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Abstract

The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active 

glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1,  

predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 

11β-HSD1-deficient mice show altered inflammatory responses and are protected against 

the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on 

the composition of the gut microbiome has not previously been investigated. We used 

high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome 

of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a 

cholesterol- and fat-enriched ‘Western’ diet. 11β-HSD1 deficiency significantly altered 

the composition of the gut microbiome, and did so in a diet-specific manner. On a 

Western diet, 11β-HSD1 deficiency increased the relative abundance of the family 

Bacteroidaceae, and on a chow diet, it altered relative abundance of the family 

Prevotellaceae. Our results demonstrate that (i) genetic effects on host–microbiome 

interactions can depend upon diet and (ii) that alterations in the composition of the 

gut microbiome may contribute to the aspects of the metabolic and/or inflammatory 

phenotype observed with 11β-HSD1 deficiency.

Introduction

The gut is increasingly recognised as an important source 
of bacterially derived signals that have the potential to 
influence host physiology, including via the endocrine 
system (Evans  et  al. 2013, Brown & Hazen 2015). 
Conversely, dietary or other metabolic perturbations 
can alter the composition of the gut microbiota in a 
manner that correlates with disease states (Giongo et al. 
2011). Although increased understanding of these  
host–microbiome interactions promises to identify 

many novel therapeutic targets for the prevention 
and treatment of disease, at present, the molecular 
mechanisms that underpin such interactions remain 
largely uncharacterised.

The enzyme 11β-hydroxysteroid dehydrogenase 
type 1 (11β-HSD1) contributes to intracellular 
glucocorticoid action by catalysing the conversion of 
inactive to active forms of the principal glucocorticoids 
found in humans (cortisone to cortisol) and mice 
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(11-dehydrocorticosterone to corticosterone). Whilst 
widely distributed, 11β-HSD1 regulates intracellular 
glucocorticoid levels in a localised and tissue-specific 
manner, largely independent of circulating cortisol/
corticosterone levels (Chapman et al. 2013). It is therefore 
an important contributor to glucocorticoid modulation 
of immunological and metabolic pathways. Tissue levels 
of 11β-HSD1 are elevated in adipose tissue in metabolic 
disease and in hippocampus in age-related cognitive 
decline. Inhibition of 11β-HSD1 is a potential therapeutic 
target for treatment of a range of conditions, including 
type 2 diabetes-metabolic syndrome, atheromatous 
coronary artery disease and age-related cognitive decline 
(Anderson & Walker 2013, Chapman et al. 2013).

In mice, inhibition of, or deficiency in,  
11β-HSD1 is protective against the adverse metabolic 
and pro-inflammatory effects of a high-fat diet 
(Morton  et  al. 2004, Wamil  et  al. 2011) and improves 
insulin sensitivity/glucose homeostasis in models 
of type 2 diabetes (Morton  et  al. 2004). 11β-HSD1 
deficiency/inhibition also reduces atherosclerosis in 
atherosclerosis-prone Apoe−/− mice fed a cholesterol and 
fat-enriched ‘Western’ diet, attributed in part to reduced 
cholesterol accumulation in macrophages (García et al. 
2013, Kipari  et  al. 2013). Consistent with the widely 
recognised role of glucocorticoids within the immune 
system, 11β-HSD1 deficiency or inhibition in mice 
increases the severity of acute inflammatory responses 
(Coutinho  et  al. 2012) and modulates macrophage 
phenotype (Gilmour  et  al. 2006, Zhang & Daynes 
2007, McSweeney et al. 2010), the latter, potentially an 
important determinant of gut microbial composition 
(Wu & Wu 2012). However, the relationship between 
11β-HSD1 activity and composition of the gut 
microbiota has not been examined.

In addition, there is increasing evidence that  
11β-HSD1 both influences and is, in turn, directly 
influenced by bile acid homeostasis. Bile acids, produced, 
like steroid hormones, from cholesterol, are inhibitors of 
11β-HSD1 and some secondary bile acids (generated via  
gut bacterial activity) are directly metabolised by 11β-HSD1 
(Perschel  et al. 1991, Buhler  et al. 1994, Odermatt  et al. 
2011, Penno  et  al. 2013, 2014). Importantly, the ability 
of bile acids to alter the gut microbiome has been 
demonstrated (Islam et al. 2011, Yokota et al. 2012), with 
potential clinical implications (Buffie et al. 2015). Thus, 
11β-HSD1 has the potential to affect the microbiome via 
bile acid-mediated host–microbiome cross-talk as well as 
through glucocorticoid-regulated immune pathways.

