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Abstract We consider the problem of continuum armed bandits where the arms are
indexed by a compact subset of Rd . For large d, it is well known that mere smooth-
ness assumptions on the reward functions lead to regret bounds that suffer from the
curse of dimensionality. A typical way to tackle this in the literature has been to make
further assumptions on the structure of reward functions. In this work we assume
the reward functions to be intrinsically of low dimension k � d and consider two
models: (i) The reward functions depend on only an unknown subset of k coordi-
nate variables and, (ii) a generalization of (i) where the reward functions depend on
an unknown k dimensional subspace of Rd . By placing suitable assumptions on the
smoothness of the rewards we derive randomized algorithms for both problems that
achieve nearly optimal regret bounds in terms of the number of rounds n.

Keywords Bandit problems · Continuum armed bandits · Functions of few
variables · Online optimization · Low-rank matrix recovery

1 Introduction

In the continuum armed bandit problem, a player is given a set of strategies S—
typically a compact subset of Rd . At each round t = 1, . . . , n, the player chooses a
strategy xt from S and then receives a reward rt (xt ). Here rt : S → R is the reward
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Department of Computer Science, Institute of Theoretical Computer Science, ETH Zürich, Zürich,
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function chosen by the environment at time t according to the underlying model. The
player selects strategies across different rounds with the goal of maximizing the total
expected reward. Specifically, the performance of the player is measured in terms of
regret. This is defined as the difference between the total expected reward of the best
fixed (i.e. not varying with time) strategy and the expected reward of the sequence
of strategies played by the player. If the regret after n rounds is sub-linear in n, this
implies as n → ∞ that the per-round expected reward of the player asymptotically
approaches that of the best fixed strategy.

The problem faced by the player at each round is the classical “exploration-
exploitation dilemma”. On one hand if the player chooses to focus his attention on a
particular strategy which he considers to be the best (“exploitation”) then he might
fail to know about other strategies which have a higher expected reward. However if
the player spends too much time collecting information (“exploration”) then he might
fail to play the optimal strategy sufficiently often. Some applications of continuum
armed bandit problems are in: (i) online auction mechanism design [11, 28] where the
set of feasible prices is representable as an interval and, (ii) online oblivious routing
[9] where S is a flow polytope.

For a d-dimensional strategy space, if the only assumption made on the reward
functions is on their degree of smoothness then any algorithm will incur worst-case
regret which depends exponentially on d [26]. To see this, let S = [−1, 1]d and
consider a time invariant reward function that is zero in all but one orthant O of
S. More precisely, let R(n) denote the cumulative regret incurred by the algorithm

after n rounds. Bubeck et al. [13] showed that R(n) = �(n
d+1
d+2 ) after n = �(2d)

plays for stochastic continuum armed bandits1 with d-variate Lipschitz continuous
mean reward functions defined over [0, 1]d . Clearly the per-round expected regret

R(n)/n = �(n
−1
d+2 ) which means that it converges to zero at a rate at least expo-

nentially slow in d. This curse of dimensionality is avoided by reward functions
possessing more structure, two popular cases being linear reward functions (see for
example [2, 33]) and convex reward functions (see for example [21, 26]) for which
the regret is polynomial in d and sub-linear in n.

Low Dimensional Models for High Dimensional Reward Functions Recently there
has been work in the online optimization literature where the reward functions
are assumed to be intrinsically low-dimensional or in other words have only a
few degrees of freedom compared to the ambient dimension. Carpentier et al. [15]
and Yadkori et al. [1] consider the linear stochastic bandit problem with rewards
rt (x) = wT x + ηt . Here ηt ; t = 1, 2, . . . , n is stochastic noise. They consider the
setting where the unknown parameter w (of dimension d) is k-sparse with k � d.
Chen et al. [16] consider the problem of Bayesian optimization of high dimensional
functions by again assuming the functions to depend on only a few relevant variables.
This model is generalized by Wang et al. [43] and Djolonga et al. [20] where the
authors consider the underlying function to effectively vary along a low-dimensional
subspace and adopt a Bayesian optimization framework.

1Rewards sampled at each round in an i.i.d manner from an unknown probability distribution.
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In this work we consider two problems based on the nature of the low dimen-
sional assumption placed on the reward functions. In both problems, we want to find
algorithms that lead to small regret.

– Problem 1. We assume the reward functions rt : S → R to depend
on an unknown subset of k coordinate variables implying rt (x1, . . . , xd) =
gt (xi1 , . . . , xik ). The underlying function gt is assumed to be sampled by the
environment at each round t = 1, 2, . . . either in an: (i) i.i.d manner from some
fixed unknown probability distribution (stochastic environment) or (ii) arbitrarily
(adversarial environment).

– Problem 2. We assume the reward functions rt : S → R to depend effectively
on a fixed but unknown k-dimensional subspace of Rd implying rt (x) = gt (Ax)
withA ∈ R

k×d being a full rank matrix. The underlying functions gt are assumed
to be sampled by a stochastic environment. This problem is a generalization of
the preceding one, since in the special case when each row of A has a single 1
and 0’s otherwise, we arrive at the setting of Problem 1.

Our Contributions Firstly, assuming (i1, . . . , ik) to be fixed across time but unknown
to the player, we derive an algorithm CAB(d, k) that achieves a regret bound of

O(C1(k, d)n
α+k
2α+k (log n)

1
2α+k ), after n rounds for Problem 1. Here α ∈ (0, 1] denotes

the exponent of Hölder continuity of the reward functions while the factorC1(k, d) =
O(poly(k) · o(log d)) captures the uncertainty of not knowing the k active coordi-
nates. When α = 1, i.e. the reward functions are Lipschitz continuous, our bound is

nearly optimal2 in terms of n (up to the (log n)
1

2+k factor). Note that the number of
rounds n after which the per-round regret R(n)/n < c, for any constant 0 < c < 1,
is exponential in k. Hence for k � d, we do not suffer from the curse of dimension-
ality. The algorithm is anytime in the sense that n is not required to be known and is a
simple modification of the CAB1 algorithm [26]. The modification is in the manner
of discretization of the continuous strategy set S for which we consider a probabilis-
tic construction based on creating partitions of {1, . . . , d} into k disjoint subsets. We
also extend our results to the setting where the k-tuple is allowed to change over time.
Assuming that a sequence of k-tuples (it )nt=1 = (i1,t , . . . , ik,t )

n
t=1 is chosen by an

adversary before the start of plays we show that CAB(d, k) achieves a regret bound

of O(C1(k, d)H [(it )nt=1]n
α+k
2α+k (log n)

1
2α+k ). Here H [(it )nt=1] denotes the3 “hardness”

of (it )nt=1. In case H [(it )nt=1] ≤ Q for some Q > 0 known to the player, the regret

bound improves to O(C1(k, d)Q
α

2α+k n
α+k
2α+k (log n)

1
2α+k ).

Secondly, we provide a solution to Problem 2 by deriving an algorithm namely

CAB-LP(d, k) which achieves a bound of O(C2(k, d)n
1+k
2+k (log n)

1
2+k ) on the regret

after n rounds. The factor C2(k, d) = O(poly(k) · poly(d)), captures the uncertainty
of not knowing the k-dimensional sub-space spanned by the rows of A. This bound is
derived for a slightly restricted class of Lipschitz continuous mean reward functions.

2 See Remark 1 in Section 3.1 for discussion on how the log n factor can be removed.
3See Definition 2 in Section 2.1.
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In terms of n, it nearly matches2 the �(n
1+k
2+k ) lower bound [13], for k-variate Lip-

schitz continuous mean reward functions. As explained earlier, the per-round regret
R(n)/n approaches zero (as n increases), at a rate exponential in k. Thus for k � d,
we avoid the curse of dimensionality. We assume n to be known to the algorithm
(hence it is not anytime) and refer to it as the sampling budget. The main idea of
the algorithm is to first use a fraction of the budget for estimating the unknown
k-dimensional sub-space spanned by the rows of the linear parameter matrix A.
After obtaining this estimate we then employ the CAB1 algorithm [26] which is
restricted to play strategies only from the estimated subspace. To derive sub-linear
regret bounds we show that a careful allocation of the sampling budget is necessary
between the two phases.

Comparison with Similar Work in Literature Chen et al. [16] consider the setting of
Problem 1. The authors consider a stochastic environment but assume the underly-
ing reward functions to be samples from a Gaussian process (GP). They propose a
two-stage scheme where they first learn the set of active variables and then apply
a standard GP algorithm to perform Bayesian optimization over this identified set.
They also derive regret bounds for their scheme.

Very recently, Djolonga et al. [20] considered the same bandit problem as Prob-
lem 2 above. Although they consider the mean reward function to reside in an RKHS
(Reproducible Kernel Hilbert space) and adopt a Bayesian optimization framework,
the scheme they employ is similar to ours. Wang et al. [43] also consider the set-
ting of Problem 2, however their framework is significantly different from ours.
They consider a Bayesian optimization framework and consider noise-less optimiza-
tion of the reward functions assumed to be samples from a Gaussian process (GP).
Furthermore they derive bounds on simple regret which is weaker then cumulative
regret.

Other Related Work The continuum armed bandit problem was first introduced by
Agrawal [3] for the case d = 1 where an algorithm achieving a regret bound of
o(n(2α+1)/(3α+1)+η) for any η > 0 was proposed for local Hölder continuous mean
reward functions. Kleinberg et al. [28] proved a lower bound of �(n1/2) for this
problem. This was then improved upon by Kleinberg [26] where the author derived

upper and lower bounds of O(n
α+1
2α+1 (log n)

α
2α+1 ) and �(n

α+1
2α+1 ) respectively. Cope

[18] considered a class of mean reward functions defined over a compact convex
subset of Rd which have (i) a unique maximum x∗, (ii) are three times continuously
differentiable and (iii) whose gradients are well behaved near x∗. It was shown that
a modified version of the Kiefer-Wolfowitz algorithm achieves a regret bound of
O(n1/2) which is also optimal. Auer et al. [8] considered the d = 1 case, with the
mean reward function assumed to only satisfy a local Hölder condition around each
maximum x∗ with exponent α ∈ (0, ∞). Under these assumptions the authors con-
sidered a modification of Kleinberg’s CAB1 algorithm [26] and achieved a regret

bound of O(n
1+α−αβ
1+2α−αβ (log n)

α
1+2α−αβ ) for some known 0 < β < 1. Kleinberg et al.

