

Edinburgh Research Explorer

Type-and-Scope Safe Programs and Their Proofs

Citation for published version:
Allais, G, Chapman, J, McBride, C & McKinna, J 2017, Type-and-Scope Safe Programs and Their Proofs. in
The 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2017). ACM, Paris, France, pp.
195-207, 6th ACM SIGPLAN Conference on Certified Programs and Proofs, Paris, France, 16/01/17.
https://doi.org/10.1145/3018610.3018613

Digital Object Identifier (DOI):
10.1145/3018610.3018613

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2017)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. May. 2024

https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1145/3018610.3018613
https://www.research.ed.ac.uk/en/publications/cd150b5a-c922-4da3-b06f-e28216e882e1

Type-and-Scope Safe Programs and Their Proofs

Guillaume Allais
gallais@cs.ru.nl

Radboud University,
The Netherlands

James Chapman Conor McBride
{james.chapman,conor.mcbride}@strath.ac.uk

University of Strathclyde, UK

James McKinna
james.mckinna@ed.ac.uk

University of Edinburgh, UK

Abstract
We abstract the common type-and-scope safe structure from
computations on -terms that deliver, e.g., renaming, sub-
stitution, evaluation, CPS-transformation, and printing with
a name supply. By exposing this structure, we can prove
generic simulation and fusion lemmas relating operations
built this way. This work has been fully formalised in Agda.

Categories and Subject Descriptors D.2.4 [Software / Pro-
gram Verification]: Correctness Proofs; D.3.2 [Language
Classifications]: Applicative (functional) languages; F.3.2
[Semantics of Programming Languages]: Denotational se-
mantics, Partial evaluation

Keywords Lambda-calculus, Mechanized Meta-Theory,
Normalisation by Evaluation, Semantics, Generic Program-
ming, Agda

1. Introduction
A programmer implementing an embedded language with
bindings has a wealth of possibilities. However, should she
want to be able to inspect the terms produced by her users
in order to optimise or even compile them, she will have to
work with a deep embedding. Which means that she will
have to (re)implement a great number of traversals doing
such mundane things as renaming, substitution, or partial
evaluation. Should she want to get help from the typechecker
in order to fend o common bugs, she can opt for inductive
families (Dybjer 1991) to enforce precise invariants. But the
traversals now have to be invariant preserving too!

In an unpublished manuscript, McBride (2005) observes
the similarity between the types and implementations of re-
naming and substitution for simply typed -calculus (ST C)
in a dependently typed language as shown in g. 1. There
are three di erences between the implemenations of renam-

∶ �∀�� � � → � �� → �∀�� � � → � ��� �‵ � = ‵ �� �� � ‵� � = � ‵� �� �‵ �� = ‵ � �� ∘ �� −� � ��
∶ �∀�� � � → � �� → �∀�� � � → � ��� �‵ � = �� � ‵� � = � ‵� �� �‵ �� = ‵ � �� ∘ �� −� ‵ � ��
Figure 1. Renaming and Substitution for the ST C

∶ �∀�� � � → ♦ � �� → �∀�� � � → � ��� �‵ � = � �� �� � ‵� � = � ‵� �� �‵ �� = ‵ � �� � ∘ �� −� � � ��
Figure 2. Kit traversal for the ST C, for of type ♦

∶ �∀�� � � → � �� → �∀�� � � → � ��� �‵ � = �� � ‵� � = �� � � � � � �� �‵ � = � → �� ∘ �� −� � �
Figure 3. Normalisation by Evaluation for the ST C

ing and substitution: (1) in the variable case, after renaming
a variable we must wrap it in a ‵ constructor whereas a
substitution directly produces a term; (2) when weakening
a renaming to push it under a we need only post-compose
the remaning with the De Bruijn variable successor construc-
tor (which is essentially weakening for variables) whereas
for a substitution we need a weakening operation for terms
which can be given by renaming via the successor construc-
tor . (3) also in the case when pushing a renaming or
substitution under a binder we must extend it to ensure that
the variable bound by the mapped to itself. For renaming
this involves extended by the zeroth variable whereas for
subsitutions we must extend by the zeroth variable seen as a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

CPP’17, January 16–17, 2017, Paris, France
ACM. 978-1-4503-4705-1/17/01...$15.00
http://dx.doi.org/10.1145/3018610.3018613

195

term ‵ . He de nes a notion of “Kit” abstracting these
di erences. The uses of �─ operations in the generalising
the traversal function are shown (in pink) in g. 2.

The contributions of the present paper are twofold:
• We generalise the “Kit” approach from syntax to seman-
tics bringing operations like normalisation (cf. g. 3) and
printing with a name supply into our framework.

• We prove generic results about simulations between and
fusions of semantics given by, and enabled by, Kit.

Outline We start by de ning the simple calculus we will
use as a running example. We then introduce a notion of en-
vironments and one well known instance: the category of re-
namings. This leads us to de ning a generic notion of type
and scope-preserving Semantics together with a generic eval-
uation function. We then showcase the ground covered by
these Semantics: from the syntactic ones corresponding to
renaming and substitution to printing with names, variations
of Normalisation by Evaluation or CPS transformations. Fi-
nally, given the generic de nition of Semantics, we can prove
fundamental lemmas about these evaluation functions: we
characterise the semantics which can simulate one another
and give an abstract treatment of composition yielding com-
paction and reuse of proofs compared to Benton et al. (2012).
Notation This article is a literate Agda le. We hide tele-
scopes of implicit arguments and levels, and properly dis-
play (super / sub)-scripts as well as special operators such
as >>= or ��. Colours help: identi ers are data con-
structors, names refer to record elds, is character-
istic of de ned symbols, and comments are red typewrite
font. Underscores have a special status: when de ning mix x
identi ers (Danielsson and Norell 2011), theymark positions
where arguments may be inserted.
Formalisation This whole development (Allais et al.) has
been checked by Agda (Norell 2009) which guarantees that
all constructions are well typed, and all functions are total.
Nonetheless, it should be noted that the generic model con-
structions and the various examples of given here,
although not the proofs, can and have been fully replicated in
Haskell using type families, higher rank polymorphism and
GADTs to build singletons (Eisenberg and Weirich 2013)
providing the user with the runtime descriptions of their
types or their contexts’ shapes. This yields, to the best of our
knowledge, the rst tagless and typeful implementation of a
Kripke-style Normalisation by Evaluation in Haskell.

2. The Calculus and Its Embedding�� � ∷= � | � | � → ��� � ∷= � | | �� � || �� | �� | �� � ���� ����
Weworkwith a deeply embedded simply typed -calculus.

It has 1 and 2 as base types and serves as a minimal example
of a system with a record type equipped with an η-rule and

a sum type. This grammar is represented in Agda as follows:∶‵ ‵ ∶
‵→ ∶ → →

� � ∶ � ∶� ∶ �
∙ ∶ � → � → �

To talk about the types of the variables in scope, we need
contexts. We choose to represent them as “snoc” lists of
types; � denotes the empty context and � ∙ � the context �
extended with a fresh variable of type �.

