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Abstract 

Microgeographic adaptation occurs when the effects of directional selection persist despite gene 

flow. Traits and genetic loci under selection can then show adaptive divergence, against the 

backdrop of little differentiation at other traits or loci. How common such events are and how 

strong selection is that underlies them, remain open questions.  

Here, we discovered and analysed microgeographic patterns of genomic divergence in four 

European and Mediterranean conifers with widely differing life-history traits and ecological 

requirements (Abies alba MIll., Cedrus atlantica (Endl.) Manetti, Pinus halepensis Mill. and Pinus 

pinaster Aiton) by screening pairs geographically close forest stands sampled along steep ecological 

gradients. We inferred patterns of genomic divergence by applying a combination of divergence 

outlier detection methods, demographic modelling, Approximate Bayesian Computation inferences, 

and genomic annotation to genomic data. 

Surprisingly for such small geographical scales, we showed that selection is strong in all species but 

generally affects different loci in each. A clear signature of selection was systematically detected on 

a fraction of the genome, in the order of 0.1% to 1% of the loci depending on the species. The novel 

modelling method we designed for estimating selection coefficients showed that the 

microgeographic selection coefficient scaled by population size (Ns) was 2-30.  

Our results convincingly suggest that selection maintains within-population diversity at 

microgeographic scales in spatially heterogeneous environments. Such genetic diversity is likely to 

be a major reservoir of adaptive potential, helping populations to adapt under fluctuating 

environmental conditions. 



Introduction 

Many populations of long-lived, outcrossing species harbour large amounts of genetic variability 

(Hamrick & Godt, 1990; but see Vendramin et al. (2008) and Jaramillo-Correa et al. (2020) for 

contrasting cases). Most of this variability is likely to be effectively neutral and to be maintained 

because of large effective population sizes. However, some of these large populations expand over 

spatially heterogeneous environments. Under such conditions, microgeographic divergence (i.e., 

genetic and/or phenotypic divergence occurring within gene dispersal distance, Richardson et al., 

2014) may occur if selection is strong enough to overcome the homogenising effects of gene flow 

(Bulmer, 1972). There is increasing interest in the effect of microgeographic selection, as 

environmental conditions can be extremely variable at the local spatial scale. This heterogeneity can 

have a sizable selective effect on within-population divergence (Langin et al., 2015), and call for 

processes whereby divergence occurs or has occurred in the apparent absence of barriers to gene 

flow (“strong-selection-with-high-gene-flow” scenario, Sexton et al., 2014). This kind of pattern 

was observed repeatedly at different taxonomic scales. At one end of the spectrum lie cases of 

within-population divergence for multiple plant species (in Anthoxantum odoratum populations 

submitted to heavy metal pollution, Antonovics, 1968, 2006; in Agrostis tenuis under lead pollution, 

Bradshaw, 1960; in Arabidopsis lyrata on serpentine soils, Turner et al., 2010); at the other end of 

the spectrum lie the rare proven cases of sympatric speciation (in Howea palms on oceanic islands; 

Babik et al., 2009; Savolainen et al., 2006). In particular, multiple studies in forest tree species - 

from tropical to temperate and alpine environments - provide evidence in favour of 

microgeographic adaptation under high gene flow (Audigeos et al., 2013; Brousseau et al., 2013, 

2015, 2016; Eckert et al., 2015; Gauzere et al. 2020; Lobo et al., 2018; Mosca et al., 2016; 

Roschanski et al., 2016; Ruiz Daniels et al. 2019; for a review see Lind et al., 2017). This leads on 



to the following questions: (1) How common is microgeographic adaptive genetic divergence? (2) 

How strong is microgeographic selection? (3) What is the genome-wide architecture of the response 

to microgeographic selection? (4) How much overlap is there among species in the loci undergoing 

divergent selection?  

We addressed these issues using four conifer trees of the Pinaceae: the Alpine Abies alba Mill., the 

mountain Mediterranean Cedrus atlantica (Endl.) Manetti, the thermophilic Mediterranean Pinus 

halepensis Mill. and Atlantic Pinus pinaster Aiton as model systems. Conifers are long lived and 

genetically diverse. The species we chose display large, continuous populations. While showing 

different and contrasted ecological requirements, biogeographic coverage and demographic 

histories, they are often found locally across steep ecological gradients (e.g., precipitation for P. 

pinaster and P. halepensis, temperature for A. alba and P. halepensis, and soil composition and 

water availability for C. atlantica. The four selected species are significantly affected by the climate 

changes and it is expected that their adaptation will become increasingly challenged being unable to 

efficiently adjust to the warmer climates predicted for the next few years.  

This work relies on very general expectations on local adaptation of conifer tree populations 

experiencing contrasted environmental conditions at microgeographic scale. Conifer trees in general 

(with few exceptions) form large populations, which harbour large amounts of within-population 

genetic diversity, as previously stated, and they are outcrossing species with long distance gene 

flow capacities (Kremer et al. 2012). Therefore, sampling sites with highly contrasted 

environments, we assume that: (i) selection is not constrained by a lack of genetic diversity within 

each site, (ii) the risk of false signal of within-site selection due to neutral divergence is very low, 

(iii) if microgeographic selection exists, we are in appropriate conditions to detect it, or, in other

words, if we do not detect microgeographic selection in those sites it has little chance to be detected 



elsewhere. We indeed chose pairs of populations that represent extremes of otherwise continuous 

environmental gradients (probably representing a bundle of environmental variables), and treated 

them as qualitatively different populations; we contend that, in such conditions, divergent selection 

is strong enough to partially overcome gene flow, irrespective of the nature of the environmental 

contrast under scrutiny; indeed, our argument draws generality from the choice of analysing a priori 

multiple types of environmental contrasts, instead of focusing on the variation of a particular (set 

of) environmental variable(s). We expect that our study will provide a general view of the 

molecular basis of adaptation to strong, but geographically short, environmental contrasts, in 

particular because: (1) the use of the same sequence capture approach for all species should help 

sampling portions of genomes with a similar structure and similar levels of diversity (Yeaman et al. 

2016); (2) beyond specific loci involved in adaptation, comparing estimates of strength of selection 

in different species and under varying environmental constraints and varying demographic history 

(but similar local patterns of low neutral divergence) will provide valuable insight on the general 

way selection shapes diversity within otherwise continuous populations. However, we also expect 

to find very limited overlap in the loci that respond to divergent selection across species, because (i) 

the environmental contrasts vary among species, and thus a priori target different genes and 

characters; (ii) considering the complex genetic control of traits involved in adaptation to climatic 

drivers, many loci with small effects are expected to be under selection (omnigenic model, Boyle et 

al. 2017) and this genetic diversity on which selection operates is also conditioned by the 

demographic history; and (iii) there is evidence suggesting that adaptation to identical environments 

may involve separate genes and a certain number of possible paths (e.g., Frachon et al. 2018; 

Tenaillon et al. 2012). 

To investigate and compare patterns of divergence by adaptation, we screened genome-wide 



polymorphisms and looked for loci that showed excess divergence between closely related stands, 

relative to the genomic background determined by demography and gene flow. Such loci are 

indicative of adaptive divergence; we expect that, if microgeographic adaptation is a strong enough 

force, some fraction of the genome will show adaptive divergence between stands, irrespective of 

the species and the type of environmental contrast under scrutiny. Our results point to strong 

selection maintaining divergence at multiple, independent target loci, notwithstanding high gene 

flow. 



 

Materials and Methods 

Species and study sites 

Four conifer species of the Pinaceae family, having diverse geographical distributions and 

ecological niches, were used in this study. The continentally distributed Abies alba Mill., is adapted 

to mid-elevation, wet, cold-temperate climates. The Mediterranean and Atlantic Coast Pinus 

pinaster Ait., is adapted to a range of wet to dry climates at low to medium elevations. The 

Mediterranean Pinus halepensis Mill., is adapted to low-altitude, hot and dry climates, and the 

North-African Cedrus atlantica (Endl.) Manetti is adapted to high-altitude, moderately dry 

subtropical climates. 