[29] and Bubeck et al. [12] studied a very general setting for the multi-armed ban-
dit problem in which S forms a metric space, with the reward function assumed to
satisfy a Lipschitz condition with respect to this metric.
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There has also been significant effort in other fields to develop tractable algorithms
for approximating high dimensional functions from point queries. This is typically
done by assuming that the functions intrinsically depend on either few variables (cf.
[10, 17, 19, 25] and references within) or few linear parameters [22, 40].

Organization of the Paper The rest of the paper is organized as follows. In Section 2
we state the problems formally along with our main results. In Section 3 we describe
an algorithm and derive regret bounds achieved by it for Problem 1. Next in Section 4
we describe an algorithm for Problem 2 and provide a detailed analysis deriving
regret bounds achieved by it. Finally we provide concluding remarks in Section 5.

2 Problem Setup and Main Results

We now outline the problem setup including relevant notation and assumptions along
with our main results for Problems 1 and 2 in Sections 2.1 and 2.2 respectively.

2.1 CAB Problem of Few Variables

The compact set of strategies S ⊂ R
d is taken to be [0, 1]d . At each time step t =

1, . . . , n, a reward function rt : S → R is chosen by the environment. Upon playing
a strategy xt ∈ [0, 1]d , the player receives the reward rt (xt ) at time step t . For some
k ≤ d, we assume that each rt depends on a fixed but unknown subset of k variables.
This means rt (x1, . . . , xd) = gt (xi1 , . . . , xik ) where (i1, . . . , ik) is a k-tuple with
distinct integers ij ∈ {1, . . . , d} and gt : [0, 1]k → R. For simplicity of notation,
we denote the set of such k-tuples of the set {1, . . . , d} by T d

k and the �2 norm by
‖ · ‖. We assume that k is known to the player, however it suffices to know that k is
an upper bound for the number of active variables.4 The second assumption that we
make is on the smoothness property of the reward functions.

Definition 1 A function f : [0, 1]k → R is Hölder continuous with constant 0 ≤
L < ∞, exponent 0 < α ≤ 1, if we have for all u, u′ ∈ [0, 1]k that |f (u) − f (u′)| ≤
L ‖ u − u′ ‖α . We denote the class of such functions f as C(α, L, k).

The function class defined in Definition 1 was also considered by Agrawal [3] and
Kleinberg [26]. It can be seen as a generalization of Lipschitz continuity (obtained
for α = 1). We fix 0 < α ≤ 1 and 0 ≤ L < ∞ throughout and now proceed to
define the two models that we analyze for our problem. These models describe how
the reward functions gt are generated at each time step.

Stochastic Model The reward functions gt are considered to be i.i.d samples from
some fixed but unknown probability distribution over functions g : [0, 1]k → R.
We define the expectation of the reward function as ḡ(u) = E[g(u)] where u ∈
[0, 1]k . We require ḡ to belong to C(α, L, k) and note that the individual samples gt

4Indeed, any function that depends on k′ ≤ k coordinates also depends on at most k coordinates.
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need not necessarily be Hölder continuous. We make the following assumption of
sub-Gaussianity on the distribution from which the random samples g are generated.

Assumption 1 We assume that there exist constants ζ, s0 > 0 so that

E[es(g(u)−ḡ(u))] ≤ e
1
2 ζ 2s2 ∀s ∈ [−s0, s0], u ∈ [0, 1]k.

The above assumption was considered by Kleinberg [26] for the case d = 1 and
allows us to consider reward functions gt whose range is not bounded. Note that the
mean reward ḡ is assumed to be Hölder continuous and is also defined on a compact
set [0, 1]k , implying that it is bounded. The optimal strategy x∗ is then defined as any
point belonging to the set

argmax
x∈[0,1]d

E[r(x)] = argmax
x∈[0,1]d

ḡ(xi1 , . . . , xik ). (1)

Adversarial Model The reward functions gt : [0, 1]k → [0, 1] are a fixed sequence
of functions in C(α, L, k) chosen arbitrarily by an oblivious adversary i.e., an adver-
sary not adapting to the actions of the player. The optimal strategy x∗ is then defined
as any point belonging to the set

argmax
x∈[0,1]d

n∑

t=1

rt (x) = argmax
x∈[0,1]d

n∑

t=1

gt (xi1 , . . . , xik ). (2)

Given the above models we measure the performance of a player over n rounds in
terms of the regret defined as

R(n) :=
n∑

t=1

E
[
rt (x∗) − rt (xt )

] =
n∑

t=1

E

[
gt (x∗

i1
, . . . , x∗

ik
) − gt

(
x(t)
i1

, . . . , x(t)
ik

)]
.

(3)
In (3) the expectation is defined over (i) the random choice of gt in the stochas-
tic model and (ii) the random choice of the strategy xt by the player in the
stochastic/adversarial models.

Changing k-Tuple Across Time We also consider a more general adversarial setting
where the k tuple (i1, . . . , ik) is allowed to change over time. Formally this means that
the reward functions (rt )

n
t=1 now have the form rt (x1, . . . , xd) = gt (xi1,t , . . . , xik,t

)

where (i1,t , . . . , ik,t )
n
t=1 denotes the sequence of k-tuples chosen by the adversary

before the start of plays. Here gt : [0, 1]k → [0, 1] with gt ∈ C(α, L, k) for each
t = 1, 2, . . . . We assume that the sequence of k-tuples is not “hard” meaning that
it contains a small number of consecutive pairs (relative to the number of rounds n)
with different values. This is formally defined as follows.

Definition 2 For any set B we define the hardness of the sequence (b1, . . . , bn) ∈ Bn

by:

H [b1, . . . , bn] := 1 + |{1 ≤ l < n : bl �= bl+1}|. (4)
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The above definition was introduced by Auer et al. [7, Section 8] where the authors
considered the non-stochastic multi-armed bandit problem. They employed the defi-
nition to characterize the hardness of a sequence of actions against which the regret
of the player’s actions is measured. The optimal strategy x∗ is then defined as any
point belonging to the set

argmax
x∈[0,1]d

n∑

t=1

rt (x) = argmax
x∈[0,1]d

n∑

t=1

gt (xi1,t , . . . , xik,t
). (5)

Furthermore the regret incurred by the player after n rounds is defined as

R(n) :=
n∑

t=1

E
[
rt (x∗) − rt (xt )

] =
n∑

t=1

E

[
gt (x∗

i1,t
, . . . , x∗

ik,t
) − gt

(
x(t)
i1,t

, . . . , x(t)
ik,t

)]
. (6)

Main Results Our main results are as follows. Firstly, assuming that the k-tuple
(i1, . . . , ik) ∈ T d

k is chosen once at the beginning of play and kept fixed there-
after, we provide in the form of Theorem 1 a bound on the regret which is

O(n
α+k
2α+k (log n)

α
2α+k C1(k, d)) where C1(k, d) = O(poly(k) · o(log d)). This bound

holds for both the stochastic and adversarial models and is nearly optimal. To see

this, we note that Bubeck et al. [13] showed a precise lower bound of �(n
d+1
d+2 ) after

n = �(2d) plays for stochastic continuum armed bandits, with d-variate Lipschitz
continuous mean reward functions, defined over [0, 1]d . In our setting though, the
reward functions depend on an unknown subset of k coordinate variables hence any

algorithm after n = �(2k) plays would incur worst case regret of �(n
k+1
k+2 ). We see

that our upper bound matches this lower bound for the case of Lipschitz continuous

reward functions (α = 1) up to a mild factor of (log n)
1

2+k C1(k, d). We also note
that the (log d)

α
2α+k factor in (7) accounts for the uncertainty of not knowing which k

coordinates are active from {1, . . . , d}.

Theorem 1 Given that the k-tuple (i1, . . . , ik) ∈ T d
k is kept fixed across time but

unknown to the player, the algorithm CAB(d, k) incurs a regret of

O

(
n

α+k
2α+k (log n)

α
2α+k k

α(k+6)
2(2α+k) (log d)

α
2α+k

)
(7)

after n rounds of play with high probability for both the stochastic and adversarial
models.

The above result is proven in Section 3.1 along with a description of the
CAB(d, k) algorithm which achieves this bound. The main idea here is to discretize
[0, 1]d by first constructing a family of partitionsA of {1, . . . , d} with each partition
consisting of k disjoint subsets. The construction is probabilistic and the resulting A
satisfies an important property (with high probability) namely the Partition Assump-
tion as described in Section 3.1. In particular we have that |A| is O(kek log d)

resulting in a total of Mk|A| sampling points for some integer M > 0. This discrete
strategy set is then used with a finite armed bandit algorithm such as UCB-1 [5] for
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the stochastic setting and Exp3 [6] for the adversarial setting, to achieve the regret
bound of Theorem 1.

Secondly we extend our results to the setting where (i1, . . . , ik) can change over
time. Considering that an oblivious adversary chooses arbitrarily before the start of
plays a sequence of k-tuples (it )nt=1 = (i1,t , . . . , ik,t )

n
t=1 of hardness H [(it )nt=1] ≤ Q

with Q > 0 known to the player, we show how Algorithm CAB(d, k) can be adapted

to this setting to achieve a regret bound of O
(
n

α+k
2α+k (log n)

α
2α+k Q

α
2α+k C1(k, d)

)
.