To make type signatures more readabale, we introduce
combinators acting on context-indexed types. The most
straightforward ones are pointwise lifting of existing oper-
ators on types, and we denote them as dotted versions of
their counterparts: the de nition of the pointwise function
space _ →̇ _ is shown here and the reader will infer the cor-
responding one for pointwise disjoint sums (_⊎̇_) and prod-
ucts (_×̇_). The “universally” operator [_� turn a context-
indexed type into a type using an (implicit) universal quan-
ti cation. Last but not least, the operator _⊢_ mechanizes
the mathematical convention of only mentioning context ex-
tensions when presenting judgements (Martin-Löf 1982).
_ →̇ _ ∶ � � → � → � � → � → � � → �� →̇ � � = � → �[_� ∶ � � → � →[� = ∀ {� } → �
⊢ ∶ � → � � → � → � � → ��� ⊢ � � = �� ∙ ��
Variables are then positions in such a context represented

as typed de Bruijn (1972) indices. As shown in the com-
ments, this amounts to an inductive de nition of context
membership. We use the combinators de ned above to show
only local changes to the context.�� ∶ �� ∶ � →∶ – ∀ Γ. Var τ (Γ ∙ τ)[� ⊢ � �∶ – ∀ Γ σ. Var τ Γ → Var τ (Γ ∙ σ)[� →̇ �� ⊢ �� �

The syntax for this calculus guarantees that terms are
well scoped-and-typed by construction. This presentation
due to Altenkirch and Reus (1999) relies heavily on Dyb-
jer’s (1991) inductive families. Rather than having untyped
pre-terms and a typing relation assigning a type to them, the
typing rules are here enforced in the syntax. Notice that the
only use of _⊢_ to extend the context is for the body of a .∶ → →‵ ∶ [� →̇ � �

‵� ∶ [�� ‵→ �� →̇ � →̇ � �‵ ∶ [� ⊢ � →̇ �� ‵→ �� �‵ ∶ [‵ �‵ ‵ ∶ [‵ �‵ ∶ [‵ →̇ � →̇ � →̇ � �
196

3. A Generic Notion of Environment
All the semantics we are interested in de ning associate to a
term of type � � , a value of type � � � given an inter-
pretation ℰ � τ for each one of its free variables � in � . We
call the collection of these interpretations an ℰ-(evaluation)
environment. We leave out ℰ when it can easily be inferred
from the context. The content of environments may vary
wildly between di erent semantics: when de ning renam-
ing, the environments will carry variables whilst the ones
used for normalisation by evaluation contain elements of
the model. But their structure stays the same which prompts
us to de ne the notion generically for a notion of .∶= � → � →

Formally, this translates to ℰ-environments being the
pointwise lifting of the relation ℰ between contexts and
types to a relation between two contexts. Rather than us-
ing a datatype to represent such a lifting, we choose to use
a function space. This decision is based on Je rey’s obser-
vation (2011) that one can obtain associativity of append
for free by using di erence lists. In our case the interplay
between various combinators (e.g. and) de ned
later on is vastly simpli ed by this rather simple decision.

_− �� ∶ �� �� ∶ � �� ∶ �� ∶
∶ � � → � � �

Just as an environment interprets variables in a model,
a computation gives a meaning to terms into a model.
_− ∶ → �� ∶ � → →�� − � � � = � � → � � �
An appropriate notion of semantics for the calculus is one

that will map environments to computations. In other words,
a set of constraints on � and � guaranteeing the existence of
a function of type: [(� ─) � →̇ (� ─) � �

These environments naturally behave like the contexts
they are indexed by: there is a trivial environment for the
empty context and one can easily extend an existing one
by providing an appropriate value. The packaging of the
function representing to the environment in a record allows
for two things: it helps the typechecker by stating explic-
itly which the values correspond to and it empow-
ers us to de ne environments by copattern-matching (Abel
et al. 2013) thus de ning environments by their use cases.‵� ∶ [�� − � � �
‵∙ ∶ [�� − � � →̇ � � →̇ �� ∙ � − � � �

‵� ���� ‵∙ � =�� ‵∙ � � � = �

The Category of Renamings A key instance of environ-
ments playing a predominant role in this paper is the notion
of renaming. The reader may be accustomed to the more re-
strictive notion of renamings as described variously as Order
Preserving Embeddings (Chapman 2009), thinnings (which
we use) or context inclusions, or just weakenings (Altenkirch
et al. 1995). Writing non-injective or non-order preserving
renamings would take perverse e ort given that we only
implement generic interpretations. In practice, although the
type of renamings is more generous, we only introduce weak-
enings (skipping variables at the beginning of the context)
that become thinnings (skipping variables at arbitrary points
in the context) when we push them under binders.

A thinning � ⊆ � is an environment pairing each variable
of type � in� to one of the same type in�.
⊆ ∶ �� � ∶ �� →� ⊆ � = �� − � �
We formulate a thinning principle using ⊆. By a “thin-

ning principle”, we mean that if � holds of � and � ⊆ �
then � holds for � too. In the case of variables, thinning
merely corresponds to applying the renaming function in
order to obtain a new variable. The environments’ case is
also quite simple: being a pointwise lifting of a relation �
between contexts and types, they enjoy thinning if � does.

∶ � � → � →= � ⊆ � → � � → ��
∶ �� ∶ �� → � ��� � � = � �

[_� ∶ ��� ∶ �� → �� ��� →��� − � ��� [ℎ � � � �� = ℎ _ � � ∘ �
These simple observations allow us to prove that thin-

nings form a category which, in turn, lets us provide the user
with the constructors Altenkirch, Hofmann and Streicher’s
“Category ofWeakening” (1995) is based on.∶ � ⊆ �=

∶ � ⊆ � → �� − � � � → �� − � � �� � � �� = � ∘ � �
∶ � ⊆ � → � ⊆ �� ∙ ��� � = � � � �

� ∶ � ⊆ � → �� ∙ �� ⊆ �� ∙ ��� � � = � � ‵∙
The modal operator □ states that a given predicate holds

for all thinnings of a context. It is a closure operator for
.

197

□ ∶ � � → � → � � → ��□ � � = {� ∶ _} → � ⊆ � → �
□ ∶ �□ �
□ � � = ∘ � �
Now that we are equipped with the notion of inclusion, we

have all the pieces necessary to describe the Kripke structure
of our models of the simply typed -calculus.

4. Semantics and Their Generic Evaluators
The upcoming sections demonstrate that renaming, substitu-
tion, printingwith names, and normalisation by evaluation all
share the same structure. We start by abstracting away a no-
tion of encompassing all these constructions. This
approach will make it possible for us to implement a generic
traversal parametrised by such a once and for all
and to focus on the interesting model constructions instead
of repeating the same pattern over and over again.

