Molecular design of nanohybrid gas separation membranes for optimal CO2 separation

Citation for published version:

Digital Object Identifier (DOI):

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Polymer

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Molecular design of nanohybrid gas separation membranes for optimal CO₂ separation

Cher Hon Lau a, Donald R. Paul a,b, Tai Shung Chung a,*

a Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576 Singapore, Singapore
b Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78120-2310, USA

A R T I C L E I N F O

Article history:
Received 16 August 2011
Received in revised form 7 December 2011
Accepted 9 December 2011
Available online 19 December 2011

Keywords:
CO₂ separation
Nanohybrid membranes
Hybrid materials

A B S T R A C T

Organic-inorganic materials comprising CO₂-philic components may yield superior CO₂ transport properties and good CO₂/H₂ gas selectivity. We report that a fine balance in size heterogeneity in the silicon-based structures is essential and a mixture of sizes up to 50 nm surrounded by 5–15 nm silicon-based nanostructures is the preferred inorganic phase morphology that yields optimal nanohybrid membranes. The combination of optimal synthesis conditions i.e. water/silicon ratio, condensation and ozone pre-treatment durations yields a nanohybrid membrane with a CO₂ permeability of 2000 Barrer while achieving a CO₂/H₂ selectivity of 11. The findings of this work are important for the design of gas separation membranes using green materials.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The capture of the greenhouse gas carbon dioxide (CO₂) from flue gas streams (N₂) has become a major industrial concern in recent years [1]. CO₂ also exists as a byproduct in syngas (H₂) production [2] and is an impurity in some natural gas (CH₄) sources [3]. In all these cases, CO₂ must be separated from these gas streams. Traditional gas separation technologies are costly, energy intensive, and often are not environmentally friendly. A “green” alternative to traditional gas separation processes is polymeric membrane technology. Gas separation membranes are cost-effective with low carbon footprints [4]. The operating principles of polymeric gas separation membranes are summarized by the following two equations: \(P = S \times D \) and \(\alpha = P_A / P_B \) where \(P \) is the gas permeability of the membrane, \(S \) and \(D \) refer to the solubility and diffusivity coefficients of a gas penetrant in the polymer matrix, while \(\alpha \) is the selectivity of the permeation of gas A relative to gas penetrant B and defines the degree of separation that can be achieved by the membrane material. The properties \(P \) and \(\alpha \) are the key performance indices of a membrane material for gas separation.

Membrane materials may exist in the form of simple polymers [5–7] to molecularly designed polymers [8–10] and nanocomposites [11–13]. Nanocomposites, also commonly known as mixed matrix membranes, is a form of material hybridization that harnesses the advantages of polymers and inorganic nanostructures [14–17]. These hybrid materials are potential candidates for membrane fabrication. Such inorganic nanostructures have been used to enhance gas transport properties [18], reduce polymer crystallinity [19], and augment mechanical properties [20] of mixed matrix membranes. However, the gas separation performance of mixed matrix membranes is highly dependent on the size and uniform dispersion of the inorganic nanostructures in the polymer matrix. Compatibility with the polymer and Ostwald ripening effects can impede the uniform dispersion of nanostructures [21]; however, in situ synthesis of nanostructures in the polymer matrix, e.g., by a sol-derived organic-inorganic material [22–24], provides a route for dealing with such issues.

At near ambient operating conditions, organic-inorganic materials derived from polyethylene oxide (PEO), polypropylene oxide (PPO) and silicon-based nanostructures comprise high CO₂ affinity components and possess high CO₂ permeability with good CO₂/H₂ separation capabilities [20,22,23,25] that are comparable to pure polymeric rubbery membranes [26]. In these organic-inorganic membranes, the polymer matrix influences the Si–O–Si network connectivity, while building up an alternative polyether network via polymerization or polycondensation that enhances CO₂/light gas selectivity. Additionally, the polar ether oxygens in PEO interact favorably with acidic CO₂ penetrants via a dipole–quadrupole interaction [27], while the pendant methyl group in PPO enhances CO₂ permeability by increasing the relative fractional free volume
2. Materials and experimental details

2.1. Materials

Jeffamine® ED-2003 (M_W = 2000 g/mol) was used in this work; it is a commercially available water soluble polymer diamine derived from a propylene oxide end-capped polyethylene glycol, the polymer segment structure is polypropylene oxide — polyethylene oxide — propylene oxide (PPO-PEO-PPO). Polyethylene glycol methacrylate (PEGMA: M_W = 360 g/mol), ethanol (HPLC grade) and 3-glycidoxypropyltrimethoxysilane (GOTMS: M_W = 236 g/mol) were purchased from Sigma Aldrich, Singapore. Hydrochloric acid (HCl) was purchased from Fisher Scientific. All chemicals and solvents, except for PEGMA, were used as received. The inhibitors in PEGMA were removed using activated carbon. For every 100 mL of PEGMA, 4 g of activated carbon was added and stirred for 1 h, after which, the activated carbon was filtered from this mixture. These procedures were repeated 3 times. The purified PEGMA was stored at 4 °C.

