Effects of environmental impact and nutrition labelling on food purchasing: An experimental online supermarket study

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.appet.2022.106312

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Appetite

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 14. Sep. 2023
Effects of environmental impact and nutrition labelling on food purchasing: An experimental online supermarket study

Christina Pottera,1, Rachel Pecheya,7,1, Brian Cooka, Paul Batemana, Cristina Stewarta, Kerstin Frieb, Michael Clarkb,c, Carmen Piernasa, Mike Raynerb, Susan A. Jebba

a Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Oxford OX2 6GG, UK
b Oxford Martin Programme on the Future of Food and Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
c Smith School of Enterprise and Environment, School of Geography & Environment, and Department of Zoology, University of Oxford, Oxford, UK

\textbf{ARTICLE INFO}

Keywords: Ecolabels Nutrition labels Food Purchase Sustainability

\textbf{ABSTRACT}

Nutrition labels and ecolabels can support consumers to make healthier and more sustainable choices, and the former is now widespread. But there is no information on the impact of ecolabels in the presence of nutrition labels. The aims of this study were primarily to examine whether (1) ecolabels are effective at promoting sustainable purchasing behaviour if presented alongside nutrition labels; (2) and secondarily, whether nutrition labels are effective at promoting healthier purchasing if presented alongside ecolabels. Participants (N = 2730) visited an experimental online supermarket platform, and were randomised to see products with (1) environmental impact labels only; (2) nutrition (NutriScore) labels only; (3) both environmental and nutrition labels; (4) no labels. Linear regressions compared the mean environmental impact scores (EIS; primary outcome) and health scores of products in participants’ shopping baskets across each condition. Compared to control (no labels) there were significant reductions in the EIS when environmental impact labels were presented: Alone (−1.3, 95\%CI: −2.3 to −0.4) or With nutrition labels (−2.0, 95\%CI: −2.9 to −1.0), with no evidence of differences in effectiveness between these two conditions. There was no evidence of an impact of nutrition labels on either the EIS or the healthiness of purchases, both when nutrition labels were shown alone and when ecolabels were also present. Environmental impact labels may be effective at encouraging more sustainable purchases alone or when used alongside nutrition labels. This adds to the evidence base on the feasibility and effectiveness of environmental impact labelling as an important measure to change dietary behaviour to improve planetary health.

1. Introduction

Transitioning to sustainable and healthy diets is essential to meeting the UN Sustainable Development Goals and Paris Agreement (\textit{Food \& Agriculture Organisation \& World Health Organization, 2019}). Considerable dietary shifts will be required in the UK and globally, including large reductions in consumption of red meat and increases in consumption of sustainable and healthier foods (\textit{Willett et al., 2019}). Providing health and environmental information on food products at the point of purchase may help consumers to make purchases in line with these goals (\textit{Anastasiou, Miller, \& Dickinson, 2019}; \textit{Brown, Harris, Potter, \& Knai, 2020}; \textit{Cecchini \& Warin, 2016}; \textit{Julia \& Hercberg, 2017}; \textit{Macdiarmid, Cerroni, Kalentakis, \& Reynolds, 2020}). Labelling products with environmental impact information promotes the selection of more sustainable food choices (\textit{Julia \& Hercberg, 2017}; \textit{Sonnenberg et al., 2013}). The World Resources Institute (WRI) reports that consumer interest in environmental impact labelling (hereafter: ecolabelling) of meals and food products is rising. In a poll of UK adults in March 2020, approximately 35\% of 2000 respondents felt it is important to know brands they are buying are “taking action to reduce the product’s footprint”, up from only 24\% of respondents in 2016 (\textit{World Resources Institute, 2020b}). Further, the WRI previously found that 75\% of UK adults say they would prefer to eat in restaurants displaying environmental impact details on their menus (\textit{World Resources Institute, 2020b}).
appetite 180 (2023) 106312