A is indexed by two relations � and � describ-
ing respectively the values in the environment and the ones
in the model. In cases such as substitution or normalisation
by evaluation, � and � will happen to coincide but keep-
ing these two relations distinct is precisely what makes it
possible to go beyond these and also model renaming or
printing with names. The record packs the properties of
these relations necessary to de ne the evaluation function.�� ∶ � �� ∶ � ∶

The rst method of a deals with environ-
ment values. They need to be thinnable () so that the
traversal may introduce fresh variables when going un-
der a binder whilst keeping the environment well-scoped.∶ �� ∶ � → �� ��

The structure of the model is quite constrained: each con-
structor in the language needs a semantic counterpart. We
start with the two most interesting cases: and . The
variable case bridges the gap between the fact that the envi-
ronment translates variables into values � but the evaluation
function returns computations�.∶ [� � →̇ � � �

The semantic -abstraction is notable for two reasons:
rst, following Mitchell and Moggi (1991), its □-structure

is typical of models à la Kripke allowing arbitrary extensions
of the context; and second, instead of being a function in the
host language taking computations to computations, it takes
values to computations. It matches precisely the fact that
the body of a -abstraction exposes one extra free variable,
prompting us to extend the environment with a value for it.
In the special case where � = � (normalisation by evalu-
ation for instance), we recover the usual Kripke structure.∶ [□ �� � →̇ � �� →̇ � �� ‵→ �� �

The remaining elds’ types are a direct translation of the
types of the constructor they correspond to: substructures
have simply been replaced with computations thus mak-
ing these operators ideal to combine induction hypotheses.

_ � _ ∶ [� �� ‵→ �� →̇ � � →̇ � � �∶ [� ‵ �∶ [� ‵ �∶ [� ‵ �∶ [� ‵ →̇ � � →̇ � � →̇ � � �
The type we chose for makes the notion

powerful enough that even logical predicates are instances
of it. And we indeed exploit this power when de ning nor-
malisation by evaluation as a semantics: the model construc-
tion is, after all, nothing but a logical predicate. As a con-
sequence it seems rather natural to call , the fundamen-
tal lemma of semantics. We prove it in a module parame-
terised by a , which would correspond to using a
Section in Coq. It is de ned by structural recursion on the
term. Each constructor is replaced by its semantic counter-
part which combines the induction hypotheses for its sub-
terms. �� ∶ � ���∶ [�� − � � →̇ �� − � � �� �‵ � = � � �� � ‵� � = � � �� �‵ �� = � � →� [� � � ‵∙ � ��� ‵ =� ‵ =� ‵ =� �‵ � � = � � �� � � � � � �
5. Syntax Is the Identity Semantics
As we have explained earlier, this work has been directly
in uenced by McBride’s (2005) manuscript. It seems ap-
propriate to start our exploration of with the
two operations he implements as a single traversal. We call
these operations syntactic because the computations in the
model are actual terms and almost all term constructors
are kept as their own semantic counterpart. As observed
by McBride, it is enough to provide three operations de-
scribing the properties of the values in the environment to
get a full-blown . This fact is witnessed by our
simple record type together with the
function turning its inhabitants into associated .�� ∶ � ∶∶ �� ∶ � → �� ��∶ [� ⊢ � � �∶ [� � →̇ � �

198

∶ � → �� = �{ = � =� = → ‵ � � � � � _ � _ = _‵�_� = ‵ � = ‵ � = ‵ � = ‵ }
The shape of or should not trick the reader

into thinking that this de nition performs some sort of η-
expansion: indeed only ever uses one of these when
the evaluated term’s head constructor is already respectively
a ‵ or a ‵ . It is therefore absolutely possible to de ne
renaming or substitution using this approach. We can now
port McBride’s de nitions to our framework.
Functoriality, also known as Renaming Our rst example
of a operation works with variables as environ-
ment values. We have already de ned thinning earlier (see
Section 3) and we can turn a variable into a term by using
the ‵ constructor. The type of specialised to this se-
mantics is then precisely the proof that terms are thinnable.∶ �� ∶ � → � ��� � = �
Simultaneous Substitution Our second example of a se-
mantics is another spin on the syntactic model: environment
values are now terms. We get thinning for terms from the
previous example. Again, specialising the type of re-
veals that it delivers precisely the simultaneous substitution.∶ �� − � � → � � → � �� = �
6. Printing with Names
Before considering the various model constructions involved
in de ning normalisation functions deciding di erent equa-
tional theories, let usmake a detour to a perhaps slightlymore
surprising example of a : printing with names. A
user-facing project would naturally avoid directly building a

and rather construct an inhabitant of a more sophisti-
cated datatype in order to generate a prettier output (Hughes
1995; Wadler 2003). But we stick to the simpler setup as
pretty printing is not our focus here.

This example is interesting for two reasons. Firstly, the
distinction between values and computations is once more
instrumental: we get to give the procedure a precise type
guiding our implementation. The environment carries names
for the variables currently in scope whilst the computa-
tions thread a name-supply (a stream of strings) to be used
to generate fresh names for bound variables. If the values
in the environment had to be computations too, we would
not root out some faulty implementations e.g a program
picking a new name each time a variable is mentioned.�� ∶ � �� ∶ � ∶

� ∶� �� ∶ � �� ∶ � ∶�� ∶ � �
Secondly, the fact that the model’s computation type

is a monad and that this poses no problem whatsoever in
this framework means it is appropriate for handling lan-
guages with e ects (Moggi 1991), or e ectful semantics
e.g. logging the various function calls. Here is the full def-
inition of the printer assuming the existence of various

primitives picking a way to display ‵ , ‵� and ‵ .� ∶ �� ={ = _ _ → ∘� = � ∘ ∘� _ � _ = → � �� <�> � ⊛ � �� = � → � �>>= → �′ =� � >>= _ →� � � � � � �′�� >>= �′ →� �′ �′��� = � � ”⟨⟩”�� = � � ”tt”�� = � � ”ff”�� = � → � �� <�> � � ⊛ � ⊛ � � }
The evaluation function will deliver a printer which

needs to be run on a of distinct s. Our de nition
of (not shown here) simply cycles through the letters
of the alphabet and guarantess uniqueness by appending a
natural number incremented each time we are back at the
beginning of the cycle. This crude name generation strategy
would naturally be replaced with a more sophisticated one in
a user-facing language: we could e.g. use naming hints for
user-introduced binders and type-based schemes otherwise
(or for function, �s or �s for integers, etc.).

In order to kickstart the evaluation, we still need to pro-
vide s for each one of the free variables in scope.
We deliver that environment by a simple stateful compu-
tation chopping o an initial segment of the name supply
of the appropriate length. The de nition of follows:∶ � � ��� − � � �∶ � � →= ��� >>= � → � � � �� �

We can observe ’s behaviour by writing a test; we
state it as a propositional equality and prove it using ,
forcing the typechecker to check that both expressions indeed
compute to the same normal form. Here we display the iden-

199

tity function de ned in a context of size 2. As we can see,
the binder receives the name ”c” because ”a” and ”b”
have already been assigned to the free variables in scope.� ∶ �‵ �‵ �� ≡ ”λc. c”� = � �
7. Normalisation by Evaluation
Normalisation by Evaluation (NBE) is a technique leverag-
ing the computational power of a host language in order to
normalise expressions of a deeply embedded one. The pro-
cess is based on a construction describing a family of
types by induction on its index. Two procedures are then
de ned: the rst () constructs an element of � � � pro-
vided a well typed term of the corresponding � � type
whilst the second () extracts, in a type-directed manner,
normal forms � ⊢ � from elements of the model � � � .
NBE composes the two procedures. The de nition of this

function is a natural candidate for our frame-
work. NBE is always de ned for a given equational theory;
we start by recalling the various rules a theory may satisfy.