2.2. Synthesis and modification of organic-inorganic materials

In the first part of this work, the effects of the organic/inorganic wt.% ratio on gas permeation was studied by varying the organic/inorganic content from 50/50 wt.% to 75/25 wt.% to 80/20 wt.%. GOTMS was first hydrolysed for 30 min at room temperature using a catalyzing aqueous solution containing 37.5 wt.% HCl. Subsequently, the hydrolysed alkoxysilane solution was added to a solution consisting of PPO-PEO-PPO diamine dissolved in 70 wt.% ethanol and 30 wt.% deionized water. The epoxide—amine reaction and preliminary condensation occurred during magnetic stirring at 750 rpm at 70 °C for 1 h. These organic-inorganic materials are coded PED_{x/y}S_y, whereby PED represents the polyether diamine while S represents the alkoxysilane; the subscripts denotes the amount of component in wt.%.

In the second part, the effects of condensation time on gas permeation in organic-inorganic materials were studied for PED_{x/y}S_y materials with the largest CO₂ permeability value i.e. PED_{80/20}S₂₀ materials. PED_{80/20}S₂₀ solutions were synthesized using the aforementioned protocol for different condensation durations, ranging from 1 to 24 h. These materials are coded PED_{80/20}-xh, whereby “xh” denotes the condensation time in hours.

In the third part, the effects of ozone pre-treatment time on gas permeation were studied for organic-inorganic materials with optimal CO₂/H₂ selectivity i.e. PED_{80/20-1 h} materials. PED_{80/20-1 h} solutions were first synthesized and allowed to cool to room temperature prior to 30, 60, 180 and 300 s of ozone pre-treatment. Ozone pre-treatment was carried out using an AC Faraday ozone—high concentration ozone generator (L10 G). High purity oxygen contained in a 10 L bottle was obtained from SOXAL, Singapore and was converted into ozone (ozone flow was limited to 0.5 L per minute). Upon ozone pre-treatment, 43 wt.% of PEGMA were added to the ozone pre-treated mixture and the resultant solution was stirred at 70 °C for 24 h to facilitate PEGMA grafting onto the PEDS main chains. The ozone-modified PED_{80/20}-1 h materials are coded PED_{80/20-oXs}, whereby “o” represents ozone-modified materials and “Xs” stands for the pre-treatment duration in seconds.

In the fourth part, the effects of side chain concentration on gas permeation properties were investigated for ozone-modified materials with the largest CO₂ permeability value. PED_{80/20} were first synthesized with 1 h of condensation and pre-treated with ozone for 60 s. Subsequently, a pre-determined amount of PEGMA was added to the aforementioned solution. PEGMA grafting was facilitated via magnetic stirring at 70 °C for 24 h. Depending on the PEGMA graft concentration, the nanohybrid materials are coded PED_{80/20-Pxx}, whereby “xx” stands for the wt. % of PEGMA graft content.

2.3. Membrane fabrication

Using a slow casting method in a Teflon dish, the organic-inorganic membranes were fabricated via an initial solvent evaporation process at 30 °C for 24 h and a subsequent evaporation process at 40 °C in a temperature controlled environment. Residual solvent was removed by drying the nascent films in a vacuum at 70 °C for 24 h. To remove unreacted monomers, all membranes were immersed in deionized water for 5 days and dried. The deionized water was changed everyday. These nanohybrid membranes were stored in a dry box at 27% humidity and 25 °C prior to testing and characterization.

2.4. Membrane characterization

A Perkin Elmer Fourier Transform Infrared (FTIR) Spectrometer (Spectrum 2000) was used to characterize the chemical structures of the working materials. Prior to measurements, the spectrometer was purged with nitrogen gas for 30 min. After placing a sample into the FTIR spectrometer, the system was purged with nitrogen gas for another 30 min. FTIR measurements in the attenuated total reflectance (ATR) mode were performed over 64 scans in the range of 600—4000 cm⁻¹. The resolutions of the spectra were 4 cm⁻¹. The data were analyzed using Spectrum Version 5.3 (analytical software).

The presence of Si—O—Si networks in the working membrane materials were validated using solid-state ²⁹Si NMR with magic angle spinning (MAS) at 7.5 kHz was performed using a Bruker DRX 400 spectrometer. Prior to solid-state NMR analysis, the organic-inorganic materials were ground via freeze milling.

To determine the crystallinity, glass transition (T_g) and melting (T_m) temperatures of the organic-inorganic membranes, differential scanning calorimetry (DSC) was performed using a DSC822e (Mettler Toledo) calorimeter. The temperature range was from −100 °C to 100 °C with a heating rate of 10 °C/min in a N₂ environment. The second heating curve was used for analysis in this work.

