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Abstract

Dense genotyping approaches have revealed much about the genetic architecture both of gene expression and disease
susceptibility. However, assigning causality to genetic variants associated with a transcriptomic or phenotypic trait presents
a far greater challenge. The development of epigenomic resources by ENCODE, the Epigenomic Roadmap and others has led
to strategies that seek to infer the likely functional variants underlying these genome-wide association signals. It is known,
for example, that such variants tend to be located within areas of open chromatin, as detected by techniques such as DNase-
seq and FAIRE-seq. We aimed to assess what proportion of variants associated with phenotypic or transcriptomic traits in
the human brain are located within transcription factor binding sites. The bioinformatic tools, Wellington and HINT, were
used to infer transcription factor footprints from existing DNase-seq data derived from central nervous system tissues with
high spatial resolution. This dataset was then employed to assess the likely contribution of altered transcription factor bind-
ing to both expression quantitative trait loci (eQTL) and genome-wide association study (GWAS) signals. Surprisingly, we
show that most haplotypes associated with GWAS or eQTL phenotypes are located outside of DNase-seq footprints. This
could imply that DNase-seq footprinting is too insensitive an approach to identify a large proportion of true transcription fac-
tor binding sites. Importantly, this suggests that prioritising variants for genome engineering studies to establish causality
will continue to be frustrated by an inability of footprinting to identify the causative variant within a haplotype.

Introduction include expression quantitative trait loci (eQTLs), which are ge-
Genomic variation is a major exploratory variable for many phe- nomic variants correlated with gene expression levels. A grow-
notypes. These include traits and diseases, for which large vol- ing catalogue of eQTLs is being identified with the availability of
umes of genotyping data have become available (1). They also genotyping datasets associated with whole transcriptome
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expression data. Recently, a wealth of eQTL data became avail-
able for tissues of the human central nervous system (2-6).

Genome wide association studies (GWAS) in large cohorts,
performed on many of the prevalent brain disorders, have re-
vealed new pathoetiological mechanisms. Nevertheless, it re-
mains a substantial challenge to explain mechanistically how
GWAS single nucleotide variants (SNVs) exert their effects. This
is because over 95% of the sentinel SNVs of an associated locus
fall in non-coding regions and any one is unlikely to be causal
(7,8). Whilst it is well-established that GWAS and eQTL variants
occur preferentially within regions of open chromatin (7,9), the
precise functional consequences of these variants are less clear.

One or more variants in strong linkage disequilibrium (LD)
with sentinel GWAS or eQTL variants are expected to be causal,
in part by altering transcription factor (TF) binding and/or chro-
matin architecture (10). However, variation within classical TF
motifs was found to poorly predict changes in binding (11) and
flanking sequences located far from the actual TF binding site
also appear to be important (12). Even when TF binding is al-
tered, the level of expression from adjacent genes is often not
substantially affected (13). These observations imply the inade-
quacy of a simple model, that of altered gene expression result-
ing from distal DNA mutations lying directly within
transcription factor binding sites.

The most direct methods for assessing TF binding are based
on chromatin immunoprecipitation (e.g. ChIP-seq). These
approaches are limited in that each TF must be interrogated indi-
vidually with specific antibodies and can often be of a relatively
poor spatial resolution, although more recently developed
approaches, such as ChIP-exo and ChIP-nexus, may improve
upon this (14,15). Methods of interrogating chromatin structure
for TF binding sites collectively without specifying a particular TF
include DNase-seq, FAIRE-seq and ATAC-seq (16,17).
Irreproducibility discovery rate (IDR) analysis is a powerful ap-
proach to reproducibly identifying regions with high DNase-seq
accessibility that represents truly open chromatin (18,19).
Although DNase-seq and similar methods provide relatively
coarse spatial resolution, nucleotides contained within TF-bound
sites are relatively well protected from DNase digestion. This pro-
tection from cleavage produces ‘footprints’ which can aid in nar-
rowing down a true TF binding site within a wider DNase
hypersensitivity site (20). Of all methods that identify DNase-seq
footprints, Wellington Footprints has been proposed to provide
the best estimates of true binding sites and also, unlike some
other DNase-seq footprinting methods, is not reliant on the pres-
ence of TF motifs (21,22). Other footprint-calling algorithms, such
as HINT, additionally account for sequence-specific DNase cut
biases and are likely to identify a larger proportion of footprints
than Wellington (23). These approaches rely on the imbalance in
strand-specific alignment of DNase-seq reads. Limitations of
DNase-seq footprinting include its lower power to identify TF
binding that is dependent on short segments of non-colinear se-
quence (24). Footprinting also captures a cross-sectional sample
of TF binding and so may miss TF binding sites that are highly
dynamic or induced by a particular stimulus.