For A. alba, P. halepensis and P. pinaster, we sampled wild populations in their native range. For 

C. atlantica, we sampled populations that resulted from the natural expansion of genetically diverse 

founder populations introduced outside of their native range (sampled two generations after 

introduction) to investigate potential microgeographic selection in a very short-term. Sampling was 

carried out in a way that provided multiple pairs of ecologically contrasted, but geographically 

close, stands. We define each pair of geographically close stands as a site. The stands of a given site 

were chosen as representing the extremes of an otherwise continuous environmental gradient, in 

general associated to an elevational cline. Notice though that such clines most likely represent a 

bundle of environmental variables. Because the goal of our study was to identify divergence 

between contrasting stands, and not to study the effect of a given environmental variable on genetic 

divergence, we interpret the contrasts in a qualitative, binary way (high/low, dry/wet, …). The study 

hypothesis is that sufficiently strong contrasts can generate adaptive divergence, no matter what 

generates the contrast, and therefore it acquires generality from the fact that our sites are a mix of 

potentially multiple types of contrasts. Three sites were sampled for A. alba, and two sites for P. 



 

halepensis, P. pinaster and C. atlantica; i.e. a total of 18 stands (see Figure 1 for locations and 

Table 1 for coordinates and further details on site description). Stands within sites were less than 

one kilometre apart, except for the Spanish P. halepensis stands, which were around 100 km apart, 

for which no neutral genetic differentiation was detected (Budde et al. 2017; Ruiz-Daniels et al. 

2019, and see Results section for confirmation) and were thus considered as a site. In this nested 

design, we searched for genomic signatures of microgeographic differentiation between stands 

belonging to the same site.  

We sampled stands with strongly different demographic patterns: (i) likely to have been stable on 

the long term for A. alba, as these stands belong to a biogeographic sector with long-standing 

presence of the species (Scotti-Saintagne et al., 2021) (ii) recently introduced from a genetically 

diverse seed source and potentially having adapted to new conditions over few generations for C. 

atlantica (Lefèvre et al. 2004), and (iii) belonging to pioneer species, and therefore having likely 

undergone repeated colonisation events (P. halepensis (Ruiz Daniels et al. 2019, Olsson et al. 2021, 

Vendramin et al. 2021); P. pinaster (Bucci et al. 2007)). To take these diverse stories into account 

in our analyses, we estimated historical demographic transitions and used them in population 

models to control for their effects on genetic diversity patterns as explained below. By taking a 

multi-species approach and replicating study sites within species, we were able to generalise our 

conclusions about the strength and extent of selective forces shaping landscape-level genetic 

structure. The wide variation of demographic (and likely selection) histories represented in our 

study species is a strong asset to assess the effect of such factors on our capacity to detect and 

estimate selection.  

We studied pairs of forest stands identified within continuous populations (or closely related ones) 

to minimise stochastic genome-wide divergence. Indeed, gene flow and recent shared ancestry 



 

minimise background divergence by drift, and thus maximise the power of detecting loci under 

selection while reducing False Discovery Rate (FDR; Lotterhos & Whitlock, 2015; Nadeau & 

Jiggins, 2010). Low overall divergence and a hierarchical island-model sampling scheme allowed 

us to avoid the classical pitfalls of the adaptive interpretation of genetic divergence patterns, such as 

the confounding effects of large inter-locus variance in (neutral) population differentiation and of 

population structure (Hoban et al., 2016). Additionally, large population sizes should decrease the 

risk that background natural selection causes divergence at neutral loci (Charlesworth et al., 1997). 

 

Sampling and genomic data production 

Needles from twenty-five mature, emergent individuals (that is, trees with crown reaching or above 

the canopy), located at least 20 m apart, were sampled in each stand. Supplementary Methods M1 

provide details on DNA isolation. 

DNA samples were submitted to sequence capture using a subset of the sequence capture probes 

designed for Pinus taeda by RapidGenomics (Gainesville (FL), USA) (Supplementary Table T1; 

see Supplementary Methods M1 for details on probe choice). Sequence capture was carried out by 

RapidGenomics (Gainesville (FL), USA) following Peñalba et al. (2014). After assembly, variant 

calling was applied with the following parameters: minimum coverage = 20; minimum average 

quality = 30, minimum variant frequency = 0.3, minimum frequency for homozygote call = 0.7, 

maximum missing data = 20%; see Supplementary Methods M1 for full details on sequence 

capture, assembly, SNP calling, and filtering. Further filters were applied based on the biological 

properties of variants and their distribution, using the ad hoc R (R Development Core Team, 2008) 

sieve() script (Supplementary Methods M2). The sieve() script takes as input a VCF file and filters 

out contigs based on SNP density (variants per base) and heterozygosity thresholds; it also allows 



 

the removal of targeted individuals, and returns genotype tables; conversion from vcf to genotype 

tables was performed by using the vcfR R package v. 1.12.0 (Knaus & Grünwald, 2017). Contigs 

with variant density > 0.05 (i.e. having more than one variant every 20 bases) and carrying only 

heterozygous genotypes were excluded, to remove contigs potentially containing paralogs. Filtering 

with sieve() was completed by the removal of monomorphic loci with the ad-hoc monoRemove() R 

script (Supplementary Methods M2). 

Data analyses 

SNP data were analysed with the aim of identifying loci with significant divergence patterns 

between stands from the same site, i.e. signatures of putative microgeographic adaptive divergence, 

and to evaluate the strength and kind of selective pressure that could produce such patterns. We 

proceeded through the following steps: (a) assess genome-wide and contig-level diversity and 

divergence patterns; (b) estimate species demographic parameters to be used for subsequent 

simulations; (c) apply multiple independent methods for the detection of within-site single- locus 

divergence outliers and dissect trends of stand-level allele frequencies; (d) apply evolutionary-

modelling methods to estimate the strength of selection at outlier loci; (e) functionally annotate 

outlier-containing contigs and outlier SNPs. Details of the methods used for each analysis are 

provided in the main text (for new developments) or as Supplementary Methods (for standard 

methods). Steps (c) to (e) allowed us to characterise in detail the putative adaptive processes 

underlying divergence patterns for each locus. 

 

(a) diversity analyses 

Diversity was assessed by computing Nei’s molecular diversity π (Nei, 1987) per contig, taking into 

account both variant and invariant sites in each contig, within each stand. Calculations were carried 



 

out in R with a custom script (Supplementary Methods M2). 

Within-stand observed and expected heterozygosity and heterozygote excess/deficit were computed 

with the basic.stats() function, and hierarchical F-statistics was computed using the 

pairwise.WCfst() function, both from R package hierfstat (Goudet, 2005; de Meeûs & Goudet, 

2007), which implements the hierarchical framework developed by Yang (1998), using all loci. 

(b) estimation of stand demographic parameters 

We inferred demographic parameters for the stands of each species by applying the Stairway Plot 2 

approach (Liu & Fu, 2020) to our data. This method uses the Site Frequency Spectrum (SFS) in a 

coalescent-based framework to construct past evolution in effective size through a multi-epoch 

model. For each stand of the four studied species, we computed the SFS and inferred its 

demographic history using default parameters of the software. We considered a generation time of 

25 years (Jia et al., 2018; Hrivnák et al., 2017) and a mutation rate of 10-9 (Willyard et al. 2007) for 

all species to calibrate the output. The central estimators of effective population size were then used 

to set the parameters for subsequent simulations, both in (c), to estimate type I and type II error 

rates, and in (d), to estimate selection parameters. For the C. atlantica stands, which result from 

recent introduction of unknown origin(s), the reconstruction of past demography is likely to be 

biassed because we ignore the exact sources of the starting seedlings, but we consider it as 

representing the mean demography of the whole species in its area of origin. 