In this study, we test the hypothesis that 11β-HSD1 
influences the composition of the gut microbiome 
in a diet-dependent manner. To this end, we used  
high-throughput sequencing of amplified 16S rRNA 
gene sequences to quantify the composition of the 
gut microbiota from Hsd11b1Del1/De1l mice, with global  
knock-out of 11β-HSD1, and control C57Bl/6 mice. To 
explore possible interactions among 11β-HSD1 activity, 
the gut microbiome and diet, comparison between 
genotypes was made using mice fed on standard chow 
diet or on a high-fat/cholesterol-enriched ‘Western’ diet.

Materials and methods

Animals

Animal studies were carried out in strict accordance with 
the UK Home Office Animals (Scientific Procedures) Act, 
1986 following approval by the University of Edinburgh 
Animal Welfare and Ethical Review Body. Hsd11b1f/f 
mice (with a ‘floxed’ allele of the Hsd11b1 gene) were 
generated by Artemis Pharmaceuticals (Cologne, 
Germany) onto a C57Bl/6 background (White  et  al. 
2015). LoxP sites were placed flanking exon 3 of the 
mouse Hsd11b1 gene, excision of which results in a null 
allele (here termed Del1) by out of frame splicing from 
exon 2 to exon 4. Hsd11b1Del1/De1l mice were generated by 
crossing Hsd11b1f/f mice with Hprt-Cre transgenic mice 
(Tang et al. 2002), resulting in germline disruption of the 
Hsd11b1 gene. Cre+ offspring were bred with C57Bl/6 and  
Cre− offspring in which germline deletion of exon 3 of the 
Hsd11b1 gene had occurred were backcrossed to C57Bl/6 
for >5 generations. Animals were fed with standard chow 
(unless stated otherwise) and water ad libitum. Lights were 
on from 07:00 to 19:00, and temperature was maintained 
at 22°C. To avoid inter-animal variability that might be 
introduced due to differences in the stage of estrous in 
females, male mice were used in experiments.

Male Hsd11b1Del1/De1l mice and age-matched 
C57Bl/6 controls (10  weeks old) were singly housed in 
metabolic cages. Mice were either fed on standard chow  
(CRM diet: SDS, UK) or Western diet (WD, 41% fat  
with ~0.2% cholesterol; D12079B; Research Diets Inc., 
New Brunswick, NJ, USA) ad libitum, for 2  weeks (n = 6/
group). Neither diet was associated with significant weight 
gain, measured over the second week (2-way ANOVA 
of body weight by genotype/time, chow diet: P = 0.06, 
Western diet: P = 0.8. Body weight gain on chow diet, 
C57Bl/6: 1.52 ± 0.23 g and Hsd11b1Del1/Del1, 1.19 ± 0.42 g. 
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Body weight gain on Western diet: C57Bl/6: −0.33 ± 0.21 g 
and Hsd11b1Del1/Del1, −0.18 ± 0.25 g). All mice were killed 
by CO2 asphyxiation after a 4-h fast (08:00–12:00), and 
the contents of the caecum and colon were collected and 
frozen for subsequent DNA extraction.

DNA extraction and sequencing

Genomic DNA was extracted from colon and caecal 
contents using a QIAamp DNA stool mini kit (with 
proteinase K used for lysis), as directed by the 
manufacturer (Qiagen). Extracted DNA was adjusted to 
10 ng/μL and PCR amplified in duplicate (to control for 
PCR bias and error), following the protocol of Caporaso 
and coworkers (Caporaso et al. 2012) to target the variable 
V4 region of the 16S rRNA gene. PCR reactions (25 μL) 
contained 10 μL input DNA, 12.5 μL KAPA HiFi HS Ready 
Mix (Kapa Biosystems, Ltd, London, UK), 16S amplicon 
forward primer (5 pmol, Integrated DNA Technologies, 
Leuven, Belgium), 16S amplicon Golay barcoded reverse 
primer (5 pmol, Integrated DNA Technologies) and 
1.0 μL H2O. PCR comprised an initial incubation at 
98°C for 3 min followed by 20 cycles of 95°C for 20 s, 
60°C for 30 s, 72°C for 45 s and a final extension of 
72°C for 10 min. After amplification, the PCR products 
were diluted to 50 μL with 10 mM Tris–HCl pH 8.5 and 
cleaned using Ampure XP beads (Beckman Coulter Life 
Sciences, High Wycombe, UK) using a 1:1 bead to DNA 
ratio to remove excess primers, primer dimers and PCR 
reagents. Quality of amplicon libraries was assessed on a 
Bioanalyser High Sensitivity chip (Agilent Technologies) 
and quantification was done by qPCR using Kapa 
Library Quantification Kit for Illumina platforms (Kapa 
Biosystems, Ltd). Libraries were normalised and pooled 
in equimolar proportions prior to sequencing duplicate 
samples on an Illumina MiSeq platform using 150 base 
paired-end reads (v2 chemistry).