We were interested in whether GWAS and eQTL associations
in central nervous system tissues can best be explained by mu-
tations lying directly within well-defined TF binding sites. In or-
der to investigate this, we processed available DNase-seq
datasets from the ENCODE and Epigenomic Roadmap projects
to generate DNase-seq footprints at high spatial resolution.
Combining this footprint data with reported brain eQTLs and
brain-related GWAS signals allowed us to estimate the propor-
tion of haplotypes that disrupt TF binding.

Results

Functional annotation of DNase-seq footprinting

DNase hypersensitivity sites (DHS) are typically several hundred
base pairs long and encompass several predicted TF binding
sites. We used FSeq to identify DHS within DNase-seq datasets
applying the irreproducibility discovery rate used by the
ENCODE project (18,25). Wellington allows high precision and
high confidence identification of true TF sites within a DHS by
scanning within it for a region of DNase protected sequence
(21). 17,670-40,773 footprints between 11 and 22 bases in length
were called by Wellington for each of 4 brain DNase-seq
datasets (Supplementary Material, Table S1) at FDR<O0.01.
20,468 (23.7%) of pooled brain DHS were found to contain at
least one detectable footprint, a similar proportion to that found
for the K562 cancer cell line from the original methods publica-
tion (21). Footprints covered 0.6% of the total nucleotides under-
lying brain DHS.

We used the Genomic Association Tester (GAT) to evaluate
the statistical significance of footprints for genomic features
that might be indicative of functional importance (26). DNase-
seq footprints were at least 2-fold enriched over DHS within re-
gions upstream of genes (Fig. 1A). Footprints also showed a high
degree of central nucleotide conservation across mammalian
evolution (Fig. 1B). FIMO-identified TF sequence motifs were en-
riched centrally in the footprints (1.38-fold, P <0.0001; Fig. 1C
and Supplementary Material, Fig. S1), as expected. There was
also significant enrichment within footprints for FANTOMS-
annotated enhancers and this, further, was significantly higher
than the corresponding enrichment within the DNase-seq hy-
persensitivity peaks as a whole (1.78-fold, P<0.0001;
Supplementary Material, Table S2) (27).

Nevertheless, functional annotation of DNase-seq footprints
is hindered by the limited availability of TF binding data with
high spatial resolution. ChIP combined with exonuclease diges-
tion and high-throughput sequencing (ChIP-exo) can identify TF
binding at single base-pair resolution (28). Relative to DHS as a
whole, we found that CTCF ChIP-exo peaks located within
tissue-ubiquitous CTCF ChIP-seq peaks, which themselves were
within brain DNase-seq footprints, were highly and significantly
enriched (12.5-fold, P <0.0001) (14,29). In summary, the foot-
prints predicted by Wellington are thus significantly enriched in
functional element annotations.

Integrating brain eQTLs with DNase-seq footprints

Brain cis-eQTL haplotypes are significantly enriched within DHS
identified in brain tissue (67.7% of the brain eQTLs at r*>0.5 and
50.7% at r>>0.8; Fig. 2A). We defined eQTL haplotypes as those
cis-SNVs in LD at r?>0.5. The degree of LD between two alleles,
A and B, is given by:

2_ _ (pan— paps)’
pa(l—pa)ps(1 —ps)

It was then possible to annotate an eQTL-containing haplo-
type block with genomic features, such as DHS and DNase-seq
footprints by intersecting those with the SNVs constituting the
haplotype. eQTLs typically contain multiple associated SNVs
that all lie in strong LD. Most often it has not been possible to
identify from among them the causal eQTL SNV, or indeed
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Figure 1. Functional annotation of Wellington DNase-seq footprints. Panel (A) shows relative enrichment of footprint-containing DHS to DHS without footprints for dif-
ferent metagene regions. Error bars show the standard deviation of log, fold enrichment. Density plots of (B) FIMO motif coverage and (C) nucleotide conservation score

within mammalian species (PhyloP46way) around all brain footprints combined.

multiple causal SNVs (30). Any SNV lying directly within the
footprint may provide an accurate prediction of the causal SNV.
This approach has the clear caveat that it will disregard se-
quence variation that, despite lying outside of the direct TF
binding site, impacts on TF binding affinity (11).