Notice that, because of the scattered type of population sampling we have used, these demographic 

inferences are not meant to represent the whole species, and must be considered as representing the 

particular stands under study. The demographic inferences used here are instrumental to the 

modelling of selective processes in these particular stands(see below). 

(c) detection of divergence outliers and trends in allele frequencies 



 

We used two methods aiming at identifying loci with disproportionate allele frequency 

differentiation among stands within sites (BAMOVA and pcadapt). We view these two methods as 

complementary, as they have contrasting assumptions, and can therefore help capture divergence 

signals producing different types of genetic differentiation patterns. The BAMOVA algorithm 

(Gompert & Buerkle, 2011) is a Bayesian method that rests on pre-defined population groups and a 

combination of single-locus and whole-genotype information, and was used to compute single-locus 

and genome-wide estimates of hierarchical Φ-statistics (ΦST: global differentiation among stands; 

ΦCT: differentiation among sites; ΦSC: differentiation between stands within sites;). 

For each species, 1 million iterations were run (with sampling every 100 iterations), with a “known 

haplotypes” likelihood model, a random-walk MCMC algorithm for genome-wide parameters α and 

β, adjustment for the variance of proposal distribution for α and β equal to 0.2, an independence-

chain MCMC algorithm for proposing haplotype frequency vectors, haplotype vector variance 

adjustment parameter equal to 1, a uniform hyper-prior [0.5; 105] for α and β, correlation of bi-

variate normal distribution proposals for α and β equal to 0.8, haplotype frequency proposal 

distribution adjustment parameter equal to 0.00001. Convergence was reached within the first 

quarter of each run. After discarding the first half of the iterations, posterior densities were 

estimated on the remaining values. 

Outlier loci (i.e. loci with exceedingly high values of ΦSC) were identified based on Bayes Factors 

(BF; Kass and Raftery 1995; Makowski et al. 2019). The computation of BF requires (i) the 

estimation of the probability density for the null hypothesis distribution at the mode; (ii) the 

estimation of the probability density for the alternative hypothesis at the mode of the probability 

density for the null hypothesis distribution; (iii) the computation of the ratio of (ii) to (i), that is, the 

BF. 



 

To obtain the null distribution (i.e. the probability density distribution for ΦSC for a random locus) 

we randomly sampled 50,000 ΦSC values from all loci from all steps of the Markov chain produced 

by BAMOVA (after discarding the burn-in), and computed the probability density distribution from 

this set of values. We then computed the position of the distribution’s mode and proceeded with 

points (i) through (iii) described above. We considered loci with BF > 30 (corresponding to the 

middle of the “strong” evidence class in Kass and Raftery 1995) as outliers.  

The second method used for the detection of FST  outliers is implemented in the R package pcadapt 

v. 4.3.3 (Luu et al., 2017). It ascertains population structure using principal component analysis 

(PCA) and computes associations between Principal Components (PCs) and locus variation for each 

SNP. The rationale behind pcadapt is that loci under divergent selection present atypical association 

with PCs. In this study, we used the first version of pcadapt (v1.0; Duforet-Frebourg et al., 2014). 

To run pcadapt, missing data were first imputed. Then, the number of PCs to be retained (K) was 

chosen by running a PCA with a large number of PCs (15 in our case). The best K was chosen 

based on the rate of decrease in the cumulative variance explained by each PC (i.e. the scree plot). 

This choice was confirmed by plotting individuals on the first two PCs (i.e. the score plot). After 

these preliminary steps, PCA was run setting the number of PCs to the optimal K value. Alleles 

with minor allele frequency (MAF) <5% were removed from the analysis. The communality 

statistic was used to detect outlier SNPs. An FDR of 0.05 was applied to avoid false positives, by 

using the R package qvalue (Storey et al., 2015). 

Overlap of lists of outliers obtained with the two methods was visualised using the R package 

upsetR v. 1.4.0 (Conway et al., 2017). The trends in allele frequencies at outlier SNPs were 

compared between same-species sites, to check whether they were consistent among sites; that is, 

we checked whether, when the frequency of an allele increased (or decreased) from one 



 

environmental level to the other between the two stands of a site, it also increased (or decreased) 

between the two same levels at the other site or sites; changes in the same direction are interpreted 

as suggestive of selection operating the same way at all sites. 

To estimate the Type I and Type II error rates in outlier detection, we used the QUANTINEMO 

software (Neuenschwander et al., 2008) to simulate different evolutionary scenarios with the same 

population design as in our empirical data, i.e. two sites with two stands in contrasted environments 

within each site (see Supplementary Methods M3 for detailed methods), following the demographic 

models estimated at point (b) above (see results). The retained simulated sets of stands 

(Supplementary methods M3) were submitted to BAMOVA and pcadapt analyses for the detection 

of outliers, as described above. 

 

In addition to the simulation approach above, we also applied a permutation approach to estimate 

the potential for the identification of artefactual outliers with our BAMOVA-based outlier detection 

method. Individuals from one of the data sets (A. alba) were permuted across stands, and 

BAMOVA and our ad-hoc BAMOVA outlier detection method were applied to these permuted 

stand samples.  

For outlier loci, stand-level allele frequencies were inspected, to check whether trends of allele 

frequency variation were consistent among sites within each species (i.e. whether allele frequencies 

changed in the in the same direction in all sites between stands displaying different environmental 

conditions: low altitude → high altitude (A. alba), good site → bad site (C. atlantica), wet → dry 

(P. halepensis), sunny → shady (P. pinaster)). 

 

(d) ABC modelling to estimate selection 



 

We develop here an estimation method that rests on Bayesian estimators of divergence statistics. 

Based on the posterior distributions of genome-wide and locus-level ΦSC, and on drift-migration 

equilibrium assumptions for neutral loci, we modelled the intensity of divergent selection within 

each site, i.e. between two stands adapted to divergent habitats. For this, we applied a combination 

of forward simulations, performed based on the demographic models estimated following the 

method at point (b) above (see results), using GENOMEPOP2 v. 2.7.6 (Carvajal-Rodríguez, 2008), 

and Approximate Bayesian Computation (ABC; Beaumont et al., 2002; see Supplementary 

Methods M4 for details of the ABC procedure). The ‘standard’ ABC method described in 

Supplementary Methods M4 was modified to optimise the analysis of our data: BAMOVA analyses 

provide true Bayesian, posterior probability density distributions of locus-level observed summary 

statistics (OSS) (namely, ΦSC), instead of point estimates. To take into account the information 

conveyed by those posterior distributions, we ran 100 independent ABC analyses for each 

BAMOVA outlier from each species, by randomly drawing from the posterior ΦSC distribution, 

then cumulated the values retained in a “hyperposterior” distribution. “Hyperposterior” probability 

distributions were obtained for the selection coefficients scaled to population sizes, Ns, for each 

BAMOVA outlier (Ns is actually the ratio of a selection intensity term (s) to a drift intensity term 

(1/N)). We argue that when a distribution or a confidence interval on OSS is available, this method 

allows for more accurate posterior estimates on parameters and more conservative (i.e. larger) 

credible intervals (as OSS are left to vary, and thus the retained parameter values are drawn from a 

larger, fuzzier hypervolume) than when point estimates are used. See Supplementary Methods M4 

for ABC cross-validation analyses. 

 

(e) Annotation 



 

A BLASTX search was performed between the consensus sequences of each species and a protein 

database made from the Pinus taeda transcriptome v1.01 (https://pinerefseq.faculty.ucdavis.edu/), 

the NCBI plant ref_seq (release of June 2017) and the Uniprot/Swissprot (release of July 2017). 