Thanks to and respectively, we can
formally de ne η-expansion and β-reduction. The η-rules
say that for some types, terms have a canonical form: func-
tions will all be -headed whilst records will collect their
elds — here this makes all elements of ‵ equal to ‵ .∶ [�� ‵→ �� →̇ �� ‵→ �� �= ‵ � _ � � ‵� ‵ �
_ _/ ∶ [� ⊢ � →̇ � →̇ � �/ = � ‵ ‵∙ �

∶ (� ‵→ �) �
↝

�1 ∶ ‵ �
↝ ‵ �2

(‵) ‵� ↝ / �
The β-rule is the main driver for actual computation, but the
presence of an inductive data type (‵) and its eliminator
(‵) means we have further redexes: whenever the boolean
the eliminator branches on is in canonical form, we may
apply a -rule. Finally, the ξ-rule lets us reduce under -
abstractions — the distinction between weak-head normal-
isation and strong normalisation.

‵ ‵ ↝ 1 ‵ ‵ ↝ 2 ↝‵ ↝ ‵ �
Now that we have recalled all these rules, we can talk

precisely about the sort of equational theory decided by the
model construction we choose to perform. We start with the
usual de nition of NBE which goes under s and produces
η-long β -short normal forms.

7.1 Normalisation by Evaluation for βιξη
In the case of NBE, the environment values and the com-
putations in the model will both have the same type

(standing for “Kripke”), de ned by induction on the ar-
gument. The η-rules allow us to represent functions (resp.
inhabitants of ‵) in the source language as function spaces
(resp. ⊤). In Agda, there are no such rules for boolean val-
ues. We thus need a notion of syntactic normal forms. We
parametrise the mutually de ned inductive families and

by a predicate constraining the types at which one may
embed a neutral as a normal form. This make it possible to
control the way NBE �-expands all terms at certain types.∶‵ ∶ [� →̇ � �

‵� ∶ [�� ‵→ �� →̇ � →̇ � �‵ ∶ [‵ →̇ � →̇ � →̇ � �
∶‵ ∶ � → [� →̇ � �‵ ∶ [‵ �‵ ‵ ∶ [‵ �‵ ∶ [� ⊢ � →̇ �� ‵→ �� �

Oncemore, the expected notions of thinning and
are induced as and are syntaxes. We omit their purely
structural implementation here and wish we could do so in
source code, too: our constructions so far have been syntax-
directed and could surely be leveraged by a generic account
of syntaxes with binding. We now de ne the model. The
predicate characterising the types for which neutral terms

may be considered normal is here equivalent to the unit type
for ‵ and the empty type otherwise. This makes us use η-
rules eagerly: all inhabitants of � ‵ and � (� ‵→ �)
are equal to ‵ and ‵ -headed respectively.

The model construction then follows the usual pattern
pioneered by Berger (1993) and formally analysed and thor-
oughly explained by Catarina Coquand (2002). We work by
induction on the type and describe η-expanded values: all in-
habitants of ‵ � are equal and all elements of (� ‵→ �)� are functions in Agda.∶‵ = ⊤‵ = ‵�� ‵→ �� = □ � � →̇ ��

This model is de ned by induction on the type in terms ei-
ther of syntactic objects () or using the □-operator which
is a closure operator for Thinnings. As such, it is trivial to
prove that for all type �, � is . Application’s
semantic counterpart is easy to de ne: given that � and �
are equal in this instance de nition, we just feed the argu-
ment directly to the function, with the identity renaming:�� = . Conditional branching however is more
subtle: the boolean value ‵ branches on may be a neutral
term in which case the whole elimination form is stuck. This
forces us to de ne and rst. These functions,
also known as quote and unquote respectively, give the inter-

200

play between neutral terms, model values and normal forms.
performs a form of semantic η-expansion: all stuck‵ terms are equated and all functions are -headed. It al-

lows us to de ne , the semantic counterpart of ‵ .∶ �� ∶ � → [� →̇ � �∶ �� ∶ � → [� →̇ � �‵ =‵ = ‵ _�� ‵→ �� = � → � = �� ‵→ �� �� �� ‵� � �‵ = ‵‵ =�� ‵→ �� = ‵ � � � � � � ����
We can then give the semantics of ‵ : if the boolean is a

value, the appropriate branch is picked; if it is stuck the whole
expression is re ected in themodel.∶ [‵ →̇ � →̇ � →̇ � �‵ =‵ =�‵ _ � = � �‵ � � � � � ��

We can then combine these components. The semantics
of a -abstraction is simply the identity function: the struc-
ture of the functional case in the de nition of the model
matches precisely the shape expected in a . Be-
cause the environment carries model values, the variable
case is trivial. We obtain a normaliser by kickstarting the
evaluation with a dummy environment of re ected variables.∶={ = � = � _ � _ = _��_ � =� = � = ‵ � = ‵ � = }

∶ [�� − � →̇ �� − � �� = �
∶ �� ∶ � → [� →̇ � �� = � � � � _ ∘ ‵ �� �

7.2 Normalisation by Evaluation for βιξ
As seen above, the traditional typedmodel construction leads
to an NBE procedure outputting β -normal η-long terms.
However actual proof systems rely on evaluation strategies
that avoid applying η-rules as much as possible: unsurpris-
ingly, it is a rather bad idea to η-expand proof terms which
are already large when typechecking complex developments.

In these systems, normal forms are neither η-long nor η-
short: the η-rule is never deployed except when comparing
a neutral and a constructor-headed term for equality. Instead
of declaring them distinct, the algorithm does one step of η-
expansion on the neutral term and compares their subterms
structurally. The conversion test fails only when confronted

with neutral terms with distinct head variables or normal
forms with di erent head constructors.

To reproduce this behaviour, NBE must be amended. It
is possible to alter the model de nition described earlier so
that it avoids unnecessary η-expansions. We proceed by en-
riching the traditional model with extra syntactical artefacts
in a manner reminiscent of Coquand and Dybjer’s (1997) ap-
proach to de ning an NBE procedure for the SK combinator
calculus. Their resorting to glueing terms to elements of the
model was dictated by the sheer impossibily to write a sen-
sible rei cation procedure but, in hindsight, it provides us
with a powerful technique to build models internalizing al-
ternative equational theories.