High-angle annular dark field scanning-transmission electron microscopy (HAADF-STEM) was used to observe inorganic phase morphology and dispersion. To prepare samples for HAADF-STEM
characterization, solutions containing the organic-inorganic materials were diluted from 2 wt.% to 0.01 wt.%. The diluted solution was pipetted onto a 200 mesh copper Formvar/carbon TEM grid that was purchased from Electron Microscopy Sciences. A thin film of the organic-inorganic material was formed on the TEM grid upon solvent evaporation in ambient conditions. HAADF-STEM studies and EDX analysis were carried out using a FEI Titan 80-300 electron microscope equipped with an electron beam monochromator, an energy dispersive X-ray spectrometer (EDX) and a Gatan electron energy loss spectrometer. The accelerating voltage of the electron beam was 200 KeV. The scanning electron beam size of EDX measurement was around 0.3 nm. As the HAADF operation principle relies on atomic number (Z)- contrast imaging, HAADF images show little or no diffraction effects while the brightness intensity of these images is approximately proportional to \(Z^2 \) [31]. Hence, the bright shapes in STEM tomographs comprise of elements with a large Z number i.e. inorganic elements in contrast to those in the polymer matrix. Additionally, the intensity of these bright shapes can be attributed to the concentration of inorganic elements.

2.5. Gas permeation and sorption measurements

The pure gas permeabilities were determined using a constant volume and variable pressure method used in previous studies [25,32,33]. H\(_2\) and CO\(_2\) permeabilities at 3.5 atm were determined from the rate of downstream pressure build-up rate (\(dp/dt \)) obtained when permeation reached a steady state according to Equation (1):

\[
P = D \times S = \frac{273 \times 10^{10}}{760} \times \frac{VL}{AT} \times \frac{76}{14.7} \left(\frac{dp}{dt} \right)
\]

\(P\) refers to the permeability of a membrane to a gas and its unit is in Barrer (1 Barrer = \(1 \times 10^{-10} \) cm\(^3\) (STP)-cm/cm\(^2\) sec cm Hg) [34]. \(D\) is the average effective diffusivity (cm\(^2\)/s), \(S\) is the apparent sorption coefficient/solubility (cm\(^3\) (STP)/cm\(^3\) polymer cm Hg), \(V\) is the volume of the downstream chamber (cm\(^3\)), \(L\) is the film thickness (cm). \(A\) refers to the effective area of the membrane (cm\(^2\)), \(T\) is the experimental temperature (K) and the pressure of the feed gas in the upstream chamber is given by \(p_2\) (psia).
A mixed gas mixture containing x-mol.% of H₂ in CO₂ was used as the feed gas mixtures and the measurements were conducted at 35 °C with a CO₂ partial pressure of 3.5 atm. The molar concentrations of H₂ tested in this work are 50 mol%. To ensure constant gas molarity in the retentate, small amounts of retentate are slowly discharged into water or the atmosphere via a silicon piping. The sampling process was initiated by evacuating the line from the receiving volume (the lower chamber: downstream) to GC by vacuum pump. The compositions of the feed and permeate were analyzed by GC. The choice of carrier gas in the GC setup is nitrogen. Similar to the pure gas permeability, the mixed gas steady state permeation rate were then determined by following equations:

\[
P_{\text{H}_2} = \frac{273 \times 10^{10}}{760} \frac{(1 - y_{\text{CO}_2})VL}{AT(76/14.7)[(1 - x_{\text{CO}_2})p_2]} \times \left(\frac{dp_1}{dt} \right) \tag{2}
\]

\[
P_{\text{CO}_2} = \frac{273 \times 10^{10}}{760} \frac{y_{\text{CO}_2}VL}{AT(76/14.7)[x_{\text{CO}_2}p_2]} \times \left(\frac{dp_1}{dt} \right) \tag{3}
\]

where \(P_{\text{CO}_2}\) and \(P_{\text{H}_2}\) are, respectively, the gas permeability of CO₂ and H₂ (Barrer), \(p_2\) is the upstream feed gas pressure (psia), \(p_1\) is the downstream permeate gas pressure (psia), \(x_{\text{CO}_2}\) is the mole fraction of CO₂ in the feed gas (%) and \(y_{\text{CO}_2}\) is the mole fraction of CO₂ in the permeate (%), \(V\) is the volume of the downstream chamber (cm³), and \(L\) is the film thickness (cm).