Brain eQTLs are significantly enriched (1.65-fold, P <0.0001)
in brain tissue DNase-seq footprints (O.5§[2§1) in excess of
their enrichment within DHS overall (Figz 2B and
Supplementary Material, Fig. S2). Initially we restricted our
analysis to only eQTLs and DNase-seq footprints that were
matched by tissue. An eQTL haplotype was defined as underly-
ing a DNase-seq footprint if at least one SNV within its haplo-
type at a particular LD threshold intersected a DNase-seq
footprint. We then calculated the overall proportion ([]) of
tissue-matched eQTL SNVs that could be accounted for by
DNase-seq footprints. This was defined as the proportion of
haplotypes where at least one SNV intersected a DNase-seq
footprint and was present within a haplotype at a given r? cut-
off. This quantity reached a maximum of only [] = 16.4% at a lax
LD threshold of r*>0.5 and fell to 9.5% at an LD threshold of
r’>0.8 (Supplementary Material, Fig. S3). When including data
from all brain regions, the figure dropped markedly ([[ =9.6% at
r’>0.5 and []=5.2% at r*>0.8; Fig. 2B). 63 TF motifs showed sig-
nificant enrichment for brain eQTLs at r*>0.8. 48 (76%) of these
TFs are known to have effects on brain function
(Supplementary Materials, Table S3 and Fig. S4). This
enrichment was significant for TFs expressed in brain tissues

(RNA-seq data from Brainspan RPKM >1; 1.50-fold, P <0.0001)
but minimally for TFs undetectable in brain (1.01-fold, P=0.04)
(3,31). The proportion of brain eQTLs located within footprints
predicted to disrupt TF binding motifs was also significantly
higher than expected (observed proportion: 0.36 vs. 0.15, P<0.
001; Supplementary Material, Fig. S5A).

The precise footprint size chosen in this analysis might have
had an undue influence on these results. Nevertheless, we
found that this had only a modest effect on the proportion of
eQTL SNVs accounted for by DNase-seq footprints ([]=13.5% at
r’>0.5, [[=7.0% at r*>0.8; Supplementary Material, Fig. S6).

We also tested how sensitive our findings were to the signifi-
cance threshold used to detect DNase-seq footprints. The previ-
ous results were generated using the P-value threshold reported
by the original authors (P < 10 ~?°) to filter the input prior to FDR
randomization (21). However, because it is possible that this
was too strict a threshold we reduced the threshold to consider
a footprint call significant to P <0.01. Even at this lax signifi-
cance threshold [] remained low ([[=25.1% at r*>0.5;
[1=13.2% atr*>0.8).

A small minority of SNVs may well be conferring their ef-
fects on target genes by interfering with TF binding. We gener-
ated a list of candidate SNVs in strong LD (r*>0.8) with brain
eQTLs also intersecting a DNase-seq footprint and TF motif
(Supplementary Material, Table S4). An illustrative example is
an eQTL associated with the expression of ROBO2 (Fig. 3). ROBO2
encodes a transmembrane receptor which is involved in axonal
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guidance within the central nervous system (32). The lead eQTL
SNP (rs1447850) underlies a DNase-seq footprint found in fetal
brain and also intersects motifs for TAL1 and other TFs. TAL1 is
known to have a role in neuronal development (33).