This leads us to using a predicate allowing embedding
of neutrals into normal forms at all types and mutually de n-
ing the model () together with the acting model ():∶� = � ⊎̇ � ∶‵ = ⊤‵ =�� ‵→ �� = □ � � →̇ ��

Most combinators acting on this model follow a pattern
similar to their counterpart’s in the previous section. Seman-
tic application is more interesting: in case the function is
a stuck term, we grow its spine by reifying its argument;
otherwise we have an Agda function ready to be applied.
We proceed similarly for the de nition of the semantical
“if” (omitted here). Altogether, we get another normaliser
which is, this time, not producing η-long normal forms.

�� ∶ [�� ‵→ �� →̇ � →̇ � �� � �� = � ‵� _ �� � � �� = �
7.3 Normalisation by Evaluation for βι
The decision to apply the η-rule lazily can be pushed even
further: one may forgo using the ξ-rule too and simply per-
formweak-head normalisation. This drives computation only
when absolutely necessary, e.g. when two terms compared
for equality have matching head constructors and one needs
to inspect these constructors’ arguments to conclude.

The model construction is much like the previous one
except that source terms are now stored in themodel too. This
means that from an element of the model, one can pick either
the reduced version of the input term (i.e. a stuck term or
the term’s computational content) or the original. We exploit
this ability most notably in rei cation where once we have
obtained either a head constructor or a head variable, no
subterms need be evaluated.∶� = � ×̇� � ⊎̇ ��

∶‵ = ⊤‵ =�� ‵→ �� = □ � � →̇ ��

201

8. CPS Transformation
In their generic account of continuation passing styles, Hat-
cli and Danvy (1994) decompose both call by name and
call by value CPS transformations in two phases. The rst
one, an embedding of the source language intoMoggi’sMeta
Language (1991), picks an evaluation strategy whilst the sec-
ond one is a generic erasure from Moggi’s ML back to the
original language. Looking closely at the structure of the
rst pass, we can see that it is an instance of our Seman-

tics framework. Let us start with the de nition of Moggi’s
Meta Language. Its types are fairly straightforward, we sim-
ply have an extra constructor �_ for computations and the
arrow has been turned into a computational arrow meaning
that its codomain is considered to be a computational type:∶‵ ‵ ∶

‵→� ∶ → →�_ ∶ →
Then comes the Meta-Language itself. It incorporates

constructors and eliminators with slightly di erent types:
value constructors are associated to value types whilst elim-
inators (and their branches) have computational types. Two
new term constructors have been added: ‵ and _‵>>=_
make �_ amonad. They can be used to explicitly schedule the
evaluation order of various subterms.∶ → →‵ ∶ [� →̇ � �

‵� ∶ [�� ‵→� �� →̇ � →̇ �� �� �‵ ∶ [‵ �‵ ‵ ∶ [‵ �‵ ∶ [� →̇ �� �� �
‵>>= ∶ [�� �� →̇ �� ‵→� �� →̇ �� �� �‵ ∶ [� ⊢ �� �� →̇ �� ‵→� �� �‵ ∶ [‵ →̇ �� �� →̇ �� �� →̇ �� �� �
As explained in Hatcli and Danvy’s paper, the transla-

tion from to xes the calling convention the CPS
translation will have. Both call by name () and call by
value () can be encoded. They behave the same way
on base types (and we group the corresponding equations
under the name) but di er in case of the function
space. In the argument of a function is a computation
whilst it is expected to have been fully evaluated in .∶ →‵ = ‵‵ = ‵�� ‵→ �� = �� �� ‵→� ��� ‵→ �� = � ‵→� �

From these translations, we can described the respective
interpretations of variables and terms for the two CPS trans-
formations. In both cases the return type of the compiled
term is a computational type: the source term is a simple

and as such can contain redexes. Variables then play
di erent roles: in the by name strategy, they are all compu-
tations whereas in the by value one they are expected to be
evaluated already. This leads to the following de nitions:� � = �� �� � ��_ ∘ � � �� � = �� �� � ��_ ∘ � � �� � = � �� � � �� � = �� �� � � �

Finally, the corresponding can be de ned (code
omitted here) and we get the two CPS transformations by
creating dummy environments to kickstart the evaluation:� ∶� ∶

∶ [� →̇ � �= �= � ��_ ∘ ��∶ [� →̇ � �= �= � �
9. Proving Properties of Semantics
Thanks to , we have already saved work by not re-
iterating the same traversals. Moreover, this disciplined ap-
proach to building models and de ning the associated evalu-
ation functions can help us refactor the proofs of some prop-
erties of these semantics.

Instead of using proof scripts as Benton et al. (2012)
do, we describe abstractly the constraints the logical rela-
tions (Reynolds 1983) de ned on computations (and envi-
ronment values) have to respect to ensure that evaluating a
term in related environments produces related outputs. This
gives us a generic framework to state and prove, in one go,
properties about all of these semantics.

Our rst example of such a framework will stay simple
on purpose. However it is no mere bureaucracy: the result
proven here will actually be useful in the next section when
considering more complex properties.

9.1 The Simulation Relation
This rst example is describing the relational interpretation
of the terms. It should give the reader a good introduction
to the setup before we take on more complexity. The types
involved might look a bit scarily abstract but the idea is
rather simple: we have a between two
when evaluating a term in related environments yields related
values. The bulk of the work is to make this intuition formal.

The evidence that we have a between two
is packaged in a record indexed by the semantics as

well as two relations. We call (for RelationalModel)
the type of these relations; the rst one (�) relates values
in the respective environments and the second one (�) de-
scribes simulation for computations.

202

�� ∶ � � � �� ∶ � � ��� ∶ � � � �� ∶ � � � ∶
The record’s elds say what structure these relations need

to have. � states that two similar environments can be
thinned whilst staying in simulation. It is stated using the‵∀[_� predicate transformer (omitted here) which lifts � to
contexts in a pointwisemanner.� ∶ ‵∀[� � � � →‵∀[� � � [� � � � � � � � [� � � � � � �

We then have the relational counterparts of the term con-
structors. To lighten the presentation we introduce �, which
states that the evaluation of a term in distinct contexts yields
related computations. And we focus on the most interesting
combinators, giving only one characteristic example of the
remaining ones.� ∶ � � → �� − � � � → �� − � � � →� � � = � � � � � � �

Our rst interesting case is the relational counterpart of‵ : a variable evaluated in two related environments yields
related computations. In other words turns related val-
ues in related computations.∶ ‵∀[� � � � → � �‵ � � �

The second, and probably most interesting case, is the
relational counterpart to the combinator. The ability to
evaluate the body of a ‵ in thinned environments, each ex-
tended by related values, and deliver similar values is enough
to guarantee that evaluating the s in the original environ-
mentswill produce similar values.∶ � ∶ ∀ � � → � →� ′ = [� � � � � � ‵∙� ′ = [� � � � � � ‵∙� � � ′ � ′� →‵∀[� � � � → � �‵ �� � �

All the remaining cases follow suit: assuming that the
evaluation of subterms produces related computations and
that the current environments are related, we conclude that
the evaluation of the whole term should yield related compu-
tations. We show here the relational counterpart of the appli-
cation constructor and omit the remaining ones:� ∶ � � � → � � � →‵∀[� � � � → � � ‵� � � �

This speci cation is only useful if some semantics satisfy
it and if given that these constraints are satis ed we can
prove the fundamental lemma of simulations stating that the
evaluation of a term on related inputs yields related output.