2

labels on their own. We also explored whether the effectiveness of each labels undermines healthy purchasing compared to presenting nutrition their own. As a secondary aim, we explored whether presenting both already often present on packs and ecolabels would therefore be pre presented alongside nutrition labels, given that nutritional labels are remain effective at promoting the selection of more sustainable foods if one meal in an experimental online supermarket, similarly only pre presented both Nutri-Score labels and environmental impact levels together (De Bauw, De La Revilla, Poppe, Matthys, & Vranken, 2021). However, these experiments found the presence of multiple labels was rarely beneficial (Barreiro-Hurle, Gracia, & De-Magistris, 2010). Little experimental research has explored whether the simultaneous presence of ecolabels and nutrition labels attenuates the effectiveness of either individual label. Two papers highlight sets of choice experiments that each examined consumer food selections between specific products and their healthy and/or sustainable alternatives (indicated via text and/or a logo) (Hoek, Pearson, James, Lawrence, & Friel, 2017; Macdiarmid et al., 2020). However, these experiments included only a very limited number of products – two examples of rice, meat and tomato products in the former, and lasagne in the latter. One study only indicated ‘positive’ benefits (i.e. highlighting options as healthier or more sustainable) (Hoek et al., 2017), while the other consistently presented both health and sustainability information (Macdiarmid et al., 2020), so the effectiveness of seeing both labels vs. single labels in the presence of potentially conflicting information could not be assessed. Another two studies, looking at the impact of labels when shopping for ingredients for one meal in an experimental online supermarket, similarly only presented both Nutri-Score labels and environmental impact levels together (De Bauw, De La Revilla, Poppe, Matthys, & Vranken, 2022; De Bauw, Matthys, Poppe, Franssens, & Vranken, 2021).

The primary aim of this study was to examine whether ecolabels remain effective at promoting the selection of more sustainable foods if presented alongside nutrition labels, given that nutritional labels are already often present on packs and ecolabels would therefore be presented alongside this information. We hypothesised that presenting both environmental impact and nutrition labels would be less effective at promoting sustainable purchasing compared to presenting ecolabels on their own. As a secondary aim, we explored whether presenting both labels undermines healthy purchasing compared to presenting nutrition labels on their own. We also explored whether the effectiveness of each label (eco, nutrition, both) at promoting sustainable purchasing varied as a result of participant demographics.

2. Methods

2.1. Study design

This study was a 4-arm parallel design randomised controlled trial to test two labels (one providing an A-E grade regarding health impact and one an A-E grade on environmental impact), presented alone or in combination, compared to a no label control.

Participants were randomised to one of the four study conditions with five participants randomised into an intervention arm for every two randomised to the control (no label) group (see Fig. 1). Three label conditions were tested: i) ecolabel only, ii) nutrition label only, iii) both ecolabel and nutrition labels displayed simultaneously.

The study was conducted using an experimental online supermarket platform, developed by the University of Oxford, designed to emulate a real online supermarket for research purposes. The site was populated with approximately 20,000 supermarket products drawn from foodDB (April 2019), a database of food and drinks available for purchase in six UK online supermarkets (Harrington, Adhikari, Rayner, & Scarborough, 2019). Data were collected and managed using the supermarket platform and the survey platform Qualtrics (www.qualtrics.com).

The study protocol was prospectively registered online (Open Science Framework Ref. GKYDS).

It was reviewed by, and received ethics approval through, the University of Oxford Central University Research Ethics Committee [R65010/RE004]. Informed consent was obtained from all participants.

2.2. Participants

Adult participants aged 18 years or over were recruited from an online research panel (Dynata, http://www.dynata.com), with quotas set for age, gender and education to obtain a sample broadly representative of the UK. Panel members who self-identified as vegetarian or vegan were excluded because some of the products on the shopping list were not suitable for vegetarians or vegans and participants were instructed to shop for foods they would be willing to eat. To ensure that participants could complete the study tasks and that results reflected the choices of UK customers, only English-speaking panel members currently residing in the United Kingdom were eligible.

2.3. Sample size

Based on findings from a previous study (Potter et al., 2022), we estimated that there would be an absolute difference of 6–10% in the Environment Score between the ecolabel condition and control. Based on recent evidence of the effectiveness of the Nutri-Score nutrition label (Vandevijvere et al., 2020), we estimated an absolute difference of approximately 9% between the nutrition label condition and control. To determine the sample size for this study, we used values from the two trial arms with the largest standard deviations (SDs) in the results of Study 2 from Potter et al. (2022). The present study was powered to detect an absolute difference of 4% (SD1 = 23.6%, SD2 = 23.4%) in the Environment Score between each intervention group and a 6% difference between each intervention group and control.

