

À }Fκ}NF`pκq.

Thus, as the Fκ are essentially orthogonal in L2
x, we have

}u}L8
t L2

x
ď
´ ÿ

κPCα

›››
ż t

0

U`pt ´ sqFκpsqds
›››
2

L8
t L2

x

¯ 1

2 À
´ ÿ

κPCα

}Fκ}2NF`pκq

¯ 1

2

as required. �

8.3. Null Frame Bounds - The Homogeneous Case. In this section we prove a number of prelim-

inary bounds that are used in the proof of Theorem 4.3. We start by proving the following preliminary

estimate.

Proposition 8.7 ( 9X
1

2
,1

˘ controls PW´pκq). Let β ď α, κ P Cα, κ̄ P Cβ, and 2κ X 2κ̄ “ ∅. For every

s P R, let bs P L8
t,x be a scalar valued function, and let ψs P L2

t,x with the support conditions

supp zΠ`ψs Ă A˘
λ p2κ̄q, supp zΠ´ψs Ă A¯

λ p2κ̄q.

Then ››››
ż

R

bspt, xqψspt, xq ds
››››
PW¯pκq

À pβλqn´1

2

ż

R

››bs
››
L8

t,x

››ψs

››
9X
1

2
,1

˘

ds.

Proof. We only prove the case ˘ “ `, the remain case follows by a reflection in x. The assumption

ψs P L2
t,x implies that ψs “

ř
d C

˘
d ψs and so after an application of Holder is is enough to prove

››››
ż

R

bspt, xqΠ˘C
˘
d ψspt, xq ds

››››
PW´pκq

À pβλqn´1

2 d
1

2

ż

R

››bs
››
L8

t,x

››Π˘C
˘
d ψs

››
L2

t,x

ds.

If d Á β2λ, then the support assumptions on ψs together with (18) imply that for every ω P 2κ̄, |ξK
ω | À λβ

and |ξ1ω| À d. Hence, by taking ω P 2κ̄ X 2κ and using the null form estimate |Π´ωΠ ξ

|ξ|
| À θpω, ξq, the

definition of the norm } ¨ }PW pκq gives
››››
ż

R

bspt, xqΠ˘C
˘
d ψspt, xq ds

››››
PW´pκq

ď
››››
ż

R

bspt, xqΠ´ωΠ˘C
˘
d ψspt, xq ds

››››
L2

tω
L8

xω

` α´1

››››
ż

R

bspt, xqΠωΠ˘C
˘
d ψspt, xq ds

››››
L2

tω
L8

xω

À
ż

R

}bs}L8
t,x

´››Π˘C
˘
d ψs

››
L2

tω
L8

xω

` α´1
››Π´ωΠ˘C

˘
d ψs

››
L2

tω
L8

xω

¯
ds

À pβλqn´1

2 d
1

2

ż

R

}bs}L8
t,x

››`1 ` θpω,¯ξq
α

˘ ČΠ˘C
˘
d ψs

››
L2

τ,ξ

ds

À pβλqn´1

2 d
1

2

ż

R

}bs}L8
t,x

››Π˘C
˘
d ψs

››
L2

t,x

ds
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as required. On the other hand, if d ! β2λ, then we decompose Π˘ψs “
ř

κ1PCβ1

κ1X2κ̄ “∅

Π˘R
˘
κ1ψs where

β1 “
b

λ
d
. Now as d Á pβ1q2λ we can repeat the previous argument (with β and κ̄ replaced with β1 and

κ1) together with the orthogonality of the projections R˘
κ1 in L2

t,x to obtain
››››
ż

R

bspt, xqΠ˘C
˘
d ψspt, xq ds

››››
PW´pκq

ď
ÿ

κ1PCβ1

κ1X2κ̄ “∅

››››
ż

R

bspt, xqΠ˘R
˘
κ1C

˘
d ψspt, xq ds

››››
PW´pκq

À pβ1λqn´1

2 d
1

2

ÿ

κ1PCβ1

κ1X2κ̄ “∅

ż

R

}bs}L8
t,x

››Π˘R
˘
κ1C

˘
d ψs

››
L2

t,x

ds

À pβ1λqn´1

2 d
1

2

ˆ ÿ

κ1PCβ1

κ1X2κ̄ “∅

˙ 1

2
ż

R

}bs}L8
t,x

››Π˘C
˘
d ψs

››
L2

t,x

ds

À pβλqn´1

2 d
1

2

ż

R

}bs}L8
t,x

››Π˘C
˘
d ψs

››
L2

t,x

ds

where we used the fact that the number of small caps κ1 P Cβ1 required to cover the larger cap κ̄ P Cβ is

bounded above by
`
β
β1

˘n´1
. �

We can now prove the homogeneous case of Theorem 4.3.

Corollary 8.8 (Null frame bounds - homogeneous case).

(i) Let α ! 1 and f P L2
x with supp zΠ`f Ă A˘

λ p3
2
κq and supp zΠ´f Ă A¯

λ p3
2
κq. Then

››U˘ptqf}rNF˘s˚pκq À }f}L2
x
. (70)

(ii) Let β ď α ! 1, κ P Cα, and κ̄ P Cβ with 2κX 2κ̄ “ ∅. Let ρ P C8
0 pRq and T ą 0. Assume f P L2

x

with supp zΠ`f Ă A˘
λ p2κ̄q and supp zΠ´f Ă A¯

λ p2κ̄q. Then

››ρp t
T

qU˘ptqf
››
PW¯pκq À pβλqn´1

2 }f}L2
x

(71)

with constant independent of T .

Proof. We start by proving piq. By a reflection in the x variable, we may assume that ˘ “ `. The

estimate (11) gives

}e¯it|∇|Π˘f}L8
tω

L2
xω

“ }e¯ipt´x¨ωq|∇|Π˘fpxq}L8
t L2

x
«

››θpω,¯ξq´1zΠ˘f
››
L2

ξ

À θpω, κq´1}Π˘f}L2
x
.

Note that for ω R 2κ and ξ P supp zΠ˘f , we have the null form estimate |ΠωΠ˘ ξ

|ξ|
| À θpω,¯ξq « θpω, κq.