Theorem 1 (Fundamental Lemma of Simulations). Given
two Semantics � and � in simulation with respect to
relations � for values and � for computations, we have:

For any term and environments � and � , if the two
environments are � -related in a pointwise manner then the
semantics associated to by � using � is � -related to
the one associated to by � using � .

Proof. The proof is a structural induction on like the one
used to de ne . It uses the combinators provided by the
constraint that � and � are in simulation to make use of
the induction hypotheses.

Corollary 1 (Renaming is a Substitution). Applying a re-
naming � to a term amounts to applying the substitution‵ � to that same term .

Proof. This is shown by instantiating the fundamental lemma
of simulations for the special case where: � is ,� is , � is ‵ ≡ (in other words: the
terms in the substitution are precisely the variables in the
renaming), and � is propositional equality.

The constraints corresponding to the various combinators
are mundane: propositional equality is a congruence.

Another corollary of the simulation lemma relates NBE to
itself. This may seem bureaucratic but it is crucial: the model
de nition uses the host language’s function space which
contains more functions than simply the ones obtained by
evaluating a -term. These exotic functions have undesirable
behaviours and need to be ruled out to ensure that normali-
sation has good properties. This is done by de ning a Partial
Equivalence Relation (Mitchell 1996) (PER) on the model:
the elements equal to themselves will be guaranteed to be
well behaved. We show that given an environment of values
PER-related to themselves, the evaluation of a -term pro-
duces a computation equal to itself too.

We start by de ning the PER for the model. It is con-
structed by induction on the type and ensures that terms
which behave the same extensionally are declared equal.
Two values of type ‵ are always trivially equal; values
of type ‵ are normal forms and are declared equal when
they are e ectively syntactically the same; nally func-
tions are equal whenever equal inputs map to equal outputs.� ∶ �� ∶ � → [� →̇ � →̇ �� ‵ = ⊤� ‵ = ≡� �� ‵→ �� = ∀ � � → � � →� � � � � � � � � �

It is indeed a PER as witnessed by the (omitted here)
proofs that � � is symmetric and transitive. It also respects
the notion of thinning de ned for .

� ∶ � � → � �

203

� ∶ � � → � � → � �
� ∶ � � → � � � � � � � � � � � �
The interplay of re ect and reify with this notion of

equality has to be described in one go because of their
mutual de nition. It con rms that � is an appropriate
notion of semantic equality: � -related values are rei ed
to propositionally equal normal forms whilst proposition-
ally equal neutral terms are re ected to � -related values.

� ∶ � � → � ≡ �
� ∶ ≡ → � � � � � � � �

That suffices to show that evaluating a term in two envi-
ronments related pointwise by � yields two semantic ob-
jects themselves related by � .
Corollary 2 (No exotic values). The evaluation of a term
in an environment of values equal to themselves according to� yields a value equal to itself according to �
Proof. By the fundamental lemma of simulations with �
and � equal to , � and � to � .

We can move on to the more complex example of a proof
framework built generically over our notion of

9.2 Fusions of Evaluations
When studying the meta-theory of a calculus, one systemat-
ically needs to prove fusion lemmas for various semantics.
For instance, Benton et al. (2012) prove six such lemmas re-
lating renaming, substitution and a typeful semantics embed-
ding their calculus into Coq. This observation naturally led
us to de ning a fusion framework describing how to relate
three semantics: the pair we sequence and their sequential
composition. The fundamental lemma we prove can then be
instantiated six times to derive the corresponding corollaries.

The evidence that � , � and � are such that �
followed by � is equivalent to � (e.g. fol-
lowed by can be reduced to) is packed
in a record indexed by the three semantics but also
three relations. The rst one (�) states what it means
for two environment values of � and � respectively to
be related. The second one (�) characterises the triples of
environments (one for each one of the semantics) which are
compatible. The last one (�) relates values in � and � ’s
models. �� ∶ � � ��� ∶ � � � �� ∶ � � ��� ∶ � � ��� ∶ �� − � � � → �� − � � � →�� − � � � → ��� ∶ � � � ∶

As before, most of the elds of this record describe what
structure these relations need to have. However, we start with

something slightly di erent: given that we are planing to run
the � after having run � , we need two compo-
nents: a way to extract a term from an � and a way to man-
ufacture a dummy � value when going under a binder. Our
rst two elds are therefore:∶ [� � →̇ � �∶ [� ⊢ � � �
Then come two constraints dealing with the relations talk-

ing about evaluation environments. � ∙ tells us how to ex-
tend related environments: one should be able to push related
values onto the environments for � and � whilst merely
extending the one for � with the token value .� guarantees that it is always possible to thin the en-
vironments for � and � in a � preserving manner.� ∙ ∶ � � � � → � →� ′ = [� � � � � � ‵∙� � ′ �� ‵∙ � �� ‵∙ �

� ∶ � � � � →� � � [� � � � � � � � [� � � � � � �
Then we have the relational counterpart of the vari-

ous term constructors. We can once more introduce an ex-
tra de nition � which will make the type of the com-
binators de ned later on clearer. � relates a term and
three environments by stating that the computation one
gets by sequentially evaluating the term in the rst and
then the second environment is related to the one obtained
by directly evaluating the term in the third environment.

� � � � = � � � � � � ���� � �
As with the previous section, only a handful of these com-

binators are out of the ordinary. We will start with the ‵
case. It states that fusion indeed happens when evaluating a
variable using related environments.∶ ∀ → � � � � → � �‵ � � � �

The ‵ -case puts some rather strong restrictions on the
way the -abstraction’s body may be used by � : we assume
it is evaluated in an environment thinned by one variable and
extended using . But it is quite natural to have these
restrictions: given that quotes the result back, we are
expecting this type of evaluation in an extended context (i.e.
under one lambda). And it turns out that this is indeed enough
for all of our examples. The evaluation environments used
by the semantics � and � on the other hand can be
arbitrarily thinned before being extended with related values
to be substituted for the variable bound by the ‵ .∶ � ∶ � �� ∙ ���� ∀ � � → � →� ′ = [� � � � � � ‵∙

204

� ′ = [� � � � � � ‵∙� ′ = [� � � � � � ‵∙� � ′ � ′ � ′� →� � � � → � �‵ � � � �
The other cases (omitted here) are just stating that, given

the expected induction hypotheses, and the assumption that
the three environments are � -related we can deliver a proof
that fusion can happen on the compound expression.

As with simulation, we measure the utility of this frame-
work by the way we can prove its fundamental lemma and
then obtain useful corollaries. Once again, having carefully
identi ed what the constraints should be, proving the funda-
mental lemma is not a problem:
Theorem 2 (Fundamental Lemma of Fusable Semantics).
Given three Semantics � , � and � which are fusable
with respect to the relations � for values of � and � ,� for environemnts and� for computations, we have that:

For any term and environments � , � , and � , if
the three environments are � -related then the semantics
associated to by � using � followed by � using �
is � -related to the one associated to by � using � .