We estimated a sample size of $n = 344$ for the control group and $n =$
859 for each intervention arm (total $N = 2921$), with the analysis powered to 90% and a two-sided $\alpha = 0.025$ (this is an adjusted p-value to allow for two comparisons of the primary outcome). In order to allow for a 15% non-compliance and attrition rate, we aimed to recruit 3359 participants in total ($N = 395$ control; 988 each intervention arm). Due to difficulties in recruitment, with the panel being unable to supply as many participants as initially thought, the study was ended before the target of 3359 participants was achieved.

2.4. Labels

Images of ecolabels and/or nutrition labels were displayed.
underneath the food product on the experimental supermarket website (see Fig. 2).

Ecolabels: The ecolabels chosen for this study comprised a background with a ‘globe’ outline and an A-E grade showing the product’s environmental impact (shown in Supplementary File 1). They were selected as they showed one of the highest impacts on the environmental impact of purchasing compared to other ecolabel formats tested in a previous study (Potter et al., 2022 Study 2) and were felt to be more acceptable for store implementation than the other high impact labels (red circles on products with the worst environmental impact).

Environmental impact was calculated per 100 g of each product for four indicator variables (greenhouse gas emissions, scarcity weighted water stress [hereafter water use], biodiversity loss, and eutrophication potential), based on products’ ingredients, combined with data on impact from environmental life cycle assessment databases (Poore & Nemecek, 2018). More information on the derivation of the environmental impact scores can be found in Supplementary File 1, and is described in further detail elsewhere (Clark et al., 2022). The four environmental indicators were then combined into a product-level EIS. Products were ranked based on their percentile score for each of the four indicators, and the mean percentile across the four indicators was calculated. To obtain A-E grades, we then split the environmental impact score into quintiles, whereby a value of A = an EIS of 1–20, B = 21–40, C = 41–60, D = 61–80, E = 81–100.

Nutrition labels: For each product in the virtual online supermarket, nutrient and ingredient information (per 100 g or ml) was obtained from the foodDB dataset (Harrington et al., 2019). From this, health scores were calculated using the NutriScore method (see Supplementary File 2 for details) (Julia, Herbec, & World Health Organization, 2017), with A-E values allocated to each product in the virtual supermarket database. The nutrition label logos are shown in Supplementary File 2. The NutriScore is not widely used in the UK but was chosen to have a similar format to the ecolabel.

2.5 Procedure

Following online screening questions to ensure eligibility, participants provided electronic consent and were then directed to the supermarket platform to take part in the shopping task. They were asked questions about hunger before the shopping task, where participants were asked to purchase items to complete a shopping task of 10 items. See Supplemental File 3 for an example of the welcome screen displayed to participants on the supermarket platform. The food items included in the list were chosen because they offer opportunities to purchase items across categories that represent a range of environmental (and health) impacts. The items on the shopping list were as follows: A savoury snack for right now; Milk for everyday use; A ready meal; Cheese to use in a sandwich or light meal; A pizza (fresh or frozen); A bar of chocolate; Nuts for snacking on; Meat, fish, or vegetarian alternative protein for main meal; Rice to accompany the main meal; Berries for dessert (fresh or frozen).

Afterwards, participants were redirected to a post-test survey where they provided basic demographic information, household size, online grocery shopping habits, and measures of participants’ level of awareness of the effects of meat on the environment (hereafter: meat knowledge) (Wunderlich & Smoller, 2019), frequency of meat consumption (hereafter: meat consumption), and level of intention to reduce meat consumption (hereafter: meat reduction).

2.6 Primary outcome

The primary outcome was the mean EIS of products placed in the shopping basket. A mean EIS of 1 would mean that only those products with the best environmental impact (falling into the 1st percentile) were selected, while a score of 100 would mean only those with the worst impact (falling into the 100th percentile) had been chosen. This score represented the full range from 1 to 100, rather than quintiles representing each label value.

2.6.1 Secondary outcomes

We explored differences in the four individual environmental indicators that comprised the EIS: (i) greenhouse gas emissions (kg CO2e), (ii) water use (in litres), (iii) eutrophication potential (gPO4), and (iv) biodiversity loss (species lost x 10–14). These analyses were conducted using the absolute values of indicators (rather than percentiles as in the EIS), logged to improve model fit.