Therefore, by decomposing U`ptq “ e´it|∇|Π` ` eit|∇|Π´, we deduce that

››ΠωU`ptqf
››
L8

tω
L2

xω

` θpω, κq
››Π´ωU`ptqf

››
L8

tω
L2

xω

À
ÿ

˘

››e¯it|∇|ΠωΠ˘f
››
L8

tω
L2

xω

` θpω, κq
››e¯it|∇|Π´ωΠ˘f

››
L8

tω
L2

xω

À
ÿ

˘
θpω, κq´1

››Πω
zΠ˘f

››
L2

ξ

`
››Π´ω

zΠ˘f
››
L2

ξ

À }f}L2
x
.

Taking the sup over ω R 2κ then gives (70).

On the other hand, (ii) follows directly from Proposition 8.7 (with ψspt, xq “ ρp t
T

qU˘ptqf and bspt, xq “
1r0,1spsq) and Lemma 3.2. �
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Finally, we need to be able to commute the projections C˘
!α2λ

and the time cutoff ρp t
T

q.

Lemma 8.9. Let ρ P C8
0 pRq and T ą 0. If u P F˘

λ then

´ ÿ

κPCα

››R˘
κ,α2λ

Π˘
`
ρp t

T
qu
˘››2

PW´pκq

¯ 1

2 À
´ ÿ

κPCα

››ρp t
T

qR˘
κ,α2λ

Π˘u
››2
PW´pκq

¯ 1

2 ` pαλqn´1

2 }u}
F

`
λ

(72)

with constant independent of T .

Proof. The idea is to decompose u “ C˘
!α2λ

u ` C˘
Áα2λ

u into a component close to the cone, and a

component far from the cone. For the close cone term, after an application of Lemma 3.14 to dispose of

the outer multiplier, we deduce that

´ ÿ

κPCα

››R˘
κ,α2λ

Π˘
`
ρp t

T
qC˘

!α2λ
u
˘››2

PW´pκq

¯ 1

2 “
´ ÿ

κPCα

››C˘
!α2λ

`
ρp t

T
qΠ˘R

˘
κ,α2λ

u
˘››2

PW´pκq

¯ 1

2

À
´ ÿ

κPCα

››ρp t
T

qR˘
κ,α2λ

Π˘u
››2
PW´pκq

¯ 1

2

which gives the first term on the righthand side of (72). On the other hand, for the far cone term, an

application of the Xs,b estimate in Proposition 8.7 together with the L2
x orthogonality of the R˘

κ,α2λ

multipliers gives

´ ÿ

κPCα

››R˘
κ,α2λ

Π˘
`
ρp t

T
qC˘

Áα2λ
u
˘››2

PW´pκq

¯ 1

2 À pαλqn´1

2

´ ÿ

κPCα

››R˘
κ,α2λ

Π˘
`
ρp t

T
qC˘

Áα2λ
u
˘››2

9X
1

2
,1

`

¯ 1

2

À pαλqn´1

2

››Π˘C
˘
!α2λ

`
ρp t

T
qC˘

Áα2λ
u
˘››

9X
1

2
,1

`

À pαλqn´1

2 pα2λq 1

2

››ρp t
T

qΠ˘C
˘
Áα2λ

u
››
L2

t,x

À pαλqn´1

2 }ρ}L8pα2λq 1

2 }C˘
Áα2λ

Π˘u}L2

t,x

À pαλqn´1

2 }u}
F

`
λ

where the last inequality followed from (40).

�

8.4. Proof of Theorem 4.3. We now turn to the proof of Theorem 4.3.

Proof of Theorem 4.3. The proof proceeds by essentially reducing the problem to the homogeneous case,

at which point we may apply Corollary 8.8. This type of argument is fairly straightforward if we are in

L1
tL

2
x or Xs,b, but is more involved in the null frame case as we need to use the Duhamel formula in null

coordinates, together with the decomposition into free waves contained in Lemma 8.3.

We begin by noting that after a reflection in the x variable, we may assume ˘ “ `. An application of

Corollary 8.2 gives the orthogonality bound19

´ ÿ

κPCα

}R˘
κ,α2λ

Π˘F }2
N

`
λ

¯ 1

2 À }F }
N

`
λ
.

19This follows by decomposing F into atoms. For energy and 9X
´ 1

2
,1

` atoms, we can just use the orthogonality in L2
x of

R˘
κ . For NF`

λ
atoms we just use (ii) in Corollary 8.2.
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Consequently, after an application of the homogeneous case Corollary 8.8 (together with Lemma 8.9 in

the PW´pκq case) it suffices to prove

}u}rNF`s˚pκq À
››pBt ` σ ¨ ∇qR˘

κ,α2λ
Π˘u

››
N

`
λ

and
››ρp t

T
qu
››
PW´pκq À pαλqn´1

2

››pBt ` σ ¨ ∇qR˘
κ,α2λ

Π˘u
››
N

`
λ

If we now decompose pBt ` σ ¨ ∇qR˘
κ,α2λ

Π˘u into atoms, we reduce to showing that

}u}rNF`s˚pκq ` pαλq´ n´1

2

››ρp t
T

qu
››
PW´pκq À 1 (73)

where u is the solution to pBt ` σ ¨ ∇qu “ F with up0q “ 0, and F “ Π˘F is a N`
λ atom. Note that we

may assume supp ĆΠ˘F Ă 6A
˘
λ,αpκq. We now separately consider the three possible cases; F is an energy

atom, F is a 9X
´ 1

2
,1

` atom, or F is a NF`
λ atom.

Case 1: F is a energy atom. If we write u using the Duhamel formula we have

upt, xq “
ż t

0

U`pt ´ sqF psqds.

Note that for each fixed s, the ξ support of U`pt ´ sqF psq is contained in the set 6A
˘
λ pκq. Therefore, as

} ¨ }rNF`s˚pκq satisfies Minkowski’s inequality, we have by Corollary 8.8 (for a fixed cap)

››u
››

rNF`s˚pκq À
ż

R

››1r0,T spsqU`pt ´ sqF psq
‰››

rNF`s˚pκqds

À }F }L1

tL
2
x

ď 1.

Similarly, an application of Proposition 8.7 followed by Lemma 3.2 gives

››ρp t
T

qu
››
PW´pκq “

››››
ż

R

1r0,T spsq ρp t
T

qU`pt ´ sqF psqds
››››
PW´pκq

À pαλqn´1

2

ż

R

››ρp t
T

qU`pt ´ sqF psq
››

9X
1

2
,1

`

ds

À pαλqn´1

2 }F }L1

tL
2
x

ď 1

Therefore (73) follows in the case where F is a L1
tL

2
x atom.