Proof. The proof is by structural induction on using the
combinators to assemble the induction hypotheses.

The Special Case of Syntactic Semantics The translation
from to uses a lot of constructors as their
own semantic counterpart, it is hence possible to generate
evidence of triplets being fusable with much fewer
assumptions. We isolate them and prove the result gener-
ically to avoid repetition. A record packs
the evidence for semantics � , � and � .
It is indexed by these three s as well as two rela-
tions corresponding to the� and� ones of the
framework. It contains the same � ∙, � and elds
as a as well as a fourth one () saying that �
and � ’s respective s are producing related values.

∶ � � �
Theorem 3 (Fundamental Lemma of Fusable Syntactics).
Given a relating three semantics,
we get a relating the corresponding where� is the propositional equality.

Proof. The proof relies on the way the translation from
to is formulated in section 5.

Corollary 3 (Renaming-Renaming fusion). Given two re-
namings � from � to � and �′ from � to� and a term of type� with free variables in� , we have that:� �′ � � � � ≡ � � � �′�

Corollary 4 (Renaming-Substitution fusion). Given a re-
naming � from � to �, a substitution �′ from � to � and
a term of type � with free variables in � , we have that:�′ � � � � ≡ � � �′�
Corollary 5 (Substitution-Renaming fusion). Given a sub-
stitution � from � to �, a renaming �′ from � to � and
a term of type � with free variables in � , we have that:� �′ � � � ≡ � � _ �′� ��
Corollary 6 (Substitution-Substitution fusion). Given two
substitutitons, � from � to � and �′ from � to �, and a
term of type � with free variables in � , we have that:�′ � � � ≡ � � �′� ��

These four lemmas are usually proven in painful separa-
tion. Here we discharged them by rapid successive instantia-
tion of our framework, using the earlier results to satisfy the
later constraints. We are not limited to statements:

Examples of Fusable Semantics Themost simple example
of involving a non one is prob-
ably the proof that followed by � �� is
equivalent to NBE with an adjusted environment.
Corollary 7 (Renaming-Normalise fusion). Given a renam-
ing � from � to �, an environment of values �′ from � to� such that they are all equal to themselves in the � and
a term of type � with free variables in � , we have that:� � � �′ � � � �� � � � �′� �

Then, we use the framework to prove that to � ��
by Evaluation after a amounts to normalising the
original term where the substitution has been evaluated rst.
The constraints imposed on the environments might seem
quite restrictive but they are actually similar to the Unifor-
mity condition described by C. Coquand (2002) in her de-
tailed account of NBE for a ST C with explicit substitution.
Corollary 8 (Substitution-Normalise fusion). Given a sub-
stitution � from � to �, an environment of values �′ from �
to � such that all these values are equal to themselves and
thinning and evaluation in �′ commute, and a term of type �
with free variables in� , we have that:� � � �′ � � �� � � � �′� �� �
10. Future and Related Work
The programming part of this work can be replicated in
Haskell and a translation of the de nitions is available in
the paper’s repository (Allais et al.) The subtleties of work-
ing with dependent types in Haskell (Lindley and McBride
2014) are outside the scope of this paper.

If the Tagless and Typeful NbE procedure derived in
Haskell from our Semantics framework is to the best of our

205

knowledge the rst of its kind, Danvy, Keller and Puech have
achieved a similar goal in OCaml (2013). But their formali-
sation uses parametric higher order abstract syntax (Chlipala
2008) freeing them from having to deal with variable bind-
ing, contexts and use models à la Kripke at the cost of using
a large encoding. However we nd scope safety enforced at
the type level to be a helpful guide when formalising com-
plex type theories. It helps us root out bugs related to fresh
name generation, name capture or conversion from de Bruijn
levels to de Bruijns indices.

This paper’s method really shines in a simply typed set-
ting but it is not limited to it: we have successfully used an
analogue of our Semantics framework to enforce scope safety
when implementing the expected traversals (renaming, sub-
stitution, untyped normalisation by evaluation and printing
with names) for the untyped -calculus (for which the notion
of type safety does not make sense) or Martin-Löf type the-
ory. Apart from NbE (which relies on a non strictly-positive
datatype), all of these traversals are total. Simulation and Fu-
sion fundamental theorems akin to the ones proven in this
paper also hold true. The common structure across all these
variations suggests a possible generic scope safe treatment of
syntaxes with binding.

This work is at the intersection of two traditions: the for-
mal treatment of programming languages and the implemen-
tation of embeddedDomain Speci c Languages (eDSL) (Hu-
dak 1996) both require the designer to deal with name bind-
ing and the associated notions of renaming and substitution
but also partial evaluation (Danvy 1999), or even printing
when emitting code or displaying information back to the
user (Wiedijk 2012). The mechanisation of a calculus in a
meta language can use either a shallow or a deep embed-
ding (Svenningsson and Axelsson 2013; Gill 2014).

The well-scoped and well typed nal encoding described
by Carette, Kiselyov, and Shan (2009) allows the mechanisa-
tion of a calculus in Haskell or OCaml by representing terms
as expressions built up from the combinators provided by a
“Symantics”. The correctness of the encoding relies on para-
metricity (Reynolds 1983) and although there exists an ongo-
ing e ort to internalise parametricity (Bernardy and Moulin
2013) in Type Theory, this puts a formalisation e ort out of
the reach of all the current interactive theorem provers.

Because of the strong restrictions on the structure our
s may have, we cannot represent all the interesting

traversals imaginable. Chapman and Abel’s work on nor-
malisation by evaluation (2009; 2014) which decouples the
description of the big-step algorithm and its termination
proof is for instance out of reach for our system. Indeed,
in their development the application combinator may restart
the computation by calling the evaluator recursively whereas
the constraint we impose means that wemay only
combine induction hypotheses.

McBride’s original unpublishedwork (2005) implemented
in Epigram (McBride and McKinna 2004) was inspired by

Goguen and McKinna’s Candidates for Substitution (1997).
It focuses on renaming and substitution for the simply typed
-calculus and was later extended to a formalisation of Sys-

tem F (Girard 1972) in Coq (The Coq development team
2004) by Benton, Hur, Kennedy and McBride (2012). Ben-
ton et al. both implement a denotational semantics for their
language and prove the properties of their traversals. How-
ever both of these things are done in an ad-hoc manner: the
meaning function associated to their denotational semantics
is not de ned in terms of the generic traversal and the proofs
are manually discharged one by one. They also choose to
prove the evaluation function correct by using propositional
equality and assuming function extensionality rather than
resorting to the traditional Partial Equivalence Relation ap-
proach we use.