Integrating brain-related GWAS SNVs with
DNase-seq footprints

GWAS identify sentinel SNVs which are significantly associated
with a phenotypic trait. Since GWAS SNVs rarely disrupt
protein-coding regions, they are expected to alter gene expres-
sion regulation (7). We therefore sought to identify whether
brain-related GWAS (e.g. Alzheimer’s disease, schizophrenia,
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Figure 2. Overlap of brain eQTLs and Wellington DNase-seq footprints. Panel (A)
shows the proportion of brain eQTL haplotypes accounted for by either DHS
(black line), footprints (red line) or footprints containing a FIMO-identified motif
(green line). Panel (B) shows the enrichment of eQTL haplotypes within brain
footprints relative to brain DHS (blue) and within brain DHS relative to all auto-
somal chromosome arms (red). The dashed grey line indicates the value corre-
sponding to no enrichment.

etc., n=6,552) variants may be exerting their effect via a similar
process to eQTLs. We found significant enrichment both of
GWAS haplotypes within DHS and of GWAS SNVs within eQTL
blocks (Fig. 4 and Supplementary Material, Fig. S7). However, in
contrast to brain eQTLs, there was no overall significant enrich-
ment of GWAS haplotype blocks overlapping DNase footprints
when compared to a background of DHS, even when reducing
the LD threshold to relatively permissive levels (Fig. 4). At the
most relaxed LD threshold, there was a nominal enrichment of
GWAS-associated haplotypes within DNase-seq footprints but
this was not significant after correction for multiple hypothesis
testing (1.45-fold, P=0.02, q=0.21 at r*>0.5).

Despite the lack of globally significant enrichment for
DNase-seq footprints, we identified a small minority of candi-
date variants (3.3% at r*>0.5; 0.9% at r’>0.8), in which a
strongly linked SNV was contained within both a brain DNase-
seq footprint and a FIMO-identified TF binding motif
(Supplementary Material, Table S5). One such region is shown
in Fig. 5, in which a GWAS variant associated with susceptibility
to schizophrenia lies in strong LD with an eQTL variant, both of
which are in strong LD with an SNV located within a footprint
containing a motif for ZFX. One possible link between DCAF®6,
associated with this LD block by eQTL, and susceptibility to psy-
chiatric disorders is that its protein binds NR3C1, of which
changes in methylation are linked with childhood abuse (34).
However, further work will be needed to explore this
hypothesis.

Consequently, whilst the majority of GWAS SNV haplotypes
lie within DHS ([]=64.3% at r*>0.5; [[=46.6% at r*>0.8) very
few of these are contained within a DNase-seq footprint
([T=6.5% at r*>0.5; [[=2.6% at r>>0.8). Furthermore, even
when the GWAS SNV haplotype included an eQTL SNV, in a few
cases were a variant underlying a DNase-seq footprint identified
(4.0% at r*>0.5; 1.6% at r*>0.8). As with brain eQTLs, we also
tried reducing the significance threshold used to call a footprint
but found that the proportion of GWAS haplotypes intersecting
brain footprints was still low even when using a very permissive
threshold of P<0.01 ([[=16.5% at r*>0.5; [[=8.6% at r*>0.8).
Despite the low proportion of GWAS haplotypes intersecting
DNase-seq footprints, variants that we located within DNase-
seq footprints were more likely to be predicted to disrupt a TF
binding motif than would be expected by chance (0.38 vs. 0.17,
P=0.005; Supplementary Material, Fig S5B). This suggests that
sequence variation underlying the biological effect of most
GWAS haplotypes is mostly located outside of DNase-seq foot-
prints, and thus of inferred TF binding sites, potentially through
DNA-TF interactions that are not captured by DNase-seq foot-
print analysis. However, those few GWAS variants that do fall
within DNase-seq footprints are likely to have a functional ef-
fect on TF binding.

200 base-pairs

TAL1-TCF3 =
HAND1-TCF3 EE
FIMO motifs E s —
Fetal brain
DNase-seq 40
Footprints
(-logyg p-value)
i i _
ROBO2 v

rs1447850 §

Figure 3. A brain eQTL SNV falling within a Wellington DNase-seq footprint and transcription factor recognition motif. Rs1447850 (red arrow) is significantly associated
with expression of ROBO2. The location of motifs intersecting both the DNase-seq footprint and eQTL-associated SNV are indicated. The figure depicts chromosome 3

between positions 77,580,019 and 77,580,519.
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Finally, in order to assess whether the lack of enrichment of
GWAS haplotypes within DNase-seq footprints was specific for
brain-related GWAS signals, we generated footprint data on all
DNase-seq tracks available from the ENCODE project (20). In
contrast to the brain-related GWAS signals, all available GWAS
haplotypes were significantly yet modestly enriched within
DNase-seq footprints pooled from all ENCODE tissue types,
when compared with all pooled DHS (Fig. 6). Nevertheless, this
still accounted for only a small minority of all GWAS haplotypes
([1=17.7% at r*>0.5; [[=8.6% at r*>0.8). This could indicate
that some binding sites are highly dynamic or tissue-specific.
However, this supports our earlier observations that DNase-seq
footprints cannot explain the majority of GWAS signals even at
extremely permissive LD thresholds.