Only the best hit was conserved for the annotation using INTERPROSCAN v5.25 and the HAMAP, 

PFAM, PIRSF, PRINTS, PRODOM, PROSITEPATTEN, PROSITEPROFILE, and TIGRFAM 

databases. Only the annotation with the highest e-value was reported. The Blastx output was 

converted to gff format using the script blast_to_gff.py available at 

https://github.com/alvaralmstedt/py_scripts/blob/master/blast_to_gff.py. The gff containing the 

ORF and the delimitation of the coding DNA sequences (CDS) was used to identify the functional 

significance of SNP mutations using SNPEFF v4.3 (Cingolani et al., 2012). This information was 

added to the vcf files. 

Orthology among contigs, obtained for the four species, and with the original P. taeda probes was 

analysed using Orthofinder (Emms and Kelly, 2015), by running orthology search on the five data 

sets (four sets of contigs and one set of probes) together. We used the results both to identify the 

numbers of probes having retrieved sequences in each species and to identify orthologous contigs in 

pairs of species. 

From the whole dataset of the annotated genes, enrichment among the annotated outliers was 

performed using the R package TOPGO v2.36.0 (Alexa and Rahnenfuhrer, 2019). The parent-child 

algorithm, which takes into account the hierarchical relationship between Gene Ontology (GO) 

terms, was used with a node size of 10. The result of the GO enrichment analysis was used for 

semantic clustering using REVIGO (http://revigo.irb.hr/) with default settings in order to identify 

non-redundant sub-sets of GO terms (Supek et al., 2011). The hierarchical data obtained were 

plotted using CirGO package (Kuznetsova et al., 2019) which allow a better representation of the 



 

GO terms categories and sub-categories.  



 

Results 

Assembly and variant calling 

The raw data (see Supplementary Table T2 for sample-level quality assessment) were assembled in 

11,613 contigs for A. alba, 11,659 for C. atlantica, 8,266 for P. halepensis, and 10,664 for P. 

pinaster. Contig consensus sequences for all species are reported in Supplementary Results R1-R4, 

and the distributions of contig lengths and levels of polymorphism per species in Supplementary 

Results R5. Overall, the data set used for the annotation contained 59,430 SNPs within 12,676 

contigs. After the filtering with the R function sieve(), the final data set contained the following 

numbers of SNPs / contigs: 7,139 / 1,367 for A. alba, 8,462 / 1,531 for C. atlantica, 7,114 / 2,814 

for P. halepensis, and 8,354 / 3,419 for P. pinaster (Supplementary Table T3). See Supplementary 

Results R5 for the distribution of the variants over contigs and the distribution of heterozygosity 

values. 

(a) Basic diversity estimates 

Per-contig, within-stand Nei’s π varied between 0 and 0.0199 (median: 0.0010) for A. alba, between 

0 and 0.0139 (median: 0.0008) for C. atlantica, between 0 and 0.0243 (median: 0.0016) for P. 

halepensis, and between 0 and 0.0231 (median: 0.0019) for P. pinaster (Supplementary Results 

R6). 

Hierarchical F-statistics are reported in Table 2(a). Genome-wide site and stand divergence was 

smaller than 0.01 for all species (Table 2(b); the divergence between P. halepensis stands SpainAlz 

and SpainMon, which are about 100 km apart, is in the range of other, geographically closer stand 

pairs); between-stands, within-site divergence was stronger than between-sites divergence for P. 

pinaster (contrary to expectation under a simple isolation-by-distance pattern), and as large as site 

divergence for A. alba. The distributions of within-stand, per-locus expected heterozygosity values 



 

showed a moderate excess in all species, although with quite large variation among loci 

(Supplementary Results R6). Extent of heterozygote excess was correlated to minor allele 

frequency (MAF; Supplementary Results R6), with more negative inbreeding coefficient values for 

higher MAFs, suggesting that departure from Hardy-Weinberg equilibrium may be caused by some 

technical bias; heterozygote excess in high-throughput sequence data has been previously reported 

as partially, but not entirely, caused by paralogous alleles (Gayral et al., 2013), or as an effect of 

small sample sizes (Liu and Caselli, 2019). Notice, however, that we applied filters to remove 

paralogs. 

 

(b) Inference of demographic parameters 

For each species and stand, historical demographic parameters were estimated from the full set of 

SNP data. In each case, the estimated demographic history appeared to be consistent among stands 

of the same species. For two species, A. alba and C. atlantica, we detected a stable effective 

population size through time (at least for the last 100,000 years). For the remaining two, P. 

halepensis and P. pinaster, we detected population contraction that reduced it about 100-fold over 

time. The stairway plots for each species are reported in Figure 2. 

(c) Detection of divergence outliers, trends in allele frequencies 

BAMOVA 

The BAMOVA framework allowed the estimation of posterior distributions for genome-wide 

(Supplementary Figure F1) and single-locus values of Φ-statistics. Genome-wide within-site (ΦSC) 

posterior distributions peaked at values ranging between 0.0216 and 0.0308 (Table 2(c)). Notice 

that the ranking of between-stands (within site) and among-sites divergence, as obtained with 

BAMOVA and hierfstat (Table 2(a,c)), is the same for the two pines, but differs for C. atlantica 



 

(larger between-sites divergence in hierfstat, larger between-stands divergence in BAMOVA), and 

to a lesser degree in A. alba (about the same divergence in hierfstat, larger between-stands 

divergence in BAMOVA). Moreover, F-statistic estimates from hierfstat were in general about an 

order of magnitude smaller than Φ-statistics obtained in BAMOVA.  

There were 37 within-site divergence outlier SNPs in A. alba, 22 in C. atlantica, 126 in P. 

halepensis, and 147 in P. pinaster (Supplementary Table T5(b)). Posterior probability distributions 

at outlier loci were largely shifted to the right relative to background levels of divergence (Figure 

3(a); see Figure 3(b) for the distribution of Bayes Factors), with ΦSC mode values ranging between 

0.0462 and 0.2832, approximately 1.5- to 10.5-fold larger than the mode of genome-wide ΦSC for 

each species (Supplementary Table T5(b)). 

 

Pcadapt 

The most likely number of groups was three for A. alba and two for the other species; these 

structures were retained for the subsequent outlier search, which recovered 104, 18, 74 and 7 

outliers for A. alba, C. atlantica, P. halepensis and P. pinaster, respectively (Figure 4, 

Supplementary Tables T4 and T5). 

Synthesis 

Supplementary Table T5 summarises the numbers of outliers found for each species and analysis. 

Over the four analyses, 137 outliers were found for A. alba (1.9% of all SNP analysed), 40 for C. 

atlantica (0.5%), 151 for P. halepensis (2.1%), and 196 for P. pinaster (2.3%). Of these outliers, 

four, none, three, and four were identified by both methods, respectively for A. alba, C. atlantica, P. 

halepensis, and P. pinaster. See Supplementary Figure F2 and Supplementary Results R7 for the 

analysis of overlap of outliers across analyses and for estimation of error rates in outlier detection 



 

tests.  

We checked whether, at outlier loci, allele frequency variation was of the same sign between sites 

within each species: that is, we checked whether, when one allele increased in allele frequency 

between the two environmental conditions (or decreased, for the alternative allele) at a given site, it 

did the same at the other site (or sites, for A. alba). Allele frequencies at outlier loci did not 

systematically show consistent trends across sites within species: in A. alba, 10 outliers out of 137 

showed variation of the same sign between “high” and “low” stands at the three sites; in C. 

atlantica, 16 out of 40 outliers had variation of the same sign between “good site” and “bad site” 

stands at the two sites; in P. halepensis, 107 out of 196 outliers had variation of the same sign 

between “dry” and “moist” stands at the two sites; and finally, in P. pinaster, 106 out of 151 

outliers had variation of the same sign between “shady” and “sunny” stands at the two sites (Figure 

4, Supplementary Figure F3). 