An additional outcome focused on the nutrition content of the basket. For each participant, a Health Score was calculated by averaging the nutrient score value for each food product across all items in the shopping basket (see Supplementary File 2 for the calculation of the nutrient score at the product level).

Alongside the Health Score, we explored differences in the nutrient composition of the shopping basket, including the total energy (kcal), energy density (kcal/g), salt (g/100 g), fibre (g/100 g), and total carbohydrate, fat, saturated fat, sugar, expressed as % energy. We adjusted for total energy to place the focus on the nutritional composition of the foods selected and not the total amount (in g) of the food purchased.

Finally, we examined differences in the overall cost of the shopping basket, expressed as £/100 g.

2.7 Data analysis

Prior to data analysis, shopping basket data from all participants who completed the task were verified by comparing the purchased items to the shopping list. We only analysed data from participants who purchased at least one product from at least 5 out of 10 categories of the shopping list. When participants purchased more than the 10 items requested, we included all items bought.

The primary aim of this study was to estimate the effect on the total EIS when products were presented with ecolabels alongside nutrition labels (Eco&Nutrition), compared to (a) no labels and (b) ecolabels on their own. The significance criterion was set to p < 0.025 for these analyses (Bonferroni’s adjustment). Exploratory analyses looked at the impact of nutrition labels alone on environmental impact.

Specified participant characteristics were included in the primary linear regression model. These comprised participant age, gender, education, income, intentions to reduce meat consumption and meat consumption (see Supplemental File 4 for survey questions and coding).

Linear regressions also explored differences by study condition in individual environmental indicator values, given the change in the percentile-based EIS may not be indicative of the absolute change in environmental impact.

In addition, linear regression was used to explore the effects on the Health Score of purchased items when products were presented with ecolabels alongside nutrition labels (Eco&Nutrition), compared to (a) no labels and (b) ecolabels on their own. This was supplemented by exploring the nutrient composition of the shopping basket between conditions. Exploratory analyses looked at the impact of ecolabels alone on health impact.

Linear regressions also explored the cost of the shopping basket. Exploratory secondary analyses included interaction terms in separate linear regression models to determine whether the impact of label on environmental scores varied due to participant characteristics. In order to control the type 1 error rate for the fact that there were two primary comparisons, we used the Holm-Bonferroni method of adjustment (Holm, 1979). The smaller P value will be compared to an alpha of 0.025 and if this is significant, the larger P value will be compared to an alpha of 0.05.

Statistical analyses were conducted in STATA (Stata Statistical Software: Release 14. College Station, TX: StataCorp LP).
3. Results

3.1. Participant characteristics

A total of 2730 respondents consented to participate, of those 2488 provided demographic information. Participants were on average 41.7 years old (SD: 13.3 years), 55.3% were female, and they purchased 10.1 items on average (Table 1; see Supplementary Table 1 for other variables included in models).

Table 1

<table>
<thead>
<tr>
<th>Baseline characteristics of the study participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Age, mean + SD</td>
</tr>
<tr>
<td>Age category, n (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gender, % female</td>
</tr>
<tr>
<td>Household size, n (%)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Items purchased, mean + SD | 9.9 ± 4.3 | 10.2 ± 4.3 | 10.2 ± 4.3 | 10.1 ± 4.3 | 10.1 ± 4.3 |