Carbon dioxide sorption tests were conducted using a Cahn D200 microbalance sorption cell at 35 °C over a pressure range of 0–250 psi (0–17.24 bar). For each sample, films with thickness of 300 μm, sides of 1 cm, and total mass of approximately 80–100 mg were placed on the sample pan. The system was evacuated for 24 h prior to testing. The gas at a specific pressure was fed into the
Fig. 2. (a): EDX analysis of (i) PED80S20-1 h, (ii) inorganic phase of the PED80S20-24 h material, (iii) organic phase of the PED5-24 h material, (iv) PED80S20-o300 s. (b): HAADF-STEM images of organic-inorganic materials with different amounts of polyether diamine and alkoxy silicone. These organic-inorganic materials were synthesized with 1 h of condensation and were not modified by ozone pre-treatments. According to the operating principle of HAADF-STEM, bright spots correspond to elements with high Z number, e.g., Si in these organic-inorganic materials. Hence, these bright spots are silicon-based nanostructures. The sizes of the silicon-based nanostructures grow as a function of increasing polyether content. (c): Pure gas permeability of PEDS with different polyether content synthesized with 1 h of condensation and no ozone modification. By adjusting the polyether content i.e. the organic/inorganic ratio during synthesis, the polyether content was varied from 50 wt.% to 80 wt.%. (d): \(\text{SC}_2 \) (solid line) and \(\text{DC}_2 \) (dotted line) coefficients of organic-inorganic materials with different polyether content. The lines provide a guide to the eye. All gas permeation tests were made at 35°C and 3.5 atm. Uncertainty in permeability measurements is ±10%. The sizes of the silicon-based nanostructures in these organic-inorganic materials are also shown. 1 Barrer = \(1 \times 10^{-10} \) cm\(^3\) (STP)-cm/cm\(^2\) sec cm Hg.
system. The mass of gas sorbed by the membranes at equilibrium was recorded. Subsequent sorption experiments were done by further increment of the gas pressure. The equilibrium sorption values obtained were corrected for buoyancy effects. CO₂ solubility coefficients of each sample were obtained from the slope of the sorption isotherms. Subsequently, CO₂ diffusivity coefficients were calculated using $D = P/S$.

3. Results and discussions

3.1. Chemical structure of working materials

Fig. 1(a) shows the chemical structure of a base material fabricated via an epoxy–diamine reaction in aqueous solutions and the modification of this base material using ozone pre-treatments. The chemical structure of this organic–inorganic material has been confirmed using ATR-FTIR. Ether segments from the 165-atom PPO–PEO–PPO backbone, and Si–O–Si networks dominate the spectra shown in Fig. 1(b). In the FTIR spectrum of a PED₈₀S₂₀-3 h material, the signature bands are the ether C–O–C stretching band at 1105 cm⁻¹ and the CH₂ scissoring and stretching bands at 1465 and 2868 cm⁻¹, respectively [35]. Other peaks in the fingerprint region at 1248, 1283, 1345 cm⁻¹ correspond to the CH₂-CH₂ anti-symmetric twisting, CH₂-CH₂ quasi-symmetric twisting, and CH₂-CH₂ symmetric wagging, respectively [36]. The peak at 848 cm⁻¹ corresponds to a combined quasi-anti-symmetric CH₂ rocking and quasi-symmetric C-O stretching mode, while the peak at 945 cm⁻¹ correlates to a C-C stretching. Additionally, the non-stoichiometric ratio of polyether diamine and alkoxysilane used in this work leads to the strong peak at 1656 cm⁻¹ resulting from the N-H scissoring vibration of unreacted diamines [37]. Compared to the ATR-FTIR spectrum of the neat polyether diamine (not shown here), the peak at 1100 cm⁻¹ in the FTIR spectrum of PED₈₀S₂₀-3 h is more asymmetrical. This indicates that overlapping bands are present in the FTIR spectrum of PED₈₀S₂₀-3 h. The asymmetrical band at 1100 cm⁻¹ can be attributed to a combination of the anti-symmetric stretching mode Si–O–Si [38] and the characteristic ether C–O–C stretching band. The presence of a Si–O–Si network is evidenced by the presence of the shoulder peak at 1258 cm⁻¹ that correlates to the asymmetric stretching vibrations of the Si–O–Si bridging sequence [38]. The peak at 1038 cm⁻¹ corresponds to the propyl chain attached to the silicon [38]. Weak shoulder peaks at 1088 cm⁻¹ and the peak at 886 cm⁻¹ relates to stretching vibrations of Si–O–Si and the stretching mode of Si–OH [38], indicating that hydrolysis is nearly complete. The solid-state °²⁵Si NMR analysis that will be discussed later confirms this observation. The absence of a strong, obvious peak at 910 cm⁻¹ indicates that all epoxy rings are opened up and partake in the cross-linking process between polyether diamines and alkoxysilanes [38].