In case the player has no knowledge of Q, the regret bound then changes

to O
(
n

α+k
2α+k (log n)

α
2α+k H

[
(it )nt=1

]
C1(k, d)

)
. Although our bound becomes trivial

when H [(it )nt=1] is close to n (as one would expect), we can still achieve sub-linear
regret when H [(it )nt=1] is small relative to n. We again consider a discretization of
the space [0, 1]d constructed using the family of partitions A mentioned earlier. The
difference lies in now using the Exp3.S algorithm [7] on the discrete strategy set,
which in contrast to the Exp3 algorithm is designed to control regret against arbitrary
sequences. This is described in Section 3.2.

2.2 CAB Problem of Few Linear Parameters

We consider the set of strategies S to be the �2-ball of radius 1+ν for some ν > 0 de-
noted asBd(1+ν). At each time t = 1, . . . , n the environment chooses a reward func-
tion rt : Bd(1+ ν) → R. Upon playing the strategy xt the player receives the reward
rt (xt ). Here the number of rounds n (sampling budget) is assumed to be known to
the player. We consider the setting where each rt depends on k � d unknown linear
parameters a1, . . . , ak ∈ R

d with k assumed to be known to the player. In particular,
denoting A = [a1 . . . ak]T ∈ R

k×d we assume that rt (x) = gt (Ax).
The reward functions gt are considered to be samples from some fixed but

unknown probability distribution over functions g : Bk(1+ν) → R. We then have the
expected reward function as ḡ(u) = E[g(u)] where u ∈ Bk(1+ν). More specifically
we consider the model:

rt (x) = ḡ(Ax) + ηt ; t = 1, 2, . . . , n (8)

where (ηt )
n
t=1 is i.i.d Gaussian noise with mean E[ηt ] = 0 and variance E[η2t ] = σ 2.

We assume ḡ to be sufficiently smooth - in particular to be two times continuously
differentiable. Specifically, we assume for some constant C2 > 0 that the magnitude
of all partial derivatives of ḡ, up to order two, are bounded by C2:

sup|β|≤2 ‖ Dβḡ ‖∞≤ C2 ; Dβḡ = ∂ |β|ḡ
∂y

β1
1 . . . ∂y

βk

k

, |β| = β1 + · · · + βk. (9)

Note that this is slightly stronger then assuming Lipschitz continuity.5 Also note that
the individual samples gt need not necessarily be smooth. We now make additional

5Indeed for a compact domain, any C2 function is Lipschitz continuous but the converse is not neces-
sarily true. Therefore, the mean reward functions that we consider, belong to a slightly restricted class of
Lipschitz continuous functions.
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assumptions on the mean reward function ḡ. In fact it was shown by Fornasier et
al. [22] that such additional assumptions are also necessary in order to formulate a
tractable algorithm. For example when k = 1, if we only make smoothness assump-
tions on ḡ, then one can construct ḡ so that �(2d) many samples are needed to
distinguish between r̄(x) ≡ 0 and r̄(x) ≡ ḡ(aT x) [22].

To this end, we define the following matrix:

Hr :=
∫

Sd−1
∇ r̄(x)∇ r̄(x)T dx = AT ·

∫

Sd−1
∇ḡ(Ax)∇ḡ(Ax)T dx · A (10)

where the second equality follows from the identity∇ r̄(x) = AT ∇ḡ(Ax). Let σi(H
r)

denote the ith singular value of Hr . We make a technical assumption related to the
conditioning of Hr . This assumption allows us to derive a tractable algorithm for our
problem. We assume for some α > 0 that:

σ1(H
r) ≥ σ2(H

r) ≥ · · · ≥ σk(H
r) ≥ α > 0. (11)

The parameter α determines the tractability of our algorithm. As explained in
Section 4.4, there are interesting function classes that satisfy (11) for usable values
of α.

Following Fornasier et al. [22], we also assume without loss of generality, A to be
row orthonormal so that AAT = I. Indeed if this is not the case then through SVD
(singular value decomposition) of A we obtain A = U︸︷︷︸

k×k

�︸︷︷︸
k×k

VT
︸︷︷︸
k×d

where U, �,VT

are unitary, diagonal and row-orthonormal matrices respectively. Therefore we obtain

r̄(x) = ḡ(Ax) = ḡ(U�VT x) = ḡ′(VT x)

where ḡ′(y) = ḡ(U�y) for y ∈ Bk(1 + ν). Hence within a scaling of the parameter
C2 by a factor depending polynomially on k, σ1(A) we can assume A to be row-
orthonormal.

Regret after n Rounds After n rounds of play the cumulative expected regret is
defined as:

R(n) =
n∑

i=1

E[rt (x∗) − rt (xt )] =
n∑

i=1

[ḡ(Ax∗) − ḡ(Axt )], (12)

where x∗ is the optimal strategy belonging to the set

argmax
x∈Bd(1+ν)

E[rt (x)] = argmax
x∈Bd(1+ν)

ḡ(Ax) (13)

Here x1, x2, . . . , xn is the sequence of strategies played by the algorithm. The
goal of the algorithm is to minimize regret i.e. ensure R(n) = o(n) so that
limn→∞ R(n)/n = 0.

Main Results Our main result is to derive a randomized algorithm namely CAB-

LP(d, k) which achieves a regret bound of O(C(k, d)n
1+k
2+k (log n)

1
2+k ) after n rounds.



200 Theory Comput Syst (2016) 58:191–222

Here, C(k, d) = O(poly(k) · poly(d)) accounts for the uncertainty of not knowing
the k-dimensional sub-space spanned by the rows of A. We state6 this formally in the
form of the following theorem below.

Theorem 2 For any p ∈ (0, 1), there exists a constant c′ > 0 so that algorithm
CAB-LP(d, k) achieves a total regret of

O

(
k13d2σ 2(log( k

p
))4

α4
(max

{
d, α−1

}
)2

(
n

log n

) 4
k+2 + n

1+k
2+k (log n)

1
2+k

)

after n rounds with probability at least 1 − p − 6 exp(−c′d).

Recall that σ denotes the variance of the external Gaussian noise η in (8) while
α was defined in (11). The parameter p ∈ (0, 1) controls the probability of suc-
cess of the algorithm at the expense of increasing the total regret incurred. The
algorithm essentially consists of two stages. The first stage involves using a frac-
tion of the sampling budget n to recover an estimate of the row-space of A. The
second stage then involves usage of a finite armed bandit algorithm on the esti-
mated subspace. Note that the dependence7 of the regret bound in terms of n is

O(n
1+k
2+k (log n)

1
2+k ). Say the linear parameter matrixA, or even the sub-space spanned

by its rows, was known. We then know a lower bound of �(n
1+k
2+k ) on regret, for

k-variate Lipschitz continuous mean rewards [13]. In terms of n, our bound nearly
matches this lower bound, albeit for a slightly restricted class of Lipschitz continu-
ous mean reward functions. As discussed in Remark 1 in Section 3.1 it seems to be
possible to remove the log n term completely by using recent results for finite-armed
bandits. Lastly we also note the dependence of our regret bound on the parame-
ter α. As explained in Section 4.4, α typically decreases as d → ∞. Hence in
order to obtain regret bounds that are at most polynomial in d we would like α to
be polynomial in d−1. To this end, Proposition 3 in Section 4.4 which was proven
by Tyagi et al. [41], describes a fairly general class of functions for which α is
�(d−1).

3 Analysis for CAB Problem of Few Variables

In this Section we provide a detailed analysis of our results for the first problem
where the reward functions depend only on some unknown subset of k coordinate
variables. Section 3.1 contains the analysis for the case when the k active coordinates
are fixed across time. In Section 3.2 we then analyze the more general setting where
the k active coordinates are allowed to change over time.

6This theorem is stated again in Section 4 for completeness.
7This is actually true for k ≥ 3. For k = 1, 2 the (n/ log n)

4
k+2 factor dominates. See Remark 3 in

Section 4.3 for details.
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3.1 Analysis When k Active Coordinates are Fixed Across Time

We begin with the setting where the set of active k coordinates is fixed across
time. The core of our analysis involves two parts. First, we construct a discretiza-
tion of the search space, that is, a finite strategy set PM ⊂ S = [0, 1]d where
M > 0 is a parameter that will be defined later. Then, the problem reduces to a
finite armed bandit problem on the discrete set PM . This problem can then be solved
for instance with the UCB-1 (stochastic model) [5] or Exp3 (adversarial model) [6]
algorithms.

UCB-1 is a deterministic algorithm that maintains a score for each arm and at each
round selects the arm with the largest score. The score for any arm is the sum of
two terms. The first term is the current average reward for the arm. The second term
is related to the one sided confidence interval for the average reward within which
the expected reward lies with high probability. Exp3 is a randomized algorithm that
maintains a probability distribution over the arms. At each round, it selects an arm
according to this distribution and then updates the distribution based on the reward
observed.

The main property that the discrete strategy set PM is required to satisfy is the
following. For any x ∈ S = [0, 1]d , M > 0 and any k-tuple (i1, . . . , ik) with distinct
ij ∈ {1, . . . , d} there exists y ∈ PM s.t. |xij − yij | ≤ (1/M) ∀j = 1, . . . , k. The
idea is that for increasing values of M , we would have for any optimal x∗ and any
(i1, . . . , ik) the existence of an arbitrarily close point to (x∗

i1
, . . . , x∗

ik
) inPM . Coupled

with the Hölder continuity of the reward functions this then ensures that the finite
armed bandit algorithm progressively plays strategies closer and closer to x∗ leading
to a bound on regret.