Accounting for sequence-specific DNase cut biases

To consider whether biases in where DNase cuts across the ge-
nome influenced our results, we called footprints on brain
DNase-seq datasets using a second algorithm, HINT, that seeks
to account for these biases (35). Although HINT called substan-
tially more footprints than Wellington (median 880,341; range
845,115-1,035,430), intersecting these with sequence conserva-
tion data indicated that many low scoring footprints are likely
false positives (Supplementary Material, Fig. S8). This was sup-
ported by the low degree of CTCF ChIP-exo enrichment within

low-scoring footprints relative to DHS (Supplementary Material,
Fig. S9).

Next, we assessed the ratio of true positive to false positive
HINT predictions. To do so, we divided TFs into those that are
brain expressed and that display central evolutionary conserva-
tion from those that are not, taking the advantage of the avail-
able brain region-specific RNA-seq data. The central
evolutionary enrichment was assessed, as previously (21), as a
Alog conservation > 0.1 within the motif relative to the 50 base-
pair flanking sequences. We only considered regions with HINT
scores associated with an estimated true positive to false posi-
tive ratio of two or greater (Supplementary Material, Fig. S10).
This approach produced a set of DNase-seq footprints for each
tissue enriched for probable true positive TF binding sites (me-
dian 226,093; range 33,718-279,087). HINT footprints proportion-
ately overlapped few brain eQTL and GWAS haplotypes (brain
eQTL: [[=23.6% at r?>0.5; [[=12.3% at r*>0.8; brain-related
GWAS: [[=16.3% at r*>0.5; [[=7.7% at r*>0.8; Fig. 7). Our find-
ings using footprints predicted using two commonly used
approaches, Wellington and HINT, thus yielded highly similar
results (Figs. 2,4 and 7).

Discussion

Given that many common SNVs typically lie in LD with any sen-
tinel eQTL SNV (~27 at r*>0.5; ~7 at r*>0.8), it is challenging to
reveal the variant responsible for the effect on gene expression.
A prominent approach to achieve this is to identify experimen-
tally defined TF binding sites, through DNase-seq and foot-
prints, and to intersect these with known sequence variants
that might alter the relevant TF’s affinity.

Our first observation is that although eQTL signals are en-
riched within DNase-seq footprints in excess of the previously
reported association with open chromatin this can explain only
a very modest proportion of eQTL haplotypes. Our second ob-
servation is that even this low level of enrichment was not ob-
served for GWAS signals for brain-related traits. Based on the
currently available brain DNase-seq and eQTL datasets we could
estimate the proportions of eQTL and GWAS signals explicable
by SNVs lying within TF binding sites as predicted by footprint-
ing. Despite the proportion of eQTL variants falling within DHS
being high (as observed previously), the proportion of either
GWAS or eQTL haplotypes accounted for by direct disruption of
TF binding sites predicted by footprints was minimal (7). Our
findings on TF binding sites inferred from footprints are consis-
tent with studies that found little enrichment of eQTLs within
classical TF motifs (9).

Molecular processes underlying genotype-phenotype rela-
tionships tend to be less proximal for GWAS than for eQTL stud-
ies. This is because eQTL variants explain variation in gene
expression, typically in adult and specific tissues. By contrast,
GWAS variants, although associated with disease, may exert
their effects on gene expression or the epigenome only at spe-
cific developmental stages or ages or when subjects are exposed
to specific exogenous or endogenous factors. Consequently, a
potential disease-causative TF binding site may not be occupied
in samples used in the GWAS study and therefore would not be
considered by our study. The lower proportion of GWAS haplo-
types within DHS that we observed compared with a previous
study (7) could be due to our stricter definition of DHS. In partic-
ular, we took advantage of data from replicates through a robust
irreproducibility discovery rate analysis in order that the DHS
we identified would be more likely to represent true open chro-
matin rather than background noise (18,19).
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Figure 7. Overlap of brain eQTLs (A) or brain-related GWAS (B) haplotypes and HINT
the threshold required for the estimated true positive to false positive ratio to be > 2.