In the FTIR spectra of PED₈₀S₂₀ nanohybrid membranes that were synthesized with 1 h of condensation and modified with different ozone pre-treatment times, the peak at 1708 cm⁻¹ correlates to the O=C = O ester stretch of PEGMA [39]. The intensity of this peak increases when ozone pre-treatment time
increase from 30 s to 300 s, indicating that more PEGMA is grafted onto the PEDS main chains. The intensity and shape of the N-H peaks at ν_{1646} and ν_{1633} cm$^{-1}$ remain intact. The absence of peaks ranging from 1658 to 1648 cm$^{-1}$ indicate the absence of C-C bonds in these ozone-modified PED80S20 nanohybrid membranes i.e. PEGMA is successfully grafted onto the PEDS main chains. Additionally, the occurrence of two new peaks at 2917 and 2851 cm$^{-1}$ correspond to the asymmetrical and symmetrical stretching modes of a methyl (CH$_3$) group [37]. These peaks are more obvious in PEGMA grafted PEDS materials that contain higher contents of CH$_3$.

In Fig. 1(c), the presence of only T^2 (−59 ppm) and T^3 (−67 ppm) peaks in the 29Si solid-state NMR of PED80S20 synthesized from different condensation and ozone pre-treatment durations indicate Si atoms that are fully condensed with siloxane bonds as well as some partially condensed Si atoms with one ethoxy or methoxy bonds and two siloxane bonds. This validates the ATR-FTIR analysis on the hydrolysis state of the alkoxy-silanes.

![Image of STEM images of PED80S20 materials synthesized using condensation durations ranging from 1 to 24 h with no ozone modification.](image_url)

Fig. 3. (a): STEM images of PED80S20 materials synthesized using condensation durations ranging from 1 to 24 h with no ozone modification. The sizes of the silicon-based structures grow from 15 nm (1 h) to a network of 220 nm (3 h) to 500 nm (6 h). Subsequently, after 12 h of condensation, silicon-based structure sizes decrease to 60 nm. Meanwhile, there are 5 nm silicon-based nanostructures surrounding the 60 nm nanostructure. After 24 h of condensation, the silicon-based nanostructure size doubles to 150 nm (b): Pure gas permeability of PED80S20 materials synthesized with 1–24 h of condensation and no ozone pre-treatment modification. The solid squares and circles represent CO$_2$ and H$_2$ permeability, respectively. The empty inverted triangles represent the CO$_2$/H$_2$ gas selectivity of these materials. The lines provide a guide to the eye. Uncertainty in permeability measurements is ±10%. (c): DSC plot of the 2nd heating curve of PED80S20 materials synthesized using 1–24 h of condensation times. T_g and T_m values were analyzed using the STAR® Excellence software.
3.2. Effects of different organic/inorganic ratio on gas transport properties of organic-inorganic membranes

EDX analyses in Fig. 2(a) indicate that the bright structures in the STEM images of the base organic-inorganic materials synthesized using different organic/inorganic ratios with 1 h of condensation, shown in Fig. 2(b) consist mainly of silicon and oxygen. Fig. 2(b) shows that as the polymer content increases from 50 wt.% to 80 wt.%, the size of the silicon-based nanostructure increases from ~5 nm to ~15 nm. The growth mechanism of the inorganic phase in materials with excess polymer content is dominated by a reaction-limited cluster–cluster aggregation [25,30]. Thus, high polymer content increases the size of the silicon-based nanostructures. In Fig. 2(c), and (d), the CO2 and H2 permeability, and the S\text{CO2} and D\text{CO2} coefficients of the base organic-inorganic materials increase somewhat with higher polymer content. The CO2 affinity of the organic-inorganic material is enhanced with higher polyether content as well [27]. The similarities between the S\text{CO2} coefficients of these organic-inorganic membranes and PDMS [25,33] indicate that the silicon-based nanostructure also contributes to the high CO2 affinity in the organic-inorganic materials. However, if the size of the silicon-based nanostructure becomes too large, CO2 permeability will be reduced. Hence, it is important to obtain the optimal silicon-based nanostructure size. Larger CO2 diffusion coefficients are attributed to higher relative FFV content that is a consequence of higher polymer content and larger silicon-based nanostructures. The extra methyl group in PPO increases the relative fractional free volume (FFV) content of resultant membranes [28], while the growth mechanism of the inorganic silicon-based nanostructure, steric and kinetic constraints circumvent the inter-penetration and condensation of inorganic silicon-based nanostructure, leaving spaces in between the clusters of silicon-based nanostructures [30]. The increments in both S\text{CO2} and D\text{CO2} enhance the CO2 permeability. H2 permeability enhancements are solely attributed to the increase in relative FFV content.

3.3. Effects of condensation duration on gas permeation properties of organic-inorganic membranes

Fig. 3(a) compares the effects of the condensation duration from 1 h to 24 h on the morphology of the inorganic networks of PED80S20-3 h materials. During the first 1–6 h of condensation, loose clusters of silicon-based nanostructures grow from 15 nm to 500 nm. The solid looking 15 nm silicon-based nanostructures agglomerate to form 500 nm irregular-shaped silicon-based nanostructures. The larger nanostructures consist of random agglomerations of the 15 nm nanostructures. As condensation duration increases to 12 and 24 h, the 500 nm irregular-shaped silicon-based nanostructures evidently transform into small, compact (~60 nm) polyhedral silicon-based nanostructures surrounded by small silicon-based nanostructures (5–15 nm). At lower magnifications, silicon-based structures with sizes up to 1–2 μm can be observed in PED80S20-24 h samples (refer to STEM image in Fig. 2(a)).