 

(d) Estimation of selection 

Strength of disruptive selection was assessed by inspecting the “hyperposterior” probability 

distributions of the Ns composite parameter as obtained in ABC analysis on all BAMOVA outlier 

loci. Hyperposterior distributions were clearly informative for A. alba and C. atlantica and less so 

for P. halepensis; for P. pinaster, posteriors are very close to priors, raising doubts on the 

informativeness of the posterior (Supplementary Figure F4). For A. alba, the value of Ns at the 

mode varied between 0.17 and 45.33; for C. atlantica, between 0.29 and 49.01; for P. halepensis 

between 0.57 and 77.61; for P. pinaster between 0.23 and 77.98 (Supplementary Table T6(a); see 

Supplementary Table T6(b) for credible intervals of individual outlier loci). The distribution of 

modes of scaled selection coefficients varied across species (Figure 6), with the mode of modes 



 

varying from 28.52 for A. alba, to 8.73 for C. atlantica, to around 2 for the two pine species. Yet as 

remarked above, the posteriors for the latter two species, and in particular for P. pinaster, are likely 

to be uninformative; therefore, the estimates for these two species are to be taken with caution. 

ABC cross-validation analyses showed that our procedure to estimate Ns was effective and 

unbiased, with prediction error varying between 0.12 and 0.23 and R2 ≥ 0.5 for regressions between 

true and estimated parameters (see Supplementary Results R8). 

 

(e) Annotation 

Orthology among contigs of different species was tested by matching their sequences to P. taeda 

probe sequences by blast. 4,367 probes (out of 13,535) correctly matched at least one contig for A. 

alba, 5,130 for C. atlantica, 6,597 for P. halepensis, and 5,558 for P. pinaster (Supplementary 

Table T1). The fact that more probes retrieved sequences in pines than in non-pine species suggests 

that there is some identification bias, with probes from P. taeda more easily capturing DNA 

fragments from closely-related pine species. In this view, probes that captured DNA fragments in 

non-pine species would correspond to more conserved genes, with the consequence that non-pine 

data would be enriched for conserved regions than pine data, thus introducing a bias. To test 

whether probes capturing fragments in non-pines corresponded to more conserved, and therefore 

less polymorphic, DNA fragments, we proceeded as follows. We split the probe list into those 

which only capture sequences in pines (“pine-specific”) and those which capture sequence at least 

in one non-pine (“non pine-specific”); next, we identified, in the two pines, the contigs captured by 

the two groups of probes (637 and 2177 for P. halepensis; 578 and 2841 for P. pinaster). And 

finally, for each stand, we compared π values between sets of contigs derived from pine-specific 

and non-pine specific probes. The results were mixed: Aleppo pine comparisons were all non-



 

significant (Wilcoxon tests: Italy-H, W = 431482, p-value = 0.4377; Italy-L, W = 421698, p-value = 

0.9366; Spain-Alz, W = 421935, p-value = 0.9232; Spain-Mon, W = 415192, p-value = 0.7014), 

while maritime pine comparisons were all marginally significant (Wilcoxon tests: 3-H, W = 

573180, p-value = 0.01357; 3-S, W = 573083, p-value = 0.01378; 4-H, W = 574778, p-value = 

0.01046; 4-S, W = 569114, p-value = 0.02545). So, there may be some effect of identification bias 

on patterns of genetic diversity, but we cannot conclude whether the higher levels of diversity 

observed in the two pines are related to this. However, in P. pinaster, “pine-specific” contigs are 4- 

to 5-fold fewer than the non-pine-specific ones, and therefore their impact on genome-wide 

diversity patterns may be relatively minor. 

Orthology groups and the functional annotation of contigs for all species are reported in 

Supplementary Table T7 and Supplementary table T8, respectively.   

Overall, there were 10,803 SNPs (27%) in non-coding regions, and 30,362 SNPs (73%) in coding 

DNA sequences (CDS); among the latter, 19,324 (64%) variants were non synonymous, and 11,038 

(36%) variants were synonymous (Supplementary Table T9(a,d)). Outlier SNPs were represented 

by 205 SNPs (39%) in non-coding regions and 319(61%) SNPs in CDS; among the latter, 166 

(52%) were non-synonymous, and 153 (48%) synonymous (Supplementary Table T9(b,c,d)). The 

distribution of variants in outliers and in the non-outlier set differed: with all species taken together, 

and for all types of variants, the outlier SNPs were proportionally more likely localized in non-

coding regions (χ² = 44.8, 1 d.f., p-value < 0.001) , and in the CDS, they were more likely 

synonymous (χ² = 18.3, 1 d.f., P-value < 0.001) (Figure 7(a)). When the comparison was restricted 

to the non-synonymous SNP in CDS, there were proportionally slightly more SNPs with a low 

impact on the amino-acid change (i. e. variants that did not change the class (charged, plor, 

hydrophobic) of the aminoacid) in the outlier set than in the non-outlier set (χ² = 5.48, 1 d.f., p-



 

value = 0.019) (Figure 7(b)). Few outliers were carried by contigs of different species, which 

belonged to the same orthology group. Respectively, one outlier of A. alba was found in a contig in 

the same orthology group as a contig of P. halepensis carrying three outliers; one outlier of C. 

atlantica was in a contig that matched a contig of P. halepensis carrying three outliers, and another 

C. atlantica outlier was in a contig matching another P. halepensis contig carrying four outliers; and 

finally, two P. halepensis outliers were in two contigs, that matched two P. pinaster contigs 

carrying one outlier each. However, none corresponded to the same position between contigs of 

different species. 

GO term enrichment 

Twelve GO-terms were enriched among the set of outlier contigs detected across the four species 

(see Supplementary Table T10). The most numerous GO-terms belong the molecular function class 

and may be categorised into three main activities: binding activity, catalytic activity and 

cytoskeletal motor activity (Supplementary Figure F5).  



 

Discussion 

We have detected similar patterns of divergence between environmentally contrasted forest stands 

for all the four species we have investigated. In particular all species show signal of selection at 

microgeographic scale, and display similar values and posterior distribution of population-scaled 

selection coefficients (Ns) at BAMOVA outlier loci. Taken together these results allow us to 

answer the four questions asked in the Introduction:  

(1) How common is microgeographic adaptive genetic divergence? We have found signatures of 

genetic differentiation, putatively attributable to adaptive divergence, in all the four species we have 

studied. Given that they represent a variety of species, population histories, and ecological contexts, 

it seems highly likely that adaptive divergence is a pervasive phenomenon, at least in conifer tree 

species. 

(2) How strong is microgeographic selection? Based on modelling and on our implementation of 

ABC analyses, we obtained central estimates of scaled selection coefficients at outlier loci between 

close to 0.1 and close to 80 (suggestive of strong selection). The scatter of individual- locus Ns 

values is large, and the central value of the distribution of all loci (the mode of modes) differed 

greatly across species, being about one order of magnitude larger in A. alba than in the two pines, 

with C. atlantica showing intermediate values. Thus, it would seem that the impact of selection is 

not equally distributed over loci, yet the distributions of values reveal our better capacity to detect 

loci undergoing strong selection than undergoing weak selection. For comparison, if the highest 

levels of selection estimated here were applied, under the form of hard selection (selective sweep), 

to a large, isolated diploid population of size N, the advantageous allele would be driven to fixation 

in a few tens of generations (Kimura, 1980). This provides a reference of how strong selection can 

be at the microgeographic scale for single loci. The differences among species are likely driven by 



 

the observed differences in genome-wide background diversity structure, as captured by our 

analysis of historical demography, as the two pines show historically smaller effective sample sizes 

and historical bottlenecks, unlike fir and cedar (see also Budde et al., 2017; Olsson et al., 2021). It is 

worth noting that the recently introduced (and therefore recently diverged) C. atlantica populations 

show as large estimates of selection as longer established populations, suggesting that selection 

operated indeed not only over short distances, but also at short time scales (Saleh et al., 2022). 