Our observed lack of enrichment in footprints for GWAS var-
iants could reflect low predictive power caused by limited num-
bers of variants. This might be expected because there was a
very modest but nonetheless significant enrichment of GWAS
haplotypes for all traits within DNase-seq footprints generated
from the much larger set of all available ENCODE data. Arguing
against this, however, is that when we down-sampled the num-
ber of eQTL haplotypes to match the number of brain-related
GWAS haplotypes, a more robust enrichment for Wellington
DNase-seq footprints at r* > 0.5 remained (1.56-fold, P < 0.002). A
further consideration is that the significance threshold we used
to generate Wellington DNase footprints could be too conserva-
tive. However, when we tested different thresholds down to
P <0.01, our results did not change substantively.

There are five key limitations to inferring TF binding through
DNase-seq footprint analysis. The first is that footprints may
not be detected for TF binding which is dynamic, either through
TFs migrating along DNA or through TFs exhibiting relatively
rapid binding kinetics (36-38). Transiently binding pioneer TFs
capable of remodelling chromatin would not, for example, be
detected by the method we used to identify footprints.
Secondly, DNase-seq footprint analysis is also unlikely to detect
TF binding events that require the co-ordination of multiple
spatially, but not necessarily linearly, proximal DNA regions.
Thirdly, TF binding in specific relatively rare cell types may be
masked in heterogeneous bulk tissue samples (39). Fourthly,
binding sites that are disease-specific may not be detected in
control datasets such as these, since disease-specific factors
will be absent in healthy individuals. Evidence from an ATAC-
seq study of CD4" T-cells suggests that many autoimmune dis-
ease causal variants are located preferentially in regions that
show variable accessibility among individuals and over time,
which implies that many true causal variants could be missed
by DNase-seq footprinting in small numbers of control samples
(40). The ongoing expansion of available DNase-seq and ATAC-
seq datasets should assist with this. Finally, the lack of a defini-
tive gold standard approach to identifying DNase-seq footprints
means that the validation of computationally predicted foot-
prints and the selection of significance thresholds inevitably
rely on proxy measures. Setting sensible thresholds for foot-
print detection is particularly important when considering
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brain DNase-seq footprints. Footprints were included only if the score exceeded

candidate regions for downstream functional analysis. The sub-
stantial effort required for such studies means that stringent
criteria or orthogonal ways of screening candidate footprints
will be critical. The proliferation of finer resolution TF binding
datasets, such as those produced by ChIP-exo or ChIP-nexus,
may help to resolve this issue (14,15).

With these caveats in mind, our study could also indicate
that most eQTL and GWAS SNVs do not mediate their effects by
directly disrupting classical TF binding events. In many GWAS,
identification of an eQTL in LD with the GWAS SNV can help to
prioritise the likely gene involved in conferring susceptibility at
the associated genomic interval. However, even in this situation
where a brain-related GWAS haplotype contains an eQTL SNV,
we did not in most cases identify a footprint-disruptive SNV
(19.8% at r*>0.5; 14.0% at r*> 0.8 using Wellington and 30.2% at
r?>0.5; 20.0% at r*> 0.8 using HINT). It should also be noted that
whilst we observed significant enrichment of eQTL haplotypes
in footprints, even here, the majority (90.5% in the case of fron-
tal cortex eQTLs at r*>0.8) failed to disrupt a footprint. By com-
bining multiple sources of DNase-seq footprinting and by
assessing allelic imbalance in reads making up footprints, vari-
ants that are more likely to alter TF binding site occupancy can
be identified (41-43). Even this large catalogue of tissue types
suggests that only a small proportion of brain eQTL or brain-
related GWAS haplotypes can be attributed to variants associ-
ated with altered TF binding in adult tissues: only 2.5% of eQTL
and 3.0% of brain-related GWAS haplotypes at r*>0.8 intersect
one of the variants implicated in alteration of TF binding by
Maurano and colleagues at FDR<0.1% (42). Even when using
the most relaxed threshold in that study (FDR < 10%), this pro-
portion only increased to 17.4% of eQTL and 18.1% of brain-
related GWAS haplotypes.