Fig. 3(b) shows that CO2 and H2 permeability increase as the condensation time is increased from 1 to 3 h; however, after this maximum, there is a steady decline out to 24 h of condensation. The highest CO2 and H2 permeability values are achieved at 3 h of condensation, while the highest CO2/H2 selectivity is obtained at 1 h of condensation; selectivity steadily declines with condensation time out to 24 h. As FTIR and NMR analyses have indicated that there are no chemical structure changes in these materials, the only variable among these organic-inorganic materials is the morphology and distribution of the silicon-based nanostructures. The inorganic phase morphology in PED80S20-3 h consists of loosely clustered silicon-based nanostructures (size ~ 300 nm) surrounded by smaller silicon-based nanostructures (size ~ 5 nm). High concentrations of these small nanostructures appear to be essential for high CO2 permeability. The materials formed using longer periods of condensation have fewer of these small nanostructures and lower CO2 permeability. It appears that the larger silicon-based nanostructures also affect CO2 permeability. Loose clusters of silicon-based nanostructures in PED80S20-3 h materials yield the highest CO2 permeability while polyhedral silicon-based nanostructures that appear to possess some sort of crystallinity lead to lower CO2 permeability. EDX analyses in Fig. 2(a) indicate that the vicinity of silicon-based microstructures contain negligible amounts of Si in the polyether matrix. This correlates to a lack of silicon-based nanostructures that can disrupt polymer chain packing. Consequently leads to higher polymer crystallinity that are observed in Table 1. Hence, the highest gas permeability is seen for the PED80S20-24 h material. Meanwhile, the inorganic phase in the PED80S20-1 h material only consists of well-distributed small clusters of silicon-based nanostructures (~15 nm). Hence, a fine balance in size heterogeneity in silicon-based nanostructures is important in enhancing CO2 permeability while achieving good CO2/H2 selectivity in these organic-inorganic materials that are effectively amorphous at 35 °C. Permeation activation energies, \(E_p \), were calculated using the Arrhenius equation \(P = P_0 \exp(-E_p/RT) \), where \(P_0 \) is a pre-exponential factor gas [20,40], from gas permeability data obtained over the limited temperature range of 30 °C to 45 °C. The apparent activation energy, \(E_p \), is the sum of the activation energy required for diffusion and the heat of sorption. The \(E_p \) values in these organic-inorganic materials are 31–62 kJ/mol for H2 and 41–51 kJ/mol for CO2, which are smaller than those of semi-crystalline PEO [41].

PEO crystallinity can affect gas transport and separation performance [42,43]; however, owing to the low melting temperature of these PEO-based materials (see Table 1) relative to the measurement temperatures used here, crystallinity plays no significant role in the results shown here. As seen in Fig. 3(c), the condensation duration also influences the glass transition (\(T_g \)) and melting temperatures (\(T_m \)) of these materials as well as the inorganic phase morphology. When condensation time increases from 1 to 12 h, \(T_g \) decreases from ~47 °C to ~60 °C. In these materials, polymer chain mobility is enhanced by the well-distributed small silicon-based nanostructures that reduce chain packing organization [44]. As most silicon-based nanostructures agglomerate to form microstructures after 24 h of condensation, the lack of well-dispersed small silicon-based nanostructures facilitates hydrogen bonding between the organic phases and slightly decreases \(T_g \) to ~55 °C. The well-dispersed small silicon-based nanostructures in PED80S20-1 h, PED80S20-3 h, and PED80S20-12 h materials act as obstacles that disrupt polymer chain organization, thus the low \(T_m \)s. In PED80S20-24 h materials, the inorganic phase consists of