Sequence assembly, filtering and taxonomic assignment

Paired-end reads were assembled into single contiguous 
sequences and filtered using Mothur (Schloss et al. 2009) 
(v1.33.3) to remove sequences that contained ambiguous 
base calls and those that were longer/shorter than 90% of 
the sequences in a sample. As an additional precaution, 
sequences with high similarity to the PhiX genome were 
also removed using blastn (Altschul et al. 1990) (E-value 
<1 × 10−5). Preliminary analysis indicated minimal 
technical variation between sequencing runs, and 

duplicate samples were therefore merged prior to further 
analysis. After merging duplicates and filtering, samples 
contained at least 489,266 assembled sequences (average 
1,209,197 sequences).

Data were subsequently pooled across all samples, 
singletons (i.e. sequences appearing only once in the 
pooled dataset) were removed and the remaining data 
de-replicated to generate a set of unique sequences. 
Sequences representative of operational taxonomic units 
(OTUs) were then identified using the UPARSE pipeline 
(Edgar 2013) (usearch v8.0.1623), in which clustering 
was performed using the UPARSE-OTU algorithm and 
chimeras were identified using UCHIME in conjunction 
with the ChimeraSlayer reference database. All sequences 
were then assigned to an OTU using the USEARCH global 
algorithm (Edgar 2010) at a 97% similarity threshold. On 
average, 83.5% of sequences in a sample were successfully 
assigned to an OTU. Sequences that could not be assigned 
to an OTU were assumed to represent sequencing/
assembly artefacts and were discarded from the study.

Taxonomic assignment of OTUs, OTU alignment 
and tree-building were performed using QIIME v1.9.0 
(Caporaso et al. 2010b). The taxonomy of each OTU was 
determined using the RDP classifier v2.2 (Wang  et  al. 
2007) in conjunction with the GreenGenes database, 
v13.5 (DeSantis et al. 2006) at a confidence threshold of 
0.8. Representative OTU sequences were aligned using 
PyNAST (Caporaso et al. 2010a) and a neighbour-joining 
tree produced using FastTree (Price  et  al. 2009). Due to 
limitations in the ability of the V4 region to accurately 
identify closely related bacterial taxa, taxonomic 
classification of OTUs was restricted to the family level.

Statistical analysis

For all groups, n = 6, with the exception of C57Bl/6 mice 
fed Western diet, where n = 5. Alpha diversity metrics 
Chao1 (Chao 1984) and phylogenetic distance (Faith & 
Baker 2006) were calculated using QIIME and rarefaction 
curves indicated that the minimum sequencing depth 
(489,266 assembled sequences) was sufficient to accurately 
capture diversity (Supplementary Fig.  1, see section on 
supplementary data given at the end of this article). For 
all other analyses, following McMurdie and Holmes (2014), 
counts of sequences assigned to each OTU were normalised 
using the variance stabilising (vst) transformation in the R 
package DESeq2 (Love et al. 2014). Statistical comparison 
of microbial diversity between samples was calculated 
on Euclidean distance matrices of vst-transformed count 
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data using the permutational multivariate analysis of 
variance (PERMANOVA) approach of Anderson (2001), 
implemented in the R package vegan (Oksanen et al. 2013).