For k = 1, we could simply take the set PM = { i
M

(1, . . . , 1)T : i = 1, . . . ,M},
i.e. a discretization of the diagonal.8 For the general case where k ≥ 1, our
discretization uses a union of point sets of the form

P(v1, . . . , vk) :=
⎧
⎨

⎩
1

M

k∑

j=1

λjvj : λ1, . . . , λk ∈ {1, 2, . . . ,M}
⎫
⎬

⎭ ,

where the vj ’s are d-vectors. Suppose that for a given tuple (i1, . . . , ik) and for all
j , the vector vj has a 1-entry at coordinate ij , and zero entries at the other k − 1
coordinates of the tuple. Then the set P(v1, . . . , vk) discretizes S w.r.t. the tuple
(i1, . . . , ik). An obvious way to achieve this is to set vj = eij for all j , where ei is
the i-th canonical unit vector. Taking the union of the resulting P(v1, . . . , vk) over
all tuples yields the desired discretization of S w.r.t. all tuples.

In the following we describe a more efficient construction in which individual sets
P(v1, . . . , vk) take care of many tuples simultaneously. In this construction, each
tuple (v1, . . . , vk) will be induced by a partition of {1, . . . , d} into k disjoint subsets,
with vj being the characteristic vector of the j -th subset.

8The interested reader can find a full analysis for the case k = 1 in [42].
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Definition 3 A family of partitions A of {1, . . . , d} into k disjoint subsets is said
to satisfy the partition assumption if for any k distinct integers i1, i2, . . . , ik ∈
{1, . . . , d}, there exists a partition A = (A1, . . . , Ak) in A such that each set in A
contains exactly one of i1, i2, . . . , ik .

The above definition is known as perfect hashing in theoretical computer science
and has many applications such as in finding juntas [34], table look-up [24] and com-
munication complexity [37]. There exists a fairly simple probabilistic method using
which one can construct A consisting of O(kek log d) partitions satisfying the parti-
tion assumption property with high probability. This is shown for instance by DeVore
et al. [19]. They consider the significantly different function approximation problem
as opposed to our setting of online optimization. For our purposes, we consider the
aforementioned probabilistic construction. However, there also exist deterministic
constructions resulting in larger family sizes such as the one proposed by Naor et al.
[35], where a family of size O(kO(log k)ek log d) is constructed deterministically in
time poly(d, k). We also note that the size of any family of partitionsA that satisfies
the partition assumption is �(ek log d/

√
k) [23, 30, 36].

Constructing Strategy Set PM Using A Suppose we are given a family of partitions
A satisfying the partition assumption. Let χAj

= (χAj
(1) . . . χAj

(d)) ∈ {0, 1}d be
defined as:

χAj
(l) :=

{
1; l ∈ Aj

0; otherwise
; l = 1, 2, . . . , d. (14)

We then construct the discrete set of strategies PM ⊂ [0, 1]d for some fixed integer
M > 0 as follows.

PM :=
⎧
⎨

⎩
1

M

k∑

j=1

λjχAj
: λj ∈ {1, . . . , M} , (A1, . . . , Ak) ∈ A

⎫
⎬

⎭ ⊂ [0, 1]d . (15)



Theory Comput Syst (2016) 58:191–222 203

The above set of points was also employed by DeVore et al. [19] for the function
approximation problem. Note that a strategy x = 1

M

∑k
j=1 λjχAj

has coordinate

value 1
M

λj at each of the coordinate indices in Aj . Therefore we see that for each
partition A ∈ A we have Mk strategies implying a total of Mk|A| strategies in PM .

Projection Property An important property of the strategy set PM is the follow-
ing. Given any k-tuple of distinct indices (i1, . . . , ik) with ij ∈ {1, . . . , d} and any
integers 1 ≤ n1, . . . , nk ≤ M , there is a strategy x ∈ PM such that

(xi1 , . . . , xik ) =
(n1

M
, . . . ,

nk

M

)
.

To see this, one can simply take a partition A = (A1, . . . , Ak) fromA such that each
ij is in a different set Aj for j = 1, . . . , k. Then setting appropriate λj = nj when
ij ∈ Aj we get that coordinate ij of x has the value nj/M .

Upper Bound on Regret We now describe our Algorithm CAB(d, k) and provide
bounds on its regret. Note that the outer loop implements a standard doubling trick
which is used as the player has no knowledge of the time horizon n. Observe that
before the start of the inner loop of duration T , the player constructs the finite strategy
set PM , where M increases progressively with T . Within the inner loop, the problem
reduces to a finite armed bandit problem. The MAB routine can be any standard
multi-armed bandit algorithm such as UCB-1 (stochastic model) or Exp3 (adversarial
model). The algorithm is motivated by the CAB1 algorithm [26], however unlike the
equispaced sampling done in CAB1 we consider a probabilistic construction of the
discrete set of sampling points based on partitions of {1, . . . , d}. We now present in
the following lemma the regret bound incurred within an inner loop of duration T .

Lemma 1 Given that (i1, . . . , ik) is fixed across time, say the strategy set PM

is used with (i) the UCB-1 algorithm for the stochastic setting or, (ii) the
Exp3 algorithm for the adversarial setting. We then have for the choice M =⌈(

k
α−3
2 e− k

2 (log d)− 1
2

√
T

log T

) 2
2α+k

⌉
that the regret incurred by the player after T

rounds is given by:

R(T ) = O

(
T

α+k
2α+k (log T )

α
2α+k k

α(k+6)
2(2α+k) (log d)

α
2α+k

)
.

Proof Let x∗ ∈ S denote the optimal strategy as defined in (1) or (2). For the k

tuple (i1, . . . , ik) ∈ T d
k , there exists z ∈ PM with zi1 = λ1

M
, . . . , zik = λk

M
where

1 ≤ λ1, . . . , λk ≤ M are integers such that |λj/M − x∗
ij
| < (1/M). This follows

from the projection property ofA. We can then split up the total regret R(T ) in a part
R1(T ) incurred due to the discretization, and a part R2(T ) incurred byMAB:

R1(T ) =
T∑

t=1

E
[
gt

(
x∗
i1
, . . . , x∗

ik

) − gt (zi1 , . . . , zik )
]
, (16)
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R2(T ) =
T∑

t=1

E

[
gt (zi1 , . . . , zik ) − gt

(
x

(t)
i1

, . . . , x
(t)
ik

)]
. (17)

On account of the Hölder continuity of reward functions we have that

E[gt

(
x∗
i1
, . . . , x∗

ik

) − gt (zi1 , . . . , zik )] < L

((
1

M

)2

k

)α/2

.

In other words, R1(T ) = O(T kα/2M−α). In order to bound R2(T ), we note that
the problem has reduced to a |PM |-armed bandit problem. Specifically we note
from (17) that we are comparing against a sub-optimal strategy z instead of the
optimal one in PM . Hence R2(T ) can be bounded by using existing bounds for finite-
armed bandit problems. Now for the stochastic setting we can employ the UCB-1
algorithm [5] and play at each t a strategy xt ∈ PM . In particular, on account

of Assumption 1, it can be shown that R2(T ) = O
(√|PM |T log T

)
[26, Theo-

rem 3.1]. For the adversarial setting we can employ the Exp3 algorithm [6] so that

R2(T ) = O
(√|PM |T log |PM |

)
. Combining the bounds for R1(T ) and R2(T ) and

recalling that |PM | = O(Mkkek log d) we obtain:

R(T ) = O(T M−αkα/2 +
√

Mkkek log d T log T ) (stochastic) and, (18)

R(T ) = O(T M−αkα/2 +
√

Mkkek log d T log(Mkkek log d)). (adversarial) (19)

Plugging M =
⌈(

k
α−3
2 e− k

2 (log d)− 1
2

√
T

log T

) 2
2α+k

⌉
in (18) and (19) we obtain the

stated bound on R(T ) for the respective models.

Lastly equipped with the above bound we have that the regret incurred by
Algorithm 1 over n plays is given by:

i=log n∑

i=0,T =2i

R(T ) = O

(
n

α+k
2α+k (log n)

α
2α+k k

α(k+6)
2(2α+k) (log d)

α
2α+k

)
.

Remark 1 For the adversarial setting we can use the INF algorithm of Audibert et
al. [4], as the MAB routine in our algorithm, and get rid of the log n factor from the
regret bound. The same holds for the stochastic setting, if the range of the reward
functions was restricted to [0, 1]. When the range of the reward functions is R, as is
the case in our setting, it seems possible to consider a variant of the MOSS algorithm
[4] along with Assumption 2 on the distribution of the reward functions. Using proof
techniques similar to those by Kleinberg [27], it might then be possible to remove the
log n factor from the regret bound.
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3.2 Analysis When k Active Coordinates Change Across Time

In this subsection, we consider the setting where the set of active k coordinates is
allowed to change over time. The player does not know which k-tuple is chosen at
each time t . As for the situation where the k-tuple was fixed, our algorithm will
consist of two parts. First, we again construct the discrete strategy set PM (as defined
in (15)). Next, we employ the Exp3.S algorithm [7] on this discrete strategy set. This
algorithm is designed to minimize the player’s regret when measured against a Q-
hard sequence, instead of only the constant – or 1-hard – sequence if the k-tuple was
fixed over time.

Recall from (5) that the optimal strategy x∗ ∈ argmax
x∈[0,1]d

∑n
t=1 gt (xi1,t , . . . , xik,t

).

Since the sequence of k-tuples is Q-hard, this in turn implies for any x∗ that

H
[(

x∗
i1,t

, . . . , x∗
ik,t

)n

t=1

]
≤ Q.

Therefore we can now consider this as a setting where the players regret is measured
against a Q-hard sequence (x∗

i1,t
, . . . , x∗

ik,t
)nt=1.

By construction, we will have for any x ∈ [0, 1]d and any k-tuple (i1, . . . , ik),
the existence of a point z in PM such that (zi1 , . . . , zik ) approximates (xi1 , . . . , xik )

arbitrarily well for increasing values of M . Hence, for the optimal sequence
(x∗

i1,t
, . . . , x∗

ik,t
)nt=1, we have the existence of a sequence of points (z(t))nt=1 where

z(t) ∈ PM with the following two properties.

