Two unique star-like [MnIVMnIII2LnIII] clusters: magnetic relaxation phenomena

Thomais G. Tziotzi,a Milosz Siczek,b Tadeusz Lis,b Ross Inglis*,c and Constantinos J. Milios*a

Employment of H3L2 (= 2-(β-naphthalideneamino)-2-hydroxyethyl-1-propanol) in manganese-lanthane cluster chemistry has led to the isolation of two new isostructural tetrametallic [MnIV2MnIII2LnIII] complexes (Ln = Gd, Dy), with the Dy analogue displaying temperature and frequency dependent out-of-phase signals, thus indicating possible single molecule magnetism behaviour.

The last decade has witnessed a major boost in the field of molecular magnetism. Since the discovery of the prototype single molecule magnet (SMM) [Mn12OAc] that could retain its magnetization once magnetized at temperatures below ~3 K,[1] various significant achievements have been accomplished: i) in 2007 a hexanuclear [MnIII6] cluster was reported with an energy barrier for the re-orientation of the magnetization of \(U_{\text{eff}} = 86.4 \) K, breaking the record of \(U_{\text{eff}} = 60-64 \) K held by the prototype SMM for ~15 years,[2] ii) in 2009 a [DyIII4] cluster was reported elevating the energy barrier to 170 K,[3] iii) in 2011 Long et al. synthesized a radical-bridged [DyIII2] complex with a blocking temperature of 8.3 K and \(U_{\text{eff}} = 178 \) K,[4] while the terbium analogue displayed a blocking temperature of ~14 K and \(U_{\text{eff}} = 326 \) K,[5] iv) in 2013 Winpenny et al. reported polynuclear lanthanide alkoxide complexes with \(U_{\text{eff}} \) values higher than 800 K,[6] and v) very recently a number of pentagonal bipyramidal mononuclear DyIII complexes have been reported with blocking temperatures reaching 20 K[7] and \(U_{\text{eff}} \) values > 1000 K.[8] From these recent benchmarks, it is apparent that the use of lanthanide ions in molecular magnetism has become a key element towards the improvement of the magnetic properties of discrete clusters and their potential technological applications as magnetic memory devices.

We previously reported the use of the naphthalene-based triol ligand 2-(β-naphthalideneamino)-2-hydroxyethyl-1-propanol, \(\text{H}_3\text{L}_1 \),[9] in Co(II/III), Ni(II) and Cu(II) chemistry,[10] and recently expanded our studies to mixed-metal Mn/Ln chemistry reporting a family of octanuclear [MnIII6LnIII2] complexes,[11] and two dodecanuclear [MnIII6LnIII2] clusters (Ln = Gd, Dy).[12] Herein, we present our efforts towards the use of H3L2 (=2-(β-naphthalideneamino)-2-hydroxyethyl-1-propanol) in Mn/Ln cluster chemistry, and report the synthesis, structures and magnetic properties of two tetrametallic [MnIV2MnIII2LnIII] clusters (Ln = Gd, Dy).

Scheme 1. The structures of H3L1 and H3L2 (top), and the coordination modes of H3L2 in 1 and 2 using Harris notation (bottom).

From the reaction of Mn(ClO4)2·6H2O, Ln(NO3)3·6H2O (Ln = Gd, Dy), H3L2 and NH4SCN in 1:1:1:3 ratio in the presence of base, NEt3, in MeOH we were able to isolate and characterize two new heterometallic tetranuclear clusters with the general formula [MnIII2LnIII(L)L2(HL)L(NCS)](H2O)(MeOH)1.8(0.5NO3)(0.5ClO4)1.8 MeOH·0.6H2O (naph: naphthaldehyde; Ln: Gd, Dy). The structure of 1 was solved by single-crystal X-ray crystallography, while complex 2 is isosstructural with 1 based on elemental analyses, IR spectra and powder XRD patterns (Figs S1 and S2). Cluster 1 crystallizes in the triclinic P-1 space group.
Variable temperature dc magnetic susceptibility data were collected for both complexes in the temperature range 5-300 K under an applied field of 0.1 T, and are plotted as $\chi_M T$ versus T plots in Figure 2. For 1, the room temperature $\chi_M T$ value of 15.30 cm3 K mol$^{-1}$ is very close to the expected value of 15.75 cm3 K mol$^{-1}$ for two non-interacting MnIII (with $g = 2.0$), one MnIV ($g = 2.0$) and one GdIII ions ($g = 2.00$). Upon cooling the value of $\chi_M T$ remains almost unchanged until ~100 K, below which it decreases to a minimum value of 5.09 cm3 K mol$^{-1}$ at 5 K. For 2, the room temperature $\chi_M T$ value of 21.75 cm3 K mol$^{-1}$ is very close to the expected value of 21.97 cm3 K mol$^{-1}$ for two non-interacting MnIII (with $g = 2.0$), one MnIV ($g = 2.0$) and one DyIII ions ($S = 5/2, L = 5, J = 15/2, g = 4/3$). Upon cooling the value of $\chi_M T$ remains fairly constant until ~120 K, below which it decreases to a final value of 12.01 cm3 K mol$^{-1}$ at 5 K.
Two new heterometalllic tetracnuclear [MnIVMnIII2Ln] (Ln = Gd, Dy) star-like clusters have been synthesized with the use of the H3L2 (= 2-(β-naphthalideneamino)-2-hydroxyethyl-1-propanol) ligand in mixed-metal Mn/Ln chemistry. They represent the first examples of a mixed-valent Mn/Ln complex with a star-like topology, and the magnetic properties of the Dy analogue, 2, suggest possible single molecule magnetism behaviour.

Acknowledgements

CJM would like to thank the Greek Ministry of Education under “THALES” project (MIS 377064).

Notes and references

§ Crystal data for 1: (C77.80H80.4GdMn3N5O16.8S)∙0.5(ClO4)∙0.5(NO3)∙1.8(CH3OH)∙0.6(H2O), M = 1857.61, triclinic, space group P-1, a = 16.077(7) Å, b = 16.201(7) Å, c = 18.740(8) Å, α = 70.68(4)°, β = 84.13(4)°, γ = 68.67(3)°, V = 4290(3) Å³, Z = 2, T = 100 K, R1 (I > 2σ) = 0.064 and wR2 (all data) = 0.201 for 32407 reflections collected, 14826 observed reflections (I > 2σ(I)) of 21792 (Rint = 0.032) unique reflections and 1171 parameters, GOF = 1.07. CCDC reference number: 1470482.

Conclusions

Figure 4. Plot of the in-phase χ"ac"(top) and out-of-phase χ"dc" signals (bottom) for 2 in ac susceptibility studies vs. T in a 3.5 G oscillating field at the indicated frequencies.