To identify individual OTUs with clearly defined 
differences between diets, genotypes or a strong 
diet–genotype interaction, Euclidean distance-based 
PERMANOVA tests were repeated using each individual 
OTU as a univariate response variable. For OTUs showing 
significance for a particular model term (P < 0.01), effect 
sizes (η2) and partial effect sizes (ηp

2) were calculated from 
sums of squares (SS) to reflect the variance attributable to 
the relevant term as a proportion of variance within the 
model, where:

h 2 =
SS

SS

term

total

and:

hp
SS

SS SS

2 =
+

term

term residual

Results

DNA was extracted from caecal, and colon contents were 
collected from Hsd11b1Del1/De1l and C57Bl/6 control mice fed 
either chow or Western diet. High-throughput sequencing 
of the V4 region of the bacterial 16S rRNA gene resulted in 
an average of 1.2 × 106 amplicons per sample. Clustering 
amplicons at a 97% sequence similarity threshold identified 
1152 operational taxonomic units (OTUs), of which 231 
were present in all samples (Supplementary Fig. 2A). OTUs 
were assigned a taxonomic identity using public databases, 
and the relative abundance of reads assigned to each OTU 
was subsequently used as a basis on which to compare 
microbiome composition across samples.

Changes in the gut microbiome as a consequence of diet 
and 11β-HSD1 activity

First, we considered the effect of diet and genotype 
on the composition, richness and diversity of the gut 
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Figure 1
Gut microbiota of wild-type and Hsd11b1Del1/De1l mice fed Western and chow diets. (A) The relative proportion of bacterial sequence belonging to each 
of the dominant phyla detected in this study in Hsd11b1Del1/Del1 (KO) and C57Bl/6 control (WT) mice. As no difference was observed between caecum and 
colon, these samples are merged in subsequent figures. (B) Chao1 estimates of the number of unique operational taxonomic units (OTUs) in the gut 
microbiome of Hsd11b1Del1/Del1 (KO, red bars) and C57Bl/6 control (WT, blue bars) mice under different experimental conditions. Chao1 estimates were 
calculated after randomly down-sampling data so that all samples contain the same total number of OTU counts. (C) Ratio of the phyla Bacteroidetes 
and Firmicutes within each sample under different experimental conditions. Ratios were calculated on untransformed data.
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microbiome. In mice fed a chow diet, the microbiome 
was dominated by bacteria belonging to the phyla 
Bacteroidetes and Firmicutes (Fig.  1A). Richness estimates 
for the chow diet indicated the presence of around 
500–800 OTUs (median 690 OTUs, Fig.  1B). Consistent 
with previous studies (Kim  et  al. 2012), a Western diet 
increased the relative abundance of bacteria belonging 
to the phyla Proteobacteria, Deferribateres and Firmicutes 
(Hildebrandt et al. 2009) and significantly decreased both 
richness (median 475 OTUs, ANOVA, F = 185.56, P < 0.01, 
Fig.  1B) and the Bacteroidetes:Firmicutes ratio (ANOVA, 
F = 11.90, P = 0.03, Fig. 1C).

As observed previously, diet exerted a greater effect 
on composition of the gut microbiome than genotype 
(Carmody et al. 2015). Nonetheless, 11β-HSD1 deficiency 
resulted in an increase in the predicted number of OTUs 
(ANOVA, F = 5.16, P = 0.03, Fig. 1B) and a decrease in the 
ratio of Bacteroidetes:Firmicutes (ANOVA, F = 4.39, P = 0.05, 

Fig. 1C). Further changes in taxonomic abundance were 
observed at the family level (Supplementary Fig. 2). On a 
Western diet, 11β-HSD1 deficiency was associated with a 
number of OTUs that could not be confidently assigned to 
any phylum. These OTUs were not present in all samples, 
highlighting the potential for inter-individual variability 
in microbiome composition.

Statistical comparison of OTU diversity across 
samples was carried out using permutational 
multivariate analysis of variance (PERMANOVA). No 
significant effect of sample origin (caecum vs colon) 
was observed (Pperm = 0.51). Accordingly, to avoid risk 
of type I error arising from repeated sampling from the 
same individual, data from caecal and colon samples 
for each animal were pooled to test for the effects of 
diet and genotype on diversity.