1. Q-hardness. H
[(

z
(t)
i1,t

, . . . , z
(t)
ik,t

)n

t=1

]
≤ Q. This follows easily from

the Q-hardness of the sequence
(
x∗
i1,t

, . . . , x∗
ik,t

)n

t=1
and by choosing

for each
(
x∗
i1,t

, . . . , x∗
ik,t

)
a corresponding z(t) ∈ PM such that ‖

(
x∗
i1,t

, . . . , x∗
ik,t

)
−

(
z
(t)
i1,t

, . . . , z
(t)
ik,t

)
‖ is minimized.

2. Approximation property. ‖
(
x∗
i1,t

, . . . , x∗
ik,t

)
−

(
z
(t)
i1,t

, . . . , z
(t)
ik,t

)
‖=

O(kα/2M−α). This is easily verifiable via the projection property of the set PM .

Therefore by employing the Exp3.S algorithm [7] on the strategy set PM we reduce
the problem to a finite armed adversarial bandit problem where the players regret
measured against the Q-hard sequence (z

(t)
i1,t

, . . . , z
(t)
ik,t

)nt=1 is bounded from above.
The approximation property of this sequence (as explained above) coupled with the
Hölder continuity of gt ensures in turn that the players regret against the origi-
nal sequence (x∗

i1,t
, . . . , x∗

ik,t
)nt=1 is also bounded. With this in mind we present the

following lemma, which formally states a bound on regret after T rounds of play.

Lemma 2 Given the above setting, say:

1. the sequence of k-tuples (i1,t , . . . , ik,t )
n
t=1 is at most Q-hard and,

2. the Exp3.S algorithm is used along with the strategy set PM .
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We then have for the choice M =
⌈(

k
α−3
2 e− k

2 (Q log d)− 1
2

√
T

log T

) 2
2α+k

⌉
that the

regret incurred by the player after T rounds is given by:

R(T ) = O

(
T

α+k
2α+k (log T )

α
2α+k k

α(k+6)
2(2α+k) (Q log d)

α
2α+k

)
.

Proof Recall from (6) the definition of regret R(T ) incurred after T rounds.
At each time t , for some z(t) ∈ PM we can split R(T ) into R1(T ) + R2(T )

where R1(T ) = E

[∑T
t=1 gt

(
x∗
i1,t

, . . . , x∗
ik,t

)
− gt

(
z
(t)
i1,t

, . . . , z
(t)
ik,t

)]
and R2(T ) =

E

[∑T
t=1 gt (z

(t)
i1,t

, . . . , z
(t)
ik,t

) − gt (x
(t)
i1,t

, . . . , x
(t)
ik,t

)
]
.

Let us consider R1(T ) first. As before, from the projection property of A we have

for each
(
x∗
i1,t

, . . . , x∗
ik,t

)
, that there exists z(t) ∈ PM with z

(t)
i1,t

= λ
(t)
1
M

, . . . , z
(t)
ik,t

= λ
(t)
k

M

where 1 ≤ λ
(t)
1 , . . . , λ

(t)
k ≤ M are integers such that |λ(t)

j /M − x∗
ij,t

| < (1/M)

holds for j = 1, . . . , k and each t = 1, . . . , n. Therefore from Hölder continuity
of gt we obtain R1(T ) = O(T kα/2M−α). It remains to bound R2(T ). To this end,

note that the sequence
(
z
(t)
i1,t

, . . . , z
(t)
ik,t

)n

t=1
with z(t) ∈ PM is at most Q-hard. Hence

the problem has reduced to a |PM | armed adversarial bandit problem with a Q-hard
optimal sequence of plays against which the regret of the player is to be bounded.
This is accomplished by using the Exp3.S algorithm [7] which is designed to control
regret against anyQ-hard sequence of plays. In particular, using a result by Auer et al.

[7, Corollary 8.3], we have that R2(T ) = O
(√

Q|PM |T log(|PM |T )
)
. Combining

the bounds for R1(T ) and R2(T ) and recalling that |PM | = O(Mkkek log d) we
obtain the following expression for R(T ):

R(T ) = O

(
T kα/2M−α +

√
QT Mkkek log d log(T Mkkek log d)

)
. (20)

Lastly after plugging in the value M =
⌈(

k
α−3
2 e− k

2 (Q log d)− 1
2

√
T

log T

) 2
2α+k

⌉
in

(20), we obtain the stated bound on R(T ).

By employing Algorithm 1 with MAB sub-routine being the Exp3.S algorithm,
we have that its regret over n plays is given by

i=log n∑

i=0,T =2i

R(T ) = O

(
n

α+k
2α+k (log n)

α
2α+k k

α(k+6)
2(2α+k) (Q log d)

α
2α+k

)
.

Remark 2 In case the player does not know Q, a regret of

R(n) = O

(
n

α+k
2α+k (log n)

α
2α+k k

α(k+6)
2(2α+k) (log d)

α
2α+k H [(it )nt=1]

)



Theory Comput Syst (2016) 58:191–222 207

would be incurred by Algorithm 1 with theMAB routine being the Exp3.S algorithm

and for the choice M =
⌈(

k
α−3
2 e− k

2 (log d)− 1
2

√
T

log T

) 2
2α+k

⌉
. Here it is shorthand

notation for (i1,t , . . . , ik,t ). Indeed we simply use a result by Auer et al. [7, Corollary

8.2], on account of which we obtain R2(T ) = O
(
H [(it )nt=1]

√|PM |T log(|PM |T )
)
.

The rest follows along the lines of the proof of Lemma 2.

4 Analysis for CAB Problem of Few Linear Parameters

In this section we provide a detailed analysis of our scheme for the second prob-
lem. The reward functions here effectively depend on some unknown k dimensional
subspace of Rd with k � d. Recall that the reward functions have the structure
rt (x) = gt (Ax) where A ∈ R

k×d is full rank. The main idea behind our algorithm
is to proceed in two phases. In PHASE 1, we use a fraction of the sampling bud-
get n to recover an estimate of the (k dimensional) subspace spanned by the rows of
A. In PHASE 2 we employ a standard continuum armed bandit algorithm that plays
strategies from the previously estimated k dimensional subspace.

Intuitively we can imagine that the closer the estimated subspace is to the original
one, the closer will the regret bound achieved by the CAB algorithm be to the one
it would have achieved by playing strategies from the unknown k-dimensional sub-
space. However one should be careful here since spending too many samples from
the budget n on PHASE 1 can lead to regret which is �(n). On the other hand if the
recovered subspace is a bad estimate then it can again lead to �(n) regret since the
optimization carried out in PHASE 2 would be rendered meaningless.

Hence it is important to carefully divide the sampling budget between the two
phases in order to guarantee a regret bound that is sub-linear in n. We now describe
these two phases in more detail and outline the above idea formally.

1. PHASE 1(Subspace recovery phase.) In this phase we use the first n1(< n)

samples from our budget to generate an estimate Â ∈ R
k×d of A such that the

row space of Â is close to that of A. In particular we measure this closeness in
terms of the Frobenius norm implying that we would like ‖ AT A − ÂT Â ‖F to
be sufficiently small. Denoting the total regret in this phase by R1 we then have
that:

R1 =
n1∑

t=1

[
r̄(x∗) − r̄(xt )

] = O(n1). (21)

This follows trivially since r̄ is a smooth function defined over a compact
domain. We can see that n1 should necessarily be o(n) otherwise the total regret
would be dominated by R1 leading to linear regret. Furthermore xt ∈ Bd(1 + ν)

denotes the strategy played at time t .
2. PHASE 2(Optimization phase.) Say that we have in hand an estimate Â from

PHASE 1. We now employ a standard CAB algorithm that is restricted to play
strategies from the row space of Â. Let us denote n2 = n − n1 to be the duration
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of this phase and P ⊂ Bd(1 + ν) where

P :=
{
ÂT y ∈ R

d : y ∈ Bk(1 + ν)
}

.

The CAB algorithm will play strategies only from P and therefore will strive to
optimize against the optimal strategy x∗∗ = ÂT y∗∗ ∈ P where

y∗∗ ∈ argmax
y∈Bk(1+ν)

ḡ(AÂT y).

Furthermore we also observe that the total regret incurred in this phase can be
written as:

n∑

t=n1+1

[r̄(x∗) − r̄(xt )] =
n∑

t=n1+1

[r̄(x∗) − r̄(x∗∗)]
︸ ︷︷ ︸

=R3

+
n∑

t=n1+1

[r̄(x∗∗) − r̄(xt )]
︸ ︷︷ ︸

=R2

.

(22)
Note that R2 represents the expected regret incurred by the CAB algorithm
against the optimal strategy from P . In particular, we will obtainR2 = o(n−n1).

Next, the term R3 captures the offset between the actual optimal strategy x∗ ∈
Bd(1 + ν) and x∗∗ ∈ P . In particular R3 can be bounded by making use of: (i)
the Lipschitz continuity of the mean reward ḡ and, (ii) the bound on the subspace
estimation error : ‖ AT A − ÂT Â ‖F . This is shown precisely in the form of the
following Lemma the proof of which is presented in the Appendix.

Lemma 3 We have that R3 ≤ n2C2
√

k(1+ν)√
2

‖ AT A − ÂT Â ‖F where n2 =
n − n1 and C2 > 0 is the constant defined in (9).

We now provide a thorough analysis of the two phase scheme discussed in the previ-
ous section. We start by first describing a low-rank matrix recovery scheme which is
used for obtaining an estimate of the unknown subspace represented by the row-space
of A.