(3) What is the genome-wide architecture of the response to microgeographic selection? In all 

studied cases, we detected between 1.3% and 3.5% of the loci as being putatively under selection; 

while this is in absolute terms a relatively small portion of the genome, one has to consider that we 

developed a rather robust detection strategy and many loci remained undetected, in particular those 

under weak selection or involved in epistatic interactions. Furthermore, even though we have 

looked at as many (partially or entirely different) contrasts as there are stand pairs (and sites), and 

even though those contrasts may indeed represent a bundle of covarying factors, they presumably 

only represent a subset of the variety of selective agents that populations undergo. This suggests 

that, in general, relevant portions of the genome are indeed involved in response to selection.  

Recent theory on the role of genome size suggests that large genomes, as conifers’, have more 

potential for adaptive variation in non-coding regions than small genomes (Mei et al., 2018) and 

that the difference in mutational target can affect the expected dynamics of adaptation (Höllinger et 

al., 2019). Assuming that mutation rates are more or less uniform across species, species with larger 

genomes will be subject to more mutations per genome in each generation. Considering that 

variation in gene number across plant species is not substantial, most of the additional mutational 

input in larger genomes is expected to occur outside of coding sequence (Mei et al., 2018). Our 

results showed that outliers were enriched in synonymous, non-coding variants and amino acid 

https://onlinelibrary.wiley.com/doi/full/10.1111/eva.12809#eva12809-bib-0132
https://onlinelibrary.wiley.com/doi/full/10.1111/eva.12809#eva12809-bib-0078


 

changes with low structural impact. This suggests that structural variation may not be the main 

target of selection at microgeographic scale, or that polymorphisms at non-synonymous sites mostly 

undergo background selection and are maintained by drift, without contributing to local adaptation 

(and rather being a component of genetic load; González-Martínez et al., 2017). However, an 

analysis of variance (not shown) testing for differences in the estimated intensity of selection among 

variant classes did not detect any significant effect. Despite the known caveats of the GO 

enrichment analysis (Gaudet & Dessimoz, 2017), this approach remains an efficient tool for 

summarising functions among large quantities of genes. The GO terms enriched in this study were 

also enriched in previous plant studies in response to biotic and abiotic variables. Remarkably, one 

study on a tree species, Populus trichocarpa (Evans et al., 2014), found four GO terms (hydrolase 

activity acting on acid anhydrides, GO:0016817; nucleobase-containing compound kinase activity, 

GO:0019205; organic cyclic compound binding, GO:0097159 and heterocyclic compound binding, 

GO:1901363), out of the twelve reported here, as being associated with adaptive traits (mostly, 

growth rates and leaf phenology) . Organic cyclic compound binding and heterocyclic compound 

binding were also found in several studies investigating plant responses to abiotic stresses (Zhou et 

al., 2016; Liu et al., 2017; Alves da Silva et al., 2019; Safdarian et al., 2019, Zhang et al. 2020). 

(4) How much overlap is there among species in the loci undergoing divergent selection? Only 

seventeen outliers are located in orthologous sequences shared by pairs of species (but do not 

correspond to the same positions). Within species, trends in the variation of allele frequencies were 

only partially consistent between sites, which suggests a genetic background impact on allele effects 

due to complex epistatic interactions. The absolute numbers of shared detected loci putatively under 

selection is very small. This is consistent with the choice of species and sites, which deliberately 

aimed at diversifying the types of environmental contrasts and, consequently, the genetic bases of 



 

adaptive response.  

In summary, we showed that the effects of microgeographic selection are likely pervasive; that even 

very recent microgeographic selection leaves a detectable genomic signature; that selection 

apparently involves a small fraction of the genome (even if it may be several times larger than the 

fraction we have detected, due to lack of power); that selection can be intense at many loci; and that 

it targets a variety of genomic regions, depending on the species and the type of environmental 

contrast. One consequence of this finding is that microgeographic divergence appears to contribute 

to maintaining genetic diversity in populations through the existence of multiple optima (Delph & 

Kelly, 2014), in a kind of self-sustained dynamic process. This finding reinforces the evidence of 

the strength of microgeographic adaptation since, in a hierarchical environmental heterogeneity 

pattern, when many QTL are involved in an adaptive trait, microgeographic adaptation is expected 

to rely mainly on the covariances among QTL and strong selection intensity is required to affect 

individual QTL-frequencies as we studied here (Cubry et al, 2022). The estimated values of scaled 

selection partially match theoretical expectations for the intensity of selection needed to maintain 

divergence with gene flow, as derived by Yeaman & Whitlock (2011) and Yeaman & Otto (2011), 

and to which we can attempt a simple comparison as follows. Let us consider a genome-wide 

divergence between stands of FST = 0.003, similar to the values we observed, leading to an 

approximate estimate of Nm = 83 (applying island-model equations). Let us also consider a scaled 

selection coefficient around Ns = 20, Ns = 8, and Ns = 0.2, close to the middle of the distribution of 

the most-likely values respectively for A. alba, C. atlantica, and the two pines. For such Ns values, 

the ratio Nm/Ns = m/s would be respectively around 4, 10, and 40. If we plot the straight lines 

corresponding to m = 4s and m = 10s onto figure 1(b) of Yeaman & Otto (2011; reproduced here 

with permission as Supplementary Figure F6), the values are close to the threshold for the 



 

maintenance of polymorphism in large populations. The situation is different for m = 40s 

(corresponding to the two pines), for which the values would be far from the conditions of 

maintenance of polymorphism (and all the more so because estimated population sizes are small; 

yet estimates of Ns can be considerably larger than the central values and be compatible with 

polymorphism). The fact that the two pines do not match the theoretical expectation contrasts with 

the fact that they showed as many divergence outliers as fir and cedar, and with previous results 

showing local adaptation in the very same stands (Ruiz-Daniels et al., 2019). It is possible that the 

peculiarities of population dynamics of pioneer species makes it difficult to correctly estimate 

selection parameters (see below). 

The demographic analyses presented here focused on the particular stands (sites) under scrutiny, 

and were instrumental to the identification of signatures of selection while taking into account the 

demographic background, and are not therefore meant to represent species-level processes. 

However, some trends worth noticing emerge: A. alba and C. atlantica stands were stable over 

time, possibly reflecting the presence of glacial refugia in the sampled areas: in Southern France for 

A. alba, were the presence of a secondary refugium has been hypothesised (Liepelt et al. 2009); and 

in the area of origin of the planted populations - Algeria - for C. atlantica, which was a refugial 

zone (Terrab et al. 2008), while the contraction signal observed for P. halepensis confirms the 

results obtained by Grivet et al. (2009) for the Western part of the species range; on the contrary, 

the decline observed for P. pinaster stands, located in Eastern Spain, is possibly caused by local 

changes in environmental conditions, including the effect of anthropic action over the course of the 

Holocene; indeed, the local population contraction observed for P. pinaster disagrees with the 

range-level population expansion detected by Bucci et al. (2007). 

Some limitations of the methods may affect the interpretation of our results on the identification of 



 

divergence outliers and on the estimation of selection intensity. For instance, the two outlier search 

methods rest on different assumptions and, consequently, may detect different types of 

differentiation patterns (Rellstab et al., 2015), thus explaining the little overlap among methods (and 

supporting the idea of keeping the union of all outlier sets, and not their intersection). In addition to 

this, if the fraction of the genome undergoing selection is small, as observed here, then, even with 

satisfactory Type I error rates and intermediate Type II error rates, there will be many false 

positives among the outliers, because the number of true negatives far exceed those of true 

positives. It may be harder to detect loci undergoing weak selection, which may explain why we 

apparently detect few loci with weak estimated selection coefficients. Differences in the biology 

and demography of the four species may, in addition, drive differences in selection intensity 

estimates. Pioneer species like the two pines may undergo fluctuations both in population sizes and 

selection regime, offsetting stands from potential optima and therefore blurring divergence and 

local adaptation, reducing the potential to detect selection. Biases due to the sequence capture 

method we used may introduce differences in patterns of genetic diversity between species. Finally, 

particularly for C. atlantica, where fewer outliers were detected than for the three remaining 

species, it is possible that the small number of generations elapsed since the start of the divergence 

in these artificial stands was insufficient for sizeable divergence to arise, even under moderately 

strong selection. 