Statistical analysis showed that both diet and 
genotype significantly altered the diversity of the 
gut microbiome (Pperm < 0.01, Table  1). Moreover, 
PERMANOVA tests revealed a significant interaction term, 
indicating that the effect of genotype was dependent 
upon the diet (Pperm < 0.01, Table  1). Principal 
components analysis (PCA) revealed that diet exerted the 
strongest influence on microbial diversity, accounting 
for 59% of the observed variance in OTU abundance 
(PC1, Fig.  2A). Subsequent principal component axes 
indicated that genotype exerted a strong influence on 
microbial diversity, with 19% of the variation in diversity 
explained by differences between Hsd11b1Del1/De1l and 
control microbiomes in mice fed a chow or Western diet 
(PC2 and PC3, respectively, Fig. 2B).

Table 1 Results of permutational multivariate analysis of 

variance (PERMANOVA) test comparing composition of the 

gut microbiota across diets (chow vs Western) and genotypes 

(C57Bl/6 vs Hsd11b1Del1/Del1). The test was based on vst-

transformed counts of OTU abundance. For all groups,  

n = 6, with the exception of C57Bl/6 mice fed Western diet, 

where n = 5.

 Df Sums of Sqs Mean Sqs F P

Diet 1 107,517 107,517 35.64 0.00001
Genotype 1 22,727 22,727 7.534 0.0014
Diet × genotype 1 17,496 17,496 5.80 0.0027
Residual 19 57,318 3017 0.28  

Figure 2
Principal components analysis (PCA) ordination 
showing the effect of diet and 11β-HSD1 activity on 
the composition of the gut microbiota. Plots show 
(A) the first, second and (B) second and third axes 
of a PCA based on the abundance of the 1152 OTUs 
detected in this study. Red symbols: Hsd11b1Del1/Del1 
(KO) mice, blue symbols: C57Bl/6 control (WT) mice. 
For all groups, n = 6, with the exception of C57Bl/6 
mice fed Western diet, where n = 5.

A B
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Identifying bacterial taxa whose abundance is 
dependent on diet and 11β-HSD1 activity

Next, we sought to identify the main bacterial taxa 
responsible for driving differences in diversity that resulted 
from changing diet or 11β-HSD1 activity. Effect sizes were 
calculated (see ‘Methods’ section) and for each OTU, 
they were used to represent the proportion of observed 
variation in abundance that could be explained by diet, 
genotype or a diet × genotype interaction (Supplementary 
Fig. 3). The 25% of OTUs with the largest effect size for a 
particular model term are depicted in Fig. 3.

Consistent with multivariate analysis, effect sizes (η2) 
demonstrated that diet frequently accounted for a greater 
proportion of variation in individual OTU abundance 
than either genotype or a diet × genotype interaction 
(Fig.  3A, B and C). Of those OTUs that significantly 
(Pperm < 0.01) altered abundance in response to diet, 
the majority (494 out of 651) showed a decrease in 
relative abundance on the Western diet (Fig.  3A). 
This was evident for a number of OTUs belonging to 
the families S4-7, Prevotellaceae, Ruminococcaceae and 
Lachnospiraceae. However, the opposite was observed for 
OTUs belonging to the families Deferribacteraceae and 
Porphyromonadaceae, as well as a small number of OTUs 
belonging to the family S24-7.

Genotype had a significant effect on 327 OTUs 
(Pperm < 0.01), and this effect was less one-sided (Fig. 3B), 
with some families, such as the Anaeroplasmataceae 
and Prevotellaceae, showing greater relative abundance 
in Hsd11b1Del1/De1l microbiomes, and others, such as 
the Rikenellaceae, showing greater relative abundance 

in wild-type microbiomes. Notably, many families 
affected by genotype showed changes in abundance that 
were moderated by diet, indicating that the effect of  
11β-HSD1 activity on individual taxa was diet dependent. 
When directly considering OTUs for which an interaction 
between diet and genotype altered relative abundance 
(Fig. 3C), effect sizes indicated that this interaction had 
strongest explanatory power for bacteria belonging to the 
family Bacteroidaceae.