Case 2: F is a X
´ 1

2
,1

` atom. Assume F is a 9X
´ 1

2
,1

` atom, thus

supp rF “ supp ĆΠ˘F Ă
 ˇ̌
τ ˘ |ξ|

ˇ̌
« d

(
X 6A

˘
λ,αpκq

and }F }L2

t,x
ď d

1

2 . Note that an application of Lemma 3.1 together with Corollary 8.8 shows that,

provided v P L2
t,x with supp zΠ˘v Ă 6A

˘
λ p3

2
κq, we have

}v}rNF`s˚pκq À }v}
9X
1

2
,1

`

. (74)

Therefore, by writing

u “ Π˘u “ pBt ˘ i|∇|q´1Π˘F ´ U`ptq
“
pBt ˘ i|∇|q´1Π˘F p0q

‰
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we have by Corollary 8.8 and (74)

}u}rNF`s˚pκq ď
››pBt ˘ i|∇|q´1Π˘F

››
rNF`s˚pκq `

››U`ptq
“
pBt ˘ i|∇|q´1Π˘F p0q

‰››
rNF`s˚pκq

À
››pBt ˘ i|∇|q´1Π˘F

››
9X
1

2
,1

`

`
››pBt ˘ i|∇|q´1Π˘F

››
L8

t L2
x

À d´ 1

2 }F }L2
t,x

ď 1

as required. The PW´pκq estimate is similar, we just replace the estimate (74) with an application of

Proposition 8.7 (where bspt, xq “ 1r0,1spsq, ψspt, xq “ pBt ˘ i|∇|q´1Π˘F , and κ “ κ̄).

Case 3: F is a NF`
λ atom. By definition, we have a decomposition F “ ř

κ̄PCβ
Fκ̄ where we may

assume Fκ̄ “ Π˘Fκ,

supp ĆΠ˘F κ̄ Ă 6A
˘
λ,αpκq XA˘

λ,βpκ̄q

and

´ÿ

κ̄

}Fκ̄}2NF`pκ̄q

¯ 1

2 ď 1.

Define uκ̄ as the solution to pBt ` σ ¨ ∇quκ̄ “ Fκ̄ with uκ̄p0q “ 0. Assume for the moment that we have

the cap localised estimates

››uκ̄
››

rNF`s˚pκq À }Fκ̄}NF`pκ̄q (75)

and

››ρp t
T

quκ̄
››
PW´pκq À pmintα, βuλqn´1

2 }Fκ̄}NF`pκ̄q. (76)

Then, writing

u “
ÿ

κ̄PCβ

uκ̄ “
ÿ

κ̄PCβ
6κXκ̄ “∅

uκ̄

and using the orthogonality given by piq in Corollary 8.2, together with (75) we deduce that

}u}rNF`s˚pκq À
ˆ ÿ

κ̄PCβ

}uκ̄}2rNF`s˚pκq

˙ 1

2

À
ˆ ÿ

κ̄PCβ

}Fκ̄}2NF`pκ̄q

˙ 1

2

ď 1

as required. For the PW´pκq estimate, the argument is slightly different as we don’t have any orthogo-

nality in the κ̄ sum due to the fact that the PW´ norm is built up of L8
xω

terms. This is not a problem

in the case α À β as the sum only contains Op1q terms. On the other hand, if α " β, then the estimate

(76) has a much better constant than what is needed, since we want to end up with pαλqn´1

2 and have

pβλqn´1

2 . Thus, in place of any orthogonality argument, we use the triangle inequality to reduce to a

single cap κ̄, followed by Holder to regain the square sum over the caps κ̄. In more detail, from the cap
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localised estimate (76), and an application of Holder in the κ̄ sum, we obtain

››ρp t
T

qu
››
PW´pκq À

ÿ

κ̄PCβ
6κXκ̄ “∅

››ρp t
T

quκ̄
››
PW´pκq

À pmintα, βuλqn´1

2

ÿ

κ̄PCβ
6κXκ̄“∅

››Fκ̄

››
NF`pκ̄q

À pmintα, βuλqn´1

2

´ α

mintα, βu
¯n´1

2

ˆ ÿ

κ̄PCβ

››Fκ̄

››2
NF`pκ̄q

˙ 1

2

À pαλqn´1

2

where we used the fact that, for a fixed κ P Cα, #
 
κ̄ P Cβ | 6κX κ̄ “ ∅

(
À p α

mintα,βuqn´1.

It remains to proof the cap localised estimates (75) and (76). The atomic definition of NF`pκ̄q, shows
that it is enough to consider the case where Fκ̄ is an atom, in other words there exists ω R 2κ̄ such that

››ΠωFκ̄}L1

tω
L2

xω
` θpω, κ̄q´1

››Π´ωFκ̄

››
L1

tω
L2

xω

ď 1

and (by Lemma 3.14) we may assume that Fκ̄ “ Π˘Fκ̄ and supp ĆΠ˘F κ̄ Ă 6A
˘
λ,αpκq X 6A

˘
λ,βpκ̄q. As uκ̄

satisfies pBt ` σ ¨ ∇quκ̄ “ Fκ̄ with uκ̄p0q “ 0, we have

uκ̄ “ Π˘E
`
ω ˚ Fκ̄ ´ Π˘U`ptq

“
E`

ω ˚ Fκ̄p0q
‰
.

The homogeneous term can be controlled by20 Corollary 8.8 followed by Corollary 8.5. For the E`
ω ˚ Fκ̄

term, we use an application of Lemma 8.3 to write

E`
ω ˚ Fκ̄ “

ż tω

´8
ψada` Π´ωG

where ψa is a homogeneous solution with supp zΠ˘ψa Ă 6A
˘
λ p3

2
κq X 6A

˘
λ p3

2
κ̄q, supp rG “ supp rFκ̄, and

we have the bound
ż

R

}ψa}L8
t L2

x
da`

››G
››

9X
1

2
,1

`

À
››ΠωFκ̄

››
L1

tω
L2

xω

` θpω, κq´1
››Π´ωFκ̄

››
L1

tω
L2

xω

ď 1.