<table>
<thead>
<tr>
<th>Sample code</th>
<th>(T_g) (°C)</th>
<th>(T_m) (°C)</th>
<th>Crystallinity (%)</th>
<th>(\alpha_{CO2/H2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PED80S20-1 h</td>
<td>~47</td>
<td>30</td>
<td>26%</td>
<td>373</td>
</tr>
<tr>
<td>PED80S20-3 h</td>
<td>~52</td>
<td>34</td>
<td>29%</td>
<td>928</td>
</tr>
<tr>
<td>PED80S20-6 h</td>
<td>~56</td>
<td>35</td>
<td>30%</td>
<td>698</td>
</tr>
<tr>
<td>PED80S20-12 h</td>
<td>~60</td>
<td>37</td>
<td>32%</td>
<td>357</td>
</tr>
<tr>
<td>PED80S20-24 h</td>
<td>~55</td>
<td>37</td>
<td>34%</td>
<td>286</td>
</tr>
<tr>
<td>PED80S20-30 s</td>
<td>~65</td>
<td>28</td>
<td>25%</td>
<td>984</td>
</tr>
<tr>
<td>PED80S20-60 s</td>
<td>~65</td>
<td>24</td>
<td>27%</td>
<td>1950</td>
</tr>
<tr>
<td>PED80S20-120 s</td>
<td>~63</td>
<td>25</td>
<td>31%</td>
<td>1363</td>
</tr>
<tr>
<td>PED80S20-300 s</td>
<td>~61</td>
<td>26</td>
<td>32%</td>
<td>813</td>
</tr>
</tbody>
</table>
large silicon-based microstructures that only promote localized chain packing disruptions. Overall, organization in the latter materials is more efficient, thus the higher organic phase crystallinity. High organic phase crystallinity increases the diffusion path tortuosity for gas molecules and will reduce gas permeability at temperatures below T_m.

3.4. Effect of ozone pre-treatment duration on gas transport properties of organic-inorganic materials

Modifications of the PEDS base materials via ozone pre-treatment and subsequent grafting of short alkyl chains significantly enhance gas permeability. The purpose of the ozone pre-
treatment is to introduce peroxide moieties onto the main PED80S20 main chains, so that subsequent thermal decomposition of these peroxide functional groups can facilitate PEGMA grafting. The degree of modification can be controlled over the ozone pre-treatment duration. The concentration of graft initiation sites, i.e., peroxide moieties on the base PEDS material, decreases with shorter ozone pre-treatment durations [45]. Fewer graft initiation sites reduce the PEGMA graft content, i.e., the amount of unreacted PEGMA in the synthesis solution will increase. The \(\text{OH} \) moieties in these unreacted PEGMA can easily hydrogen bond with water molecules, thus reducing the interaction between water and silicon i.e., reducing the water/silicon ratio [33], thus resulting in agglomerations of silicon-based nanostructures that are observed in Fig. 4(a). With lesser graft initiation sites, the only way to increase PEGMA graft content is via a chain propagation mechanism that should yield longer PEGMA chains [25].

Increasing the ozone pre-treatment duration leads to smooth-looking, and compact silicon-based nanostructures that seem to be regularly spaced apart. Higher PEGMA graft content with longer pre-ozone treatment time [45] reduces the amount of unreacted PEGMA in the synthesis solution, i.e., more water molecules are engaged by the sol-gel reaction during the synthesis procedure [25, 30, 33]. This maintains a high water/silicon ratio that favors a hydrolytic depolymerization, whereby the “nucleation and growth” mechanism is dominant and yields small compact silicon-based nanostructures [30]. Because of the morphological changes in the inorganic phase, the \(\text{CO}_2 \) permeability of ozone-modified membranes increases with longer ozone pre-treatment durations in Fig. 4(b). The ideal ozone pre-treatment duration is 60 s whereby 15 nm silicon-based nanostructures randomly agglomerate into flower-like 50 nm silicon-based nanoclusters. Such silicon-based nanoclusters seem to surround some organic material and are required for enhancing

Fig. 5. (a): STEM images of (i) PED80S20 base material synthesized with 1 h of condensation and no ozone pre-treatment and (ii) PED80S20-P20 that is synthesized with 1 h of condensation, 60 s of ozone pre-treatment, and 20 wt.% of PEGMA graft content. The nanostructures are essential for enhancing \(\text{CO}_2 \) permeability. (b): Pure (solid circles) and mixed gas (empty circles) permeability of PED80S20 materials synthesized with different concentrations of PEGMA graft content. Mixed gas tests using 50–50 mol % \(\text{CO}_2 \) and \(\text{H}_2 \) are conducted at 35 °C while maintaining a \(\text{CO}_2 \) partial pressure of 3.5 atm. The mixed gas permeability is similar to the pure gas permeability, indicating that these materials can maintain high gas separation performances in situations similar to commercial settings. (c): \(S_{\text{CO}_2} \) and \(D_{\text{\text{CO}_2}} \) coefficients of PEDS materials with PED80S20 materials synthesized with 1 h of condensation and 60 s of ozone pre-treatment with different concentrations of PEGMA graft content. The increments in \(S_{\text{CO}_2} \) and \(D_{\text{\text{CO}_2}} \) coefficients contribute to the \(\text{CO}_2 \) permeability increases that far exceed the increase in \(\text{H}_2 \) permeability, hence the high \(\text{CO}_2/\text{H}_2 \) selectivity. The solubility coefficients of PEGMA grafted PEDS nanohybrid materials resemble those of silicon-based polymers like PDMS (1.3 cm\(^3\) STP/cm\(^3\) atm) [41].
CO₂ permeability. The increment in H₂ permeability is larger in proportion to the enhancements in CO₂ permeability; thus, the lower CO₂/H₂ selectivity that is observed in materials that have undergone prolonged periods of ozone pre-treatments.