To investigate further how diet affected the microbiome 
response to 11β-HSD1 deficiency, we used Pearson’s 
method to correlate changes in the relative abundance of 
each OTU showing a significant diet × genotype interaction 
with the position of samples along the PC axes separating 
control and Hsd11b1Del1/De1l microbiomes on different diet 
backgrounds (as depicted in PC2 and PC3 in Fig. 2B). As 
expected, the majority of OTUs gave a strong Pearson’s 
r score, demonstrating strong correlation with one or 
the other of the explanatory PC axes (Fig.  4). Notably, 
however, overlaying information about taxonomic 
classification showed that many OTUs belonging to the 
families Prevotellaceae and Paraprevotellaceae displayed 
greater relative abundance in Hsd11b1Del1/De1l microbiomes 
and C57Bl/6 microbiomes, respectively, on a chow diet 
background. By contrast, OTUs belonging to the families 
Bacteroidaceae and Rikenellaceae displayed greater relative 
abundance in Hsd11b1Del1/De1l microbiomes and C57Bl/6 
microbiomes, respectively, on a Western diet background. 
Although most OTUs showed changes in relative 
abundance in response to altered diet/genotype that were 
consistent with other members of their family, several 
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Figure 3
Heat maps depicting the relative abundance of OTUs for which (A) variation in abundance is dependent on diet, (B) variation in abundance is dependent 
on genotype, (C) variation in abundance as a consequence of genotype is dependent on diet (i.e. a diet × genotype interaction). For each contrast, data 
are only shown for the top 25% of significant OTUs ranked by the partial effect size (ηp

2) of the relevant model term in univariate analysis of variance 
tests for differences in abundance between experimental conditions. Phylograms to the left of each heat map depict the phylogenetic relatedness 
between OTUs. Colour scales to the right of each OTU depict the proportion of the total variance (η2) that could be explained by the relevant model 
term. Colour bars beneath the heat maps indicate genotype (Hsd11b1Del1/Del1 (KO) mice: red, C57Bl/6 control (WT) mice: blue) and diet (chow: light grey, 
Western: dark grey). For all groups, n = 6, with the exception of C57Bl/6 mice fed Western diet, where n = 5.

http://dx.doi.org/10.1530/JOE-16-0578
http://joe.endocrinology-journals.org/cgi/content/full/JOE-16-0578/DC1
http://joe.endocrinology-journals.org/cgi/content/full/JOE-16-0578/DC1


279Research j s johnson and others 11β-HSD1 activity alters the 
gut microbiome

DOI: 10.1530/JOE-16-0578

Jo
u
rn

al
o
f
En

d
o
cr
in
o
lo
g
y

http://joe.endocrinology-journals.org © 2017 The authors
Printed in Great Britain

Published by Bioscientifica Ltd.

232:2

showed alternative patterns of abundance. For example, 
three OTUs belonging to the family Bacteroidaceae showed 
greater relative abundance in wild-type mice on a chow 
diet background, whereas the majority of OTUs belonging 
to this family showed altered response to genotype 

only on a Western diet background. Such patterns of 
abundance potentially reflect functional divergence of 
taxa below the family level, not detected in this study 
because of the limited taxonomic resolution provided 
by sequencing the V4 region. Taken together, however, 
these results demonstrate that 11β-HSD1 activity exerts 
an effect on the abundance of discrete bacterial taxa that 
is diet dependent and broadly consistent at family level.

Discussion

Here, we demonstrate that the enzyme 11β-HSD1 acts 
to alter the composition of the mouse gut microbiome, 
and does so in a diet-dependent manner. Most notably, 
we show that 11β-HSD1 deficiency increases the relative 
abundance of the families Prevotellaceae on a chow diet and 
Bacteroidaceae on a Western diet. These families contain 
genera associated with inflammatory and cardiovascular 
disease, respectively. They also contain the principal 
genera that define common bacterial profiles (enterotypes) 
found within the human gut (Arumugam  et  al. 2011), 
which may themselves be diet related (Wu et al. 2011).

The family Prevotellaceae is associated with 
inflammatory disease in both humans and mouse 
models. In a study of patients with new-onset untreated 
rheumatoid arthritis, the presence of Prevotella copri 
correlated strongly with disease occurrence (Scher  et  al. 
2013). We have previously reported that chow-fed 
11β-HSD1-deficient mice show increased severity of acute 
inflammation, including in an experimental model of 
arthritis (Coutinho  et  al. 2012). Our findings here raise 
the possibility that this is related to the increased relative 
abundance of bacteria belonging to the Prevotellaceae in 
their gut microbiota. P. copri is also associated with more 
severe inflammation in animal models of colitis. Mice 
colonised with P. copri showed more severe colitis when 
exposed to dextran sulfate sodium (DSS) (Scher  et  al. 
2013), probably mediated via induction of the cytokine 
CCL5, which exaggerates DSS-induced colitis (Elinav et al. 
2011). 11β-HSD1 gene expression is increased in rodents 
during DSS-induced colitis and also in patients with 
inflammatory bowel disease (Zbankova  et  al. 2007, 
Stegk et al. 2009). However, this is interpreted as an anti-
inflammatory mechanism to increase local glucocorticoid 
exposure, and whether reduced expression or inhibition 
of 11β-HSD1 can predispose to colitis has not been tested.