(77)

The integral term is easy to control via Proposition 8.7 and Corollary 8.8. For instance, using (77) and

Corollary 8.8 we have

›››
ż tω

´8
ψada

›››
rNF`spκq

ď
ż

R

}ψa}rNF`s˚pκqda À
ż

R

}ψa}L8
t L2

x
da À 1.

Similarly, using Proposition 8.7 and Lemma 3.2, gives

›››ρp t
T

q
ż tω

´8
ψada

›››
PW´pκq

À pmintα, βuλqn´1

2

ż

R

››ρp t
T

qψa

››
9X
1

2
,1

`

da

À pmintα, βuλqn´1

2

ż

R

}ψa}L8
t L2

x
da À pmintα, βuλqn´1

2 .

Finally, the estimate for the G term simply follows from (74) (in the rNF`s˚pκq case) and Proposition 8.7

(in the PW´pκq case). This completes the proof of the NF`
λ case, and hence Theorem 4.3 follows. �

20Note that supp ČrE`
ω ˚ F κ̄s “ supp rFκ̄ Ă 6A

˘
λ,αpκq X 6A

˘
λ,βpκ̄q.



GLOBAL WELL-POSEDNESS FOR THE MASSLESS CUBIC DIRAC EQUATION 59

9. Strichartz Type Estimates

In this section our aim is to prove Theorem 4.1, i.e. we want to show that the norm F˘
λ controls the

Strichartz norms Lq
tL

r
x. The observation that it is possible to control the Strichartz norms by the null

frame type norms was first observed by Sterbenz-Tataru in [43, Lemma 5.8] in work related to the wave

maps equation. The proof use a version of the Xs,b spaces, with the derivative in the “time” direction,

replaced with spaces of bounded variation. Spaces of this type have been used in the work of Koch-Tataru

[26], and Hadac-Herr-Koch [19]. The crucial point is an atomic decomposition contained in [26, Lemma

6.4]. The argument presented below is based heavily on the arguments used by Sterbenz-Tataru in [43],

although it has been slightly simplified, compressed, and adapted to our context.

9.1. The Spaces V p. We define the p-variation of a function u : R Ñ L2
x as

|u|pV p “ sup
ptkqPZ

ÿ

kPZ

››uptk`1q ´ uptkq
››p
L2

x

where Z “ tptkqkPZ | tk ď tk`1u denotes the set of all increasing sequences on R. If |u|V p ă 8, then

u has at most countable discontinuities, and its left and right limits exist everywhere. In particular

limtÑ˘8 uptq exists in L2
x. These properties are all classical results, but for completeness we sketch the

proof here.

Lemma 9.1. Let 0 ă p ă 8 and u : R Ñ L2
xpRnq with |u|V p ă 8. Then u has left and right limits

everywhere, and in particular uptq converges to some function f˘8 P L2
xpRnq as t Ñ ˘8.

Proof. Let

ρptq “ sup
!N´1ÿ

k“1

}uptk`1q ´ uptkq}p
L2

x

ˇ̌
ˇ ´ 8 ă t1 ă t2 ă ... ă tN “ t

)
.

We claim that ρ is increasing, and for s ă t we have the inequality

}uptq ´ upsq}p
L2

x
ď ρptq ´ ρpsq. (78)

This follows by observing that we have a sequence ´8 ă s1 ă ... ă sN “ s such that

ρpsq ď ǫ`
N´1ÿ

k“1

}upsk`1q ´ upskq}p
L2

x

and consequently

}uptq ´ upsq}p
L2

x
ď

N´1ÿ

k“1

}upsk`1q ´ upskq}p
L2

x
` }uptq ´ upsq}p

L2
x

´
´N´1ÿ

k“1

}upsk`1q ´ upskq}p
L2

x

¯

ď ρptq ´
`
ρpsq ´ ǫ

˘
“ ρptq ´ ρpsq ` ǫ

since this is true for every ǫ ą 0, we obtain (78) and consequently ρ must be increasing.

Now as ρ is increasing and bounded (we clearly have 0 ď ρ ď |u|pV p), its left and right limits must

exist everywhere. Hence, given any sequence tk Ñ t from below, ρptkq forms a Cauchy sequence in R,

which implies by (78), that uptkq also forms a Cauchy sequence. Thus uptkq must converge in L2, and

consequently, must have limits from the left and right everywhere. �
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We now define V p to be the set of all right continuous functions from R into L2
x with norm

}u}pV p “ }u}p
L8

t L2
x

` |u|pV p ,

the L8
t term is needed to ensure that } ¨ }V p is a norm. The key property of the V p spaces that we require

is the following.

Lemma 9.2 (Lemma 6.4 in [26]). Assume u P V p. Then we have a decomposition u “
ř8

j“1 vj, where

the sum converges in L8
t L

2
x, and moreover

(i) For each j, we have a partition Ij of R, into intervals

I0 “
`

´ 8, t
pjq
0

˘
, I1 “

“
t

pjq
0 , t

pjq
1

˘
, ... , IN “

“
t

pjq
N´1,8

˘
,

and we can write

vjptq “
ÿ

IkPIj

1Ikptqf pjq
k

for functions f
pjq
k P L2

x.

(ii) We have the bounds

#Ij À 2pj , sup
k

}f pjq
k }L2

x
À 2´j}u}V p .

Proof. The proof follows from minor modifications of the argument in Lemma 6.4 in [26]. �

Recall that U˘ptq denotes the forward solution operator for pBt ˘σ ¨∇qu “ 0 with data at t “ 0. With

this notation in hand, the previous lemma then has the following important corollary.

Corollary 9.3. Let 2 ď q, r ď 8 with q ą 2 and 1
q

` n´1
2r

ď n´1
4

. Assume U˘p´tqu P V 2 with

supp pu Ă t|ξ| « λu. Let M denote a spatial Fourier multiplier with matrix valued symbol mpξq such that

|mpξq| À δ for all ξ P supp pu. Then

}Mu}Lq
tL

r
x

À δλnp 1

2
´ 1

r
q´ 1

q }U˘p´tqu}V 2 .