<table>
<thead>
<tr>
<th>Education</th>
<th>Note: N and items purchased are based on the 2730 participants who completed the study; 2488 participants provided demographic data for the other variables reported in this table.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 4 GCSEs</td>
<td>48 (17.6%) 92 (32.4%) 95 (33.0%) 90 (31.5%) 325</td>
</tr>
<tr>
<td>5 or more GCSEs</td>
<td>41 (15.0%) 160 (57.1%) 129 (37.7%) 132 (43.4%) 462</td>
</tr>
<tr>
<td>2 or more A-levels</td>
<td>65 (23.8%) 186 (61.9%) 193 (57.8%) 204 (64.8%) 648</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>76 (28.1%) 216 (71.9%) 207 (60.3%) 204 (63.8%) 703</td>
</tr>
<tr>
<td>Post-grad degree</td>
<td>38 (13.9%) 88 (28.1%) 118 (35.1%) 104 (31.1%) 331</td>
</tr>
<tr>
<td>Prefer not to say</td>
<td>5 (1.8%) 1 (0.1%) 6 (0.2%) 8 (0.7%) 9 (0.9%) 18 (0.9%) 19 (0.9%) 34 (0.9%) 36 (0.9%) 47 (0.9%) 47 (0.9%) 97 (3.5%)</td>
</tr>
<tr>
<td>Income, n (%)</td>
<td>70 (25.6%) 194 (61.2%) 188 (56.0%) 187 (57.4%) 639</td>
</tr>
<tr>
<td>£15k</td>
<td>57 (20.9%) 155 (51.0%) 158 (46.2%) 150 (46.1%) 520</td>
</tr>
<tr>
<td>£24,999</td>
<td>64 (23.4%) 180 (57.1%) 161 (47.5%) 182 (55.7%) 587</td>
</tr>
<tr>
<td>£39,999</td>
<td>56 (21.3%) 131 (41.5%) 118 (35.1%) 148 (44.1%) 436</td>
</tr>
<tr>
<td>£75,000</td>
<td>10 (3.7%) 30 (4.9%) 40 (5.5%) 29 (9.0%) 109</td>
</tr>
<tr>
<td>Over £75k</td>
<td>16 (5.9%) 53 (7.1%) 53 (7.1%) 75 (23.3%) 197</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>3.2. Effects on sustainability of purchasing</th>
</tr>
</thead>
</table>
| The linear regression model found a significant reduction in the EIS compared with control (mean EIS = 62.6; s.d. 5.9) for the Ecolabel Only (mean difference = −1.3, 95% CI: −2.3 to −0.4, p = 0.002) and EcoNutrition labels conditions (mean difference = −2.0, 95% CI: −2.9 to −1.0, p < 0.001) (Table 2). There was no evidence that the Nutrition Only label impacted on EIS compared to control (mean difference = −0.2, 95% CI: −1.2 to 0.7, p = 0.559). Comparing study conditions we found no clear evidence of any difference in effectiveness between presenting both environment and nutrition labels simultaneously (EcoNutrition) and presenting only ecolabels in EIS (mean difference = 0.7, 95% CI: −0.2 to 1.4, p = 0.03) (Supplemental Table 2).
| For Eco-Only labels, the percentage change for the four environmental indicators compared to control varied from −1% to −12%, with significant reductions observed only in water use (Supplemental Table 3). For EcoNutrition, reductions varied between −5% and −11%, and were significant for all bar biodiversity loss. For Nutrition labels only, no significant changes were found in individual environmental indicators, with percentage changes varying between 0% to a 4% increase.
| 3.3. Effects on healthiness of purchasing |
| There was no evidence of any differences between any of the label conditions and control in the Health Score of products in the shopping basket (Table 2), nor any evidence of differences between label conditions (Supplemental Table 2). For individual nutrients, participants in the condition where the EcoNutrition labels were presented together had baskets with lower fat and saturated fat compared to control, and higher carbohydrate content compared to control (−1.3% ; −0.7% and 1.7% respectively). No other individual nutrient differences were observed between groups (Table 2). |

Table 2

<table>
<thead>
<tr>
<th>Comparison of the environmental impact score, health score, cost, and nutrient composition of the shopping basket between trial groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Environmental Impact Score</td>
</tr>
<tr>
<td>Health Score</td>
</tr>
<tr>
<td>Energy, kcal/g</td>
</tr>
<tr>
<td>Fat, %energy</td>
</tr>
<tr>
<td>Saturated fat, % energy</td>
</tr>
<tr>
<td>Carbohydrate, % energy</td>
</tr>
<tr>
<td>Sugar, %energy</td>
</tr>
<tr>
<td>Protein, %energy</td>
</tr>
<tr>
<td>Fibre, g/100g</td>
</tr>
<tr>
<td>Salt, g/100g</td>
</tr>
<tr>
<td>Cost, £/100g</td>
</tr>
</tbody>
</table>

Note. Values are means ± SDs in column 1 and mean differences (95% CIs) in the other three columns. Analyses for Environmental Impact Score and Health Score are adjusted for covariates, with Bonferroni-corrected 95% CIs (i.e. 95.7 CIs). Other analyses are unadjusted, with standard CIs. *p < 0.05 **p < 0.001.
3.4. Effects on cost of the shopping basket

There were no significant differences in the cost of the shopping basket for any of the label conditions compared to control, nor between intervention groups (Table 2).