4.1 Analysis of Sub-Space Recovery Phase

We first observe that the Taylor expansion of r̄ around any x ∈ Bd(1 + ν) along the
direction φ ∈ R

d give us:

r̄(x + εφ) − r̄(x) = ε〈φ, �r̄(x)〉 + 1

2
ε2φT �2 r̄(ξ )φ (23)

for any ε > 0 and ξ = x + θεφ with 0 < θ < 1. In particular by using �r̄(x) =
AT � ḡ(Ax) in (23) we obtain:

〈φ,AT � ḡ(Ax)〉 = r̄(x + εφ) − r̄(x)
ε

− 1

2
εφT �2 r̄(ξ )φ. (24)
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We now introduce the sampling scheme9 by stating the choice of x and sampling
direction φ in (24). We first construct

X :=
{
xj ∈ S

d−1 : j = 1, . . . , mX
}

. (25)

This is the set of samples at which we consider the Taylor expansion of r̄ as in (23).
In particular, we form X by sampling points uniformly at random from S

d−1. Next,
we construct the set of sampling directions � for i = 1, . . . , m�, j = 1, . . . , mX
and l = 1, . . . , d where:

� :=
{
φi,j ∈ Bd(

√
d/m�) : [φi,j ]l = ± 1√

m�

with probability 1/2

}
. (26)

Note that we consider m� random sampling directions for each point in X . Hence
we have that the total number of samples collected so far is

|X | + |�| = mX + mXm� = mX (m� + 1).

Now note that at each time 1 ≤ t ≤ mX (m� + 1) upon choosing the strategy xt we
obtain the reward rt (xt ) = r̄(xt ) + ηt where ηt is i.i.d Gaussian noise. Therefore by
first sampling at points x1, . . . , xmX ∈ X and then sampling at xj + εφ1,j , . . . , xj +
εφm�,j for each xj , we have from (24) the following for i = 1, . . . , m� and j =
1, . . . , mX .

〈φi,j ,AT � ḡ(Axj )〉 = rmX +ij (xj + εφi,j ) − rj (xj )

ε
+ ηj − ηi,j

ε
− 1

2
εφT

i,j �2 r̄(ξi,j )φi,j . (27)

We sum up (27) over all j for each i = 1, . . . , m�. This yields m� equations that
can be summarized in the following succinct form:

�(X) = y + N + H. (28)

We now describe each term occuring in (28). Here X = AT G where G :=[�ḡ(Ax1)| � ḡ(Ax2)| · · · | � ḡ(AxmX )
]
k×mX

. Note that X ∈ R
d×mX has rank at

most k. Next, �(X) := [〈�1X〉, . . . , 〈�m�X〉] ∈ R
m� where

�i = [φi,1φi,2 . . . φi,mX ] ∈ R
d×mX (29)

represents the ith measurement matrix and 〈�i,X〉 = Tr(�T
i X) represents the ith

measurement of X. The measurement vector is represented by y = [y1 . . . ym�] ∈
R

m� where

yi = 1

ε

mX∑

j=1

(
rmX +ij (xj + εφi,j ) − rj (xj )

)
. (30)

9The above sampling scheme was first considered by Fornasier et al. [22], and later by Tyagi et al. [40],
for the problem of approximating functions of the form f (x) = g(Ax) from point queries.
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Lastly N = [N1 . . . Nm�] and H = [H1 . . . Hm�] represent the noise terms with

Ni = 1

ε

mX∑

j=1

(ηj − ηi,j ) (Stochastic noise),

Hi = −ε

2

mX∑

j=1

φT
i,j �2 r̄(ξi,j )φi,j (Noise due to non-linearity of r̄).

Importantly, we observe that (28) represents (noisy) linear measurements of the
matrix X which has rank k � d. Hence by employing a standard solver for recov-
ering low-rank matrices from noisy linear measurements, we can hope to recover an
approximation X̂ to the unknown matrix X. Furthermore we note that information
about the linear parameter matrix A is encoded in X. This intuitively suggests that
one can hope to recover an approximation to A with the help of X̂. In particular the
closer X̂ is to X the better will be the approximation to the row space of A. We now
proceed to demonstrate this formally.

4.1.1 Low-Rank Matrix Recovery

As discussed, (28) represents noisy measurements of the low rank matrix X with
the linear operator �. An important property of � is that it satisfies the so called
Restricted Isometry Property (RIP) for low-rank matrices. This means that for all
matrices Xk of rank at most k:

(1 − δk) ‖ Xk ‖2F ≤‖ �(Xk) ‖22≤ (1 + δk) ‖ Xk ‖2F (31)

holds true for some isometry constant δk ∈ (0, 1). In general, any � that satisfies
(31) is said to have δk-RIP. In our case since � is a Bernoulli random measure-
ment operator, it can be verified via standard covering arguments and concentration
inequalities [31, 38] that � satisfies δ-RIP for 0 < δk < δ < 1 with probability at
least 1 − 2 exp(−m�q(δ) + k(d + mX + 1)u(δ)) where

q(δ) = 1

144

(
δ2 − δ3

9

)
, u(δ) = log

(
36

√
2

δ

)
.

An estimate of the low-rank matrixX from the measurement vector y can be obtained
through convex programming. For our purposes we consider the following nuclear
norm minimization problem also known as the matrix Dantzig selector (DS) [14].

X̂DS = argmin ‖ M ‖∗ s.t. ‖ �∗(y − �(M)) ‖≤ λ. (32)

Here �∗ : Rm� → R
d×mX denotes the adjoint of the linear operator � : Rd×mX →

R
m� . Furthermore for any matrix, ‖ · ‖∗ and ‖ · ‖ denote its nuclear norm (sum of

singular values) and operator norm (largest singular value) respectively. By making
use of the error bound for matrix DS [14], we obtain the following result on the
performance of the matrix DS tuned to our problem setting. The proof is deferred to
the Appendix.
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Lemma 4 Let X̂DS ∈ R
d×mX denote the solution of (32) and let X̂(k)

DS be the best
rank-k approximation to X̂DS in the sense of ‖ · ‖F . Then for some constant γ >

2
√
log 12, 0 < δ4k < δ <

√
2 − 1 we have that

‖ X̂(k)
DS − X ‖F ≤ (C0k)1/2

(
C2εdmX k2√

m�

+ 8γ σ
√

mXm�m

ε

)
(1 + δ)1/2

with probability at least 1− 2 exp(−m�q(δ)+ 4k(d +mX + 1)u(δ))− 4 exp(−cm).
Here m = max {d, mX }. Furthermore the constants C0, c > 0 depend on δ and γ

respectively.

4.1.2 Approximating Row-Space(A)

Let’s say we have10 in hand X̂(k)
DS ∈ R

d×mX as the best rank-k approximation of
the solution to (32). We can now obtain an estimate Â of row-space(A) by setting
ÂT to be equal to the (d × k) left singular vector matrix of X̂(k)

DS . The quality of
this estimation as measured by ‖ ÂT Â − AT A ‖F was quantified by Tyagi et al.
[41, Lemma 2] for the noiseless case (σ = 0). We adapt this result to our setting
(σ > 0) and state it below. The proof is presented in the Appendix.

Lemma 5 For a fixed 0 < ρ < 1, mX ≥ 1, m� < mX d let

a1 = C2dk2, b1 =
√

(1 − ρ)α

C
1/2
0 (1 + δ)1/2(

√
k + √

2)
.

For any 0 < f < 1 we then have for the choice

ε ∈
⎛

⎜⎝
f b1 −

√
f 2b21 − 32γ σa1

√
mXm

2a1
√

mX /m�

,
f b1 +

√
f 2b21 − 32γ σa1

√
mXm

2a1
√

mX /m�

⎞

⎟⎠

(33)
that ‖ ÂT Â − AT A ‖F ≤ 2f

1−f
holds true with probability at least

1− 2 exp(−m�q(δ) + 4k(d + mX + 1)u(δ)) − 4 exp(−cm) − k exp

(
−mXαρ2

2kC2
2

)
.

We see in the above lemma that the step size parameter ε cannot be chosen to
be arbitrarily small.11 In particular for ε too small the stochastic noise will become
prominent while for large ε, the noise due to higher order Taylor’s terms of the mean
reward function will start to dominate.

10Of course in practice we will not be able to solve (32) exactly, but will instead obtain a solution that can
be made to come arbitrarily close to the actual solution. This difference will hence appear as an additional
error term in the error bound of Lemma 4.
11In the absence of external stochastic noise (i.e. σ = 0) we can actually take ε to be arbitrarily small as
shown by Tyagi et al. [41, Lemma 2]. This is also verified from (33), by plugging σ = 0.
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4.1.3 Handling Stochastic Noise

A point of obvious concern in Lemma 5 is the condition required on the step size
parameter ε in (33). This condition is well defined if f 2b21 − 32γ σa1

√
mXm > 0.

This would not have been a problem in the noiseless case where σ = 0. A natural way
to guarantee the well-posedness of (33) is by re-sampling and averaging the rewards
at each of the sampling points. Indeed if we consider each sampling point to be re-
sampled N times and then average the corresponding reward values, the variance of
the stochastic noise will be reduced by a factor of N . By choosing a sufficiently large
value of N , we can clearly ensure that f 2b21 − 32γ σa1

√
mXm > 0 holds true. This

is made precise in the following proposition which also states a bound on the total
regret R1 suffered in this phase.

Proposition 1 Say that we resample N times at each sampling point xj ∈ X and
xj+εφi,j ; i = 1, . . . , m� and j = 1, . . . , mX . Let the reward value at each sampling

point be estimated as the average of the N values. If N >
C′k6d2σ 2mXm

f 4α2 for some

constant C′ > 0 (depending on ρ, C0, δ, C2, γ ) and with m = max
{
d, mmax{d,mX }

}
,

then (33) in Lemma 5 is well defined. Consequently the total regret in PHASE 1 is

R1 = O(n1) = O(NmX (m� + 1)) = O

(
k6d2σ 2

α2

m2
Xm�m

f 4

)
.