Proof. Since U˘p´tqu P V 2, an application of Lemma 9.2 gives a decomposition

u “ U˘ptqU˘p´tqu “
ÿ

j

U˘ptqvj

with vj satisfying the properties in piq and piiq in Lemma 9.2. We may assume that supp pvj “ supp pu,
and hence the same holds for the L2

x functions f
pjq
k making up the sum in vj . Then recalling that

U˘ptq “ e˘it|∇|Π` ` e¯it|∇|Π´

we obtain from Lemma 9.2

}Mu}Lq
tL

r
x

ď
ÿ

j

}MU˘ptqvj}Lq
tL

r
x

ď
ÿ

j

´ ÿ

IkPIj

››e˘it|∇|`MΠ`f
pjq
k

˘››q
L

q
tL

r
xpIkˆRnq `

››e¯it|∇|`MΠ´f
pjq
k

˘››q
L

q
tL

r
xpIkˆRnq

¯ 1

q

À λnp 1

2
´ 1

r
q´ 1

q

ÿ

j

´ ÿ

IkPIj

`
}MΠ`f

pjq
k }L2

x
` }MΠ`f

pjq
k }L2

x

˘q¯ 1

q

ď δλnp 1

2
´ 1

r
q´ 1

q

ÿ

j

´ ÿ

IkPIj

››f pjq
k

››q
L2

x

¯ 1

q

.
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Now using the properties supk }f pjq
k }L2

x
À 2´j}U˘p´tqu}V 2 and #Ij À 22j we obtain

ÿ

j

´ ÿ

IkPIj

››f pjq
k

››q
L2

x

¯ 1

q À }U˘p´tqu}V 2

ÿ

j

2´j
`
22j

˘ 1

q À }U˘p´tqu}V 2

where we needed q ą 2 to ensure that the sum converges. �

Remark 9.4. If we restrict the support of u further to a ball of radius µ in the annulus t|ξ| « λu, i.e.
assume that pu Ă t|ξ ´ ξ˚| ď µu for some µ ď λ and |ξ˚| « λ, then the refined Strichartz estimate of

Klainerman-Tataru [25] implies that

}Mu}Lq
tL

r
x

À δ
´µ
λ

¯np 1

2
´ 1

r
q´ 2

q

λnp 1

2
´ 1

r
q´ 1

q }U˘p´tqu}V 2 .

We have no need for this additional refinement here, but it may prove useful elsewhere.

The final result we need for the V 2 spaces is the crucial fact that our iteration norm F˘
λ controls V 2,

this theorem (together with the previous corollary) is the key reason why the V 2 norms are so useful.

Theorem 9.5. Let u P F˘
λ . Then we have

}U˘p´tqu}V 2 À }u}F˘
λ
.

Proof. As usual, by a reflection, we may assume that ˘ “ `. Let F “ pBt ` σ ¨ ∇qu, by the definition of

F˘
λ , it is enough to show that

ÿ

jPZ
}U`p´tj`1quptj`1q ´ U`p´tjquptjq}2L2

x
À }F }2

N
`
λ

with the constant independent of the sequence ptjqjPZ P Z. If we observe that

U`p´tj`1quptj`1q ´ U`p´tjquptjq “
ż tj`1

tj

U`p´sqF psqds

“
ż tj`1

tj

U`p´sq1IjF psqds

“
ż tj`1

0

U`p´sq1IjF psqds ´
ż tj

0

U`p´sq1IjF psqds

where Ij “ rtj , tj`1q, then we have

ÿ

j

}U`p´tjquptjq ´ U`p´tj`1quptj`1q}2L2
x

“
ÿ

j

›››
ż tj`1

0

U`p´sq1IjF psqds ´
ż tj

0

U`p´sq1IjF psqds
›››
2

L2
x

ď 2
ÿ

j

›››
ż t

0

U`p´sq1IjF psqds
›››
2

L8
t L2

x

An application of Corollary 8.6 shows that
›››
ż t

0

U`p´sq1IjF psqds
›››
L8

t L2
x

“
›››
ż t

0

U`pt´ sq1IjF psqds
›››
L8

t L2
x

À }1IjF }
N

`
λ

and so we reduce to proving the inequality
´ÿ

j

}1IjF }2
N

`
λ

¯ 1

2 À }F }N`
λ
. (79)

By the atomic definition of N`
λ , it suffices to consider separately the cases where F is a L1

tL
2
x atom, F

is a 9X
´ 1

2
,1

` atom, and F is a NF`
λ atom.
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Case 1: F is a L1
tL

2
x atom. This is the easiest case as we in fact have the stronger estimate

ÿ

j

}1IjF }
N

`
λ

ď
ÿ

j

}1IjF }L1

tL
2
x

ď }F }L1

tL
2
x
.

Case 2: F is a 9X
´ 1

2
,1

` atom. By definition, there exists d P 2Z such that

supp ĆΠ˘F Ă
 

|ξ| « λ, |τ ˘ |ξ| « d
(

and }F } ď d´ 1

2 . We start by decomposing 1IjF into close cone and far cone terms, and estimate

}1IjF }N`
λ

ď
››C`

!d

`
1IjF

˘››
N

`
λ

`
››C`

Ád

`
1IjF

˘››
N

`
λ

ď
››C`

!d

`
1IjF

˘››
L1

tL
2
x

`
ÿ

d1Ád

pd1q´ 1

2

››C`
d1

`
1IjF

˘››
L2

t,x

(80)

À
››C`

!d

`
1IjF

˘››
L1

tL
2
x

` d´ 1

2

››1IjF
››
L2

t,x

. (81)

The second term is easy to control by simply summing up in j. On the other hand, for the first term in

(81) the argument is more complicated. By rescaling21 it is enough to consider the case d “ 1. We start

by decomposing the intervals Ij into those intervals which are smaller than 1, and those that are larger

than 1, i.e. we write tIju “ tKju Y tK 1
ju where |Kj| ă 1 and |K 1

j| ě 1. For the intervals smaller than 1,

we can simply discard the outer multipliers, apply Holder in time, and sum up in j
ÿ

j

››C`
!1

`
1Kj

F
˘››2

L1

tL
2
x

À
ÿ

j

››1Kj
F
››2
L1

tL
2
x

ď
ÿ

j

}1Kj
F
››2
L2

t,x

ď }F
››2
L2

t,x

.