3.5. Additional exploratory analyses

Environment Impact Scores were significantly higher in participants who were male (0.9, 95% CIs: 0.4, 1.4), between the ages of 45–54 [compared to those aged 18–24] (1.1, 95% CIs: 0.3, 2.0), or those who earned an annual income of over £75,000 [compared to less than £15,000] (1.5, 95% CIs: 0.3, 2.8) (Supplemental Table 4). They were significantly lower for participants with Bachelor’s or postgraduate degrees [compared to up to 4 GCSEs] (−1.5, 95% CIs: −2.3, −0.7; −1.2, 95% CIs: −2.2, −0.3, respectively). Those who believed that eating meat was harmful to the environment had lower EIS compared to those who believed it was beneficial, had no effect or responded ‘Don’t know’ (who had higher scores by 1.2, 95% CIs: 0.2, 2.1; 1.2, 95% CIs: 0.4, 2.0; 1.1, 95% CIs: 0.5, 1.7, respectively). Similarly, those who reported having already reduced their meat consumption had lower EIS compared to those who had no desire to change, or who wanted to eat more, or wanted to reduce their consumption (who had higher scores by 1.1, 95% CIs: 0.5, 1.7; 1.8, 95% CIs: 0.4, 3.1; 1.1, 95% CIs: 0.4, 1.8, respectively). There were no significant associations between meat consumption, baseline hunger or fullness on the EIS of products in participants’ shopping baskets.

There were no significant interactions between intervention condition and participant characteristics (including participant age, gender, income, education, meat consumption, meat knowledge, meat reduction, baseline hunger, or baseline fullness; see Supplemental Table 4).

4. Discussion

Environmental impact labels were effective at reducing the environmental impact of products purchased, both when presented by themselves, and when shown alongside nutrition labels. There was no evidence of a difference in effectiveness when the environmental and nutrition labels were presented together compared to environmental labels by themselves in either the environmental impact or the healthiness of the shopping basket. Nor was there evidence that the addition of environmental impact labels changed the healthiness of the basket, compared to showing nutrition labels alone.

Strengths of this study include the randomised controlled design and the use of a large range of potential products that participants could select from, on a platform resembling real online supermarket websites. Participants did not receive their shopping, however, and were asked to shop according to a set list, limiting the ecological validity of the shopping context. Indeed, purchasing in the simulated online environment is less likely to be subject to multiple competing influences than in supermarkets, given the hypothetical nature of the task may decrease the consequences of acting on any social desirability bias. However, studies of nutritional labelling in experimental supermarkets have suggested that while the effect sizes in experimental studies may be larger than for actual purchases, the pattern of results is relatively consistent between these settings (Crockett, Lacroix, Muller, & Rufieux, 2019; Howe, Fitzsimons, & Ubel,). The short and specific shopping list – alongside estimations used to calculate the environmental indicator scores – could lead to inaccuracies in the overall degree of environmental impact. Currently transparent information on each product’s supply chain is not publicly available, limiting the accuracy of labels used in the current study. For implementation in retail settings, reliable granular life cycle assessment and product ingredient data will be required. It is important to note that these inaccuracies would not lead to differential imprecision between study groups, so would not affect the key findings within this proof-of-principle study. In addition, vegetarians and vegans were excluded, and their responses to the labels may differ to meat-eaters.

This study directly compared the presentation of ecolabels alone, to providing health and environmental impact information simultaneously. We hypothesised that there might be reduced impact on environmental outcomes in the latter scenario as a result of information overload or information perceived as conflicting. However, there was no evidence of diminished effectiveness in this study. This supports the feasibility of introducing environmental impact labels in retail settings, alongside nutrition labelling already in use in North America and Europe (Miller & Cassidy, 2015). It should be noted, however, that different combinations of logos or scoring systems for health and EIS could potentially influence their relative salience and/or impact. Indeed, studies using an environmental label identical in format to the Nutri-Score label have suggested that including both nutrition and environmental labels improved nutritional but not environmental outcomes (relative to a no label condition) (De Bauw et al., 2021, 2022). However, these differences in study findings could also relate to the shopping tasks used – which directed participants to different ranges of food – given research on nutrition labelling suggests this may be more effective for categories with higher Nutri-Score variance (Dubois et al., 2021; see Supplementary Tables 5 and 6 for further information on variance within categories used in the current study). Food categories may also vary in the extent to which environmental impact scores and health scores are complementary vs. conflicting, which could alter the effects of having both labels present. Further research should explore the effectiveness of ecolabels depending on whether food categories have higher vs. lower correlations between environmental and health scores.