A high-fat/cholesterol diet profoundly alters the 
gut microbiota (Hildebrandt  et  al. 2009, David  et  al. 
2014). High-fat/cholesterol diets also induce intestinal 

Figure 4
Bacterial taxa responsible for differences in diversity between the gut 
microbiota of C57Bl/6 (WT) and Hsd11b1Del1/De1l (KO) mice on different 
diet backgrounds. Each data point represents a single OTU and data are 
only shown for OTUs that have a significant diet × genotype interaction 
(P < 0.01) in univariate analysis of variance tests for differences in 
abundance between experimental conditions. The x axis shows the 
Pearson correlation between the abundance of an OTU and the position 
of samples along the principal component axis in Fig. 2 that separates 
C57Bl/6 and Hsd11b1Del1/De1l mice on a chow diet (PC2). The y axis shows 
the Pearson correlation between the abundance of an OTU and the 
position of samples along the principal component axis in Fig. 2 that 
separates C57Bl/6 and Hsd11b1Del1/De1l mice on a Western diet (PC3). A 
strong positive correlation indicates that an OTU contributes to the 
diversity that distinguishes WT mice, a strong negative correlation 
indicates that an OTU contributes to the diversity that distinguishes KO 
mice. The colour of each data point depicts families that show strong 
trends that are restricted to different diet backgrounds. Changes in the 
relative abundance of these families in response to diet and 11β-HSD1 
deficiency can be seen in Supplementary Fig. 2B. For all groups, n = 6, 
with the exception of C57Bl/6 mice fed Western diet, where n = 5.
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inflammation, which is dependent upon the gut microbiota 
(Ding et al. 2010, Kim et al. 2012, Progatzky et al. 2014) 
and, at least for high-fat diet, has been associated with a 
decrease in the Bacteroidetes-to-Firmicutes ratio (Kim et al. 
2012). Here, we show a dramatic alteration in the gut 
microbiota in mice fed a high-fat Western diet, including 
an increase in the Bacteroidetes-to-Firmicutes ratio that is 
consistent with the previous data. In addition, we show 
a smaller, but nonetheless significant, effect of genotype. 
Interestingly, and in contrast to chow-fed mice, Western 
diet-fed 11β-HSD1-deficient mice show a higher relative 
abundance of the family Bacteroidaceae. Whether this is 
beneficial or not remains to be determined. However, we 
have previously reported that 11β-HSD1 deficient mice 
fed a high-fat diet show reduced inflammatory signalling 
in mesenteric adipose tissue, a depot that contains the 
lymph nodes that drain the colon (Wamil  et  al. 2011), 
suggesting a lower level of intestinal inflammation. In 
the future, it will be important to determine if the altered 
gut microbiota observed in Western diet-fed 11β-HSD1-
deficient mice elicits milder intestinal inflammation.

Recent, large-scale studies of human cohorts have 
indicated that the presence and increased relative 
abundance of Bacteroidaceae (including the genus 
Bacteroides) is associated with a significant decrease 
in plasma triglyceride levels (Fu  et  al. 2015). Relative 
abundance of Bacteroides also correlates negatively with 
body mass index (Goodrich  et  al. 2014, Fu  et  al. 2015). 
Intriguingly, 11β-HSD1 deficiency reduces plasma 
triglyceride levels and attenuates weight gain in mice fed 
a high-fat diet (Morton et al. 2004). We have also reported 
that 11β-HSD1 deficiency reduces plasma triglyceride 
levels and is protective against atherosclerosis in Western 
diet-fed atherosclerosis-prone Apoe−/− mice (Kipari  et  al. 
2013). However, in a similar study using a different line 
of 11β-HSD1 knockout mice, the reduction in plasma 
triglyceride levels was only observed in female mice 
(García  et  al. 2013). Nevertheless, the coincidence of  
11β-HSD1 deficiency, Bacteroidaceae abundance and 
reduced plasma triglyceride levels highlights a potential 
causative relationship that is deserving of further study.