To deal with the intervals greater than 1, we note that since |τ ´ τ 1| “ |τ ˘ |ξ| ´ pτ 1 ˘ |ξ|q|, for anyˇ̌
τ ˘ |ξ|

ˇ̌
! 1 we have the identity

Č`
Π˘p1K1

j
F q

˘
pτ, ξq “

ż

|τ´τ 1|«1

y1K1
j
pτ ´ τ 1qĆΠ˘F pτ 1, ξqdτ 1 “

ż

R

pρjpτ ´ τ 1q rF pτ 1, ξqdτ 1 (82)

where pρjpτq “ σpτqy1Kj
pτq and σ has support in the set t|τ | « 1u. Now, as σpτq

τ
is smooth and bounded,

we can use integration by parts to deduce that for any N ą 0

ρjptq “ 1

2π

ż

R

σpτq y1K1
j
pτqeitτdτ “ 1

2π

ż

R

iσpτq
τ

´
eiτpt´bjq ´ eiτpt´ajq

¯
dτ À 1

p1 ` |t ´ bj|qN ` 1

p1 ` |t ´ aj |qN

where we let K 1
j “ raj , bjq. Hence, applying Holder in t and assuming N large,

ÿ

j

››C`
!1

`
1K1

j
F
˘››2

L1

tL
2
x

“
ÿ

j

››C`
!1

`
ρjF

˘››2
L1

tL
2
x

À
ÿ

j

››ρjF
››2
L1

tL
2
x

À
ÿ

j

›››|ρj | 1

2 }F }L2
x

›››
2

L2

t

À
›››}F }L2

t,x

ÿ

j

´ 1

p1 ` |t´ bj |qN
2

` 1

p1 ` |t´ aj |qN
2

¯›››
2

L2

t

À }F }L2

t,x

where the sum converges since |K 1
j | ě 1 ñ |aj ´ aj`1|, |bj ´ bj`1| ě 1.

21I.e. use the identity

C˘
!d

p1IjC
˘
d
F
˘
pt, xq “ dn`1C˘

!1
p1dIjC

˘
1
Fd

˘
pdt, dxq

where ĂFdpτ, ξq “ rF pdτ, dξq. Note that the rescaled intervals dIj satisfy the same properties as the original intervals...
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Case 3: F a NF`
λ atom. By definition, we have α ! 1 and a decomposition F “

ř
κPCα

Fκ with

supp ČΠ˘Fκ Ă A˘
λ,αpκq and

ř
κPCα

}Fκ}2
NF`pκq ď 1. Our aim is to deduce that

ÿ

j

}1IjF }2
N

`
λ

À 1.

To this end we decompose 1IjF into regions close to the cone, and far from the cone

1IjF “
ÿ

˘

´
Π˘C

˘
!α2λ

`
1IjF

˘
` Π˘C

˘
Áα2λ

`
1IjF

˘¯
. (83)

For the close cone case, since the spatial Fourier projections commute with 1Ij ptq, Π˘C
˘
!α2λ

`
1IjF

˘
forms

a (perhaps scalar multiple) of a NF`
λ atom. Therefore we can write

›››
ÿ

˘
Π˘C

˘
!α2λ

`
1IjF

˘›››
N

`
λ

ď
´ ÿ

κPCα

››ÿ

˘
Π˘C

˘
!α2λ

`
1IjFκ

˘››2
NF`pκq

¯ 1

2

À
´ ÿ

κPCα

››1IjFκ

››2
NF`pκq

¯ 1

2

where we used Lemma 3.14 to dispose of the outer multipliers. Since we have an ℓ2 sum in j, we can

swap the j and κ summations, and reduce to proving the inequality

ÿ

j

}1IjFκ}2NF`pκq À }Fκ}2NF`pκq. (84)

To this end, we note that for every ω R 2κ, we have

ÿ

j

}1IjG}2NF`pκq ď
ÿ

j

`
}1IjΠωG}L1

tω
L2

xω
` θpω, κq´1}1IjΠ´ωG}L1

tω
L2

xω

˘2

À
›››
´ÿ

j

1Ij

¯ 1

2

ΠωG
›››
2

L1
tω

L2
xω

` θpω, κq´2
›››
´ÿ

j

1Ij

¯ 1

2

Π´ωG
›››
2

L1
tω

L2
xω

“ }ΠωG}2L1

tω
L2

xω

` θpω, κq´2}Π´ωG}2L1

tω
L2

xω

.

Taking infimum over ω R 2κ, and then applying the previous inequality to NF`pκq atoms, then gives

(84).

For the remaining far cone term in (83), if we put the left hand side into X
´ 1

2
,1

λ,` , and use Lemma 3.8

to control the resulting L2
t,x norm of the atom F , we deduce that

ÿ

j

››ÿ

˘
Π˘C

˘
Áα2λ

`
1IjF

˘››2
N

`
λ

ď
ÿ

j

´ÿ

˘

ÿ

dÁα2λ

d´ 1

2

››Π˘C
˘
d

`
1IjF

˘››
L2

t,x

¯2

À pα2λq´1
ÿ

j

}1IjF }2L2

t,x

À pα2λq´1}F }2L2
t,x

À 1

as required. �

By repeating the proof of the previous theorem, we have the following corollary which will prove useful

when we come to the proof of (ii) in Theorem 3.9.

Corollary 9.6. Let ρ P 9B
1

2

2,8pRq X L8pRq and F P N˘
λ . Then

}ρptqF }
N

˘
λ

À
´

}ρ}
9B
1

2

2,8pRq
` }ρ}L8pRq

¯
}F }

N
˘
λ
.
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Similarly, if u P G˘
λ , then

λ´ n`1

4n }ρptqu}Y˘ À
´

}ρ}L8pRq ` λ´ n`1

4n }Btρ}
L

4n
3n´1 pRq

¯
}u}

G
˘
λ
.

Proof. Fix ˘ “ `, the ˘ “ ´ case follows by a reflection in x. As usual, we decompose F into atoms. If

F is a L1
tL

2
x atom, we clearly have

}ρptqF }N˘
λ

ď }ρptqF }L1

tL
2
x

ď }ρ}L8
t
.

On the other hand, if F is a 9X
´ 1

2
,1

` atom with supp ĆΠ˘F Ă
 ˇ̌
τ ˘ |ξ|

ˇ̌
« d

(
, then from (81) we have

}ρptqF }
N

˘
λ

À }C˘
!d

`
ρptqF

˘››
L1

tL
2
x

` d´ 1

2 }ρptqF }L2

t,x
ď
››C˘

!d

`
ρptqF

˘››
L1

tL
2
x

` }ρ}L8
t pRq.