Previous studies have suggested that SNVs lying within clas-
sical TF binding motifs are unlikely to account for a large pro-
portion of TF binding variation (11,13). Our findings extend
these results by showing that this is further reflected by the low
proportion of eQTL and GWAS haplotypes that can be directly
accounted for by TF binding site disruption. There are two po-
tential, not mutually exclusive, explanations for this: firstly,
that eQTL and GWAS causal variants genuinely do not com-
monly interfere with TF binding via direct disruption of TF
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recognition sequences, and secondly, that DNase-seq footprint
analysis methodology fails to identify a considerable proportion
of true positive binding sites. In support of the second explana-
tion, the minority of GWAS or eQTL-associated SNVs that did
intersect DNase-seq footprints were found to disrupt TF binding
motifs more frequently than would be expected by chance.

The first explanation raises questions as to how GWAS and
eQTL SNVs modulate gene regulation. eQTL and GWAS variants
could also affect gene expression or phenotypes via TF-
independent mechanisms, such as by altering the rate of tran-
scription of rare non-coding RNA transcripts which have yet to
be identified (44).

Definitive proof that particular variants account causally for
the eQTL effect within particular loci would likely require scar-
less genome editing of candidate functional SNVs in relevant
tissue types. However, the identification of candidate causal
SNVs will require the integration of many lines of evidence si-
multaneously and, particularly in haplotypes with multiple
SNVs intersecting enhancers, may be challenging (8,30). Zinc
finger nuclease editing of enhancers surrounding a candidate
GWAS interval associated with glucose metabolism demon-
strates the potential power of this approach with the caveats
that single base edits are extremely difficult to implement and
that the phenotypic read-outs (particularly for GWAS signals oc-
curring in the absence of eQTLs) are likely to be at best subtle
(45). However, the new bioresources and technologies, such as
large repositories of induced pluripotent stem cell lines from
many subjects and CRISPR-Cas9 nucleases for rapid genome en-
gineering, should help to galvanise mechanistic eQTL and post-
GWAS studies.

Just as likely an explanation is that DNase-seq footprints de-
rived from existing datasets may not greatly assist in the prioriti-
sation of candidate causative variants within eQTL or GWAS
haplotypes. Variants lying outside of classical TF binding motifs
and of footprints could alter binding through mechanisms that
are not captured by DNase-seq footprint analysis, such as 3D
chromatin interactions and dynamic binding patterns (46).
Many of these 3D interactions may themselves be dynamic and
show cell type-specific signatures (47). Similarly, DNase-seq
footprinting is likely to miss cooperative TF binding (48).

If so, then this explanation has potentially important impli-
cations for genomic engineering approaches such as those dis-
cussed above. This is because if not all true TF binding sites are
identifiable by current motif- or TF binding assay-agnostic
methods such as DNase-seq footprinting, then this would result
in the number of variants requiring investigation via genome
editing remaining high for most eQTL or GWAS haplotypes.

Further work should extend our observations into other cell
and tissue types to establish whether similar findings can be de-
tected outside of brain tissue. If this indeed proves to be the
case, then efforts will need to be redoubled to delineate the mo-
lecular mechanisms underlying haplotypes that fail to directly
disrupt TF binding.

Materials and Methods

DNase-seq analysis

DNase-seq hgl9 aligned reads were downloaded from the
ENCODE (cerebellum, frontal cerebrum and frontal cortex) and
Epigenomic Roadmap (fetal brain) projects for footprints from
primary brain tissue (19,49,50). For other tissue footprints, we
downloaded multiple files of aligned reads from the ENCODE
(A549 cells, aortic smooth muscle, Caco2 cells, Ecc-1 cells, Gc