 

To conclude, our study provides support to the view that microgeographic selection is common in 

conifer tree populations, suggesting that adaptation to habitat variation can take place at very small 

spatial scales, rapidly. Our results represent an important step towards the identification of 

processes (i.e. functions involved in adaptation and population-genetic processes allowing 



 

maintenance of polymorphism), such as strong natural selection, high adaptive differentiation, and 

strength and stability of selection that may allow tree populations to adapt to spatially varying 

environmental conditions, and thus maintain their adaptive potential – a much-needed resource in 

times of an unpredictably changing climate.  
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FIGURES 

Figure 1 A: Sampling sites (solid circles) and distribution ranges (highlighted as coloured areas; 
source: EUFORGEN www.euforgen.org) of Abies alba (green), Cedrus atlantica (red), Pinus 
halepensis (yellow) and Pinus pinaster (light blue); B: geographic localization of the study area. 
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Figure 2. Stairway Plot analysis of the demographic history of stands of (a) Abies alba, (b) Cedrus 
atlantica, (c) Pinus halepensis, (d) Pinus pinaster. Stand names as indicated in plot titles. 
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Figure 3(a) Posterior distribution of background loci (grey curves) and of outlier loci (red curves) as 
obtained in the BAMOVA analyses. Numbers of outlier loci: A. alba, 37; C. atlantica, 22; P. 
halepensis, 126; P. pinaster, 147. 
 

 

 



 

 

 

  



 

Figure 3(b) distribution of the log10(BF) for each species; horizontal bar shows the threshold to 
declare an outlier (BF = 30). BF = Bayes Factor.  Numbers of outlier loci: A. alba, 104; C. 
atlantica, 18; P. halepensis, 74; P. pinaster, 7. 
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Figure 4. Trends in allele frequencies at the three sites (for Abies alba) or the two sites (for all other 
species). Allele frequency trends are shown for the four SNP showing the largest average within-
site, between-stands difference in allele frequency, among those showing variation of the same sign 
for all sites. In each plot, the name of the SNP is given under the plot; the two stands within each 
site are represented along the x-axis; relative allele frequencies are represented on the y-axis; each 
straight line corresponds to one site. For each species, stands within each site are sorted according 
to their environmental conditions: Abies alba, “high” on the left, “low” on the right; Cedrus 
atlantica, “good site” on the left, “bad site” on the right; Pinus halepensis, “humid” on the left, 
“dry” on the right; Pinus pinaster, “shady” on the left, “sunny” on the right. The allele for which 
allele frequencies are represented was chosen arbitrarily. (a) A. alba; (b) C. atlantica; (c) P. 
halepensis; (d) P. pinaster. 
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Figure 5. log10(p-values) for all loci as obtained in pcadapt. (a) Abies alba; (b) Cedrus 
atlantica; (c) Pinus halepensis; (e) Pinus pinaster. Filled dots: outliers. Empty dots: non-
significant loci.  
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Figure 6. Violin-plots of the distribution of modes of the posterior distribution of stand-
scaled selection coefficients (Ns) at BAMOVA outlier loci, species by species, on a 
logarithmic scale. Species: A. alba = Abies alba; C. atlantica = Cedrus atlantica; P. 
halepensis = Pinus halepensis; P. pinaster = Pinus pinaster. White dots indicate medians. 

 
  



 

Figure 7. Distribution of outlier and non-outlier SNPs by location in sequence (exon / 
intron), effect on amino acid identity (synonymous / non-synonymous), and species. (a) 
Distribution of outlier and non-outlier SNPs in introns and exons for all species; (b) 
Distribution of outlier and non-outlier SNPs in introns / exons and in synonymous (s) / 
non-synonymous (ns) positions, by species. Aa = Abies alba; Ca = Cedrus atlantica; Ph 
=  Pinus halepensis; Pp = Pinus pinaster. 
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TABLES 

Table 1 Sampling sites. Contrast =  type of contrast between stands within site. Annual Heat 
Moisture index (AHM) and Summer Heat Moisture Index (SHM) are calculated as follow: AHM: 
(mean annual temperature+10)/(mean annual precipitation/1000)); SHM: mean warmest month 
temperature/(mean summer precipitation+1000) (Wang et al., 2010; Hallingbäck et al., 2021). 
 

Species 

 

Site 

Distance 
between 
stands 
(km) 

Coordinates Stand names Contrast 

A. alba 

 

Issole 1 44.03N/6.48E 

Iss5 

high altitude 1550 
m; Annual Heat 
Moisture index: 
12.4; Summer Heat 
Moisture index: 31.1 

 

Iss2 

low altitude 1200 m; 
Annual Heat 
Moisture index: 
15.2; Summer Heat 
Moisture index: 38.6 

 

Ventoux 1 44.17N/5.28E 

N4 

high altitude 1380 
m; Annual Heat 
Moisture index: 
13.9; Summer Heat 
Moisture index: 37.9 

 

N2 

low altitude 1100 m; 
Annual Heat 
Moisture index: 
15.3; Summer Heat 
Moisture index: 42.6 

 

Vesubie 1 43.98N/7.36E 

ves5 

high altitude 1500 
m; Annual Heat 
Moisture index: 
14.7; Summer Heat 
Moisture index: 40.1 

 

ves1 

low altitude 1050 m; 
Annual Heat 
Moisture index: 
18.5; Summer Heat 
Moisture index: 51.4 

C. atlantica 

 

Luberon 1 43.8N/5.21E 

LubLaco_C3 
071-095 

high site index 
(mean height at 50 
years 15.5m) 

 
LubLaco_C3 
096-136 

low site index (mean 
height at 50 years 
8.5m) 



 

 

Ventoux 1 44N/5.28E 

VentRol 
high site index 
(mean height at 70 
years 18.1m) 

 
VentFey 

low site index (mean 
height at 70 years 
12.9m) 

P. 
halepensis 

 

Italy 3.5 

41.7N/16.0E Monte S. 
Angelo 

humid / high altitude 
(500 m asl), Annual 
Heat Moisture 
index: 44.6; Summer 
Heat Moisture 
index: 127.7 

 

41.4N/16.02E Mattinata 

dry / low altitude (50 
m asl), Annual Heat 
Moisture index: 
67.9; Summer Heat 
Moisture index: 
222.9 

 

Spain 100 

40.05N/0.59W Montan 

humid  (precipitation 
of the driest quarter: 
65.8 mm) / low 
frequency of crown 
fire, Annual Heat 
Moisture index: 
42.5; Summer Heat 
Moisture index: 
112.9 

 

39.74N/0.48W Alzira 

dry (precipitation of 
the driest quarter: 
44.2 mm) / high 
frequency of crown 
fire,  Annual Heat 
Moisture index: 
43.5; Summer Heat 
Moisture index: 
128.4 

P. pinaster 

 

Ain-
Almedijar 1 39.89N/0.35W 

H3 
Shady slope, North 
exposition (aspect: 
34.6º) 

 
S3 Sun-exposed slope 

(aspect: 159.0º ) 
 

Alcudia de 
Veo 1 39.91N/0.39W H4 

Shady slope, West 
exposition in close 
valley (aspect: 
262.0º) 



 

 Algimia de 
Almonacid S4 Sun-exposed slope 

(aspect: 181.0º) 
 
 
Table 2  
(a) Genome-wide estimates of hierfstat-computed hierarchical F-statistics. Stand: between-stands F 
component; Site: among-sites F component; FIS: individual-level F component, averaged over loci. 
 