Proof First note that (33) in Lemma 5 is well defined when

f 2b21 − 32γ σa1
√

mXm > 0 ⇔ σ <
f 2b21

32γ
√

mXm C2dk2︸ ︷︷ ︸
a1

.

After plugging in the value of b1 from Lemma 5 we then obtain

σ <
f 2b21

32γ
√

mXmC2dk2
= Cαf 2

(
√

k + √
2)2

√
mXmdk2

(34)

where C = (1−ρ)
32γC0(1+δ)C2

is a constant. Upon re-sampling N times and subsequent

averaging of reward values we have that the variance σ changes to σ/
√

N . Replacing
σ with σ/

√
N in (34) we obtain the stated condition on N . Lastly, we note that as

a consequence of re-sampling, the duration of PHASE 1 i.e. n1, is NmX (m� + 1).
This implies the stated bound on R1.

4.2 Analysis of Optimization Phase

We now analyze PHASE 2 i.e. the optimization phase of our scheme. This phase runs
during time steps t = n1 + 1, n1 + 2, . . . , n where n1 = NmX (m� + 1). Given an
estimate Â of the row space of A we now consider optimizing only over points lying
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in the row space of Â. In particular consider P ⊂ Bd(1 + ν) where

P :=
{
ÂT y ∈ R

d : y ∈ Bk(1 + ν)
}

.

We employ a standard CAB algorithm that plays points only from P and therefore
strives to optimize against the optimal strategy x∗∗ = ÂT y∗∗ ∈ P where

y∗∗ ∈ argmax
y∈Bk(1+ν)

ḡ(AÂT y).

Recall from (22) that the total regret incurred in this phase can be written as:
n∑

t=n1+1

[r̄(x∗) − r̄(xt )] =
n∑

t=n1+1

[r̄(x∗) − r̄(x∗∗)]
︸ ︷︷ ︸

=R3

+
n∑

t=n1+1

[r̄(x∗∗) − r̄(xt )]
︸ ︷︷ ︸

=R2

where R2 is the regret incurred by the CAB algorithm and R3 is the regret incurred
on account of not playing strategies from the row space of A.

Bounding R2 In order to bound R2 we employ the CAB1 algorithm [26], with the
UCB-1 algorithm [5] as the finite armed bandit algorithm. Recall that this phase runs
for a duration of n2 = n − n1 time steps. A straightforward generalization of the
result by Kleinberg [26, Theorem 3.1] to k dimensions then yields

R2 = O(n
1+k
2+k

2 (log n2)
1

2+k ) = O(n
1+k
2+k (log n)

1
2+k ). (35)

Indeed for any integer M > 0, we simply discretize [−1− ν, 1+ ν]k into (2M + 1)k

points, with step size 1/M in each direction. We retain only those points that lie in
Bk(1 + ν) and multiply each of these with ÂT . This gives us a finite subset of P
on which we employ the UCB-1 algorithm. Since the time duration n2 is known,
therefore in a manner similar to the proof of Lemma 1, one can find an optimal value
of M , for which the regret bound of (35) is attained.

Bounding R3 The term R3 can be bounded from above by a straightforward combi-
nation of Lemma 3 with Lemma 5. Hence we state this in the form of the following
proposition without proof.

Proposition 2 For fixed 0 < ρ < 1, mX ≥ 1, m� < mX d and 0 < f < 1, let ε be

chosen to satisfy (33). This then implies that R3 ≤ n2C2
√

k(1+ν)
√
2f

1−f
holds true with

probability at least

1− 2 exp(−m�q(δ) + 4k(d + mX + 1)u(δ)) − 4 exp(−cm) − k exp

(
−mXαρ2

2kC2
2

)
.

4.3 Bounding the Total Regret

Finally, we have all the results sufficient to bound the total regret. Indeed by using
bounds on R1, R2, R3 from Proposition 1, (35) and Proposition 2 respectively we
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have that:

R1 + R2 + R3 = O

(
k6d2σ 2

α2

m2
Xm�m

f 4
+ n

1+k
2+k (log n)

1
2+k + n2

√
kf

)
. (36)

holds with probability at least

1 − 2 exp(−m�q(δ) + 4k(d + mX + 1)u(δ)) − 4 exp(−cm) − k exp

(
−mX αρ2

2kC2
2

)
. (37)

In order to bound the overall regret we need to choose the values of: mX , m�

and f carefully. We state these choices precisely in the following theorem which is
also our main theorem that provides a bound on the overall regret achieved by our
scheme.

Theorem 3 Under the assumptions and notations used thus far let:

f = 1√
k

(
log n

n

) 1
k+2

,mX = 2kC2
2

αρ2
log(k/p) and m� = 4k(d + mX + 1)u(δ)c1

q(δ)

for some p ∈ (0, 1) and c1 > 1. Then there exists a constant c′ > 0 so that the total
regret achieved by our scheme is bounded as:

R1+R2+R3 = O

(
k13d2σ 2(log( k

p
))4

α4
(max

{
d, α−1

}
)2

(
n

log n

) 4
k+2 + n

1+k
2+k (log n)

1
2+k

)
(38)

with probability at least 1 − p − 6 exp(−c′d).

Proof We first observe that when f = 1√
k

(
log n

n

) 1
k+2

then this results in:

n2
√

kf = O(n
1+k
2+k (log n)

1
2+k ).

Upon using this in (36) we obtain:

R1 + R2 + R3 = O

(
k8d2σ 2

α2

(
n

log n

) 4
k+2

m2
Xm�m + n

1+k
2+k (log n)

1
2+k

)
(39)

In order to choose mX and m� we simply note from (37) that the choices

mX = 2kC2
2

αρ2
log(k/p), m� = 4k(d + mX + 1)u(δ)c1

q(δ)
(40)

for suitable constants c1 > 1, p ∈ (0, 1) ensure that the regret bound holds with
probability at least 1 − p − 2 exp(−4u(δ)k(d + mX + 1)(c1 − 1)) − 4 exp(−cm).
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Since m = max {d, mX } ≥ d we obtain via a simple calculation, the stated lower
bound on the probability of success. Then plugging the above choice of mX and m�

in (39) and noting that m = max {d, mX } ≤ (d + mX ) we obtain:

R1 + R2 + R3 = O

(
k9d2σ 2

α2

(
n

log n

) 4
k+2

m2
X (d + mX )2 + n

1+k
2+k (log n)

1
2+k

)

= O

(
k9d2σ 2

α2

(
n

log n

) 4
k+2

(k2(log(k/p))2α−2)(d + kα−1 log(k/p))2 + n
1+k
2+k (log n)

1
2+k

)

= O

(
k11d2(log(k/p))2σ 2

α4
(d + kα−1 log(k/p))2

(
n

log n

) 4
k+2 + n

1+k
2+k (log n)

1
2+k

)

= O

(
k13d2(log(k/p))4σ 2

α4
(max

{
d, α−1

}
)2

(
n

log n

) 4
k+2 + n

1+k
2+k (log n)

1
2+k

)
.

Note that the regret bound in Theorem 3 can be made to hold with high probability.
Indeed, the choice p = d−β , for any constant β > 0 guarantees that the bound holds
with probability approaching one, as d → ∞. Furthermore, this choice of p, leads
to an additional O((log d)4) factor in the regret bound.

Remark 3 Upon examining the regret bound in Theorem 3, we notice that the

n
1+k
2+k (log n)

1
2+k term dominates for k ≥ 3, while for k = 1, 2 we have that

(
n

log n

) 4
k+2

dominates. Therefore, the bound is fairly sub-optimal for the cases k = 1, 2. This
appears to be an artifact of the analysis. While it is unclear how this can be fixed,
there are ways to improve the regret bound for k = 1, 2. For instance in Theorem 3,

let us only change the choice of f to f = 1√
k

(
log n

n

) 0.5
k+2

. By following the steps in

the proof, one can then verify that the regret is bounded by:

O

(
k13d2σ 2(log( k

p
))4

α4
(max

{
d, α−1

}
)2

(
n

log n

) 2
k+2 + n

1.5+k
2+k (log n)

0.5
2+k

)
.

We see that the n
1.5+k
2+k (log n)

0.5
2+k term, now dominates for k ≥ 1. This is also only

slightly worse than the n
1+k
2+k (log n)

1
2+k term, appearing in (38). Hence for k = 1, 2,

we can substantially improve the bound in (38), with a different choice of parameter
f in Theorem 3.

Our complete scheme which we name CAB-LP(d, k) (Continuum armed bandit
of k linear parameters in d dimensions) is presented as Algorithm 2.
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4.4 Remarks on the Tractability Parameter α

We now proceed to comment on the parameter α of our scheme which also appears
in our regret bounds. Recall from Section 2 that α measures the conditioning of the
following matrix:

Hr :=
∫

Sd−1
∇ r̄(x)∇ r̄(x)T dx = AT ·

∫

Sd−1
∇ḡ(Ax)∇ḡ(Ax)T dx · A. (41)

More specifically, we assume that the mean reward function r̄ is such that:

σ1(H
r) ≥ σ2(H

r) ≥ · · · ≥ σk(H
r) ≥ α > 0 (42)

where σi(H
r) denotes the ith singular value of Hr . In other words α measures how

far away from 0 the lowest singular value of Hr is, implying that a larger α indicates
a well conditioned Hr . A natural question that arises now is on the behaviour of α -
in particular on its dependence on dimension d and number of linear parameters k.
To this end we first note that the parameter typically decays with increase in d. In
fact for k > 1 this would always be the case since as d → ∞ the matrix Hr would
converge to a rank-1 matrix [41].

We also note from our derived regret bounds that in case α → 0 exponentially
fast as d → ∞ then our regret bounds will have a factor exponential in d which is
clearly undesirable. Hence it is important to define classes of functions for which α

provably decays polynomially as d → ∞ so that our regret bounds depend at most
polynomially on dimension d. We now state the following result by Tyagi et al. [41]
which defines such a class of functions for which α = �(d−1).