B-cells, H1-derived mesenchymal stem cells, H1-derived neuro-
nal progenitor cultured cells, H1 cells, heart, Helas3 cells, hepa-
tocarcinoma, hepatocytes, Ishikawa cells, K562 cells,
keratinocytes, lung fibroblasts, medulloblastoma, monocytes,
naive B-cells, neuroblastoma, olfactory neurospheres, renal glo-
merular endothelium, retinal pigment endothelium, skeletal
muscle fibroblasts and urothelium) and Epigenomic Roadmap
(fetal heart, fetal arm muscle and fetal abdominal skin) projects.
DHS were called using F-seq with the arguments “-t 0 -of npf -f
0” (51). Irreproducibility discovery rate (IDR) analysis was used
to assess whether it was appropriate to pool replicates for fur-
ther analysis as described in (18,25). In order to present a per-
missive set of DHS to the footprinting analysis pipeline, we
used an IDR threshold of 0.05. Footprints within DHS were iden-
tified using either Wellington Footprints (version 0.2.0) with the
arguments “-p 8 -fp 11,22,2 -fdr 0.01” or “-p 8 -fp 6,40,2 -fdr 0.01”
for the broader footprints (21) or HINT (version 1.1.1) with the
argument “-default-bias-correction” (35). Footprints were re-
moved if these intersected ENCODE blacklisted regions (19,52).
We used a filtering method to remove likely artefacts that
skewed the mean DNase profile within 100 base-pairs of the
centre of each footprint by >50%. Footprints used for analysis
were restricted to autosomes.

GWAS and eQTL variants

GWAS variants were downloaded from the GWAS Catalog and
classified into brain-related or adult neurological disorder-
related as per (6). GWAS variants were only included in down-
stream analysis if the associated P-value was <5 x 10 8. eQTLs
were obtained from a number of different studies (2-6). Trans-
eQTLs were not considered for further analysis. Cis-eQTLs re-
ported as significant were pooled together for the combined
analysis and also analysed individually. Haplotypes were im-
puted from 379 European 1000 Genomes phased haplotypes us-
ing vcftools with the arguments “-gzvcf in.file -hap-r2-positions
snp.file -1d-window-bp 10000000 -min-r2 0.5” (53,54).

Functional annotation

Bedtools was used to intersect GWAS and eQTL variants at dif-
ferent r? thresholds and then custom Rscripts were used to ana-
lyse the proportion of haplotype blocks intersecting different
features. Statistical analysis was conducted using the Genomic
Association Tester (GAT), using 10,000 randomisations and a
workspace based upon where annotations could fall (i.e. foot-
prints were analysed relative to F-seq-identified DHS as by defi-
nition these could not be located elsewhere) (26,55). When the
background chromosomes were used as a workspace, these
were limited to autosomal chromosome arms minus known as-
sembly gaps and blacklisted regions. When permuting one list
of SNVs against another, the 1000 genome SNVs were used as a
workspace. GC content was corrected for using 1Mb quintile iso-
chores. Empirically determined standard deviations were plot-
ted for all shown fold enrichment values. Nucleotide
conservation scores (Phylo46way) were downloaded from
ENCODE (19). Motifs were identified using FIMO to search for
JASPAR vertebrate motifs with a P-value threshold of 10 ~*, re-
peats masked and a 1% order markov background on both the
reference genome and the genome edited to contain all alter-
nate single nucleotide variants (56,57). MEDLINE was manually
searched for each TF enriched within the footprints to identify
studies supporting a role in brain development or function.
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FANTOMS permissive enhancers were downloaded directly
from the FANTOMS website (27). Coverage density plots were
obtained using Homer (58). CTCF ChIP-exo data were down-
loaded and intersected with CTCF ChIP-seq peaks present in all
tissues analysed by Wang et al. (14,29). Brain RNA-seq expres-
sion data was downloaded from Brainspan and separated into
adult (>30 years old) or fetal (15-17 post-conception weeks) clas-
ses (3,31). Highly expressed TFs were defined as those expressed
at RPKM > 10 in all samples; undetectably expressed TFs were
defined as those with no expression (RPKM =0) in all samples.
The ratio of the proportion of footprints intersecting the motif
of highly expressed TFs and undetectable TFs, both scaled for
the size of motif tracks, was then calculated for footprints using
a score centile-based threshold. The proportion of SNVs likely
to disrupt TF binding motifs was estimated using the TFMP
value in FUN-seq2 (59,60). Empirical significance was estimated
against a background dataset produced by shuffling the position
of brain DNase-seq footprints within brain DHS 1,000 times.

Supplementary Material

Supplementary Material is available at HMG online.
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