To control the first term we use the identity (82) to deduce that

››C˘
!d

`
ρptqF

˘››
L1

tL
2
x

À }pρ}L2
τp|τ |«dq}F }L2

t,x
ď d

1

2 }pρ}L2
τp|τ |«dq ď }ρ}

9B
1

2

2,8

and hence the required estimate is true whenever F is a 9X
1

2
,1

` atom. Finally, suppose F “
ř

κPCα
Fκ is a

NF`
λ atom. As in the NF`

λ case above, we write

ρptqF “ C
`
!α2λ

pρptqF q ` C
`
Áα2λ

pρptqF q

The first term is a scalar multiple of a NF`
λ atom, and hence via Lemma 3.14 we obtain

››C`
!α2λ

pρptqF q
››
N

`
λ

ď
ˆÿ

κ

››C`
!α2λ

pρptqF q
››2
NF`pκq

˙ 1

2

À
ˆÿ

κ

››ρptqF
››2
NF`pκq

˙ 1

2

ď }ρ}L8
x

where we made use of the obvious bound }ρFκ}NF`pκq ď }ρ}L8
t

}Fκ}NF`pκq. For the remaining term, we

estimate N`
λ by 9X

1

2
,1

` , and use the L2
t,x bound for Null Frame atoms in Lemma 3.8 to deduce

››C`
Áα2λ

pρptqF q
››
N

`
λ

À pα2λq´ 1

2 }ρptqF }L2

t,x
ď pα2λq´ 1

2 }ρ}L8
t

}F }L2

t,x
À }ρ}L8

t
.

It only remains to prove the Y˘ estimate. We again make use of a similar argument to that used to

control the 9X
´ 1

2
,1

˘ case above. We start by observing that

}ρptqu}Y˘ ď sup
d

d
››C˘

d

`
ρptqC˘

Ádu
˘››

L
4n

3n´1

t L2
x

` sup
d

d
››C˘

d

`
ρptqC˘

!du
˘››

L
4n

3n´1

t L2
x

.

To control the first term, we discard the outer multiplier and put ρ P L8pRq

sup
d

d
››C˘

d

`
ρptqC˘

Ádu
˘››

L
4n

3n´1

t L2
x

À }ρ}L8

ÿ

d1Ád

d}C˘
d1u}

L
4n

3n´1

t L2
x

À }ρ}L8}u}Y˘

ÿ

d1Ád

d

d1 À λ
n`1

4n }ρ}L8}u}
G

˘
λ
.

For the second term, the identity (82) allows us to replace ρ with P«dρ where P«d restricts the Fourier

support of ρ to the region τ « d. We now use some standard Harmonic analysis to deduce that

sup
d

d
››C˘

d

`
ρptqC˘

!du
˘››

L
4n

3n´1

t L2
x

À }u}L8
t L2

x
sup
d

d}P«dρ}
L

4n
3n´1

t

À }Btρ}
L

4n
3n´1

t

}u}G˘
λ

as required.

�
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9.2. Proof of Theorem 4.1. We now come to the proof of Theorem 4.1.

Proof of Theorem 4.1. By Corollary 9.3 and Theorem 9.5, it is enough to show that the C˘
ďd multipliers

are disposable in V 2. If we use the boundedness of C˘
ďd on L8

t L
2
x (which follows from (iii) in Lemma

3.14), it is enough to show that |C˘
ďdu|V 2 À |u|V 2 . To this end, by noting the identity

{C˘
ďduptq “

ż

R

Φ0

`
τ˘|ξ|

d

˘
rupτ, ξqeitτ dτ “

ż

R

pΦ0paqe˘i
a
d

|ξ|pupt ` a
d
, ξq da

we have for any sequence ptkq P Z,

´ÿ

k

››C˘
ďduptk`1q ´ C˘

ďduptkq
››2
L2

x

¯ 1

2 ď
ż

R

ˇ̌pΦ0paq
ˇ̌´ÿ

k

››puptk`1 ` a
d

q ´ puptk ` a
d

˘››2
L2

ξ

¯ 1

2

da

ď
ż

R

ˇ̌xΦ0paq
ˇ̌
|u|V 2da À |u|V 2 .

Taking the sup over ptkq P Z, then gives |C˘
ďdu|V 2 À |u|V 2 as required. �

10. The Energy Inequality

Here we give the proof of Theorem 3.9.

Proof of Theorem 3.9. (i) We start by noting that F˘
λ is a Banach space, since if uj P F˘

λ is a Cauchy

sequence with respect to } ¨ }
F

˘
λ
, then it is Cauchy with respect to } ¨ }L8

t L2
x
and hence converges to some

u P L8
t L

2
x with supp u Ă t|ξ| « λu. On the other hand, as N˘

λ is a Banach space, there exists F P N˘
λ

such that pBt ˘ σ ¨ ∇quj converges to F (with respect to } ¨ }
N

˘
λ
). Consequently, pBt ˘ σ ¨ ∇quj converges

to F in S 1, and hence by uniqueness of limits, we must have pBt ˘ σ ¨ ∇qu “ F P N˘
λ . Therefore u P F˘

λ

as required and so F˘
λ is a Banach space.

To prove F s,˘ is a Banach space follows a similar argument, namely, if we have a Cauchy sequence in

F s,˘, then it is also Cauchy in L8
t

9Hs
x and hence converges to some u P L8

t
9Hs
x. By uniqueness of limits,

and the fact that F˘
λ and ℓ2 are Banach spaces, we then deduce that u P F s,˘ as required. Thus F s,˘ is

a Banach space.

To prove the energy inequality for F s,˘, we clearly have

}u}F s,˘ ď
ˆÿ

λ

λ2s}Pλu}2L8
t L2

x

˙ 1

2

` }pBt ˘ σ ¨ ∇qu}N s,˘

thus it is enough to prove that if pBt ˘ σ ¨ ∇qu “ F with up0q “ 0, then

}Pλu}L8
t L2

x
À }PλF }

N
˘
λ

but this is just Corollary 8.6. Similarly, to the prove the energy inequality for Gs,˘, again using Corollary

8.6, it suffices to show that

d}C˘
d u}

L
4n

3n´1

t L2
x

À }pBt ˘ i|∇|qu}
L

4n
3n´1

t L2
x

.