A second consideration in this context is the impact on the healthiness of the basket when including both labels simultaneously (over just nutrition labels), given, for example, novel ecolabels could draw attention away from nutritional labelling. There was again no evidence that the addition of environmental impact labels changed the healthiness of the basket. However, in this study there was also no evidence that the nutrition labels had any impact on the healthiness of products in the basket as measured by mean product NutriScore (there were reductions in both total and saturated fat when both labels were shown, compared to control). NutriScore was selected for the study as a health score system recommended and used in multiple European countries (Julia, Etité, & Hereberg, 2018), and that matches the A to E grades used in the most promising environmental impact logo following initial studies of effectiveness (Potter et al., 2022). While some previous studies have suggested that NutriScore labels are effective at improving the healthiness of purchases (Julia et al., 2017), other studies on nutritional labelling have found only small or mixed effects (Crockett et al., 2018; Hamlin & McNeill, 2018). Evidence on the effects of nutritional labelling on grocery store purchases is particularly limited, with the systematic review by Crockett et al. (2018) identifying just one very low quality study (suggesting fewer healthier purchases following nutritional labelling). One limitation of this study is that the NutriScore system is not widely used in the UK (where it is more common to provide information on individual nutrients using a multiple traffic light system), and we did not assess participants’ familiarity with this label. Studies from Belgium, where NutriScore is commonly used, have suggested that these labels were effective at changing behaviour in online supermarket experiments (De Bauw et al., 2021, 2022). Further work should explore whether similar findings are obtained for participants for whom nutritional labels may be more familiar.

A recent systematic review exploring the effects of ecolabels on selection, purchase and consumption of food products found that ecolabel effectiveness may vary as a result of individual characteristics, including age, gender, and level of education (Potter et al., 2021). Furthermore, there was evidence that ecolabels may be particularly effective at reducing the environmental impact score of the shopping basket for participants who believed eating meat was harmful to the environment or who reported having already reduced the amount of meat in their
diet. In the current study, there were some differences in the environment impact of baskets by demographics (lower for those who were female, with lower income, with higher education, who believed that eating meat was harmful to the environment or reported having already reduced their meat consumption). However, the current study did not find any evidence that the ecolabels were more effective in any particular participant group. This suggests these labels are having a population-wide impact, including affecting those for whom behaviour change might be most impactful.

In conclusion, the current study adds to evidence that ecolabels can promote more sustainable food selection and finds no evidence that the addition of environmental impact labels alongside existing nutrition labels would attenuate the impact either label would have on environmental or health outcomes if presented in isolation. This adds to the evidence base on the feasibility and effectiveness of environmental impact labelling as an important measure to change dietary behaviour to improve planetary health.

Ethics

The study was reviewed by, and received ethics approval through, the University of Oxford Central University Research Ethics Committee (R65010/RE004). Informed consent was obtained from all participants.

Funding

This research was funded by the Wellcome Trust, Our Planet Our Health (Livestock, Environment and People –LEAP) award number 205212/Z/16/Z. SJ is funded by the NIHR Oxford Biomedical Research Centre (BRC) Obesity, Diet and Lifestyle Theme. CPiernas and SJ are funded by the NIHR Applied Research Collaborations Oxford. The funders had no role in the study design, data collection, analysis or interpretation. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Author Contributions

All authors contributed to the concept and design of the studies. CP, RP, and KF developed the study on the survey platform. MC developed the program to generate the ecolabel values. CP performed the experiments and collected the study data. PB, RP, and CP analysed and interpreted the data. CP and RP wrote the paper and generated the tables and figures. All authors discussed the results and implications and commented on the manuscript.

Availability of data

The dataset is available in the Open Science Framework [https://osf.io/qs8n7/j].

Declarations of interest

None.

Acknowledgements

We would like to thank Richard Stevens for his guidance on the data analysis and interpretation.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.appet.2022.106312.

References

selection, purchase, or consumption of food and drink products: A systematic review. Environment and Behavior.