The mechanisms that underlie the diet-specific effects 
of 11β-HSD1 deficiency upon the gut microbiome are 
currently unclear. However, two possibilities are likely: 
alterations in glucocorticoid signalling or alterations 
in bile acid composition and/or signalling. 11β-HSD1 is 
an important modulator of intracellular glucocorticoid 
levels, with glucocorticoids being one of the most potent 
regulators of immune cell function and phenotype.  
11β-HSD1 is expressed and functional in a variety of 

immune cells including macrophages (Gilmour et al. 2006, 
Zhang & Daynes 2007), dendritic cells (Freeman  et  al. 
2005, Soulier  et  al. 2013), mast cells (Coutinho  et  al. 
2013) and lymphocytes (Zhang  et  al. 2005), any of 
which could contribute to tolerance of gut microbes 
(Mortha et al. 2014). Altered intracellular glucocorticoid 
levels as a result of 11β-HSD1 may therefore alter the local 
immune environment within the gut, with differential 
consequences for the microbiome, dependent upon diet. 
Tissue-specific disruption of Hsd11b1 in these cell types 
could address the possible role of 11β-HSD1 in tolerance 
to gut microbes.

11β-HSD1 may also mediate host–microbiome 
interactions in a diet-specific manner via its role in 
bile acid homeostasis. High-fat diets both increase the 
quantity and alter the composition of bile acids in the 
gut (Ridlon et al. 2014), and bile acids have antimicrobial 
properties that make them important regulators of the 
gut microbiome (Begley  et  al. 2005). High-fat diets can 
therefore promote expansion of bile-tolerant bacteria, for 
example Bacteroides, which may in turn alter the synthesis 
of secondary bile acids. Microbial metabolism of bile acids 
in the intestines is a major determinant of bile acid pool 
size and composition (Begley et al. 2005, Sayin et al. 2013). 
Previously, we have reported preliminary data showing that 
11β-HSD1 deficiency in mice impairs post-prandial bile 
acid release and alters the profile of bile acids in bile fluid, 
with a switch from the predominance of 7β-hydroxylated 
to 7α-hydroxylated bile acids (Opiyo et al. 2014). Whether 
11β-HSD1 itself directly converts 7α-hydroxylated to 
7β-hydroxylated bile acids is currently unknown, but 
several oxysterols with a keto moiety at the 7 position 
on the B ring are substrates for 11β-HSD1 (Odermatt & 
Nashev 2010). Importantly, this includes the secondary 
bile acid 7-oxolithocholic acid (7-oxoLCA), converted 
by 11β-HSD1 into chenodeoxycholic acid (CDCA) 
(Odermatt et al. 2011), a potent activator of the nuclear 
bile acid receptor, also known as the farnesoid X receptor 
(FXR). It is therefore plausible that 11β-HSD1 influences 
the composition of the gut microbiome by altering bile 
acid profile via its role in the synthesis of 7α-hydroxylated 
bile acids. This merits future investigation.

In conclusion, we show that the effect of 11β-HSD1 
activity on the gut microbiome is diet dependent and 
alters the relative abundance of bacteria relevant to human 
clinical studies. Two plausible mechanisms for 11β-HSD1 
mediation of host–microbiome interaction involve 
immune system regulation and bile acid homeostasis, and 
further functional studies are required to reveal the precise 
role of the gut microbiome in shaping the 11β-HSD1 

http://dx.doi.org/10.1530/JOE-16-0578


281Research j s johnson and others 11β-HSD1 activity alters the 
gut microbiome

DOI: 10.1530/JOE-16-0578

Jo
u
rn

al
o
f
En

d
o
cr
in
o
lo
g
y

http://joe.endocrinology-journals.org © 2017 The authors
Printed in Great Britain

Published by Bioscientifica Ltd.

232:2

deficiency phenotype. With the development of selective 
inhibitors of 11β-HSD1 for the treatment of metabolic 
disease and age-related cognitive decline (Anderson & 
Walker 2013, Chapman  et  al. 2013), our studies could 
provide new insights into how diet may influence the 
outcome of therapeutic 11β-HSD1 inhibition.

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/
JOE-16-0578.
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