But this is straightforward by writing

{`C˘
d u

˘
pt, ξq “ e¯it|ξ|

2π

ż

R

Φp τ
d

q rupτ ¯ |ξ|, ξqeiτt dτ “ e¯it|ξ|

d

“
ρd ˚R pvpξq

‰
ptq
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where pρdpτq “ d
τ
Φp τ

d
q P C8

0 and rvpτ, ξq “ τrupτ ¯ |ξ|, ξq. If we now apply Plancheral, Holder, and a

change of variables, we deduce that

d}C˘
d u}

L
4n

3n´1

t L2
x

À }ρd}L1

tpRq}pv}
L

4n
3n´1

t L2

ξ

À }pBt ˘ |∇|qu}
L

4n
3n´1

t L2
x

as required.

(ii) Let φ P C8
0 . An application of Corollary 9.6 gives

››pBt ˘ σ ¨ ∇q
“
φptqu

‰››
N

˘
λ

ď
››φptqpBt ˘ σ ¨ ∇qu

››
N

˘
λ

` }pBtφqptqu
››
L1

tL
2
x

À
´

}φ}L8
t

` }φ}
9B
1

2

2,8

¯
}pBt ˘ σ ¨ ∇qu}

N
˘
λ

` }Btφ}L1
t
}u}L8

t L2
x

À
´

}φ}L8
t

` }φ}
9B
1

2

2,8

` }Btφ}L1

t

¯
}u}

F
˘
λ

and hence
››φptqu

››
F

˘
λ

À
´

}φ}L8
t

` }φ}
9B
1

2

2,8

` }Btφ}L1

t

¯
}u}F˘

λ
.

Applying this inequality with φptq “ ρp t
T

q and noting that }ρp t
T

q}
9B
1

2

2,8

« }ρptq}
9B
1

2

2,8

, we deduce that

}ρp t
T

qu}F˘
λ

À }u}F˘
λ

as required. The G˘
λ version follows from the F˘

λ estimate together with another

application of Corollary 9.6 to deduce that

λ´ n`1

4n

››ρp t
T

qu}Y˘ À
´

}ρ}L8
t

` λ´ n`1

4n T
3n´1

4n
´1}Btρ}

L
4n

3n´1

t

¯
}u}

G
˘
λ

À }u}
G

˘
λ

provided Tλ ě 1. Finally, the N˘
λ estimate follows by again applying Corollary 9.6 and noting that since

1p´1,1q P 9B
1

2

2,8, by rescaling we have

}1p´T,T qptq}
9B
1

2

2,8pRq
« }1p1,1qptq}

9B
1

2

2,8pRq
ă 8.

(iii) There are a number of ways to prove this, for instance it is possible to argue directly using the

definition of N˘
λ see [47, Prop 6.2]. Here we use an alternative argument based on Theorem 9.5. For

maps φ : R Ñ 9HspRnq we let

|φ|pV s,p “ sup
ptjqPZ

ÿ

j

}φptj`1q ´ φptjq}p
9Hs
.

Arguing as in Lemma 9.1, we deduce that if |φ|V s,2 ă 8, then there exists φ˘8 P 9Hs such that

limtÑ˘8 }φptq ´ φ˘8} 9Hs “ 0. In particular, the scattering result we require would follow by show-

ing that |U˘p´tqu|V s,2 ă 8. To this end note that an application of Theorem 9.5 together with the fact

that multiplication by ρptq commutes with the homogeneous solution operator U˘p´tq gives

ˇ̌
ρp t

T
qU˘p´tqu

ˇ̌
V s,2 À

››ρp t
T

qu
››
F s,˘ .

Consequently it is enough to show that |φ|V s,2 ď supT
ˇ̌
ρp t

T
qφ
ˇ̌
V s,2 . To this end, take any increasing

sequence ptjq P Z. Let N P N and choose T ą max|j|ďN`1 |tj |. Then
ÿ

|j|ďN

}φptj`1q ´ φptjq}29Hs “
ÿ

|j|ďN

}ρp tj`1

T
qφptj`1q ´ ρp tj

T
qφptjq}29Hs ď sup

Tą0

ˇ̌
ρp t

T
qφ
ˇ̌
V s,2 .

Hence letting N Ñ 8 and taking the sup over ptjq P Z, we get |φ|V s,2 ď supTą0 |ρp t
T

qφ|V s,2 as required.

�
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H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 917–941.

20. D. J. Kaup and A. C. Newell, On the Coleman correspondence and the solution of the massive Thirring model, Lett.

Nuovo Cimento (2) 20 (1977), no. 9, 325–331.

21. C. E. Kenig, G. Ponce, and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of

negative indices, Duke Math. J. 71 (1993), no. 1, 1–21.

22. S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math. J. 81 (1995), no. 1,

99–133 (1996), A celebration of John F. Nash, Jr.

23. S. Klainerman and I. Rodnianski, Bilinear estimates on curved space-times, J. Hyperbolic Differ. Equ. 2 (2005), no. 2,

279–291.

24. S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp.

Math. 4 (2002), no. 2, 223–295.

25. S. Klainerman and D. Tataru, On the optimal local regularity for Yang-Mills equations in R4`1, J. Amer. Math. Soc.

12 (1999), no. 1, 93–116.



68 NIKOLAOS BOURNAVEAS AND TIMOTHY CANDY

26. H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl.

Math. 58 (2005), no. 2, 217–284.

27. J. Krieger, Global regularity of wave maps from R
3`1 to surfaces, Comm. Math. Phys. 238 (2003), no. 1-2, 333–366.

28. , Null-form estimates and nonlinear waves, Adv. Differential Equations 8 (2003), no. 10, 1193–1236.

29. J. Krieger and W. Schlag, Concentration compactness for critical wave maps, EMS Monographs in Mathematics,

European Mathematical Society (EMS), Zürich, 2012.
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51. V. E. Zakharov and A. V. Mikhăılov, On the integrability of classical spinor models in two-dimensional space-time,

Comm. Math. Phys. 74 (1980), no. 1, 21–40.

Department of Mathematics, University of Edinburgh, Edinburgh EH9 3JE, United Kingdom

E-mail address: n.bournaveas@ed.ac.uk

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

E-mail address: t.candy@imperial.ac.uk


	1. Introduction
	2. Notation
	3. Function spaces
	4. Linear Estimates
	5. Bilinear Estimates
	6. Cubic Estimates
	7. Proof of Global Well-posedness
	8. Null Frame Bounds
	9. Strichartz Type Estimates
	10. The Energy Inequality
	References