Proposition 3 ([41]) Assume that g : Bk(1) → R, with g being a C2 function, has
Lipschitz continuous second order partial derivatives in an open neighborhood of the
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origin, Uθ = Bk(θ) for some fixed 0 < θ < 1,

| ∂2g
∂yi∂yj

(y1) − ∂2g
∂yi∂yj

(y2)|
‖ y1 − y2 ‖ < Li,j ∀y1, y2 ∈ Uθ , y1 �= y2, i, j = 1, . . . , k.

Denote L = max1≤i,j≤k Li,j . Also under the notation defined earlier, assume that

∇2g(0) is full rank. Then provided that ∂g
∂yi

(0) = 0; ∀i = 1, . . . , k we have α =
�(1/d) as d → ∞.

The class of functions defined in the above Proposition covers a number of func-
tion models such as sparse additive models of the form

∑k
i=1 gi(y) where gi’s

are kernel functions [32]. Further details in this regard are provided by Tyagi et
al. [41, Section 5]. Finally, in light of the above discussion on α we arrive at the
following Corollary of Theorem 3 with the help of Proposition 3.

Corollary 1 Assume that the mean reward function r̄ : Bd(1 + ν) → R where
r̄(x) = ḡ(Ax) is such that ḡ satisfies the conditions of Proposition 3. Then there
exists a constant c′ > 0 so that the total regret achieved by Algorithm CAB-LP(d,k)
is bounded as:

R1 + R2 + R3 = O

(
k13d8σ 2(log(k/p))4

(
n

log n

) 4
k+2 + n

1+k
2+k (log n)

1
2+k

)
, (43)

with probability at least 1 − p − 6 exp(−c′d).

5 Concluding Remarks

In this work we considered the problem of online optimization in the bandit setting
with the reward functions residing in a high dimensional space. We handled the noto-
rious curse of dimensionality typically associated with this setting by considering
two different intrinsic low-dimensional models for the reward functions.

In the first model we assumed that the reward function r : [0, 1]d → R intrin-
sically depends at each time t on an unknown subset of k out of the d coordinate
variables. We proposed an algorithm and proved upper bounds on the regret, both for
the setting when the active k coordinates remain fixed across time and also for the
more general scenario when they can change over time. There are several interest-
ing lines of future work for this model. Firstly for the case when (i1, . . . , ik) is fixed
across time it would be interesting to investigate whether the dependence of regret
on k and dimension d achieved by our algorithm, is optimal or not. Secondly, for the
case when (i1, . . . , ik) can also change with time, it would be interesting to derive
lower bounds on regret to know what the optimal dependence on the hardness of the
sequence of k tuples is.

The second model we considered was a generalization of the first in the sense
that we assumed the reward function at each time t to intrinsically depend on k-
linear combinations of the d coordinate variables. Assuming the time horizon n to
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be known we derived a randomized algorithm, and proved an upper bound on the
regret incurred. Our algorithm combines results from low rank matrix recovery liter-
ature, with existing results on continuum armed bandits. For future work it would be
interesting to consider the setting where the time horizon n is unknown to the algo-
rithm and to prove regret bounds for the same. In particular, it would be interesting to
derive algorithms which do not involve recovering an approximation of the unknown
k dimensional subspace spanned by the k linear parameters. Lastly we mention other
directions such as an adversarial version of our problem where the reward functions
are chosen arbitrarily by an adversary and also a setting where the unknown matrix
A is allowed to change across time.
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Appendix: Proofs of Results in Section 4

A.1 Proof of Lemma 3

Proof We can bound R3 from above as follows.

R3 =
n∑

t=n1+1

[r̄(x∗) − r̄(x∗∗)] (44)

= n2[ḡ(Ax∗) − ḡ(Ax∗∗)] (45)

= n2[ḡ(Ax∗) − ḡ(AÂT Âx∗∗)] (46)

≤ n2[ḡ(Ax∗) − ḡ(AÂT Âx∗)] (47)

≤ n2C2
√

k ‖ Ax∗ − AÂT Âx∗ ‖ (48)

≤ n2C2
√

k(1 + ν) ‖ A − AÂT Â ‖F (49)

= n2C2
√

k(1 + ν)√
2

‖ AT A − ÂT Â ‖F . (50)

In (46) we used the fact that x∗∗ = ÂT Âx∗∗ since x∗∗ ∈ P . In (47) we used the fact
that ḡ(AÂT Âx∗∗) ≥ ḡ(AÂT Âx∗) since ÂT Âx∗ ∈ P and x∗∗ ∈ P is an optimal strat-
egy. Equation (48) follows from the mean value theorem along with the smoothness
assumption made in (9). In (49) we used the simple inequality : ‖ Bx ‖≤‖ B ‖F ‖ x ‖.
Obtaining (50) from (49) is a straightforward exercise.

A.2 Proof of Lemma 4

Proof We first recall the following result by Candes et al. [14, Theorem 1], which
we will use in our setting, for bounding the error of the matrix Dantzig selector.
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Theorem 4 For any X ∈ R
d×mX such that rank(X) ≤ k let X̂DS be the solution of

(32). If δ4k < δ <
√
2 − 1 and ‖ �∗(H + N) ‖≤ λ then we have with probability at

least 1 − 2e−m�q(δ)+4k(d+mX+1)u(δ) that

‖ X − X̂DS ‖2F ≤ C0kλ2

where C0 depends only on the isometry constant δ4k .

What remains to be found for our purposes is λ which is a bound on ‖
�∗(H + N) ‖. Firstly note that ‖ �∗(H + N) ‖≤‖ �∗(H) ‖ + ‖ �∗(N) ‖. From
Tyagi et al. [41, Lemma 1,Corollary 1], we have that:

‖ �∗(H) ‖≤ C2εdmX k2

2
√

m�

(1 + δ)1/2

holds with probability at least 1 − 2e−m�q(δ)+4k(d+mX+1)u(δ) where δ is such that
δ4k < δ <

√
2 − 1. Next we note that N = [N1N2 . . . Nm�] where

Ni = 1

ε

mX∑

j=1

ηj

︸ ︷︷ ︸
L1,i

− 1

ε

mX∑

j=1

ηi,j

︸ ︷︷ ︸
L2,i

with L1 = [L1,1 . . . L1,m�] and L2 = [L2,1 . . . L2,m�] so that N = L1 −L2. We then
have that ‖ �∗(N) ‖≤‖ �∗(L1) ‖ + ‖ �∗(L2) ‖. By using Lemma 1.1 of Candes et
al. [14] and denoting m = max {d, mX } we first have that:

‖ �∗(L1) ‖≤ 2γ σ

ε

√
(1 + δ)m�mXm (51)

holds with probability at least 1−2e−cm where c = γ 2

2 −2 log 12 and γ > 2
√
log 12.

This can be verified using the proof technique of Candes et al. [14, Lemma 1.1]. Care
has to be taken of the fact that the entries of L1 are correlated as they are identical
copies of the same Gaussian random variable 1

ε

∑mX
j=1 ηj . Furthermore we also have

that:

‖ �∗(L2) ‖≤ 2γ σ

ε

√
(1 + δ)mXm (52)

holds with probability at least 1 − 2e−cm with constants c, γ as defined earlier. This
is again easily verifiable using the proof technique of Candes et al. [14, Lemma 1.1],
as the entries of L2 are i.i.d Gaussian random variables. Combining (51) and (52) we
then have that the following holds true with probability at least 1 − 4e−cm.

‖ �∗(L1) ‖ + ‖ �∗(L2) ‖≤ 4γ σ

ε

√
(1 + δ)mXm�m. (53)

Lastly, it is fairly easy to see that ‖ X̂(k)
DS − X ‖F ≤ 2 ‖ X̂DS − X ‖F where X̂(k)

DS

is the best rank k approximation to X̂DS (see for example, the proof by Tyagi et al.
[41, Corollary 1]). Combining the above observations we arrive at the stated error
bound with probability at least 1 − 2e−m�q(δ)+4k(d+mX+1)u(δ) − 4e−cm.
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A.3 Proof of Lemma 5

Proof Let τ denote the bound on ‖ X̂(k)
DS − X ‖F as stated in Lemma 4. We now

make use of a result by Tyagi et al. [41, Lemma 2]. This states that if τ <
√

(1−ρ)mX αk√
k+√

2
holds, then it implies that

‖ ÂT Â − AT A ‖F ≤ 2τ√
(1 − ρ)mXα − τ

(54)

holds true for any 0 < ρ < 1 with probability at least 1 − k exp

(
−mX αρ2

2kC2
2

)
.

The proof makes use of Weyl’s inequality [45], Wedin’s perturbation bound [44]
and a deviation bound for the extremal eigenvalues of the sum of random positive
semidefinite matrices [39].

Therefore, upon using the value of τ we have that τ < f
√

(1−ρ)mX αk√
k+√

2
holds for

any 0 < f < 1 if:

C
1/2
0 k1/2(1 + δ)1/2

(
C2εdmX k2√

m�

+ 8γ σ
√

mXm�m

ε

)
< f

√
(1 − ρ)mXαk√

k + √
2

(55)

⇔
a1︷ ︸︸ ︷

C2dk2 ε

√
mX
m�

+ 8γ σ
√

m�m

ε
< f

⎛

⎜⎜⎜⎜⎝

b1︷ ︸︸ ︷
1

C
1/2
0 (1 + δ)1/2

√
(1 − ρ)α√
k + √

2

⎞

⎟⎟⎟⎟⎠
(56)

⇔ a1

√
mX
m�

ε2 − f b1ε + 8γ σ
√

m�m < 0. (57)

From (57) we get the stated condition on ε. Lastly upon using τ <
f

√
(1−ρ)mX αk√

k+√
2

in (54) we obtain the stated bound on ‖ ÂT Â − AT A ‖F .
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