3.5. Effect of side chain concentration on gas transport properties of organic-inorganic materials

The PED₈₀S₂₀ materials synthesized by 1 h of condensation and 60 s of ozone pre-treatment were modified by controlling the PEGMA graft content on the PEDS main chains. The PEGMA graft content is determined by comparing the weight of the membranes before and after washing. Results indicate that 11, 15, and 20 wt.% of PEGMA is grafted onto the base materials when 27, 33, and 43 wt.% of PEGMA was initially added to the PED₈₀S₂₀ solution. The incorporation of PEGMA enhances polar ether oxygen content that increases S[CO₂] and increases the relative FFV content of the membrane [25]. In Fig. 5(a), the size of the silicon-based nanostructures increases with higher PEGMA graft content. Compared to the silicon-based nanostructures in the PED₈₀S₂₀ base material, the silicon-based nanostructures in PED₈₀S₂₀ materials grafted with PEGMA are much larger; hence displaying the effects of PEGMA presence on silicon-based nanostructures. With larger silicon-based nanostructures, Fig. 5(b) shows that PEGMA grafts significantly enhance gas permeability while maintaining high CO₂/light gas selectivity. The highest CO₂ permeability is achieved when 20 wt. % of PEGMA is grafted onto the PEDS base material. The significant enhancements in CO₂ permeability is due to increases in both S[CO₂] and D[CO₂] as a function of PEGMA graft content in Fig. 5(c). The ideal synthesis protocol for high CO₂ permeability and good CO₂/H₂ selectivity appears to be the combination of 1 h of condensation, 60 s of ozone pre-treatment and 20 wt.% of PEGMA grafted onto a base PED₈₀S₂₀ material. The CO₂ transport properties of the optimized nanohybrid membrane (shown in Fig. 6) exceed those of other rubbery CO₂–philic membranes [20, 26, 46–49], while maintaining similar CO₂/H₂ selectivity. The significantly enhanced CO₂ transport properties of these nanohybrid materials have overcome the inadequacy of current PEO-based membranes for industrial applications.

4. Conclusion

The CO₂ permeability of this ideal nanohybrid membrane is in the same range of CO₂ permeability as PDMS [50], thus it is comparable to PDMS, albeit with a higher CO₂/H₂ selectivity. The effects of condensation and modification durations greatly impact the silicon-based nanostructures morphology and distribution that consequently play important roles in determining CO₂ permeability. Silicon-based structure size heterogeneity in these nanohybrid membranes appears to be the key to high CO₂ permeability and good CO₂/H₂ selectivity. Ideally, silicon-based nanostructures with sizes up to 50 nm surrounded by 5–15 nm silicon-based nanostructures is the preferred inorganic phase morphology that yields optimal nanohybrid membranes. As this work illustrates the relationship between synthesis and modification conditions, and gas permeability, tailored nanohybrid membranes can be easily fabricated according to requirements. Moreover, this work has also provided an insight on inorganic phase morphological changes in sol-derived materials that are commonly used in many other applications. Till date, wet spinning of PEO-based hollow fibers remains elusive. However, this problem can be overcome by coating this PEO-based nanohybrid materials onto a hollow fiber substrate. Such an approach is highly advantageous for amorphous PEO-based materials that possess non-ideal mechanical properties. Moreover, a previous work by Shao and Chung [20] has shown that silica nanoparticles enhanced the mechanical properties of similar low-crystallinity PEO-based nanohybrid materials. Future works will be explored on how to design composite hollow fibers by applying this newly developed material on microporous substrates for separate gas separation as demonstrated elsewhere [51].

Acknowledgements

The authors would like to thank the Singapore National Research Foundation (NRF) for support through the Competitive Research Program for the project entitled, “Molecular engineering of membrane materials: research and technology for energy development of hydrogen, natural gas and syngas” (grant number R-279-000-261-281). The authors express their appreciations to Dr. Youchang, Xiao, Dr. Songlin, Liu, Dr. Lu, Shao, and Ms Meiling, Chua and Ms Huan, Wang for their assistance and valuable suggestions during this work. The authors would also like to thank Dr. Ming, Lin and Miss Joyce Tan from the Institute of Materials Research and Engineering (IMRE), A*STAR for the help rendered in STEM characterizations.

References

Fig. 6. A comparison of the CO₂/H₂ separation performance of our nanohybrid membranes with Robeson’s upper bound [37] and other membrane materials described in recent literature [17,38–40]. Although the performance of these nanohybrid membranes lies below the upper bound line, the tremendous improvement in CO₂ permeability whilst maintaining high CO₂/H₂ selectivity renders these materials attractive for industrial applications.