Species Stand 

(between stands, within site) 

Site 

(among sites) 

FIS 

Abies alba 0.0034 0.0035 -0.069 
Cedrus atlantica 0.0024 0.0073 0.020 

Pinus halepensis 0.0036 0.0092 -0.044 
Pinus pinaster 0.0041 0.0017 -0.026 

  



 

(b) stand pairwise, genome-wise FST point estimates. 

A. alba 
     

 

Issole-High Issole-Low Ventoux-High Ventoux-Low Vesubie-High 

Issole-Low 0.015 
    

Ventoux-High 0.016 0.017 
   

Ventoux-Low 0.036 0.037 0.046 
  

Vesubie-High 0.028 0.029 0.036 0.019 
 

Vesubie-Low 0.016 0.016 0.016 0.041 0.031 
      

      

C. atlantica 
     

 

Luberon bad_site Luberon good_site Ventoux bad_site 
  

Luberon good_site 0.024 
    

Ventoux bad_site 0.046 0.054 
   

Ventoux good_site 0.040 0.045 0.057 
  

      

      

P. halepensis 
     

 

ItalyH ItalyL SpainAlz 
  

ItalyL 0.030 
    

SpainAlz 0.082 0.129 
   

SpainMon 0.096 0.143 0.017 
  

      

      

P. pinaster 
     

 

3H 3S 4H 
  

3S 0.022 
    

4H 0.024 0.031 
   

4S 0.025 0.027 0.028 
  

 

(c) Summary of the posterior probability density (value of the median; limits of 99% credible 
intervals) for the BAMOVA-estimated within-site (between stands) Φ-statistics, at the genome level 
and for outlier loci:  genome-level ΦSC (i.e. between stands, within site) and ΦCT (i.e. among sites) 
values for each species. lCI: lower boundary of the 99% credible interval of the posterior 
distribution; Median: median of the posterior distribution; Mode: mode of the posterior distribution; 
uCI: upper boundary of the 99% credible interval of the posterior distribution. 
 
  ΦSC ΦCT 



 

(between stands, within site) (among sites) 

Species lCI Median Mode uCI lCI Median Mode uCI 
A.alba 0.0205 0.0216 0.0216 0.0227 -0.0036 0.0005 0.0005 0.0013 
C.atlantica 0.0275 0.0291 0.0291 0.0307 0.0086 0.0104 0.0104 0.0319 

P.halepensis 0.0290 0.0304 0.0304 0.0320 0.0674 0.0712 0.0712 0.0749 
P.pinaster 0.0294 0.0307 0.0308 0.0321 -0.0002 0.0009 0.0009 0.0021 

 
  



 

Caption to Supplementary Material Items 

Supplementary Table T1.  

(a) List of the probes used by rapidGenomics (Gainsville, FL) to carry out 

sequence capture, with the indication of whether the probe matched ("TRUE") or did not match 

("FALSE") at least a contig for each species. 

Species codes: Aa = Abies alba; Ca = Cedrus atlantica; Ph = Pinus halepensis; Pp = Pinus pinaster. 

NbSpecies: number of species for which the probe matched at least one contig (i.e., number of  

"TRUE" values on the row). 

(b) probe sequences. 

 

Supplementary Table T2. 

Sample-level quality assessment of raw data 

 

Supplementary Table T3. 

List of SNPs for each species. 

Name format: [contig number]_[variant position] 

 

Supplementary Table T4.  

Lists of outliers for all species and all methods. 

SNP names are coded as in Supplementary Table T3 ([contig name]_[SNP. Position]). 

 

Supplementary table T5. 

Number of outliers detected by each method. 



 

Supplementary Table T6.  

(a) summary (minimum, mean, maximum) of mode values for each species; (b) 99% Credible 

interval (lower boundary, mode, upper boundary) of posterior distributions of the scaled selection 

coefficient Ns for BAMOVA outlier loci. Locus names coded as (contig name)_(SNP position). 

Prior = prior distribution from simulations. 

 

Supplementary Table T7.  

Orthology groups for outlier-containing contigs 

 

Supplementary Table T8. 

Functional annotation of outlier-containing contigs 

 

Supplementary Table T9 

Summary of the distribution of variants by species and by functional annotation.  

(a) all variants; (b) outliers; (c) comparison of numbers of each type of variant between outliers and 

all loci in CDS; (d) same as (c) but with SnpEff characteristics aggregated and the impact of an 

amino acid change (i.e. if the amino acid change implies a change of its class: charged, polar or 

hydrophobic and a change in the termination). 

 

Supplementary Table T10 

GO-terms enrichment in outlier-contaning contigs 

 

Supplementary Results R1-R4 



 

Contig consensus sequences 

 

Supplementary Results R5 

Background data on assembly properties, SNP distribution and SNP heterozygosity.  

(a) Abies alba; (b) Cedrus atlantica; (c) Pinus halepensis; (d) Pinus pinaster. For each species: 

upper left pane, distribution of contig lengths in the assembly; upper right pane, number of variants 

per contig before final variant filtering; lower left pane, density of variants per base before final 

variant filtering; lower right pane, heterozygote deficit (FIS) within each stand after final variant 

filtering. 

 

Supplementary Results R6 

1. Table of summary statistics of per-locus normalised π by population and histograms of 

normalised π by population; 2. Average inbreeding coefficients per species. 

 

Supplementary Results R7 

Analysis of overlap of outliers across analyses and estimation of error rates in outlier detection. 

 

Supplementary Results R8 

ABC cross-validation. 

 

Supplementary Methods M1 

(a) DNA isolation (b) choice of sequence capture probes (c) sequence capture, assembly, and 

variant calling 



 

 

Supplementary Methods M2 

Scripts used for additional variant filtering. 

(a) sieve() script; (b) monoRemove() script; (c) ad-hoc script for calculation of π 

 

Supplementary Methods M3 

Simulation of evolutionary scenarios to estimate power and FDR of outlier tests. 

 

Supplementary Methods M4  

1.Checks on forward simulations; 2. Detailed ABC methods; 3. Cross validations of ABC 

estimations 

 

Supplementary Figure F1 

Poster distribution of divergence estimates as obtained in BAMOVA. ΦST = global divergence; 

ΦCT = divergence among sites; ΦSC = divergence between populations within site. Notice that scales 

differ among plots. 

 

Supplementary Figure F2 

Overlap of outlier lists between the two methods. Horizontal bars represent numbers of outliers 

obtained with each method, and vertical bars represent the number of shared outliers over methods. 

The group of methods corresponding to each vertical bar is indicated by the dots connected by the 

solid line underlying the bar (the first bars on the left of each plot represent the overlap of each 

method with itself - that is, the non-overlapping outliers). 



 

 

Supplementary Figure F3  

Between-stands trends in allele frequencies at BAMOVA and pcadapt outlier loci, for each species. 

X-axis: locus names (see Materials & Methods for naming conventions); y-axis: 

allele frequencies for an arbitrary allele (all frequencies bound between 0 and 

1). For each site, the population on the left of the plot is the lower elevation 

one, and the population on the right is the higher elevation one. 

Species and population identity: 

(a) Abies alba, filled line: Issole; dashed line: Ventoux; dotted line: Vésubie. 

(b) Cedrus atlantica, filled line: Luberon; dashed line: Ventoux; 

(c) Pinus halepensis, filled line: Italy; dashed line: Spain; 

(d) Pinus pinaster, filled line: Ain-Almedijar; dashed line: Algimia de Almonacid. 

 

Supplementary Figure F4  

Hyperposterior distributions for the scaled selection coefficient (Ns) for BAMOVA outlier loci 

(filled lines) against the prior (dotted lines). 

 

Supplementary Figure F5 

ReviGo analysis of enriched GO terms. 