11. Conclusion
We have explained how to make using an inductive family to
only represent the terms of an eDSL which are well-scoped
and well typed by construction more tractable.We proceeded
by factoring out a common notion of encompass-
ing a wide range of type and scope preserving traversals such
as renaming and substitution, which were already handled by
the state of the art, but also pretty printing, or various varia-
tions on normalisation by evaluation. Our approach crucially
relied on the careful distinction we made between values in
the environment and values in the model, as well as the slight
variation on the structure typical of Kripke-style models. In-
deed, in our formulation, the domain of a binder’s interpre-
tation is an environment value rather than a model one.

We have then demonstrated that, having this shared struc-
ture, one could further alleviate the implementer’s pain by
tackling the properties of these in a similarly ab-
stract approach. We characterised, using a rst logical re-
lation, the traversals which were producing related outputs
provided they were fed related inputs. A more involved sec-
ond logical relation gave us a general description of triples
of semantics such that composing the two rst ones
would yield an instance of the third one.

Acknowledgments
We would like to thank the anonymous referees for their
helpful comments. This work was supported by EPSRC
grant EP/M016951/1 and EP/K020218/1 and the European
Research Council under grant agreement N°320571. Data
(Agda code) associated with research published in this paper
is available at the University of Strathclyde’s Knowledge-
Base (Allais et al.).

References
A. Abel and J. Chapman. Normalization by evaluation in the delay

monad. MSFP 2014, 2014.
A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: pro-

gramming in nite structures by observations. In ACM SIGPLAN

206

Notices, volume 48, pages 27–38. ACM, 2013.
G. Allais, J. Chapman, C. McBride, and J. McKinna. Type-

and-scope safe programs and their proofs – agda for-
malization. http://dx.doi.org/10.15129/
f1283dbb-64fd-4d35-aacc-49d3cc0893b8.
Also from github https://github.com/gallais/
type-scope-semantics.

T. Altenkirch and B. Reus. Monadic presentations of lambda
terms using generalized inductive types. In CSL, pages 453–468.
Springer, 1999.

T. Altenkirch, M. Hofmann, and T. Streicher. Categorical recon-
struction of a reduction free normalization proof. In LNCS, vol-
ume 530, pages 182–199. Springer, 1995.

N. Benton, C.-K. Hur, A. J. Kennedy, and C. McBride. Strongly
typed term representations in Coq. JAR, 49(2):141–159, 2012.

U. Berger. Program extraction from normalization proofs. In TLCA,
pages 91–106. Springer, 1993.

J.-P. Bernardy and G. Moulin. Type-theory in color. SIGPLAN
Notices, 48(9):61–72, 2013.

J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless, partially
evaluated. JFP, 2009.

J. M. Chapman. Type checking and normalisation. PhD thesis,
University of Nottingham, 2009.

A. Chlipala. Parametric higher-order abstract syntax for mecha-
nized semantics. In ACM Sigplan Notices, volume 43, pages
143–156. ACM, 2008.

C. Coquand. A formalised proof of the soundness and completeness
of a simply typed lambda-calculus with explicit substitutions.
Higher-Order and Symbolic Computation, 15(1):57–90, 2002.

T. Coquand and P. Dybjer. Intuitionistic model constructions and
normalization proofs. MSCS, 7(01):75–94, 1997.

N. A. Danielsson and U. Norell. Parsing mix x operators. In IFL,
pages 80–99. Springer, 2011.

O. Danvy. Type-directed partial evaluation. In Partial Evaluation,
pages 367–411. Springer, 1999.

O. Danvy, C. Keller, and M. Puech. Tagless and typeful normaliza-
tion by evaluation using generalized algebraic data types. 2013.

N.G. de Bruijn. LambdaCalculus notationwith nameless dummies.
In Indagationes Mathematicae, volume 75, pages 381–392. El-
sevier, 1972.

P. Dybjer. Inductive sets and families in Martin-Löf’s type the-
ory and their set-theoretic semantics. Logical Frameworks, 2:6,
1991.

R. A. Eisenberg and S. Weirich. Dependently typed programming
with singletons. SIGPLAN Notices, 47(12):117–130, 2013.

A. Gill. Domain-speci c languages and code synthesis using
Haskell. Queue, 12(4):30, 2014.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
de l’arithmétique d’ordre supérieur. 1972.

H. Goguen and J. McKinna. Candidates for substitution. LFCS,
Edinburgh Techreport, 1997.

J. Hatcli and O. Danvy. A generic account of continuation-passing
styles. In Proceedings of the 21st ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 458–
471. ACM, 1994.

P. Hudak. Building domain-speci c embedded languages. ACM
Computing Surveys (CSUR), 28(4es):196, 1996.

J. Hughes. The design of a pretty-printing library. In AFP Summer
School, pages 53–96. Springer, 1995.

A. Je rey. Associativity for free! http://thread.gmane.
org/gmane.comp.lang.agda/3259, 2011.

S. Lindley and C.McBride. Hasochism. SIGPLAN Notices, 48(12):
81–92, 2014.

P. Martin-Löf. Constructive mathematics and computer program-
ming. Studies in Logic and the Foundations ofMathematics, 104:
153–175, 1982.

The Coq development team. The Coq proof assistant reference
manual, 2004. URL http://coq.inria.fr. Version 8.0.

C. McBride. Type-preserving renaming and substitution. 2005.
C. McBride and J. McKinna. The view from the left. JFP, 14(01):

69–111, 2004.
J. C. Mitchell. Foundations for programming languages, volume 1.

MIT press, 1996.
J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda

calculus. Annals of Pure and Applied Logic, 51(1):99–124, 1991.
E. Moggi. Notions of computation and monads. Information and

Computation, 93(1):55–92, 1991.
U. Norell. Dependently typed programming in Agda. In AFP

Summer School, pages 230–266. Springer, 2009.
J. C. Reynolds. Types, abstraction and parametric polymorphism.

1983.
J. Svenningsson and E. Axelsson. Combining deep and shallow

embedding for EDSL. In TFP, pages 21–36. Springer, 2013.
P. Wadler. A prettier printer. The Fun of Programming, Corner-

stones of Computing, pages 223–243, 2003.
F. Wiedijk. Pollack-inconsistency. ENTCS, 285:85–100, 2012.

207

http://dx.doi.org/10.15129/f1283dbb-64fd-4d35-aacc-49d3cc0893b8
http://dx.doi.org/10.15129/f1283dbb-64fd-4d35-aacc-49d3cc0893b8
https://github.com/gallais/type-scope-semantics
https://github.com/gallais/type-scope-semantics
http://thread.gmane.org/gmane.comp.lang.agda/3259
http://thread.gmane.org/gmane.comp.lang.agda/3259
http://coq.inria.fr

	Introduction
	The Calculus and Its Embedding
	A Generic Notion of Environment
	Semantics and Their Generic Evaluators
	Syntax Is the Identity Semantics
	Printing with Names
	Normalisation by Evaluation
	Normalisation by Evaluation for βιξη
	Normalisation by Evaluation for βιξ
	Normalisation by Evaluation for βι

	CPS Transformation
	Proving Properties of Semantics
	The Simulation Relation
	Fusions of Evaluations

	Future and Related Work
	Conclusion

